
NETS: Extremely Fast Outlier Detection from a Data Stream
via Set-Based Processing

Susik Yoon and Jae-Gil Lee
∗

Graduate School of Knowledge Service
Engineering, KAIST

Daejeon 34141, South Korea

{susikyoon, jaegil}@kaist.ac.kr

Byung Suk Lee
Department of Computer Science,

University of Vermont
Burlington, VT 05405, USA

bslee@uvm.edu

ABSTRACT
This paper addresses the problem of efficiently detecting
outliers from a data stream as old data points expire from
and new data points enter the window incrementally. The
proposed method is based on a newly discovered character-
istic of a data stream that the change in the locations of
data points in the data space is typically very insignificant.
This observation has led to the finding that the existing
distance-based outlier detection algorithms perform exces-
sive unnecessary computations that are repetitive and/or
canceling out the effects. Thus, in this paper, we propose a
novel set-based approach to detecting outliers, whereby data
points at similar locations are grouped and the detection of
outliers or inliers is handled at the group level. Specifically,
a new algorithm NETS is proposed to achieve a remark-
able performance improvement by realizing set-based early
identification of outliers or inliers and taking advantage of
the “net effect” between expired and new data points. Ad-
ditionally, NETS is capable of achieving the same efficiency
even for a high-dimensional data stream through two-level
dimensional filtering. Comprehensive experiments using six
real-world data streams show 5 to 25 times faster process-
ing time than state-of-the-art algorithms with comparable
memory consumption. We assert that NETS opens a new
possibility to real-time data stream outlier detection.

PVLDB Reference Format:
Susik Yoon, Jae-Gil Lee, Byung Suk Lee. NETS: Extremely Fast
Outlier Detection from a Data Stream via Set-Based Processing.
PVLDB, 12(11): 1303-1315, 2019.
DOI: https://doi.org/10.14778/3342263.3342269

1. INTRODUCTION

1.1 Background and Motivation
Outlier detection is a task to find unusual data points in

a given data space [5, 11]. Detecting outliers from a data

∗Jae-Gil Lee is the corresponding author.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342269

stream, especially in real-time, is drawing much attention
as many applications need to detect anomalies as soon as
they occur [2, 4, 14, 15, 21, 22, 23, 24]. The applications
range from fraud detection in finance to defect detection in
manufacturing to abnormal vital sign detection in health-
care to unusual pattern detection in marketing [3, 10]. All
these applications would benefit from identifying those crit-
ical events in real-time.

Example 1. Real-time cardiac monitoring is crucial to re-
ducing the morbidity and mortality of patients through early
detection and alert of anomalies in heartbeats. Usually, the
medical information of a patient is collected from implanted
or wearable sensors and transmitted to a server for real-time
diagnostics [12]. Outlier detection is evidently a key compo-
nent of this technology [16], and achieving a low latency is
of prime importance to identifying emergency cases like car-
diac arrests as quickly as possible. �

For a data stream inherently unbounded, outlier detection
is done over a sliding window which confines the extent of
data within the most recent context. A slide is a sequence
of data points evicted from or added to a window when it
moves forward. In the distance-based outlier detection mech-
anism [2, 4, 14, 22, 23] widely adopted for a data stream, an
outlier is defined as a data point that does not have enough
other data points in the vicinity within the current window.
Accordingly, as a window slides, expired data points may
cause nearby data points to become outliers, and new data
points may cause nearby data points to become inliers.

Thus, in most existing algorithms three steps are com-
monly taken whenever a window slides: (1) expired data
points are removed from the window, (2) new data points are
added to the window, and (3) outliers are detected from the
window. These algorithms maintain an index data structure
(e.g., indexed stream buffer [2] and micro-cluster [14]) that
supports efficient range search in the window and/or reduces
the number of potential outliers. The individual data points
that have expired or newly arrived are separately handled
using the index [2, 4, 14, 22, 23].

The state-of-the-art algorithms practicing such separate
handling of individual data points are missing out a big
opportunity to improve the performance of distance-based
outlier detection. The opportunity stems from an inherent
characteristic of data points that they do not vary signifi-
cantly in their locations in the data space; this characteristic
is clearer in a data stream monitored for outlier detection,
as by definition outliers occur rarely. In other words, data
points in a data stream are likely to be concentrated in a

1303

Table 1: Concentration ratio of real-world stream data sets. Here, the size refers to
the number of data points, and the concentration ratio is explained in Definition 1.

Name Description Size Full (Sub)-dim Concentration ratio

STK Stock trading records [19] 1.1M 1 0.64

TAO Oceanographic sensors [18] 0.6M 3 0.87

HPC Electric power consumption [9] 1.0M 7 0.97

GAS Household gas sensors [9] 0.9M 10 0.88

EM Gas sensor array [9] 1.0M 16 (4) 0.42 (0.90)

FC Forest cover types [9] 1.0M 55 (3) 0.44 (0.66)

t0 t1 t2 t3 t4 t5 Time

V
al

ue

t6

x1 x2

x4 x5 x6 x7
x3

Window

t7

Expired
slide

New
slide

Intra-slide
proximity

Inter-slide
proximity

Figure 1: Motivation of using the net
effect: x1 and x2 are offset (i.e., re-
placed) by x6 and x7.

1

Real outlier

Net effect in a set

Outlier

Potential outlier
?

Real outlier
? ?

Individual effect
from expired data points

Individual effect
from new data points

(a) Previous window. (b) Point-based update. (c) Set-based update.

Figure 2: The two window-update approaches: point-based (b) versus set-based (c). One-dimensional data space is considered
for ease of exposition.

set of small regions in the data space. Table 1 confirms the
characteristic observed from six real-world stream data sets
frequently cited in the literature [22]. All of them show a
very high “concentration ratio” (see Definition 1) in their
full- or sub-dimensional spaces.

Definition 1. (Concentration ratio) The concentra-
tion ratio of a data set is an indicator of how concentrated
the data points are in the data space partitioned into hyper-
cubes, called cells, of the same size, and is calculated as the
ratio of the total number of data points in the top quarter
of most populated cells to the number of data points in the
entire data space. (This definition has been adapted from
the same term used in the field of economics [17].) �

When the concentration ratio is high, as illustrated in Fig-
ure 1, data points in the same slide (either expired or new)
tend to be close to one another, and likewise, data points in
the expired slide are close to data points in the new slide.
We call the former the intra-slide proximity and the latter
the inter-slide proximity. The existing algorithms do not
recognize the intra-slide proximity and, therefore, repeat-
edly perform similar updates of an index for expired or new
data points, consequently wasting much computing time and
memory. Even worse, many data points removed from the
expired slide are likely to be offset (i.e., replaced) by data
points added to the new slide as the data points in the two
slides are close to each other. The existing algorithms do
not recognize the inter-slide proximity, either, and therefore
unnecessarily perform updates for the expired slide, only to
be countered by updates for the new slide.

1.2 Main Contributions and Summary
In this paper, we propose an innovative approach based

on set-based update to make distance-based outlier detec-
tion from data streams extremely fast by fully taking ad-
vantage of both intra-slide and inter-slide proximity. Close
data points in a slide are grouped into a set to avoid rep-
etition for the individual data points. Moreover, this set-
based processing makes it possible to extract the net change
between expired and new data points in each set, thereby

avoiding repetitive and useless update operations when the
window slides. Reiterating this idea from the perspective of
the algorithmic procedure, when a window slides, the exist-
ing algorithms process the expired and new slides separately
and sequentially1, whereas our approach processes the two
slides together and concurrently. To highlight the difference
from our set-based update approach, we call the existing
approach the point-based update approach.
Key idea: Figure 2 illustrates how the set-based update

approach is different from the point-based update approach.
Consider the previous window in Figure 2a that has just
slid, where there is a single outlier (indicated in yellow).
The point-based update in Figure 2b performs update sepa-
rately and sequentially as the individual expired data points
are removed from the current window, as indicated with
the upward arrows. Three data points lose their neighbors
and thus become potential outliers. Immediately following
it, however, the point-based update performs another up-
date separately and sequentially as the individual new data
points are added to the current window, as indicated with
the downward arrows. The three potential outliers obtain
enough neighbors and thus become inliers. Note that there
is no change of outliers after the window slides. In contrast,
the set-based update in Figure 2c first compares close data
points in the expired and new slides and handles them to-
gether and concurrently as sets, as indicated with the small
rectangles. Then, it calculates the net effect in each set (i.e.,
±0 for no change, +1 for one net new data point, or −1 for
one net expired data point) as reflected in the current win-
dow. As a result of this set-based update, (1) the number
of updates performed is much smaller, and (2) no potential
outlier is generated unnecessarily, i.e., only to be canceled
out immediately when new data points are looked at.

Algorithm: We propose a novel algorithm, called
NET-effect-based Stream outlier detection (NETS),
that performs distance-based outlier detection from a data
stream while fully capitalizing on the key idea discussed

1The order of processing the two slides is immaterial.

1304

above. To the best of our knowledge, this algorithm is
the first and foremost in realizing the set-based update and
combining updates from both expired and new slides. Con-
cretely, the following two techniques are employed.

• Grid index: For the set-based update, it is very impor-
tant to efficiently group close data points in a slide. To
this end, NETS uses a single-level grid index where all
grid cells have the same size. Each cell is essentially
the implementation of a set. The size of a cell is deter-
mined by a parameter typical of distance-based outlier
detection. The set (i.e., cell) to which a data point be-
longs is identified very quickly using the grid index, and
thus the cardinality of a set is maintained easily and effi-
ciently. Moreover, the net effect of changes from the two
slides (i.e., expired and new) is calculated at a small cost
equivalent to that of matrix addition.

• Two-level dimensional filtering: The concentration ratio
is usually low in the full-dimensional space of a high-
dimensional data stream, as shown in Table 1. So, to sup-
port high dimensionality as efficiently as low dimension-
ality, NETS first selects a subset of dimensions, such that
the concentration ratio is sufficiently high, in order to de-
tect outliers early on (i.e., at the cell level). Then, only
the data points of which the outlier-ness cannot be deter-
mined in the sub-dimensional space are processed further
in the full-dimensional space. Consequently, only a small
portion of the full-dimensional data space is looked at.
We have developed a heuristic algorithm that can select
an “optimal” subset of dimensions to maximize the ben-
efit of the two-level dimensional filtering.

Performance improvement: The key idea of NETS is
fairly straightforward, and yet its impact on the performance
improvement is outstanding. We show it through compre-
hensive experiments done using one synthetic data set and
six real-world data sets commonly cited in the literature.
MCOD [14] has been known to be the best performer among
the existing algorithms [22]. As will be shown in Section 6,
NETS outperforms MCOD by 5–150 times while consuming
only comparable memory space.

The rest of the paper is organized as follows. Section 2
defines the problem formally. Section 3 reviews the state-
of-the-art related work. Section 4 discusses the NETS algo-
rithm in detail. Section 5 elaborates on the two-level dimen-
sional filtering. Section 6 presents the results of experiments.
Section 7 concludes the paper.

2. PRELIMINARY (PROBLEM SETTING)
This section provides the formal definition of the prob-

lem of Distance-based Outlier Detection in Data Streams
(DODDS). The notations used throughout this paper are
summarized in Table 2.

First, distance-based outliers for static data are defined in
Definitions 2 and 3.

Definition 2. (Neighbor) Given a distance threshold θR,
a data point xi is a neighbor of another data point xj (xi �=
xj) if the distance between xi and xj is no more than θR. �

Definition 3. (Distance-based outlier/inlier) Given
a set X of data points, a neighbor count threshold θK , and
a distance threshold θR, a data point x in X is a distance-
based outlier if x has fewer than θK neighbors in X and,
otherwise, a distance-based inlier. �

Table 2: Summary of the notations in the paper.

Notation Description

Dd a d-dimensional domain space
Dfull the set of full-dimensions in Dd

Dsub a set of sub-dimensions in Dd

x a data point
W a window

Snew a new slide of a window
Sexp an expired slide of a window
c a cell
O a set of outliers
θW the size of a window
θS the size of a window slide
θR the threshold on the distance of a neighborhood
θK the threshold on the number of neighbors

t0 t1 t2 t3 t4 t5 Time

V
al

ue

t6

x0

x1
x2

x4

x5

x6

x7

x3

θR

θR

θK=3

θW=5θS=2
W1 W2

t7
Figure 3: Example of DODDS. A data point x3 was an inlier
in W1, but it becomes an outlier in W2.

Then, a data stream and a related window concept are
given in Definitions 4 and 5.

Definition 4. (Data stream) A data stream is an infinite
sequence of data points, . . . , xi−2, xi−1, xi, xi+1, xi+2, . . ., ar-
riving in an increasing order of the timestamp. �
As new data points arrive continuously, data streams are

usually processed using a sliding window containing the set
of most recent data points. In this paper, a sliding window
is formalized as the count-based window of Definition 5, as
in a majority of other studies [2, 4, 14, 22, 23]. Hereafter, a
count-based window is referred simply by a window.

Definition 5. (Count-based window) A count-based
window W of size θW at a data point xi is the set of data
points, {xi−θW+1, xi−θW+2, . . . , xi}. �
A window moves by θS data points at once; thus, each

time a window moves, θS old data points are removed, and
θS new data points are added. The removed portion is called
an expired slide, and the added portion is called a new slide.
Finally, the framework of the paper—DODDS—is formu-

lated by Definition 6.

Definition 6. (DODDS) Distance-based outlier detection
in data streams (DODDS) is a problem of finding a set of
outliers according to Definition 3 in every window of size
θW sliding at the increment of θS , provided with a neighbor
count threshold θK and a distance threshold θR. �

Example 2. Figure 3 illustrates an example scenario of
DODDS. Suppose that θW = 5, θS = 2, and θK = 3. In W1,
a data point x3 has three neighbors, x1, x2, and x4, within
θR and hence is regarded as an inlier. However, in W2, x3

becomes an outlier as it loses two old neighbors, x1 and x2,
and acquires only one new neighbor, x6. �
Hereafter, we omit “distance-based” in this paper when

discussing outlier detection.

1305

Table 3: Categorization of the DODDS algorithms.

Maintain window by

Existing index Custom index

Neighbor list Abstract-C [23]
Exact/approx-

Storm [2]

Identify
outlier by

Potential
outlier

DUE [14]
LEAP [4]

MCOD [14]

Net effect NETS

3. RELATED WORK
Existing DODDS algorithms are discussed in this sec-

tion. The recent survey by Tran et al. [22] provides a
comprehensive summary and comparison of six representa-
tive algorithms: exact-Storm [2], Abstract-C [23], DUE [14],
MCOD [14], LEAP [4], and approx-Storm [2]. Given the typ-
ically high-speed streaming nature of data streams, all these
algorithms update outliers incrementally every time the win-
dow slides by (1) removing old data points in an expired
slide, (2) adding new data points in a new slide, and (3) find-
ing outliers from the “active” data points. To this end, their
focus has been on efficiently maintaining the current window
and/or efficiently identifying outliers. The techniques used
for the former include existing indexes such as M-tree [7] or
custom indexes; those for the latter include neighbor lists or
potential outliers. The existing algorithms and NETS can
be categorized by their design, as shown in Table 3.

In exact-Storm [2], each data point x is associated with a
list of up to θK preceding neighbors (i.e., expired before x)
and a number of succeeding neighbors (i.e., not expired be-
fore x). This neighbor information is enough to determine
whether each data point is an outlier. Abstract-C [23] main-
tains a summary of the neighbor information in a different
way, which manages the lifetime neighbor count of each data
point in every window that it belongs to. Because a new
neighbor will remain in a constant (i.e., θW /θS) number of
windows, the maximum length of the list is θW /θS . Outliers
can be identified by simply referring to the current window’s
neighbor count of each data point. While exact-Storm and
Abstract-C try to optimize neighbor lists, DUE [14] focuses
on managing potential outliers, which are likely to become
outliers by losing expired neighbors. The inliers are stored
in a data structure, called an event queue, in the increasing
order of the earliest expiration time of their neighbors. In
every window, the event queue is used to re-evaluate only
the inliers whose neighbors have just expired.

State-of-the-art algorithms: MCOD and LEAP con-
sistently outperformed the other algorithms [22], and so let
us discuss the two algorithms in detail.

MCOD [14] uses an index structure called a micro-cluster
to efficiently prune out unqualified outlier candidates. If
there are more than θK data points inside a circle with a
radius of θR/2, a micro-cluster is formed to guarantee that
all members are inliers. Some inliers not in a micro-cluster
are managed in an event queue similarly to DUE. In every
window, the update works in three steps: (1) processing an
expired slide, where (i) if the size of a micro-cluster contain-
ing expired data points falls below θK + 1, its members are
regarded as new data points, and (ii) the data points which
had the expired data points as neighbors are retrieved from
the event queue and checked for their outlier status; (2) pro-
cessing a new slide, where new data points are attempted to

either join the closest micro-cluster or form a new one, and
if both attempts fail, then the data points are entered into
the event queue; (3) identifying outliers, where data points
that are not in any micro-cluster and have fewer than θK
neighbors become outliers.

LEAP [4] suggests aminimal probing principle to find only
the minimum number of neighbors prioritized by their arriv-
ing time, using indexes built per slide. It uses a trigger list
to manage the data points affected by expired data points.
In every window, the update works as follows: (1) process-
ing a new slide, where (i) neighbors of new data points are
searched by probing the new slide and then the preceding
slides in reverse chronological order until finding θK neigh-
bors, and (ii) the new data points are added to the trigger
list of each probed slide; (2) processing an expired slide,
where (i) the data points in the trigger list of the expired
slide are re-evaluated by checking the number of neighbors
found, and (ii) if each data point has fewer than θK neigh-
bors, more neighbors are searched from the succeeding slides
in chronological order; (3) identifying outliers, where data
points having fewer than θK neighbors become outliers.

The superiority of MCOD and LEAP over exact-Storm,
Abstact-C, and DUE is mainly due to the reduction in the
frequency of range searches for finding neighbors because of
micro-clusters (MCOD) and slide-based indexes (LEAP).

Limitations of the existing algorithms: Unlike
NETS, these algorithms do not exploit the net effect between
expired and new data points and, consequently, are not able
to avoid redundant updates when a window slides. More-
over, many potential outliers identified because of expired
neighbors quickly revert to inliers because of new neighbors.

4. THE ALGORITHM “NETS”

4.1 Overview
The overall procedure of the NETS algorithm is outlined

in Algorithm 1 and illustrated in Figure 4. As preprocessing,
NETS finds the optimal set of dimensions that minimizes the
outlier detection cost estimated based on the concentration
ratio observed in a sample of the data (Line 1). This optimal
set may include the entire set of dimensions, especially for
a low-dimensional data stream. As the data stream arrives
continuously, for each window on the stream, outliers are de-
tected from the current window through cell-level detection
and then point-level detection (Lines 2–25).

Cell-level detection (Lines 5–21): If all data points in
a specific cell have the same outlier status (either all outliers
or all inliers), they can be identified as outliers or inliers
early at this level. This cell-level detection is done through
two-level dimensional filtering, i.e., sub-dimensional (Lines
6–13) followed by full-dimensional (Lines 14–21), provided
that the optimal set of dimensions (Dsub) is a proper subset
of the set of all dimensions (Dfull). The filtering proce-
dure is the same between the sub-dimensional filtering and
the full-dimensional filtering. Only those cells that do not
qualify for early detection in the sub-dimensional space are
deferred to the full-dimensional filtering, and it effectively
reduces the full-dimensional search space.

NETS maintains a cardinality grid (Gsub and Gfull),
where the cardinality of data points is stored in each grid
cell. The cardinality values calculated from the previous
window are retrieved for update (Lines 8, 15). Next, NETS
calculates the net effect (Δsub and Δfull) between expired

1306

OutlierIn Non

Out

In

In

In In

Non

W1 TimeW2 Outlier

Net-changes

∆|cij|

(a) Slide net effect calculation. (b) Cell-level detection. (c) Point-level detection. (d) Final outliers.

Figure 4: Overall procedure of our proposed algorithm NETS (when Dsub = Dfull).

Algorithm 1 The Overall Procedure of NETS

Input: a data stream S, a set Dfull of dimensions;
Output: a set O of outliers for each sliding window;
1: Dsub ← GetOptDimensions(S); /* preprocessing */
2: for each window W from S do
3: Let Sexp be the expired slide and Snew be the new

slide;
4: O ← ∅; /* outliers in the current window */
5: /* Cell-Level Detection */
6: if Dsub ⊂ Dfull then
7: /* Sub-Dimensional Filtering */
8: Gsub ← cardinality grid in Dsub;
9: Δsub ← CalcNetEffect(Sexp, Snew, Dsub);
10: Gsub ← Gsub +Δsub;
11: (∅,Coutlier

sub ,Cnon
sub) ← CategorizeCells(Gsub);

12: O ← O ∪ {x | x ∈ C
outlier
sub };

13: Gfull ← cardinality grid in Dfull ∩ C
non
sub ;

14: else
15: Gfull ← cardinality grid in Dfull;
16: end if
17: /* Full-Dimensional Filtering */
18: Δfull ← CalcNetEffect(Sexp, Snew, Dfull);
19: Gfull ← Gfull +Δfull;
20: (C inlier

full ,C outlier
full ,Cnon

full) ← CategorizeCells(Gfull);

21: O ← O ∪ {x | x ∈ C
outlier
full };

22: /* Point-Level Detection */
23: O ← O ∪ FindOutlierPoints(Cnon

full , Gfull);
24: return O;
25: end for

and new data points (Lines 9, 18) (see Figure 4a) and then
applies the net effect to the cardinality grid and detects out-
liers at the cell level using the updated cardinality values
(Lines 10–12, 19–21) (see Figure 4b). This way, each non-
empty cell is categorized into one of outlier, inlier, and non-
determined cells, as shown in Figure 4b.

Point-level detection (Lines 22–23): NETS inspects
the data points in non-determined cells further at the point
level (Line 23) (see Figure 4c). Then, the outliers detected
at both cell- and point-levels are returned as the final output
(see Figure 4d).

4.2 Cardinality Grid

θR

NETS uses a cardinality grid GD, a cell-
based structure in a multi-dimensional space
D, to maintain the net effect in each cell. The
data space D is partitioned into hypercubes,
called “D-cells.” For a given window or slide,

the cardinality of a D-cell c, which is denoted as card(c), in-
dicates the number of data points within c. The cardinality
grid stores the cardinality for each D-cell.

NETS limits the diagonal length of everyD-cell to θR (i.e.,

side length to θR/
√|D|), thereby enforcing the distance be-

tween any two data points in a D-cell to be no longer than
θR. This specification leads to Lemma 1.

Lemma 1. All data points in a D-cell are neighbors with
one another in the data space D.

Proof. Since the maximum distance possible between
two points in a D-cell is θR, any two data points xi and
xj in a D-cell are neighbors by Definition 2.

We further define the neighbor condition between D-cells
in Definition 7.

Definition 7. (Neighbor cell) Two different D-cells are
said to be neighbors in D if the distance between the centers
of the two D-cells is no longer than 2θR. �

Lemma 2. Let us consider two data points xi and xj in
two different D-cells ci and cj , respectively. The centers of ci
and cj are denoted as ci.ctr and cj .ctr. If dist(xi, xj) ≤ θR,
then dist(ci.ctr, cj .ctr) ≤ 2θR, where dist(·, ·) is the Eu-
clidean distance.

Proof. The center of a D-cell is at the center of its diag-
onal line whose length is θR, so the distance between a data
point and the center is at most θR/2. Then, by the triangle
inequality, dist(ci.ctr, cj .ctr) ≤ dist(ci.ctr, xi)+dist(xi, xj)+
dist(xj , cj .ctr) ≤ θR/2 + θR + θR/2 = 2θR.

Let N(c) denote the set of all neighbors of a D-cell c.
Then, the implication of Lemma 2 is that, for any data point
x in c, the set of data points in N(c) is a superset of the
neighbors of x that are located outside c.

4.3 Step 1: Slide Net-Effect Calculation
NETS calculates the net effect of expired and new slides

using the cell-based cardinality grid data structure. By
Lemma 1, the net change in the number of neighbors within
a D-cell applies equally to all data points in the D-cell. This
property enables NETS to quickly identify outliers in both
the cell-level and point-level detection steps.

Algorithm 2 outlines the procedure. Each data point in
the expired slide is added to the cardinality grid of expired
data points (Gexp) in the D-cell containing the coordinate
of the data point (Lines 1–3), and likewise each data point
in the new slide is added to that of new data points (Gnew)
(Lines 4–6). Here, the grid cell for a data point can be
easily calculated (in constant time) by dividing the coordi-
nate value of the data point in each dimension by the side

1307

Algorithm 2 CalcNetEffect()

Input: Sexp, Snew, and D;
Output: Net effect Δ in each cell of data space D;
1: for each data point x in Sexp do
2: Add x to the Gexp cell containing the coordinate of x;
3: end for
4: for each data point x in Snew do
5: Add x to the Gnew cell containing the coordinate of x;
6: end for
7: Δ ← Gnew −Gexp; /* net effect */
8: return Δ;

length of the D-cell. After processing all data points in the
two slides, the net effect Δ is calculated by subtracting the
cardinality of expired data points from the cardinality of
new data points in each D-cell (Line 7). This operation was
implemented using matrix addition, which is computed in
linear time with the number of non-empty cells.

4.4 Step 2: Cell-Level Outlier Detection
NETS tries to detect outliers and inliers early at the cell-

level by finding D-cells whose data points are either all out-
liers or all inliers. To this end, we can derive lower- and
upper-bounds on the number of neighbors of a data point in
a D-cell as stated in Lemmas 3 and 4.

Lemma 3. For a given D-cell c, the lower-bound L(c)
in Dfull on the number of neighbors for any data point x
in c is equal to card(c) − 1 if D = Dfull, and unknown if
D ⊂ Dfull.

Proof. The number of neighbors of x inside c is exactly
card(c) − 1 (excluding x) by Lemma 1. This count is the
lower bound L(c) in Dfull. On the other hand, it does not
hold if D ⊂ Dfull since not all neighbors in Dsub are also
neighbors in Dfull.

Lemma 4. For a given D-cell c, the upper-bound U(c)
in Dfull on the number of neighbors for any data point x in
c is equal to

∑
c′∈N(c) card(c

′) + card(c)− 1, where N(c) is

the set of neighbor cells of c.

Proof. The number of neighbors of x inside c is exactly
card(c)−1 (excluding x) by Lemma 1, and that of x outside
c is at most

∑
c′∈N(c) card(c

′) by Lemma 2. Thus, the sum

of these two counts becomes the upper bound U(c). This
bound holds even when D ⊂ Dfull since neighbors in Dsub

include all neighbors in Dfull.

Given these two bounds, a D-cell is categorized into one
of three types: an inlier cell, an outlier cell, and a non-
determined cell as defined in Definitions 8 through 10.

Definition 8. (Inlier cell) A D-cell is called an inlier
cell if all data points in the D-cell are inliers. �

Definition 9. (Outlier cell) AD-cell is called an outlier
cell if all data points in the D-cell are outliers. �

Definition 10. (Non-determined cell) A D-cell is
called a non-determined cell if it is neither an inlier cell
nor an outlier cell. �

Theorems 1 and 2 state the criteria used to determine the
correct cell type.

Theorem 1. A D-cell c that satisfies L(c) ≥ θK is an
inlier cell.

Algorithm 3 CategorizeCells()

Input: a cardinality grid G;
Output: Cinlier,Coutlier, and Cnon;
1: Cinlier,Coutlier,Cnon ← ∅;
2: for each cell c ∈ G do
3: if L(c) ≥ θK then
4: Cinlier ← Cinlier ∪ {c}; /* Theorem 1 */
5: else if U(c) < θK then
6: Coutlier ← Coutlier ∪ {c}; /* Theorem 2 */
7: else
8: Cnon ← Cnon ∪ {c};
9: end if
10: end for
11: return Cinlier,Coutlier,Cnon;

Proof. For every data point x in the D-cell c, x is
an inlier because the number N (x) of neighbors satisfies
N (x) ≥ L(c) ≥ θK . Therefore, by Definition 8, the D-cell c
is an inlier cell.

Theorem 2. A D-cell c that satisfies U(c) < θK is an
outlier cell.

Proof. For every data point x in the D-cell c, x is
an outlier because the number N (x) of neighbors satisfies
N (x) ≤ U(c) < θK . Therefore, by Definition 9, the D-cell c
is an outlier cell.

Algorithm 3 outlines the procedure of cell-level outlier de-
tection. For each D-cell in the given cardinality grid G, the
algorithm calculates the lower- and upper-bounds and deter-
mines the type of the D-cell according to its bounds (Lines
3–9). The algorithm returns the three types of sets: Cinlier

for inlier cells, Coutlier for outlier cells, and Cnon for non-
determined cells (Line 11), while only Cnon is passed to the
next step—point-level outlier detection.

4.5 Step 3: Point-Level Outlier Detection
NETS detects outliers at the point level by inspecting

each data point in non-determined cells. NETS attempts
to exploit the cell-level information in this step as well to
the extent possible. Interestingly, still some data points in
non-determined cells can be quickly identified as inliers by
using the cardinality grid and the number of neighbors al-
ready known from the previous window. To make it possible,
NETS distinguishes the neighbors of a data point as stated
in Definition 11 depending on whether they are located in
the same D-cell as the data point or not.

Definition 11. (Inner or outer neighbors) Given a
data point x in a D-cell c, the inner neighbors of x are
the neighbors inside c, and the outer neighbors of x are the
neighbors outside c. Their counts are denoted as N in(x)
and N out(x), respectively. �
These two types of neighbor counts are implemented as

follows. For a data point x, while N in(x) can be obtained
exactly from the cardinality grid of the current window,
N out(x) requires examining individual data points in all
neighbor cells. NETS reduces this cost by counting outer
neighbors conservatively. Specifically, as NETS examines
each slide in a window, it stores the counts of outer neigh-
bors per slide until the cumulative count reaches θK (as done
by LEAP [4]). Then, in the next window, the sum of those
counts over the slides except the expired one is used as a
conservative count of outer neighbors. The data point x is
guaranteed to be an inlier in the new window provided with
the condition in Theorem 3, as illustrated in Example 3.

1308

Algorithm 4 FindOutlierPoints()

Input: Cnon and G;
Output: a set O of outliers;
1: O ← ∅;
2: for each cell c ∈ Cnon do
3: for each data point x ∈ c do
4: N in(x) ← card(c) in G; /* exact count */
5: N out(x) ← conservative count from the previous

window (not including the new slide);
6: if N in(x) +N out(x) < θK then
7: /* Find more neighbors at the point level */
8: do range search in N(c) to update N out(x)

until N out(x) ≥ θK −N in(x);
9: if N out(x) < θK −N in(x) then
10: O ← O ∪ {x}; /* not enough neighbors */
11: end if
12: end if
13: end for
14: end for
15: return O;

Theorem 3. Given the exact N in(x) and the conser-
vative N out(x), a data point x is an inlier if N in(x) +
N out(x) ≥ θK .

Proof. Since N out(x) is a conservative count of outer
neighbors, there may be other outer neighbors in the unex-
amined slides (including the new slide), and thus the exact
number of neighbors N (x) ≥ N in(x)+N out(x). So, x is an
inlier because N (x) ≥ θK by transitivity.

Example 3. Consider a window W1 composed of four
slides S1, S2, S3, and S4, shown in Figure 5. Let θK be 5.
Suppose that a data point x in S2 has N in(x) = 2 in W1

and that NETS finds one outer neighbor of x in S1 and two
outer neighbors of x in S2. Then, N out(x) = 3. Since the
total number of neighbors found is 5 (= 2+ 3) ≥ θK , NETS
stops examining the other slides and classifies x as an inlier.
Now consider the next window W2, composed of S2, S3, S4,
and S5, and suppose N in(x) = 3. The conservative N out(x)
in W2 is reduced to 2 as the count from S1 is subtracted.
Nevertheless, the total number of neighbors found is still
5 (= 3 + 2) ≥ θK , and, therefore, x is still identified as an
inlier without examining the rest of the window. �

S1: 1 S2: 2 S3: ? S4: ?+ N out(x)

≥ θK x is an inlier

W1: 2N in(x)

S2: 2 S3: ? S4: ? S5: ?

W2: 3

S1: 1

≥ θK x is an inlierN (x) N (x)

Figure 5: An illustration of Example 3 for a data point x
located in the slide S2.

Algorithm 4 outlines the procedure of point-level outlier
detection. For each data point in each non-determined cell,
N in(x) is updated using the cardinality grid G (Line 4), and
N out(x) is estimated from the result of the previous window
(Line 5). If such a data point is not guaranteed to be an
inlier, the algorithm updates N out(x) further by probing
each of the neighbor cells N(c) in the unexamined slides
(Lines 6–8). If there are still fewer than θK neighbors, the
data point is classified as an outlier (Lines 9–10). Finally,
NETS returns the set of outliers (Line 15).

4.6 Complexity Analysis
The worst-case time and space complexities of NETS are

given by Theorems 4 and 5 respectively.

Theorem 4. Given the number NC of non-empty D-cells
in a window, the time complexity of NETS is O(θS+NCθW).

Proof. The time complexity of calculating the net ef-
fect is O(θS + NC). The time complexity of cell-level de-
tection is O(NC). The time complexity of point-level de-
tection is O(NCθW θK) because the number of data points
in non-determined cells is at most NCθK , and the number
of their neighbor candidates is at most θW . In practice,
because θK/θW is almost 0, O(NCθW θK) can be approxi-
mated as O(NCθW) [13]. Thus, the overall time complexity
is O(θS +NC +NCθW) = O(θS +NCθW).

When a data stream has a high concentration ratio,
the number of non-empty D-cells becomes very small, and
the time complexity of NETS can be further reduced to
O(θS + θW). According to the survey by Tran et al. [22],
the time complexity of MCOD is O((1 − c)θW log((1 −
c)θW)+θKθW log θK), where c is the proportion of the data
points in micro-clusters, and the time complexity of LEAP is
O(θ2W log θW /θS). Therefore, NETS has a lower time com-
plexity than MCOD and LEAP.

Theorem 5. Given the number NC of non-empty D-cells
in a window, the space complexity of NETS is O(NC +
θ2W /θS).

Proof. The space complexity of managing D-cells is
O(NC), and that of keeping neighbor counts is O(θ2W /θS)
because each of θW data points stores the count for each
of θW /θS slides [4]. Thus, the space complexity of NETS is
O(NC + θ2W /θS).

According to the survey [22] again, the space complexity
of MCOD is O(cθW + (1 − c)θKθW), and that of LEAP is
O(θ2W /θS). Thus, NETS has the same space complexity as
LEAP and also has similar complexity to MCOD in practice
because typically θW /θS is constant.

5. HIGH DIMENSIONALITY SUPPORT

5.1 Sub-Dimensional Filtering
Data points in a high-dimensional data set are usually

sparsely distributed, commonly known as “the curse of high
dimensionality.” To NETS, it means that there are fewer
data points in Dfull-cells, which diminishes the performance
advantage of set-based processing. To overcome this issue,
NETS first processes Dsub-cells to discover outliers and in-
liers in a sub-dimensional space that does not suffer from the
data sparsity and then processes the remaining Dsub-cells
further in a full-dimensional space. This two-level dimen-
sional filtering is justified by the downward closure property
in Lemma 5.2

Lemma 5. (Downward closure property of neigh-

bors) Data points neighboring in a full-dimensional space
Dfull are neighbors in any sub-dimensional space Dsub ⊆
Dfull as well.

Proof. The Euclidean distance between two data points
in Dfull must be greater than or equal to that in Dsub by
definition. Therefore, the neighbors in Dsub is always inclu-
sive of those in Dfull.

2This property has been first introduced in frequent pattern
mining [1] and is also used in subspace clustering [6, 20].

1309

0.45
0.5

0.55
0.6

0.65
0.7

0.75

1 2 3 4 5 6 7 8 9
0.05
0.15
0.25
0.35
0.45
0.55
0.65

Precision
Concentration ratio

C
on

ce
nt

ra
tio

n
ra

tio

Precision

Number of sub-dimensions
Figure 6: Concentration ratio and precision for varying sub-
dimensionality (tested on a 10-dimensional synthetic data
set generated from a Gaussian mixture model).

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90

Dim #1
VMR = 0.5

Dim #2
VMR = 8

C
ou

nt

Bins
Figure 7: VMRs of two selected dimensions from the data
set in Figure 6.

By Lemma 5, data points in a neighboring Dsub-cell con-
tain all data points in neighboring Dfull-cells that are re-
duced to the Dsub-cell. Thus, by examining Dsub-cells that
have a high concentration ratio, NETS can identify outlier
Dsub-cells earlier in the cell-level detection step and, addi-
tionally, reduce the search space of non-determined Dfull-
cells in the point-level detection step. A high concentration
ratio, on the other hand, is not always beneficial, since the
converse of Lemma 5 is not always true. That is, a higher
concentration ratio in Dsub is likely to cause more neigh-
bors that later prove to be false neighbors in Dfull. This
situation lowers the precision, i.e., the ratio of true neigh-
bors in Dfull over all neighbors identified in Dsub. Having to
purge out these false positive neighbors in Dfull may incur a
nontrivial overhead. Since concentration ratio is negatively
correlated with sparsity and sparsity is positively correlated
with the dimensionality of Dsub, there exists a trade-off be-
tween concentration ratio and precision depending on the
sub-dimensionality, as shown in Figure 6.

5.2 Optimal Sub-Dimensionality Selection
The exponential number of possible sub-dimensional

spaces warrants an efficient mechanism to find an optimal
sub-dimensional space balancing the trade-off between con-
centration ratio and precision. NETS uses a systematic ap-
proach based on a prioritization of individual dimensions
and the associated cost of detecting outliers.

Priority of a dimension: The well-known index
of dispersion in time series data, variance-to-mean ratio
(VMR) [8] in Definition 12, is used as the priority.

Definition 12. [8] (Variance-to-mean ratio) Given a
set of data points, its variance-to-mean ratio in the k-th
dimension, VMRk, is defined as σ2

k/μk, where σ
2
k and μk are,

respectively, the variance and the mean of the distribution
of the data points in the k-th dimension. �

A dimension with a lower VMR is less dispersed in the
data distribution and shows a higher concentration ra-
tio; therefore, it is given a higher priority in the sub-
dimensionality selection. For an illustration using Figure
7, the first dimension (Dim #1) with the lower VMR is less
dispersed than the second dimension (Dim #2) and, there-
fore, has the higher priority.

Algorithm 5 GetOptDimensions()

Input: a data stream S
Output: optimal sub-dimensions D
1: X ← sample data points from S;
2: Calculate VMR of each dimension in full dimensional

space Dfull and sort the dimensions in increasing order
of VMR;

3: Calculate the cost CDfull of detecting outliers from X
in Dfull (using Eq. (1) for Dsub = Dfull);

4: Dsub ← ∅;
5: repeat
6: Add to Dsub a new dimension in Dfull that maximizes

the reduction in the outlier detection cost CDsub (cal-
culated using Eq. (1));

7: until CDsub is not decreased;
8: if CDsub < CDfull then
9: return Dsub;
10: else
11: return Dfull;
12: end if

Outlier detection cost via two-level dimensional
filtering: We now perform a ballpark analysis on the cost
of identifying outliers. The cost model is to estimate the
number of D-cells or data points accessed in the middle of
outlier detection, because it is heavily related to the perfor-
mance according to our experience. Also, we assume that
data points are uniformly distributed in a domain space,
because it is impractical to know data distribution.

Let us consider a set X of data points, and let Csub be the
set ofDsub-cells that containX and Cfull be the set ofDfull-
cells that contain X. Then, the cost for detecting outliers
via filtering in a sub-dimensional space Dsub is modeled as

Cost =

Step 1︷ ︸︸ ︷
|Csub|+

Step 2︷ ︸︸ ︷

(

∑
c∈Csub

|N(c)|
|Csub| × |Cfull|

|Csub|)+

(

∑
c∈Csub

|N(c)|
|Csub| × |X|

|Csub|)︸ ︷︷ ︸
Step 3

.

(1)

Following the order of presentation in Section 4, the first
term estimates the number of Dsub-cells accessed in Step 1,
the second term estimates the number ofDfull-cells accessed
in Step 2, and the third term estimates the number of data
points accessed in Step 3.

Selection of optimal sub-dimensions: Algorithm 5
outlines the procedure for selecting optimal sub-dimensions.
It first takes a set of sample data points from the input
stream (Line 1), and then calculates the VMR of each di-
mension and sorts the dimensions in an increasing order of
VMR (Line 2). The estimated cost of outlier detection in the
full-dimensional space is computed upfront by Eq. (1) (Line
3). Then, it performs forward selection of dimensions un-
til the estimated cost, Eq. (1), is not decreased (Lines 4–7).
Note that the algorithm does not necessarily have to inspect
all dimensions because the cost starts increasing when the
number of sub-dimensions exceeds a certain balancing point,
as a result of the trade-off shown in Figure 6. Once opti-
mal sub-dimensions are determined, the cost estimated for
the sub-dimensions is compared with the cost estimated for
the full-dimensions, and the set of the dimensions with the
smaller cost is returned (Lines 8–12).

1310

0.001
0.1
10

1000

GAU STK TAO HPC GAS EM FC

C
PU

 ti
m

e(
s)

NETS MCOD LEAP exact-Storm Abstract-C DUE

(a) CPU time.

1

16

256

GAU STK TAO HPC GAS EM FCPe
ak

 m
em

or
y(M

B)

(b) Peak memory.

Figure 8: Overall performance for all data sets with the default parameter values. NETS outperforms MCOD by 5 times (TAO)
to 150 times (GAU) while consuming only comparable memory space.

6. EXPERIMENTS
Thorough experiments have been conducted to evaluate

the performance of NETS. As a result, the following advan-
tages have been confirmed.

• NETS is much faster than state-of-the-art algorithms and
requires only comparable memory space (Section 6.2).

• NETS is robust to the variation of performance parame-
ters such as the window size (θW), the slide size (θS), the
distance threshold (θR), and the neighbor count thresh-
old (θK) (Section 6.3).

• NETS benefits significantly from the set-based update
and the two-level dimensional filtering for its high per-
formance (Section 6.4).

6.1 Experiment Setup
Data sets: We used the six real-world data sets in Ta-

ble 1 and a synthetic data set. Dimensionality of the data
sets ranges from 1 to 55. GAU, STK, and TAO are low-
dimensional (1 to 3), where GAU [22] is generated by a Gaus-
sian mixture model with three distributions, STK [19] con-
tains stock trading records, and TAO [18] contains oceano-
graphic data provided by the Tropical Atmosphere Ocean
project. HPC and GAS are mid-dimensional (7 to 10),
where HPC [9] contains electric power consumption data
and GAS [9] contains household gas sensor data. EM [9] and
FC [9] are high-dimensional (16 to 55), where EM contains
chemical sensor data and FC contains forest cover type data.
Note that the relatively low concentration ratios of these
two data sets (see Table 1) drives NETS to kick off the sub-
dimensional filtering option. All data sets except GAS are
also used in other researches [2, 4, 14, 22].

Parameters: The main control parameters in DODDS
are θW (window size), θS (slide size), θR (distance thresh-
old), and θK (number of neighbors threshold). As suggested
in the survey by Tran et al. [22], the default values of the pa-
rameters for each data set is set to make the ratio of outliers
to be approximately 1%. Table 4 summarizes the data sets
and corresponding default parameter values.

Algorithms: We chose five algorithms, MCOD [14],
LEAP [4], exact-Storm [2], Abstract-C [23], and DUE [14],
for comparison with NETS. The five algorithms have been
re-implemented in JAVA by Tran et al. [22], and the source
codes are available at http://infolab.usc.edu/Luan/Outlier.
NETS was also implemented in JAVA, and the source code
is available at https://github.com/kaist-dmlab/NETS.

Table 4: Data sets and default parameter values.

Data set Dim Size θW θS θR θK

GAU [22] 1 1.0M 100,000 5,000 0.028 50
STK [19] 1 1.1M 100,000 5,000 0.45 50
TAO [18] 3 0.6M 10,000 500 1.9 50
HPC [9] 7 1.0M 100,000 5,000 6.5 50
GAS [9] 10 0.9M 100,000 5,000 2.75 50
EM [9] 16 1.0M 100,000 5,000 115 50
FC [9] 55 0.6M 10,000 500 525 50

Performance metrics: In an outlier detection applica-
tion, it is critical to reducing latency in updating outlier
information. Additionally, memory consumption should be
small enough to work reliably in a commodity machine. We
measured the average CPU time and the maximum memory
consumed (or peak memory) to update outlier information
in every window. We used JAVA ThreadMXBean interface
to measure CPU time and a separate thread to measure peak
memory, which is the same way as used in the survey [22].

Computing platform: We conducted experiments on an
Amazon AWS c5d.xlarge instance with four vCPUs (3GHz),
8GB of RAM, and 100GB of SSD. Ubuntu 18.04.1 LTS and
JDK 1.8.0 191 are installed in the instance.

6.2 Highlight of the Results
We compare the overall performance of the six algorithms

for all data sets with the parameter values set to the defaults
shown in Table 4. Figure 8 shows the CPU time and peak
memory of the six algorithms. Note the logarithmic scale of
the performance numbers. Evidently, NETS was by far the
fastest for all data sets, outperforming MCOD by 10 times,
LEAP by 24 times, exact-Storm by 4,727 times, Abstract-
C by 4,680 times, and DUE by 3,826 times when averaged
over all real-world data sets. The three existing algorithms,
exact-Storm, Abstract-C, and DUE, were shown to be infe-
rior to the top two state-of-the-art algorithms, MCOD and
LEAP. Thus, the subsequent evaluation focuses on compari-
son with only MCOD and LEAP. Especially for GAU, where
both MCOD and LEAP took longer than 1.0s to detect out-
liers, NETS took only 0.01s, more than 100 times faster.
Even for TAO, where both MCOD and LEAP took only
10ms to 40ms, the least among all data sets, NETS took
only 2.6ms, still 4 to 15 times faster. Moreover, the peak
memory of NETS was similar to that of MCOD and LEAP,
specifically the smallest in TAO and no more than 1.4 times
larger when averaged over the other data sets. This remark-

1311

NETS MCOD LEAP
C

PU
 ti

m
e(

s)

0.001
0.01
0.1

1
10

10k 50k 100k 150k 200k

(a) STK - CPU time.

C
PU

 ti
m

e(
s)

0.001

0.01

0.1

1k 5k 10k 15k 20k

(b) TAO - CPU time.

C
PU

 ti
m

e(
s)

0.01

0.1

1

10

10k 50k 100k 150k 200k

(c) GAS - CPU time.

C
PU

 ti
m

e(
s)

0.01

0.1

1

1k 5k 10k 15k 20k

(d) FC - CPU time.

Pe
ak

 m
em

or
y(

M
B

)

4

16

64

256

10k 50k 100k 150k 200k

(e) STK - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)
1

4

16

64

1k 5k 10k 15k 20k

(f) TAO - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

4

16

64

256

10k 50k 100k 150k 200k

(g) GAS - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

1

4

16

64

1k 5k 10k 15k 20k

(h) FC - Peak memory.

Figure 9: Varying window size θW .

C
PU

 ti
m

e(
s)

0.001

0.1

10

1000

5% 10% 20% 50% 100%

(a) STK - CPU time.

C
PU

 ti
m

e(
s)

0.001
0.01

0.1
1

10

5% 10% 20% 50% 100%

(b) TAO - CPU time.

C
PU

 ti
m

e(
s)

0.1
1

10
100

1000

5% 10% 20% 50% 100%

(c) GAS - CPU time.

C
PU

 ti
m

e(
s)

0.01

0.1

1

10

5% 10% 20% 50% 100%

(d) FC - CPU time.

Pe
ak

 m
em

or
y(

M
B

)

16

32

64

128

5% 10% 20% 50% 100%

(e) STK - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

4

8

16

5% 10% 20% 50% 100%

(f) TAO - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

32

64

128

256

5% 10% 20% 50% 100%

(g) GAS - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

8

32

128

512

5% 10% 20% 50% 100%

(h) FC - Peak memory.

Figure 10: Varying slide size θS (percentage of the default θW value).

able performance of NETS demonstrates the merits of set-
based updates and net effect and additionally the two-level
dimensional filtering for EM and FC.

6.3 Effects of Parameters on Performance
We verify the robustness of performance when the param-

eter values are varying attuned to individual data sets. We
present the results for the selected data sets, STK, TAO,
GAS, and FC, owing to the lack of space. The results from
the other data sets showed similar patterns. In all figures of
this section, the default parameter value is underlined.

Varying the window size θW (see Figure 9): θW is the
number of data points in a window and indicates roughly
the amount of workload on the algorithms. In this experi-
ment, θW was varied from 10K to 200K for STK and GAS
and from 1K to 20K for TAO and FC. While CPU time in-
creased with θW for all algorithms most of the time, the in-
crease in CPU time for NETS is primarily due to an increase
in the number of data points in a D-cell, which results in
an increase in the number of data points in non-determined
cells. Regardless, NETS was definitely faster than MCOD
and LEAP by several orders of magnitude in the entire range
of θW . This demonstrates that the performance advantage
of net effect accompanied by set-based update holds up con-
sistently regardless of varying θW . Interestingly, CPU time
of NETS for STK (Figure 9a) decreased as θW increased.
Given that STK has only one dimension, we believe that it
happened because an increase in the number of data points
in a window directly causes an increase in the number of
inlier cells and a decrease in the number of non-determined
cells, thus increasing the benefit of early detection. Like
CPU time, peak memory also increases with θW for all al-
gorithms, which is obvious as the number of data points in a

window increases. It is impressive that the peak memory of
NETS is no larger than and even smaller than MCOD and
LEAP for most data sets. FC (Figure 9h) is an exception,
where NETS has higher peak memory than both MCOD
and LEAP, although still less than 64MB at the maximum.
The reason lies in FC being high-dimensional and therefore
needing to keep Dsub-cells in memory for sub-dimensional
filtering. Note that, in return, NETS runs 4.2 times faster
than LEAP and 4.9 times faster than MCOD on average
over all θW values.

Varying the slide size θS (see Figure 10): θS deter-
mines the number of expired and new data points in each
update. In this experiment, θS was varied from 5% to 100%
of the default θW value for each data set. The CPU time
of all algorithms clearly increased with θS . It happened
because, when θS is larger, a larger portion of data points
in a window is affected by expired or new neighbors and,
therefore, the algorithms spend more time updating neigh-
bors and identifying outliers. Here again, NETS achieved
by far the smallest CPU time among all three algorithms
for all data sets in the entire range of parameter values. It
demonstrates the benefit of considering the net effect for
updates, thus removing redundant updates. Additionally,
NETS showed the slowest growth rate of CPU time. For
instance, in the case of GAS (Figure 10c), the CPU time
increased 6.1 times (from 0.11s to 0.64s) in NETS whereas
8.8 times (from 0.76s to 6.7s) in MCOD and 243 times (from
0.64s to 154s) in LEAP. The peak memory of NETS always
increased with θS , because a larger θS makes NETS use
more memory to derive the net effect between the expired
slide and the new slide. One plausible observation is that for
most data sets NETS used more memory than MCOD and
LEAP when θS was more than 50% (of the window size).

1312

NETS MCOD LEAP
C

PU
 ti

m
e(

s)

0.001

0.1

10

1000

10% 50% 100% 500% 1000%

(a) STK - CPU time.

C
PU

 ti
m

e(
s)

0.0001

0.01

1

100

10% 50% 100% 500% 1000%

(b) TAO - CPU time.

C
PU

 ti
m

e(
s)

0.001

0.1

10

1000

10% 50% 100% 500% 1000%

(c) GAS - CPU time.

C
PU

 ti
m

e(
s)

0.001
0.01
0.1

1
10

10% 50% 100% 500% 1000%

(d) FC - CPU time.

Pe
ak

 m
em

or
y(

M
B

)

8

32

128

512

10% 50% 100% 500% 1000%

(e) STK - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)
2

8

32

128

10% 50% 100% 500% 1000%

(f) TAO - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

8

32

128

512

10% 50% 100% 500% 1000%

(g) GAS - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

4

16

64

256

10% 50% 100% 500% 1000%

(h) FC - Peak memory.

Figure 11: Varying distance threshold θR (percentage of the default θR value).

0.001
0.01
0.1

1
10

10 30 50 70 100

C
PU

 ti
m

e(
s)

(a) STK - CPU time.

0.001

0.01

0.1

10 30 50 70 100

C
PU

 ti
m

e(
s)

(b) TAO - CPU time.

0.01

0.1

1

10

10 30 50 70 100

C
PU

 ti
m

e(
s)

(c) GAS - CPU time.

0.01

0.1

1

10 30 50 70 100

C
PU

 ti
m

e(
s)

(d) FC - CPU time.

Pe
ak

 m
em

or
y(

M
B

)

8

16

32

64

10 30 50 70 100

(e) STK - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

4

8

16

10 30 50 70 100

(f) TAO - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

32

64

128

256

10 30 50 70 100

(g) GAS - Peak memory.

Pe
ak

 m
em

or
y(

M
B

)

8

16

32

64

10 30 50 70 100

(h) FC - Peak memory.

Figure 12: Varying number of neighbors threshold θK .

Varying the distance threshold θR (see Figure 11):
θR determines the area of neighborhood so that a higher θR
includes more data points as neighbors. In this experiment,
θR was varied from 10% to 1000% of the default θR value
for each data set. Both CPU time and peak memory de-
creased in general for all three algorithms as θR increased.
Since a larger θR makes data points keep more neighbors in
a window, inliers are less likely to become outliers even if
they lose some of their neighbors. So, with fewer outliers
to be detected, the CPU time naturally decreases. The de-
crease in peak memory is attributed to the decrease in the
number of D-cells to manage in NETS and in the number of
potential outliers (hence the size of the trigger list and the
event queue) in MCOD and LEAP. NETS achieved much
smaller CPU time than MCOD and LEAP in almost the
entire range of parameter values (e.g., > 10%). This perfor-
mance advantage, however, was diminished when the value
of θR was very small (i.e., 10% of the default value) for most
data sets except STK, because a smaller θR leads to a smaller
D-cell size and hence a smaller number of data points in a
D-cell. Therefore, the benefit of set-based update and net
effect are diminished when θR is very small. In the opposite
case, however, when θR was very large (i.e., 1000% of the
default value), NETS benefited from a very high concentra-
tion ratio. As a result, in the case of TAO (Figures 11b and
11f) for instance, NETS outperformed LEAP and MCOD
in CPU time up to 68 times and 10 times, respectively, and
NETS consumed only 4.5MB peak memory, which was only
76% of 5.9MB in LEAP and 71% of 6.4MB in MCOD.

Varying the number of neighbors threshold θK (see
Figure 12): Since θK is the minimum number of neighbors
required for a data point to be an inlier, a higher θK makes
more data points outliers. In this experiment, θK was varied

from 10 to 100 for all data sets. Here again, NETS was defi-
nitely the fastest algorithm in the entire range of parameter
values for all data sets, while consuming lower or similar
memory compared with MCOD and LEAP except in FC.
The CPU time of NETS increases with θK because a higher
θK makes more D-cells have fewer than θK data points,
which results in fewer inlier cells and more non-determined
cells. Interestingly, peak memory of NETS was almost con-
stant for varying θK . This is because θK affects neither the
number of D-cells updated in a window (as θW or θS does)
nor the number of D-cells (as θR does). Thus, NETS uses
constant memory space to manage a window for varying θK .

6.4 Efficacy of Set-Based Update and Two-
Level Dimensional Filtering

Set-based update: This technique enables NETS to effi-
ciently filter out inlier cells and outlier cells by only updating
the net effect, the net-change in D-cell cardinality. More-
over, the net effect in turn enables NETS to identify inlier
data points from non-determined cells. Consequently, only
a small portion of data points are required to find additional
neighbors. Table 5 shows for each data set the ratio of each
of the three types (i.e., inlier, outlier, and non-determined)
of data points, averaged over all windows based on the de-
fault parameter values.

Note that, in the case of low- to mid-dimensional data sets
(i.e., GAU, STK, TAO, HPC, and GAS), more than 98%
of data points were identified early as inliers or outliers by
only updating the net effect. Even for the high-dimensional
data sets (i.e., EM and FC), the ratio was around 90%. By
exploiting the net effect, NETS needed to inspect only a few
data points further to find additional neighbors in order to
identify outliers.

1313

Table 5: Average ratio(%) of each type of data points in a
window. Xin, Xout, and Xnon indicate inlier, outlier, and
non-determined data points, respectively.

Type GAU STK TAO HPC GAS EM FC

Xin 98.7 99.5 98.7 98.4 98.7 94.1 89.2
Xout 0.80 0.37 0.40 0.20 0.80 0.30 0.40
Xnon 0.50 0.13 0.90 1.40 0.50 5.60 10.4

500

5000

50000

500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 55

Es
tim

at
ed

 c
os

t

Number of sub-dimensions

GAS
HPC

TAO

EM

FC≈

Figure 13: Estimated cost against the number of sub-
dimensions. (The lowest point for each data set is marked
with a triangle.)

0.01

0.1

1

10

100

EM FC GAS
1

4

16

64

256

EM FC GAS

C
PU

 ti
m

e(
s)

Pe
ak

 m
em

or
y(

M
B

)

NETS-A NETS-R NETS-O

(a) CPU time. (b) Peak memory.

Figure 14: The effect of optimal sub-dimensions.

Two-level dimensional filtering: We did two kinds of
analysis. First, to show how optimal sub-dimensions are
selected (see Section 5.2), we plotted the cost calculated
using Eq. (1) against the number of sub-dimensions. Figure
13 shows the results for all data sets that have two or more
dimensions. For EM and FC, the optimal sub-dimensions
that give the lowest cost were, respectively, the top three
and top four prioritized dimensions. Attributed to the trade-
off discussed in Section 5.1, the cost decreased initially as
the number of sub-dimensions increased and then increased
after the optimal point. For the other data sets, the full
dimensions resulted in the lowest cost because they already
had a high concentration ratio in full dimensions.

Second, to examine the effectiveness of sub-dimensional
filtering in the selected optimal sub-dimensions, we designed
three variations of NETS: NETS-A, NETS-R, and NETS-O.
NETS-A is the baseline algorithm that does not use sub-
dimensional filtering at all. NETS-R and NETS-O perform
sub-dimensional filtering in random sub-dimensions and op-
timal sub-dimensions, respectively. For NETS-R, we report
the average from ten repeated executions. Figure 14 shows
the performances of the three variations of NETS for GAS,
EM, and FC. Adopting sub-dimensional filtering (NETS-R
and NETS-O) was especially useful when the original con-
centration ratio was low, as in EM and FC whose concen-
tration ratios are 0.42 and 0.44. The CPU time in EM and
FC was significantly reduced in exchange for a little more or
similar amount of memory space. However, there was almost
no improvement for GAS since it already had a high con-
centration ratio (i.e., 0.88) even in full dimensions. Further-
more, NETS-O outperformed NETS-R for both EM and FC,

Pr
op

or
tio

n

Step1: slide net effect calculation

0.23
0.58

0.21 0.01 0.01 0.01 0.02

0.35

0.08

0.33
0.88 0.93

0.18 0.20

0.43 0.34 0.47
0.11 0.06

0.81 0.78

0.00

0.20

0.40

0.60

0.80

1.00

GAU STK TAO HPC GAS EM FC

Step2: cell-level outlier detection
Step3: point-level outlier detection

Figure 15: The breakdown of NETS CPU time.

which indicates that the optimally selected sub-dimensions
balanced out the trade-off better than the randomly selected
sub-dimensions.

The breakdown of NETS: Figure 15 shows the break-
down of the CPU time of NETS into the three steps dis-
cussed in Section 4. It shows an interesting contrast in the
proportion of the steps depending on the dimensionality of
a data set. For the low-dimensional ones (i.e., GAU, STK,
and TAO), the three steps seem to be relatively balanced.
(Step 2 of STK seems a bit exceptional, taking a signifi-
cantly lower portion than the other steps, which indicates
a smaller number of D-cells in the window.) For the mid-
dimensional ones (i.e., HPC and GAS), Step 2 has a domi-
nant proportion, indicating that the cell-level outlier detec-
tion is the biggest source of the performance gain achieved
by NETS. For the high-dimensional ones (i.e., EM and FC),
Step 3 has a dominant proportion, which indicates that the
high dimensionality still has a lingering effect toward defer-
ring outlier detection to the costly point-level detection step.
(Note that, still, only approximately 10% of all data points
were inspected in Step 3, as shown in Table 5.)

7. CONCLUSION
In this paper, we proposed NETS, a very fast novel

distance-based outlier detection algorithm for data streams.
By verifying that the effects of expired and new data points
can be aggregated or canceled-out in data streams, we pro-
posed the set-based update to exploit such net effect. NETS
calculates the net effect of changed data points by grouping
them as cells. Most data points can be quickly identified
as outliers or inliers by only using the net effect at the cell
level. To efficiently update outliers even from a sparsely
distributed data stream, two-level dimensional filtering was
adopted to exploit a higher concentration ratio inside sys-
tematically chosen sub-dimensions. NETS outperformed
state-of-the-art algorithms by several orders of magnitude
in CPU time for most real-world data sets while consuming
only comparable memory space. We believe that the pro-
posed approach makes it possible to detect outliers much
faster in real-time and also opens a new research direction
for outlier detection from data streams.

8. ACKNOWLEDGMENTS
This work was partly supported by the MOLIT (The Min-

istry of Land, Infrastructure and Transport), Korea, under
the national spatial information research program super-
vised by the KAIA (Korea Agency for Infrastructure Tech-
nology Advancement) (19NSIP-B081011-06) and the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korea government (Ministry of Science and ICT) (No.
2017R1E1A1A01075927).

1314

9. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proceedings of 20th International
Conference on Very Large Data Bases, pages 487–499,
1994.

[2] F. Angiulli and F. Fassetti. Detecting distance-based
outliers in streams of data. In Proceedings of 16th
ACM Conference on Conference on Information and
Knowledge Management, pages 811–820, 2007.

[3] L. Cao, Q. Wang, and E. A. Rundensteiner.
Interactive outlier exploration in big data streams.
PVLDB, 7(13):1621–1624, 2014.

[4] L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. A.
Rundensteiner. Scalable distance-based outlier
detection over high-volume data streams. In
Proceedings of 2014 IEEE 30th International
Conference on Data Engineering, pages 76–87, 2014.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys,
41(3):15:1–15:72, 2009.

[6] C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based
subspace clustering for mining numerical data. In
Proceedings of 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 84–93, 1999.

[7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. In Proceedings of 23rd International
Conference on Very Large Data Bases, pages 426–435,
1997.

[8] D. Cox and P. Lewis. The statistical analysis of series
of events. John Wiley and Sons, 1966.

[9] D. Dua and C. Graff. UCI machine learning
repository. http://archive.ics.uci.edu/ml, 2019.

[10] D. Georgiadis, M. Kontaki, A. Gounaris, A. N.
Papadopoulos, K. Tsichlas, and Y. Manolopoulos.
Continuous outlier detection in data streams: An
extensible framework and state-of-the-art algorithms.
In Proceedings of 2013 ACM SIGMOD International
Conference on Management of Data, pages 1061–1064,
2013.

[11] J. Han, J. Pei, and M. Kamber. Data Mining:
Concepts and Techniques. Elsevier, 2011.

[12] P. Kakria, N. K. Tripathi, and P. Kitipawang. A
real-time health monitoring system for remote cardiac
patients using smartphone and wearable sensors.
International Journal of Telemedicine and
Applications, 2015:1–11, 2015.

[13] E. M. Knorr and R. T. Ng. Algorithms for mining
distance-based outliers in large datasets. In
Proceedings of 24th International Conference on Very
Large Data Bases, pages 392–403, 1998.

[14] M. Kontaki, A. Gounaris, A. N. Papadopoulos,
K. Tsichlas, and Y. Manolopoulos. Continuous
monitoring of distance-based outliers over data
streams. In Proceedings of 2011 IEEE 27th
International Conference on Data Engineering, pages
135–146, 2011.

[15] J.-G. Lee and M. Kang. Geospatial big data:
Challenges and opportunities. Big Data Research,
2(2):74–81, 2015.

[16] Y. Lin, B. S. Lee, and D. Lustgarten. Continuous
detection of abnormal heartbeats from ECG using
online outlier detection. In Proceedings of 2018
International Symposium on Information Management
and Big Data, pages 349–366, 2018.

[17] N. G. Mankiw. Principles of Economics. Cengage
Learning, 2014.

[18] NOAA. Tropical atmosphere ocean project.
https://www.pmel.noaa.gov, 2019. Accessed:
2019-03-01.

[19] U. of Pennsylvania. Wharton research data services.
https://wrds-web.wharton.upenn.edu/wrds/, 2019.
Accessed: 2019-03-01.

[20] L. Parsons, E. Haque, and H. Liu. Subspace clustering
for high dimensional data: A review. ACM SIGKDD
Explorations Newsletter, (1):90–105, 2004.

[21] S. Sadik, L. Gruenwald, and E. Leal. Wadjet: Finding
outliers in multiple multi-dimensional heterogeneous
data streams. In Proceedings of 2018 IEEE 34th
International Conference on Data Engineering, pages
1232–1235, 2018.

[22] L. Tran, L. Fan, and C. Shahabi. Distance-based
outlier detection in data streams. PVLDB,
9(12):1089–1100, 2016.

[23] D. Yang, E. A. Rundensteiner, and M. O. Ward.
Neighbor-based pattern detection for windows over
streaming data. In Proceedings of 12th International
Conference on Extending Database Technology:
Advances in Database Technology, pages 529–540,
2009.

[24] I. Yi, J.-G. Lee, and K.-Y. Whang. APAM: Adaptive
eager-lazy hybrid evaluation of event patterns for low
latency. In Proceedings of 25th ACM Conference on
Conference on Information and Knowledge
Management, pages 2275–2280, 2016.

1315

