
Towards a Unified Framework for String Similarity Joins

Pengfei Xu
Department of Computer Science, University of

Helsinki, Finland
pengfei.xu@helsinki.fi

Jiaheng Lu
Department of Computer Science, University of

Helsinki, Finland
jiaheng.lu@helsinki.fi

ABSTRACT
A similarity join aims to find all similar pairs between two collec-
tions of records. Established algorithms utilise different similarity
measures, either syntactic or semantic, to quantify the similarity
between two records. However, when records are similar in forms
of a mixture of syntactic and semantic relations, utilising a single
measure becomes inadequate to disclose the real similarity between
records, and hence unable to obtain high-quality join results.

In this paper, we study a unified framework to find similar records
by combining multiple similarity measures. To achieve this goal,
we first develop a new similarity framework that unifies the exist-
ing three kinds of similarity measures simultaneously, including
syntactic (typographic) similarity, synonym-based similarity, and
taxonomy-based similarity. We then theoretically prove that find-
ing the maximum unified similarity between two strings is gener-
ally NP-hard, and furthermore develop an approximate algorithm
which runs in polynomial time with a non-trivial approximation
guarantee. To support efficient string joins based on our unified
similarity measure, we adopt the filter-and-verification framework
and propose a new signature structure, called pebble, which can
be simultaneously adapted to handle multiple similarity measures.
The salient feature of our approach is that, it can judiciously select
the best pebble signatures and the overlap thresholds to maximise
the filtering power. Extensive experiments show that our meth-
ods are capable of finding similar records having mixed types of
similarity relations, while exhibiting high efficiency and scalabil-
ity for similarity joins. The implementation can be downloaded at
https://github.com/HY-UDBMS/AU-Join.

PVLDB Reference Format:
Pengfei Xu and Jiaheng Lu. Towards a Unified Framework for String
Similarity Joins. PVLDB, 12(11): 1289–1302, 2019.
DOI: https://doi.org/10.14778/3342263.3342268

1. INTRODUCTION
Given two collections of records, a similarity join aims to find

all of which have similarities higher than a given threshold. Such
operation is widely adopted in tasks such as data cleansing [2, 55],

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342268

(a) Taxonomy (b) Synonym

(Helsingki, Helsinki) = 0.875
(coffee, cafe) = 0.143

...

food

coffee

coffee
drinks

espressolatte

Wikipedia

coffee shop latte Helsingki

espresso cafe Helsinki

1
0.8 0.875

String S
cake → gateau

coffee shop → cafe
...

cake

apple
cake

(c) Jaccard String T

Unified similarity between S and T:
(1 + 0.8 + 0.875) / 3 = 0.892

Figure 1: Example of similarity calculations on strings contain-
ing synonym, misspelling, and taxonomic-relevant terms.

information retrieval [8], and data mining [31]. A plethora of similar-
ity measures have been proposed to measure the similarity between
two records, to name a few:
• Gram-based similarity measures two string’s literal likeness by

splitting each into a set of fixed-length grams, and then counts
the intersected items between both sets. Many measures have
been proposed, e.g. Jaccard coefficient [14, 30], Cosine similarity
[9,45], Hamming distance [58] and Dice similarity [8]. This kind
of measure can be used to detect typographic mistakes, such as
typos.

• Synonym similarity [31, 32, 57] measures the similarity of strings
by leveraging a set of predefined synonym (or abbreviation) rules
between strings. For example, “Bill” is a nickname of “William”
and “DBMS” is an abbreviation of “Database Management
System”.

• Taxonomy similarity [46, 47, 54, 56] measures the similarity of
strings by using a knowledge hierarchy, an abundant source of IS-
A relations. For example, “kitten” is a kind of “pet”, and “iPhone”
is a type of “smartphone”. Thanks to the public knowledge
bases, e.g. Freebase [49], DBpedia [5], Wikipedia [20], and
Yago [48], one can use these available taxonomies to enhance the
effectiveness of string similarity matching.
It is worth noting that, each of the above measures alone can

handle only one specific type of similarity. For example, Jaccard
coefficient is restricted to typographic (spelling) errors, while a
synonym-based measure is unable identify IS-A relations. However,
in real-world applications, two strings often involve more than one
type of similarity [1, 21, 33, 42]. Consider the example in Figure
1, where we have two strings of Points of Interests (POIs): “coffee
shop latte Helsingki” and “espresso cafe Helsinki”. They are both
referring to coffee shops in Helsinki thus highly relevant. Here,
three different kinds of similarity relations are involved: (i) syn-
tactic: “Helsingki” is a misspelt “Helsinki”; (ii) synonym: “cafe”
is equivalent to “coffee shop”; (iii) taxonomy: both “latte” and
“espresso” belong to coffee drinks. Note that a single measure can

1289

https://github.com/HY-UDBMS/AU-Join

only surface a portion of similarity and hence unfeasible to obtain
the full knowledge of their relation. Naturally, an open question
arises: Is there a unified similarity measure that can capture multiple
kinds of similarity relations simultaneously? Note that this problem
cannot be solved trivially by combing the results from different
similarity measures, because such a method cannot apply multiple
measures on different segments of one string simultaneously, as in
the above POI example.

This paper addresses that open question by designing a new simi-
larity measure combining all aforementioned measures. In particular,
given two strings S and T , we calculate the unified similarity in two
phases: (i) compute individual similarities between two segments
(substrings) of S and T with different measures respectively, and
then (ii) aggregate them together to compute the final similarity
by finding the maximum matching in a bipartite graph, where the
weight of each edge is the individual segment similarity. Note that
the standard maximum matching in a bipartite graph admits poly-
nomial algorithms, e.g., Hungarian algorithm [38] in O(n3) time,
where n is the maximal number of vertices in one-side of a bipar-
tite graph. Unfortunately, our careful investigation reveals that the
unified similarity problem here is more complicated than the exist-
ing maximum matching, because one substring may participate in
multiple synonym or taxonomy rules, leading to different options to
segment the string and generate bipartite graphs:

Example 1. The purpose of this example is to show that a unified
similarity measure is harder than the maximum matching problem
in a bipartite graph. Recall two strings in Figure 1. One can
either match the substring “coffee shop” of S with a synonym rule

“coffee shop→ cafe”, or split it into two segments “coffee” and
“shop”, and “coffee” matches to an entity in the taxonomy hierarchy
to obtain IS-A relation between “coffee” and “espresso”. In the
latter case, an edge exists between “coffee” and “espresso” in the
corresponding bipartite graph, and hence we can obtain a different
similarity. Therefore, in general, one has to enumerate all possible
bipartite graph instances to obtain the maximum similarity, which
may lead to the inherent intractability in the worst case.

We theoretically prove that finding the maximum similarity be-
tween two strings can be intractable, i.e., NP-hard, in light of the
exponential combinations of segment partitions based on the syn-
onym rules (or taxonomy hierarchy). However, one good news
is that we develop a polynomial-time algorithm with an approxi-
mation bound, motivated by previous algorithms proposed for the
weighted Maximum Independent Set (w-MIS) problem in a k-claw-
free graph [4,6,25]. Further, our empirical experiments demonstrate
the effectiveness and efficiency of our approximation algorithm,
indicating its promising theoretical and practical significances.

Given a unified similarity measure, it is imperative to study ef-
ficient join algorithms for two large set of strings. To this end, we
employ a filter-and-verification framework by pruning irrelevant
string pairs and then verifying the similarity of survived ones. Since
the computation of the similarity between strings is an expensive op-
eration, it is critical to design an effective filtering strategy to prune
away strings as many as possible. In literature, a widely-adopted
filtering principle is the prefix filtering [8, 14], which disqualifies
dissimilar pairs by comparing their signatures (i.e. prefixes). How-
ever, this filter cannot be directly applied to our problem because
the selection of signatures depends on a specific similarity measure,
whereas our problem combines multiple measures. Therefore, we
build a novel unified data structure, called pebble, which can be
adaptive to different similarity measures: for Jaccard coefficient,
pebbles are q-grams of strings; in synonym-based similarity, pebbles

are the left-hand side of synonym rules; in taxonomy-based similar-
ity, pebbles refer to sets of taxonomy entities. We further propose a
family of algorithms by utilising heuristics and dynamic program-
ming to select appropriate pebbles as signatures to maximise the
overall filtering effectiveness.

In the filter-and-verification framework, there is a key parameter
τ controlling the minimal number of overlapped signatures (i.e.
pebbles in our paper) two strings must have to survive from filtering.
Intuitively, a smaller τ leads to a faster filtering due to smaller index
sizes, but more candidates for verification. On the other hand, a
greater τ can lead to a longer filtering time but faster verification
through reduced candidates. Therefore, it is crucial to select the
best τ to strike a balance between filtering and verification time. In
this paper, we propose a sampling-based framework to estimate the
intermediate results and compute the optimal τ parameter, without
a priori knowledge of dataset characteristics. Based on independent
Bernoulli sampling and Monte Carlo simulation framework, our
algorithm runs multiple iterations, each of which uses small samples
to ensure accurate suggestions of τ with far fewer calculations.
We show that our estimator is unbiased and analyse its variance
theoretically. Experiments on real-world datasets show our estimator
can suggest the best parameter with higher than 90% accuracy,
by using only 0.003% samples out of 3.5 million records in each
iteration of sampling, which finally occupies less than 1% of total
join time.

To summarise, our technical contributions and the organisation
of this paper are as follows:
• We propose a unified similarity measure that combines multiple

similarity measures (Section 2). We prove the NP-hardness to
compute the maximum unified similarity between two strings
and propose a polynomial-time algorithm to achieve a worst-case
approximation guarantee.

• To support efficient similarity string joins based on our unified
measure, we present a novel structure pebble to provide a unified
solution for judiciously selecting high-quality signatures, which
prunes away most of the dissimilar pairs to significantly improve
the joining efficiency (Section 3).

• Since the threshold of overlapped signatures τ is a critical param-
eter affecting the join effectiveness, we design a sampling-based
framework to dynamically estimate the join carnality of inter-
mediate results, ensuring an accurate suggestion of the best τ to
further optimise the joining efficiency (Section 4).

• Finally, comprehensive experiments in Section 5 show the effec-
tiveness, efficiency, and scalability of our proposed algorithms,
which strongly motives for its use in practice.

2. SIMILARITY MEASURES
This section explores a unified similarity measure and its com-

putation algorithm. In particular, Section 2.1 provides preliminary
definitions and notations, Section 2.2 proposes a generalised frame-
work to unify the existing diverse measures, and finally, Section 2.3
provides a polynomial-time algorithm to approximate this unified
similarity.

2.1 Preliminaries
An alphabet Σ is a finite non-empty set of symbols called letters.

A string S over Σ is a finite sequence S = s1, · · · , sn of letters. There
are many good reasons to define the similarity between strings [16].
For example, it enables users to capture the notion that one string is
a typo of another, or to classify similar strings. We show here some
of these similarities:
Gram-based similarity. Let S [i, j] denotes the substring of S from
its i-th to j-th letter. Then, given a positive integer q, a q-gram of

1290

S is a q-letter substring of S , i.e., g = S [i, i + q − 1]. The set of
q-grams of S , denoted by G(S , q), is the collection of all q-grams of
S . The similarity of two strings is defined by the intersection of two
gram collections. A common measure, called Jaccard coefficient,
measures the typographic differences of two strings by counting
their common q-grams:

sim j(S ,T) =
|G(S , q) ∩G(T, q)|
|G(S , q) ∪G(T, q)|

(1)

Synonym similarity. One can identify the semantic similarity be-
tween strings given a set of synonym rules. Formally, let R denote
a rule in the form of lhs(R)→ rhs(R), where lhs(R) and rhs(R) are
called left- and right-hand side of R, respectively. Let C(R) ∈ (0, 1]
indicate the closeness between lhs(R) and rhs(R), and let R be a set
of synonym rules. Given R, the synonym similarity between two
strings S and T is:

sims(S ,T) =

{
C(R), if ∃R ∈ R s.t. lhs(R) = S and rhs(R) = T

0, otherwise
(2)

Taxonomy similarity. The third category of similarity measure is
to identify the semantic similarity between strings by leveraging
knowledge from a taxonomy hierarchy, which can be modelled as a
tree structure. Given two string S and T mapped to taxonomy nodes
nS and nT , and let |nS | (|nT |) denotes the depth of nS (nT). Then, the
similarity between S and T can be measured based on the depth of
their lowest common ancestor (LCA):

simt(S ,T) =
|LCA(nS , nT)|
max{|nS |, |nT |}

(3)

Example 2. We use this example to illustrate above similarity
measures. (i) Given strings S : “Helsingki” and T: “Helsinki”,
where G(S , 2) = {He, el, ls, si, in, ng, gk, ki} and G(T, 2) = {He,
el, ls, si, in, nk, ki}, then sim j(S ,T) = 6/9 = 2/3. (ii) Given S :

“coffee shop” and T: “cafe”, by assuming C(R) = 1 in Equation (2),
sims(S ,T) = 1 since they match the lhs and rhs of a synonym rule R
in Figure 1(b). (iii) Consider S : “latte” and T: “espresso”. Their
LCA node is “coffee drinks” according to Figure 1(a), and hence
simt(S ,T) = 4/5 = 0.8.

Remark. The above three similarities can be divided two categories:
typographic (i.e., gram-based Jaccard) and semantic (i.e., synonym
and taxonomy). As an example, “California” (a state of U.S.) have
several semantic variations: “Calif.”, “CA USA”, “Golden State”,
“Golden Bear State”, etc., as well as “Callifornia” and “Calfornia”
which occur unintentionally due to typographic errors. In this paper,
we will propose a new framework to catch all above variations and
errors by unifying both typographic and semantic similarities.

2.2 Unified String Similarity Measure
In this subsection, we study a generalised framework which cap-

tures all the above similarities. Intuitively, given two strings S and
T , one can define a unified measure as in Equation (4) to select the
maximum among all possible similarity measures:

msim(S ,T) = max
∀ f

{
sim f (S ,T)

}
(4)

As an example, the Jaccard coefficient between “cake” and
“apple cake” is 0.33, but their taxonomy similarity is 0.75 accord-
ing to Figure 1(a). Based on Equation (4), their final similarity is
max{0.33, 0.75}=0.75. However, this straightforward approach can-
not handle a complicated case where multiple similarity measures

are simultaneously applicable to different parts of strings. There-
fore, a better idea is to split strings into multiple segments to match
different similarity measures, and then compute the final similarity
through the maximum matching in a bipartite graph [46]. Further,
since there are multiple ways to split each string and generate bi-
partite graph (as illustrated in Example 1 in Section 1), the final
similarity could be defined as the maximum match among all pos-
sible bipartite graphs. In the following, we formalise the above
intuitions with several definitions.

A string can be tokenised into multiple tokens with respect to a
delimiter, e.g. empty space. For example, “coffee shop” can be
tokenised into two tokens “coffee” and “shop”.

Definition 1 (Well-Defined Segment). Given a string S , a well-
defined segment PS is a sequence of consecutive tokens of S which
(i) can map to the lhs or rhs of a synonym rule, or (ii) can match a
corresponding taxonomy entity, or (iii) contains exactly one token.

Using the example in Figure 1, “coffee shop”, “latte”, and
“Helsingki” are three well-defined segments of string S , since they
match the lhs of a synonym rule, a taxonomy node, or contains a
single token. In contrast, “shop latte” is not a well-defined segment.

Definition 2 (Well-Defined Partition). Given a string S , a
well-defined partition PS is a collection of well-defined segments of
S such that (i) any two well-defined segments shares no common
token and (ii) each token of S is in exactly one well-defined segment.

Definition 3 (Unified Similarity). Given two strings S and T ,
their unified similarity, denoted by USIM(S ,T), is defined as:

USIM(S ,T) = max
∀(πS ,πT)

{SIM (PS ,PT)}

where πS : S → PS , πT : T → PT

(5)

SIM(PS ,PT) =
max

∑|PS |
i=1

∑|PT |
j=1 Ii j · msim

(
PS i , PT j

)
max {|PS |, |PT |}

where Ii j = 0 or 1,
∑

i Ii j 6 1, and
∑

j Ii j 6 1
(6)

Let πS denote a partition function which transforms a string S into
a well-defined partitionPS . The unified similarity USIM in Equation
(5) is defined as the maximum similarity among all pairs of partitions
(PS ,PT). Equation (6) finds the maximum weight matching in a
bipartite graph by selecting (i.e. Ii j = 1) (or not selecting: Ii j =

0) the similarity between each segment pair (PS i , PS j) and make
sure that each segment is selected at most once. The numerator of
Equation (6) can be solved by using Hungarian algorithm [38] in
polynomial O(n3) time, where n denotes the maximum number of
vertices at one side of a bipartite graph.

Example 3. We now illustrate Definition 3. Recall Strings S
and T in Figure 1. There are two well-defined partitions for S : (i)
{coffee shop, latte, Helsingki} which has similarity with T equals
to (1 + 0.8 + 0.875)/3 = 0.892 by Equation (6). (ii) {coffee, shop,
latte, Helsingki}, which leads to (0.333 + 0.8 + 0.875)/4 = 0.502
by selecting (a) Jaccard: “coffee” vs “cafe”, (b) Taxonomy: “latte”
vs “espresso”, and (c) Jaccard “Helsingki” vs “Helsinki”. Finally,
USIM(S ,T) = max{0.892, 0.502} = 0.892.

Unfortunately, computing the unified similarity is in general NP-
hard, due to the potentially exponential ways to partition strings in
the worst case.

Theorem 1. USIM ∈ NP-hard.

1291

The proof of Theorem 1 can be found in the Appendix. Briefly
speaking, we present a polynomial-time reduction from the Max-
imum Independent Set problem, which is a well-known NP-hard
problem [4,6,25]. In light of the inherent intractability, we design an
efficient polynomial-time algorithm with a bounded approximation
guarantee as follows.

2.3 Approximation Algorithm
In this section, we present an algorithm that solves the USIM

problem in polynomial time. As a high-level overview, we convert
this problem to another problem called weighted Maximum Indepen-
dent Set (w-MIS) on k-claw-free graphs, which admits an efficient
approximation algorithm.

We first describe how to construct a graph G = (V,E) based on
two given strings S and T in three steps: (i) find all pairs of possible
well-defined segments PS , PT (of S and T , respectively) such that
(a) PS → PT or PT → PS is a synonym rule, or (b) PS and PT

match two taxonomy entities, or (c) each of PS and PT contains a
single token. (ii) Corresponding to each segment pair (PS , PT), add
a vertex to V and assign it a weight equals to msim(PS , PT) (see
Equation 4). (iii) Add an edge to E between any two vertices that
conflicts, meaning that their corresponding segments have a non-
empty token intersection. In other words, two vertices v = (PS , PT)
and v′ = (P′S , P

′
T) conflicts if (PS ∩ P′S) , ∅ or (PT ∩ P′T) , ∅. If

there is an edge between two vertices, then their corresponding rules
cannot be applied simultaneously, as illustrated in Example 4.

Example 4. The purpose of this example is to illustrate the con-
struction of Graph G. Given two strings S , T and six synonym
rules in Figure 2(a), we can construct G as in Figure 2(b). There
is an edge between any conflict vertex pair. For example, R3 and
R5 are connected because they are sharing the token “d” and thus
they cannot be applied on S simultaneously. Note that R6 does not
appear in G because it is not applicable on S .

Recall that, in graph theory, a d-claw C is an induced subgraph
that consists of d independent vertices called talons (denoted by TC),
and one centre node connected to all d talons [10, 25]. We claim
that the graph G from the above construction is a k+1-claw-free
graph, where k is the maximal number of tokens in both sides of
any synonym rule or taxonomy entity pair. This is because any
vertex in G can only connect to at most k mutually non-adjacent
vertices (though it can connect to more than k vertices). In other
words, G poses no k+1-claw because talons must be non-adjacent
by definition. Hence, G is k+1-claw-free.

The w-MIS problem aims to find an independent vertex setA ⊆ E
which maximises W(A) =

∑
u∈A w(u), where w(u) is the weight of

vertex u. MIS solutions can correspond to a pair of well-defined
partitions on S and T , which, in turn, constructs a bipartite graph
instance for computing the unified similarity. For example, recall
Figure 2 where {R1, R4} is an instance of MIS, which corresponds
to two partitions: PS =

{
{a}, {b, c, d}, {e}

}
and PS =

{
{ f }, {g}, {h}

}
.

The w-MIS problem is known to be NP-hard, and it cannot be
approximated within any constant factor for general graphs unless
P = NP [24, 37]. However, when it is restricted to k-claw-free
graphs, the polynomial-time approximation of w-MIS becomes pos-
sible by treating k as a constant. This problem has been researched
intensively in the past few decades [4, 6, 10, 12, 25]. The state-of-art
method is SquareImp [10], which can achieve the approximation
ratio t

t−1 ·
k+1

2 in time that is polynomial in t · n, where t > 1 is a
tunable parameter that enables trading off running time and approxi-
mating accuracy, and n is the number of vertices in G. In this paper,
we extend SquareImp to solve our problem to achieve a non-trivial
approximation guarantee.

Algorithm 1: Approximation algorithm
Input: two strings S ,T , and their associated graph G = (V,E)
Output: the unified similarity between S and T

1 compute the maximum independent setA of G with SquareImp [10]
2 define N(R,A) = {u ∈ R : ∃v ∈ A such that (u, v) ∈ E or u = v}
3 while there exists a claw C ⊂ G s.t. TC improves the unified similarity

at least 1/t do
4 A ← A∪ TC \ N(TC ,A), where C is a claw that improves the

most GetSim(A)
5 return GetSim(A)
6 Function GetSim(A):
7 PS ,PT ← partitions of S and T constructed fromA
8 return SIM(PS ,PT)

R1

R5

R2

R3

R4

0.3

0.27

0.13

0.22

0.09

(a) Strings and rules (b) Constructed graph

Tokenised strings:
 S = {a, b, c, d, e}, T = {f, g, h}

Rules:
 R1: {b, c, d} → {f}
 R2: {b, c} → {f, g}
 R3: {c, d} → {f, g}
 R4: {a} → {g}
 R5: {d} → {h}
 R6: {z, e, f} → {g}

Figure 2: Illustration of Example 5. Numbers beside each ver-
tex is its weight. SquareImp selects R2 and R5, whereas Alg. 1
finally selectsR1 andR4.

Algorithm 1 shows the process of the unified similarity approx-
imation. Given two strings S , T and their associated graph G, the
algorithm first computes the w-MIS solution using SquareImp algo-
rithm (Line 1). Then, in Line 3, we say talons TC “improves” the
similarity if adding all u ∈ TC and removing all neighbourhoods
of u (i.e. N(TC ,A)) can bring a higher similarity (i.e. GetSIM(A)).
Note that, by specifying the size of the minimal allowed improve-
ment to 1/t (t > 1), Lines 3-4 can run in polynomial time, ensuring
the termination within btc iterations. Finally, Line 5 constructs two
partition functions (πS , πT) based on solutionA and returns the final
unified similarity.

Example 5. Given two strings and synonym rules in Figure 2(a).
We construct a 5-claw-free graph in Figure 2(b). When applying
Algorithm 1 on this graph, Line 1 (i.e. SquareImp) selects R2,R5, and
hence two partitions PS =

{
{a}, {b, c}, {d}, {e}

}
, PT =

{
{ f , g}, {h}

}
that lead to the similarity (0.13 + 0.27)/4 = 0.1. Then, Lines
3-4 of Algorithm 1 find another claw with centre R2 and talons
R1,R4 can improve the similarity by partitioning two strings as
PS =

{
{a}, {b, c, d}, {e}

}
, PT =

{
{ f }, {h}, {g}

}
that has similarity (0.3+

0.09)/3 = 0.13. Therefore, the final returned result is 0.13.

Analysis. The approximate bound of Algorithm 1 is different from
SquareImp, because the unified similarity is computed by the so-
lution of maximum bipartite graph match divided by the maximal
number of segments of S and T (see Equation (6)). The optimi-
sation of w-MIS can only achieve the best approximation for the
bipartite graph match, but cannot determine the number of segments.
Therefore, the following theorem shows the adjusted worst-case
bound. The proof can be found in the Appendix.

Theorem 2. Given two strings S and T , Algorithm 1 computes
a solution for the unified similarity between S and T with a tight
approximation ratio t

t−1
k2−1

2 in time that is polynomial on t ·n, where
t > 1, n is the number of vertices in G constructed by S and T , and
k is the maximal number of tokens in any applicable synonym rule
or taxonomy entity pair.

1292

Table 1: Table of notations used in Section 3.
Notation Description
B,w(B) a pebble and its associated weight
B a sorted list of pebbles
B[i, j] the subsequence of the i-th to j-th pebbles of B
BP, f [i, j] all pebbles in B[i, j] that are generated from P by f
MP(S) the min number of well-defined segments for any partition of S
W(B) the weight sum of all pebbles in B. See Eq. (7)
TWk(B) the weight sum of top-k heaviest pebbles in B. See Eq. (8)

3. THE UNIFIED JOIN FRAMEWORK
In this section, we study the string similarity join problem based

on the proposed unified similarity measure. Given two collections of
strings S and T , we want to find all string pairs (S ,T) ∈ S×T such
that USIM(S ,T) > θ, where θ ∈ [0, 1] is a predefined join threshold
and USIM is the similarity measure defined in Definition 3.

Roughly speaking, our solution is based on the filter-and-verification
framework. That is, in the filtering step, the algorithm generates
candidate string pairs by identifying all pairs (S ,T) such that sig-
natures of S and T overlap. In the verification step, we check if
USIM(S ,T) > θ for each candidate and outputs those satisfying the
similarity predicate. In the rest of this section, we will propose a
family of signature-based filtering and join algorithms.

3.1 U-Filter: Unified Signature Filtering
One efficient filtering technique is prefix filtering: given a string

S , generate its prefix signature as its first (1− θ)|S |+ 1 tokens sorted
by a predefined global order, such as by inverse document frequency
(IDF) [43, 46]. Then, any two similar strings must share at least one
token within their signatures. This condition is necessary but not
sufficient for two strings being similar, thus verification is required
to check real similarities of survivors.

The above existing filtering principle, unfortunately, cannot be
straightforwardly applied to our problem due to two challenges.
First, how to represent different types of similarity measures in a
unified, coherent way? Second, how to select signatures of strings
such that the overlapping requirement of prefix filtering still holds?
We address these two challenges by proposing a new structure as
well as a new filtering strategy.

Pebbles. We introduce an abstract concept called pebble, to rep-
resent various similarity types in a unified yet elegant manner. In-
tuitively, given a segment P, we can generate pebbles B and their
associative weight w(B) w.r.t. different similarity measures:

• Jaccard coefficient: each q-gram of P is a pebble B. The weight
of each B is w(B) = 1/|G(P, q)|.

• Synonym similarity: assume that the applicable synonym rule of
P is R, then the pebble B of P is lhs(R), and w(B) = C(R).

• Taxonomy similarity: let n be the matching taxonomy entity of P.
The pebbles of P include n and all its ancestors, each has weight
w(B) = 1/|n|.

Table 2 exemplifies pebbles of segments “coffee” and “cafe” for
three similarity measures in Figure 1. Given a string S , we first
generate all pebbles and sort them by a global frequency order. Then,
we remove as many pebbles (those having higher frequencies) as
possible and select the remaining pebbles as the signature of S .
Below, we precisely quantify the contribution of pebbles to compute
the final similarity.

Given a sorted pebble list B, let B[i, j] (1 6 i 6 j 6 |B|) denotes
a sublist from its i-th to j-th pebbles, and let BP, f [i, j] denotes a list
containing pebbles from B[i, j] that are generated from segment P
by measure f . Further, let

Table 2: Illustrating pebbles and their associative weights.
Measure Jaccard Synonym Taxonomy

Pebble type q-grams lhs of the rule ancestor nodes

“coffee” Pebbles {co, of, ff, fe, ee} - {Wikipedia, food, coffee}
Weight 1/5 - 1/3

“cafe” Pebbles {ca, af, fe} {coffee shop} -
Weight 1/3 1 -

W(B) =
∑
∀B∈B

w
(
B
)

(7)

TWk(B) =
∑

∀B∈topk(B,k)

w
(
B
)

(8)

Intuitively, W(B) returns the sum of weights of pebbles in B,
while TWk(B) returns the sum of weights of top-k heaviest pebbles
(in terms of weight) in B. As an example, for string “cafe” in Table
2, W(B)=(1/3)×3+1=2 (assuming pebbles are sorted as in the table)
and TW2(B) = 1+1/3=4/3.

Definition 4 (Accumulated Similarity). Given a string S and
a positive integer i, let P denote an arbitrary well-defined segment
of S and let B

[
i, n

]
be the pebble sublist of S from the i-th element

till the end. The Accumulated Similarity AS(i, S) is calculated by:

AS(i, S) =
∑
∀P

max
∀ f

W
(
BP, f [i, n]

)
(9)

Note that the accumulated similarity can be greater than 1, because
it sums up the individual similarities of all segments of S .
Signature selection. Algorithm 2 formally describes the procedure
for selecting pebble signatures. Intuitively, given a string S , we re-
move as many pebbles as possible from the sorted pebble list B until
the accumulated similarity of removed pebbles can reach certain
thresholds (calculated through Function GetMinPartitionSize), by
assuming that all removed pebbles exist in similar strings. We now
go through Algorithm 2. Line 1 obtains all pebbles of S and sorts
them by a global order (e.g., by the ascending order of frequencies
of pebbles). Line 2 calculates the minimal number of partitions of
S , which will be discussed in details in the next paragraph. Line 4
is the key step, which iteratively removes the last pebble from the
list until the accumulative similarity of removed ones becomes big
enough. Finally, Line 5 returns the first i (i.e. remaining) pebbles in
B as the signature of S .

In Function GetMinPartitionSize, we calculate the minimal num-
ber of partitions in S (denoted MP(S)). To understand its motivation,
recall the definition of unified similarity in Equation (6) where the
denominator is the maximal number of partitions of S and T . Note
that the minimal number of partitions of S is clearly a lower bound

Algorithm 2: Generating pebble signatures for U-Filter
Input: a string S and a similarity threshold θ
Output: the pebble signatures of S

1 B ← all pebbles of S sorted by a global order
2 m← GetMinPartitionSize(S)
3 i← |B|
4 while mθ > AS(i, S) do i← i − 1 // remove the last pebble
5 return the first i pebbles of B

6 Function GetMinPartitionSize(S):
7 U ← all tokens of S
8 n← the size of the largest segment;A ← ∅
9 while U , ∅ do

10 P← a well-defined segment of S that maximises |P ∩ U |
11 U ← U \ P; A ← A∪ {P}
12 return d|A|/ (ln n + 1)e // estimation lower bound [28]

1293

Table 3: Illustration to Example 6 and 7. J: Jaccard, S: Syn-
onym, T: Taxonomy.

i Pebble P1: “espresso” P2: “cafe” P3: “Helsinki” AS TW
J T S J T S J T S

23 es 1/7 0.143 1.667
22 ss 2/7 0.286 1.667
21 fe 2/7 1/3 0.619 1.667
20 Wikipedia 2/7 1/5 1/3 0.675 1.667
19 food 2/7 2/5 1/3 0.733 1.667
...
8 ca 4/7 1 2/3 5/8 2.292 1.476
7 ki 4/7 1 2/3 6/8 2.417 1.476

Algorithm 3: Unified set join with U-Filter
Input: LS and LT as two inverted lists constructed from token sets S

and T , a similarity threshold θ
Output: {(S ,T) ∈ S × T } : USIM(S ,T) > θ

1 B← overlapped keys (pebbles) between LS and LT
2 foreach B ∈ B do // filtering
3 `S, `T ← lists indexed by pebble B in LS and LT
4 foreach (S ,T) ∈ {(`S × `T)} do // pairs having one overlap
5 C ← C ∪ {(S ,T)}
6 foreach (S ,T) ∈ C do // verification
7 if USIM(S ,T) > θ then R ← R ∪ {(S ,T)}
8 return R

of such denominator value. Furthermore, unfortunately, it is NP-
hard to find the optimal value of MP(S) because it can be reduced to
a minimum exact cover problem [23]: given a collection of subsets
of a set X, a minimum exact cover is to compute the minimum
number of subsets in a subcollection A such that each element in
X is contained in exactly one subset inA. In GetMinPartitionSize,
we tackle this problem by a greedy algorithm [28]. In particular,
in the loop of Lines 9-11 in Algorithm 2, we iteratively add the
segment that maximises the coverage on S . This greedy algorithm
can guarantee the approximate bound ln n + 1 [28], where n is the
number of tokens in the longest segment.

Example 6. This example illustrates Algorithm 2. As in Fig-
ure 1, given θ = 0.8 and the string T , which contains 3 segments
P1=“espresso”, P2=“cafe”, and P3=“Helsinki”. Line 1 generates
23 pebbles. In Line 2, GetMinPartitionSize iteratively selects three
segments P1, P2, P3 and returns m = d3/(ln 1 + 1)e = 3. Next, the
while loop in Line 4 starts removing the 23-th pebble. Table 3 shows
the values of accumulated similarity (AS) in each iteration. Finally,
the algorithm stops at i = 7 when AS (7,T) = 2.417 > mθ = 2.4.
Line 5 returns the first 7 remaining pebbles as the signature of T .

Join algorithm. Algorithm 3 shows the pseudocode of join algo-
rithm based on U-Filter. Given two collections of strings S and T ,
for each collection, we build the inverted list using each pebble from
string signatures as key and string IDs as the value list. In particular,
Line 1 finds the common pebbles between two inverted lists. Lines
2-5 generate candidate string pairs which share at least one pebble.
Finally, Lines 6-8 verify the real similarity of candidates to return
final results. The correctness of Algorithm 3 is manifested by the
following lemma.

Lemma 1 (U-Filter). Given two strings S , T , and their associ-
ated pebble lists BS , BT sorted by a global order. Let i, j be two
smallest integers satisfying θ ·MP(S) > AS(i, S) and θ ·MP(T) >
AS(j,T), where MP(S) and MP(T) denote the minimal partitions
number of S and T , respectively. If USIM(S ,T) > θ, then the first
i − 1 pebbles in BS and the first j − 1 pebbles in BT must have at
least one overlap.

3.2 AU-Filter: Adaptive Signature Filtering
In the previous section, we introduced U-Filter which finds can-

didate pairs that share at least one pebble among their signatures.

Algorithm 4: Pebble signature for AU-Filter (heuristics)
Input: a string S , an overlap constraint τ, a similarity threshold θ
Output: the pebble signatures of S

1 B ← all pebbles of S sorted by a global order
2 m← GetMinPartitionSize(S)
3 i← |B|
4 repeat
5 C ← top τ − 1 heaviest pebbles among the first i − 1 pebbles of B
6 TW ← the sum of weights of pebbles in C
7 i← i − 1
8 until mθ 6 AS(i, S) + TW // test i-th pebble against Ineq. (10)
9 return the first i pebbles of B

Such policy, however, may produce many false positives because
one overlap is often far from being sufficient for two strings being re-
ally similar. Therefore, in this section, we aim to reduce the number
of false positives by increasing the number of required overlapping
pebbles. To this end, we define a positive integer τ, called overlap
constraint, which specifies the minimal number of common pebbles
a string pair must have for being considered as a candidate. In other
words, given a string S , we choose its signatures which contain at
least τ overlapped pebbles with any other similar string T .

The research challenge here is to select pebble signatures such
that the signature cardinality is minimised whilst the given over-
lap constraint τ is still satisfied. In this section, we present two
new signature selection methods to achieve such goal: the first one
naturally extends Lemma 1 to support more overlaps between signa-
tures, while the second one employs dynamic programming to find
a tighter upper bound on the cardinality of signatures.

3.2.1 Heuristic signature selection
We now present the first method by extending U-Filter to AU-

Filter in Algorithm 4. In a nutshell, this algorithm continuously
removes pebbles from the pebble list such that any string similar with
S must share at least τ pebbles among S ’s remaining pebbles. More
specifically, given a string S , a join threshold θ, and a parameter τ,
the algorithm first generates a sorted list of pebbles B of S (Line
1) and computes the lower bound of segment number m = MP(S)
(Line 2). Then, it iteratively removes pebbles from the list until the
sum of (i) the current accumulated similarity of removed pebbles
(i.e. AS(i, S)) and (ii) the sum of weights of the top τ − 1 heaviest
remaining pebbles (Lines 5-6) reaches mθ.

Lemma 2 (AU-Filter (Heuristics)). Given two strings S , T , and
their associated pebble lists BS , BT sorted by a global order. Let i
and j be two smallest integers satisfying Inequalities (10) and (11)
respectively for S and T . If USIM(S ,T) > θ, then the first i − 1
pebbles in BS and the first j − 1 pebbles in BT must have at least τ
overlaps.

θ ·MP(S) > AS(i, S) + TWτ−1
(
B[1, i − 1]

)
(10)

θ ·MP(T) > AS(j,T) + TWτ−1
(
B[1, i − 1]

)
(11)

Example 7. This example illustrates Algorithm 4. Recall String
T in Figure 1 and assume θ = 0.8, τ = 4. Line 1 generates 23
pebbles, and Line 2 gives m=3. Table 3 shows the accumulated
similarity AS and TW in the repeat loop in Lines 4-8. As an example,
when i=19, the top τ−1 = 3 heaviest remaining pebbles are “coffee
shop” (the lhs of synonym rule of P2, weight 1) and two grams

“ca’, “af” (each weight 2/3). Since AS (19,T) = 0.733, the 19th

pebble cannot be removed because the right-hand-side of Inequality
(10) is 0.733 + 1 + 2/3 = 2.4, no less than mθ = 2.4. Therefore, the
algorithm returns the first 19 pebbles as the signature.

3.2.2 Signature selection by dynamic programming

1294

Table 4: Illustrating Example 8, the DP prefix selection method.
i = 19. Settings are the same as in Example 7.

p Segment DP tableW19 Accessory table V19

d: 0 1 2 3 c: 0 1 2 3
0 - 0 0 0 0 - - - -
1 P1: “espresso” 0 0.2 0.4 0.6 0 3/5-2/5 4/5-2/5 5/5-2/5
2 P2: “cafe” 0 0.667 0.867 1.067 0 1-1/3 1-1/3 1-1/3
3 P3: “Helsinki” 0 0.667 0.867 1.067 0 1/8-0 2/8-0 3/8-0

The above solution may generate signatures containing pebbles
more than necessary. For example, recall Example 7 where i = 19,
the pebble “food” is included in the signature set returned by Al-
gorithm 4. However, we will show later in Example 8 that our
new approach can safely remove this pebble and therefore obtains
a smaller signature set. Specifically, our refined solution computes
a tighter upper bound of the similarity by utilising dynamic pro-
gramming (DP), which solves a problem by splitting it into a set of
subproblems. We describe our subproblems, initialisation procedure,
and recurrence function as follows:
Subproblems: We create subproblems as follows. Given a string
S and an integer τ, let p ∈ [0, t] and d ∈ [0, τ − 1] be two integers
where t is the total number of segments of string S . Given an
integer i, let Wi[p, d] be a tight upper bound of the increment of
the similarity because of the insertion of d pebbles of the first p
segments fromB

[
1, i−1

]
. Finally,Wi[t, τ−1] computes the maximal

similarity increment by adding τ−1 pebbles fromB
[
1, i−1

]
. In other

words,Wi[t, τ − 1] returns a tighter bound than TWτ−1
(
B[1, i − 1]

)
in Inequalities (10) and (11).
Initialisation: For all p ∈ [0, t], we set Wi[p, 0] = 0. For all
d ∈ [0, τ − 1], we setWi[0, d] = 0.
Recurrence function: Consider the subproblem of computing a
value for the entryWi[p, d]. We have d+1 options. For each option,
we can add c (c 6 d) pebbles from the current p-th segment (while
the other d − c pebbles are from previous p-1 segments). To deter-
mine which c is the best option, we construct an accessory table
Vi which presents the maximal similarity increment by adding c
new pebbles of the p-th segment. The following formulas show the
recurrence function:

Wi[p, d] = max
c∈[0,d]

{
Wi[p − 1, d − c] + Vi[p, c]

}
(12)

Let P denote the p-th segment. Vi[p, c] is calculated by:

Vi[p, c] = R(P, i, c) − R(P, i, 0) (13)

R(P, i, c) = max
∀ f

{
W

(
BP, f

[
i, n

])
+ TWc(BP, f [1, i − 1])

}
(14)

Specifically, R(P, i, c) selects the single measure that has the max-
imal similarity on the segment P by adding c more pebbles. It
includes two parts: (i) the weight sum of all pebbles in BP, f [i, n]
and (ii) the weight sum of top c heaviest remaining pebbles in
BP, f [1, i − 1].
DP algorithm. Using the analysis above, Algorithm 5 shows the
pseudocode for generating pebble signatures by DP. We first process
the string and obtain the necessary information about segments,
pebbles, and the partition bound (Lines 1-3). Then, during each
iteration, we initialise two tablesWi and Vi (Line 6-8) and populate
them row by row (Lines 9-12) according to the aforementioned
formulas. Specifically, in Lines 13-14, we test whether the sum of
(i) the current accumulated similarity AS (i, S) and (ii) the increment
from d inserted pebbles can reach θ ·MP(S). If yes, we terminate
the process and return the first i pebbles as the signatures of S .

Example 8. The purpose of this example is to show that DP
method can return a signature set smaller than the previous heuristic

Algorithm 5: Pebble signature for AU-Filter (DP)
Input: a string S , an overlap constraint τ, a similarity threshold θ
Output: the pebble signatures of S

1 M← all well-defined segments of S ; t ← |M|
2 B ← all pebbles of S sorted by a global order
3 m← GetMinPartitionSize(S)
4 i← |B|
5 while i > 1 do
6 Wi ← initialise a DP table with t + 1 rows and τ columns
7 Vi ← initialise a Accessory table with t rows and τ columns
8 Wi[0,]← 0;Wi[, 0]← 0; Vi[, 0]← 0 // initW and V
9 foreach p ∈ [1, t] do

10 compute the row Vi[p,] according to Eq. (13)
11 foreach d ∈ [1, τ − 1] do
12 compute the cellWi[p, d] according to Eq. (12)
13 if AS(i, S) +Wi[p, d] > mθ then // early termination
14 return the first i pebbles of B
15 i← i − 1

Algorithm 6: Unified set join with AU-Filter
Input: LS and LT as two inverted lists constructed from string sets S

and T , a similarity threshold θ, a positive integer τ
Output: {(S ,T) ∈ {S × T } : USIM(S ,T) > θ}

1 P ← ∅, C ← ∅, R ← ∅
2 B← overlapped keys between LS and LT
3 foreach B ∈ B do
4 `S, `T ← lists indexed by B in LS and LT
5 foreach (S ,T) ∈ {`S × `T } do
6 P ← P ∪

{
(S ,T)

}
7 foreach (S ,T) ∈ P do // find τ overlaps
8 if (S ,T) appears at least τ times in P then C ← C ∪ {(S ,T)}
9 foreach (S ,T) ∈ C do // verification

10 if USIM(S ,T) > θ then R ← R ∪ {(S ,T)}
11 return R

method. Recall the setting in Example 7. In particular, consider the
moment when i = 19. Table 4 illustrates the DP tableW19 and the
accessory table V19, e.g., V19[1, 3]=R(P1, 19, 3)-R(P1, 19, 0)=5/5-
2/5=3/5. Note that by Algorithm 5, the 19th pebble can be safely
removed because AS (19,T)+W19[3, 3]=0.733+1.067 = 1.8, less
than θ ·MP(T)=2.4. Compared with the previous heuristic method
in Inequality (10) where TW3

(
B[1, 18]

)
=1.667, DP finds a tighter

similarity bound, i.e.,W19[3, 3]=1.067< TW3
(
B[1, 18]

)
.

Join algorithm with AU-Filter. Based on the signatures generated
from the previous algorithm, we present the join procedure in Algo-
rithm 6 which follows the filter-and-verification framework. Unlike
U-Filter in Algorithm 3, AU-Filter selects candidate pairs that
share at least τ overlapped pebbles to reduce the size of candidates
hence improve the overall join efficiency (Lines 7-8).

4. PARAMETER RECOMMENDATION
In AU-Filter, the overlap constraint τ is affecting the overall join

time. Intuitively, a smaller τ leads to a faster filtering by generating
shorter pebble signatures but a slower verification due to increased
candidates. In contrast, a larger τ can lead to a slower filtering time
(more signatures) but faster verification through the reduced number
of candidates.

To demonstrate this trade-off, we performed a set of empirical
experiments on two 20K subsets of MED dataset1. As shown in
Figure 3(a), the size of signatures per string increases as τ becomes
larger, yielding more filtering cost. Meanwhile, the number of
candidate decreases since larger τ’s have filtered out more pairs
shown in Figure 3(b). Finally, Figure 3(c) demonstrates that, given

1Detailed info for this dataset can be found in Tables 6 and 7.

1295

Table 5: Table of notations used in Section 4.
Notation Description
Tτ the number of processed pairs during filtering given full datasets
Vτ the number of candidate pairs given full datasets
T̂τ, V̂τ Bernoulli estimator of Tτ or Vτ
µ̂Tτ , µ̂Vτ sample mean of estimations of T̂τ or V̂τ
σ̂2

Tτ
, σ̂2

Vτ
sample variance of estimations of T̂τ or V̂τ

T ′(n)
τ the number of processed pairs when using the n-th sample

T̂ (n)
τ , µ̂(n)

Tτ
, σ̂2,(n)

Tτ
the value of T̂τ, µ̂Tτ , or σ̂2

Tτ
after the n-th iteration

Cτ the overall cost of join with parameter τ

0.75 0.85 0.95

101

102

Similarity threshold θ
0.75 0.85 0.95

103

104

105

Similarity threshold θ
0.75 0.85 0.95

100

101

102

Similarity threshold θ

τ = 1 (U-Filter) τ = 2 τ = 3 τ = 4 τ = 5

(a) Avg. signature length (b) # of candidates (c) Join time (s)

Figure 3: Different overlap constraints affecting join perfor-
mance. Note that y-axes are in log scale.

different join thresholds, there exists a specific τ which gives the
optimal join time. Therefore, it is fascinating to study how to
dynamically select the best τ which minimises the join time. In this
section, we will tackle this challenge by proposing an estimation
and suggestion algorithm. Table 5 summarises used notations.

4.1 The Estimator
The overview of our strategy is to build a cost model and develop

a sampling-based method to estimate the effect of different τ’s on
join time to select the optimal value.

Cost model. Our first effort is to build a cost model of join time.
In particular, given two collections of strings S, T , and a positive
integer τ, the total cost of joining S and T using Algorithm 6
consists of two parts, i.e., filtering and verification: (i) Filtering:
the algorithm traverses common keys between two inverted lists
to find string pairs having τ overlapped pebbles. Assume that the
average cost for processing one pair is c f . Therefore, the overhead
is c f ·

∑
p∈(LS∩LT)

(∣∣∣`(LS, p)
∣∣∣ · ∣∣∣`(LT , p)

∣∣∣), where p is a common
pebble between two inverted lists, `(LS , g) (`(LT , g)) denotes a list
of strings indexed by the key g from the inverted lists LS (LT). (ii)
Verification: similarity computation is performed on all candidates.
Let cv denote the average cost for verifying one string pair and Vτ

be the number of candidates, the verification overhead is therefore
cvVτ. Let Cτ denotes the total cost of the algorithm for τ.

Cτ = CTτ + CVτ = c f Tτ + cvVτ (15)

Tτ =
∑

p∈(LS∩LT)

(∣∣∣`(LS, p)
∣∣∣ · ∣∣∣`(LT , p)

∣∣∣) (16)

In the above equations, c f and cv can be assumed as two constants
which are insensitive to τ. Therefore, the key task is to dynamically
estimate the cardinality of Tτ and Vτ given two datasets.

Bernoulli estimator. It is certainly unfeasible to run the join algo-
rithm on full datasets to get the exact values of Tτ and Vτ. Instead,
we can estimate these values using the independent Bernoulli sam-
pling [52], where each string in the input collection S (T) has
probability ps (pt) for being in the sample. Therefore, a pair (S ,T)
has the probability ps · pt for being sampled out. Then, the estimated
value T̂τ and V̂τ can be computed as follows, where T ′τ and V ′τ denote
the corresponding values computed in the sampled data:

E[T ′τ] = Tτ · ps pt ⇒ T̂τ =
T ′τ

ps pt
. Similarly, V̂τ =

V ′τ
ps pt

(17)

Both estimators T̂τ and V̂τ are unbiased. After obtaining T̂τ and
V̂τ, we plug them into Equation (15) to obtain estimated cost Ĉτ. The

Algorithm 7: Suggesting the best τ for AU-Filter
Input: Samples

{
S′1, · · · ,S

′
k
}

and
{
T ′1 , · · · ,T

′
k
}

with small sampling
probabilities ps and pt , a positive integer n∗, a Student’s t
quantile t∗, and an universe U of τ’s

Output: τ which has the minimal estimated join time
1 n← 0
2 repeat
3 n← n + 1 // refine the estimation
4 foreach τ ∈ U do
5 run the filtering stage (Lines 1-8) of Algorithm 6 on samples

S′n and T ′n , compute estimations T̂ (n)
τ and V̂ (n)

τ by Eq. (17)
6 compute µ̂(n)

Tτ
, σ̂2,(n)

Tτ
, µ̂(n)

Vτ
, and σ̂2,(n)

Vτ
by Eqs. (20-21)

7 compute the confidence interval CI(Ĉ(n)
τ) by Eq. (23)

8 until n > n∗ and Inequality (24) holds true
9 return arg minτ

(
Ĉ(n)
τ

)
Bernoulli estimator in Equation (17) is a static estimation strategy
where sampling probability ps and pt are determined beforehand.
Further, it is technically difficult to decide an optimal sampling
probability, since a higher probability can improve the accuracy at
the cost of increasing estimation time, while a lower probability can
save estimation time but decrease its accuracy. Next, we propose a
Monte Carlo-based solution to address this challenge.

4.2 Refinement and Parameter Suggestion
To achieve both high estimation accuracy and short estimation

time, roughly speaking, our method is to generate a collection of
very small samples (e.g., around 100 records in each) by using the
above independent Bernoulli method. Then, we perform multiple
iterations of estimation based on these samples to find the best
τ with high confidence. Key tasks in this framework consist of
(i) how to aggregate the estimation mean and variance based on
the results of multiple different samples and (ii) how to decide a
termination criterion ensuring both efficient estimation and high-
quality suggestion.

Mean and variance computation. To solve the first challenge, note
that multiple iterations of running different samples give a series
of estimations. Since all of them are independent and identically
distributed (i.i.d.), the central limit theorem (CLT) holds such that
means of estimations of Tτ and Vτ, i.e., µ̂Tτ and µ̂Vτ , converges to
normal distributions. That is,

µ̂Tτ ∼ N
(
E[T̂τ],Var[T̂τ]/n

)
when n→ ∞ (18)

µ̂Vτ ∼ N
(
E[V̂τ],Var[V̂τ]/n

)
when n→ ∞ (19)

CLT also alludes that the mean and variance of underlying distri-
bution, E[T̂τ], Var[T̂τ]/n, E[V̂τ], and Var[V̂τ]/n, can be estimated
by the sample mean and variance, µ̂Tτ , σ̂

2
Tτ , µ̂Vτ , and σ̂2

Vτ . All four
estimators are unbiased [59] and can be calculated by using, e.g., an
efficient on-line recursive formula [13, 22] below:

µ̂(n)
Tτ

= µ̂(n−1)
Tτ

+
T̂ (n)
τ − µ̂

(n−1)
Tτ

n
(20)

σ̂2,(n)
Tτ

=
n − 2
n − 1

σ̂2,(n−1)
Tτ

+ n ·
(
µ̂(n)

Tτ
− µ̂(n−1)

Tτ

)2 (21)

In the above equations, T̂ (n)
τ stands for the Bernoulli estimator value

from the n-th sample, i.e., by using Equation (17) where T ′(n)
τ is

obtained directly from the n-th sample. Similarly, one can replace
T by V to get formulas for µ̂(n)

Vτ
and σ̂2,(n)

Vτ
. Recall Equation (15).

The mean and variance of the total cost Cτ can now be estimated as
follows:

µ̂(n)
Cτ

= c f µ̂
(n)
Tτ

+ cvµ̂
(n)
Vτ

and σ̂2,(n)
Cτ

= c2
f σ̂

2,(n)
Tτ

+ c2
vσ̂

2,(n)
Vτ

(22)

1296

Stopping criterion. To solve the second challenge, intuitively, we
can safely terminate the estimation procedure once the penalty due
to a wrong suggestion is less than the overhead of running one
more estimation iteration. More precisely, to measure the penalty
in the worst-case, we compute the confidence interval (CI) for the
estimation Ĉ(n)

τ of Cτ at n-th iteration as follows, where Ĉ(n)
τ = µ̂(n)

Cτ
,

t∗ is an appropriate Student’s t quantile as confidence level:

CI(Ĉ(n)
τ) =

[
L(n)

Ĉτ
,U (n)

Ĉτ

]
=

µ̂(n)
Cτ
− t∗

σ̂(n)
Cτ
√

n
, µ̂(n)

Cτ
+ t∗

σ̂(n)
Cτ
√

n

 (23)

Let U be the universe of τ’s, and τmin ∈ U the optimal τ in the
n-th iteration, i.e., τmin = arg minτ

(
Ĉ(n)
τ

)
. Then, we can terminate

the sampling process when the following inequality holds true:

U (n)
Ĉτmin

− min
∀τ∈U\τmin

L(n)
Ĉτ
< c f ·

∑
τ∈U T ′(n+1)

τ (24)

where the left-hand-side represents the maximal penalty if the sug-
gested τmin cannot achieve the lowest cost, while the right-hand-side
is the cost of running the model for one more iteration.

Finally, we are ready to present the overall suggestion process in
Algorithm 7. Given k different small independent samples form S
and T , it returns the best τ to minimise the join time. In particular,
for each iteration, the algorithm runs the filtering stage of AU-Filter
for every possible τ, obtains T ′τ and V ′τ, and estimates the mean
and variance of Ĉτ (Lines 5-7). The procedure terminates when the
best τ is found to satisfy a predefined confidence level specified by
t∗. Note that the procedure runs at least n∗ iterations (Line 8) to
avoid the effect of instability in the early stage, known as the burn-in
period in Monte Carlo simulations [35].

5. EXPERIMENTAL ANALYSIS
In this section, we report an extensive experimental evaluation

of proposed algorithms in this paper. Section 5.1 describes the
experimental setting. Section 5.1∼5.4 respectively evaluate our sim-
ilarity measure, join algorithms and parameter suggestion algorithm.
Section 5.5 comparing our solution with state-of-the-art alternatives.

5.1 Datasets and Experimental Settings
We employed multiple datasets to evaluate algorithms in different

real-world environments. The datasets differ from each other in
terms of data size, taxonomy complexity, numbers of strings, to-
kens, and rules. A description of each dataset and its accompanying
rules can be found in Tables 6 and 7. Specifically, WIKI dataset
includes Wikipedia category strings2, while MED dataset3 contains
research papers’ keywords where all keywords can be mapped to
MeSH taxonomy4. As for knowledge sources, we employed (i)
two taxonomies: MeSH tree and Wikipedia categories, containing
hierarchical IS-A relations such as “Nature→ Energy→ Energy
conversion→ Hydro-power”; (ii) two synonym sources: MeSH al-
ternative names and Wikipedia Synonyms5 holding equivalent terms
like “myocardial infarction” vs “heart attack”. All algorithms were
executed by JVM 8 on a Ubuntu computer with a Xeon 2.53GHz
CPU and 32GB RAM. The implementation can be downloaded at
https://github.com/HY-UDBMS/AU-Join.

5.2 Evaluation of Similarity Measures
The purpose of the first set of experiments is to evaluate the

performance of our unified similarity measure and the corresponding
approximation algorithm.
2
https://wiki.dbpedia.org/

3
https://trec.nist.gov/data/t9_filtering.html

4
https://www.nlm.nih.gov/mesh/

5
https://en.wikipedia.org/wiki/Wikipedia:LCM

Table 6: Characteristics of used taxonomies and synonyms.
Taxonomy (Height in min/avg/max) Synonym

Source # nodes Height Avg. fanout Source # rules

MeSH tree 57,840 1 / 5.1 / 12 157 Aliases 180,259
Wiki categories 1,212,943 1 / 6.2 / 26 32,300 Synonyms 680,625

Table 7: Characteristics of used string datasets.

Source # of
strings

per string (min/avg/max)
Characters Tokens Taxonomies Synonyms

MED 293,294 2 / 110.5 / 452 1 / 8.4 / 26 0 / 3.2 / 18 0 / 4.3 / 15
WIKI 3,512,954 2 / 161.5 / 8,588 1 / 8.2 / 277 0 / 6.2 / 185 0 / 2.0 / 98

Table 8: Effectiveness w.r.t. similarity measures. T: taxonomy;
J: Jaccard; S: synonym. P: precision; R: recall; F: F-measure.

Measure MED, θ: 0.7 MED, 0.75 WIKI, 0.7 WIKI, 0.75
P R F P R F P R F P R F

J 0.88 0.27 0.42 0.85 0.19 0.32 0.81 0.26 0.40 0.79 0.15 0.25
T 0.89 0.12 0.20 0.86 0.09 0.17 0.83 0.08 0.15 0.83 0.05 0.10
S 0.88 0.60 0.71 0.88 0.56 0.68 0.86 0.02 0.03 0.86 0.02 0.03
TJ 0.90 0.43 0.58 0.87 0.29 0.44 0.83 0.92 0.87 0.82 0.54 0.65
TS 0.91 0.63 0.74 0.89 0.50 0.64 0.82 0.36 0.50 0.80 0.20 0.31
JS 0.89 0.77 0.83 0.88 0.60 0.71 0.84 0.11 0.20 0.84 0.07 0.14

TJS 0.86 0.96 0.91 0.88 0.75 0.81 0.83 0.98 0.90 0.82 0.58 0.68

Effectiveness. To evaluate the effectiveness of similarity measures,
we applied a crowd-sourcing platform [17–19] to obtain 268 (MED
dataset) and 961 (WIKI dataset) string pairs as ground truths. In
MED, the inconsistencies are mainly due to synonyms (e.g., “mitral
valve insufficiency” vs “bicuspid valves incompetence”), while in
WIKI, we find typos and taxonomic-similar strings (e.g., “computer
network, massively parallel computers” vs “computer networks,
supercomputers”). We presented the experimental results in Table
8. Seven similarity measures are compared: Jaccard (J), Taxon-
omy (T), Synonym (S), and all their combinations. The quality-of-
measures are precision (P), recall (R), and F-measure = 2PR

P+R .
We have made several observations: (i) Single similarity mea-

sures are not capable of finding many similar strings which mix
different kinds of similarities. For example, the average recall of T,
J, and S is only 30% on MED and 9.6% on WIKI, resulting in low
F-measure scores. (ii) The F-measure can be improved by utilising
two similarity measures, since it can capture multiple similarity
relations in a string pair. Moreover, different datasets favour differ-
ent similarity measures. For instance, the measure that combines
Jaccard and Synonym similarities (JS) works well for MED dataset,
while WIKI favours taxonomy and Jaccard combination (TJ). (iii)
By combining all three kinds of similarity measures (i.e. TJS), we
achieved the best F-measure on all tested datasets, because the uni-
fied similarity measures can capture most similar pairs to achieve
the best matching results.
Approximation Accuracy. This experiment is designed to evaluate
the approximate ratio of Algorithm 1 for computing the unified
similarity. For each dataset, we selected 3K string pairs such that the
exponential-time exact algorithm completes in a reasonable short
time. We calculate the approximate ratio r = A∗

A , where A∗ and A
denote similarity values returned by the exact and the approximate
algorithm respectively. The results are presented in Table 9, where
we varied the maximal partition size k for each string. We use five
percentile ratios: 2nd, 25th, 50th (median), 75th, and 98th. As an
example, for k=10 on MED data, the value 0.95 means that 50%
approximations are having at least 0.95 accuracy.

We have the following observations: (i) The approximation ratio
of Algorithm 1 is high in practice. For example, when k = 9 or
10, the accuracy of more than half string pairs is at least 0.87 and
0.9 on MED and WIKI datasets respectively. (ii) With the growth
of k, the approximate ratio increases for both datasets. This is a
little surprising result because the theoretical analysis in Theorem
2 shows that the worst-case bound becomes larger with the growth

1297

https://github.com/HY-UDBMS/AU-Join
https://wiki.dbpedia.org/
https://trec.nist.gov/data/t9_filtering.html
https://www.nlm.nih.gov/mesh/
https://en.wikipedia.org/wiki/Wikipedia:LCM

Table 9: Approximation accuracy w.r.t. longest rule size k.

k MED WIKI

2% 25% 50% 75% 98% 2% 25% 50% 75% 98%

3 0.37 0.50 0.50 0.50 0.62 0.18 0.50 0.53 0.70 1.00
4 0.48 0.55 0.60 0.80 0.96 0.33 0.62 0.75 0.91 1.00
5 0.48 0.54 0.58 0.82 1.00 0.41 0.59 0.77 0.92 1.00
6 0.48 0.55 0.70 0.83 1.00 0.53 0.72 0.81 0.93 1.00
7 0.50 0.55 0.82 0.92 1.00 0.54 0.85 0.91 1.00 1.00
8 0.74 0.83 0.95 0.97 1.00 0.71 0.93 1.00 1.00 1.00
9 0.55 0.75 0.87 1.00 1.00 0.72 0.76 0.80 0.90 0.99

10 0.69 0.80 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.75 0.8 0.85 0.9 0.95
0

1

2

Similarity threshold (θ)

Ti
m

e
(1

04 s)

0.75 0.8 0.85 0.9 0.95
0

0.5
1

1.5

Similarity threshold (θ)

Ti
m

e
(1

05 s)

U-Filter AU-Filter (heuristics) AU-Filter (DP)

(a) MED (b) WIKI

Figure 4: Join time of proposed algorithms.

of k, while the empirical results manifest that approximate ratios
can even improve by having a larger k. To explain this, we carefully
examined many string instances and observed that the theoretical
analysis emphasises only the worst-case when Algorithm 1 selects a
long rule that cannot contribute to the optimal similarity. However,
in practice, a longer rule is very likely to contribute to the optimal
result because it has more substantial similarity contributions. In
such scenarios, Algorithm 1 is more likely to return the optimal
value for a larger k.

5.3 Evaluation of Similarity Join Algorithms
The second set of experiments is to evaluate the efficiency and

scalability of various join algorithms. Here, we implemented all
three proposed methods: U-Filter, AU-Filter with heuristics,
and AU-Filter with DP. We take two measures: (i) the total running
time and (ii) the size of candidates (i.e., survivors of the filtering).

Join time. Figures 4 depicts the time cost of proposed algorithms
w.r.t. join thresholds. We made the following observations: (i)
two AU-Filter-family algorithms, i.e. AU-Filter (heuristics)
and AU-Filter (DP), outperform the baseline algorithm U-Filter.
This can be explained by the fact that the AU-Filter algorithms
adaptively determine the key τ parameter to enhance the filtering
power thus produces fewer candidates. (ii) AU-Filter (DP) is the
clear winner among all three methods by about 5× faster than which
with heuristics for small join thresholds. This improvement owes
to the dynamic programming that ensures short prefixes such that
many false positives are being removed.

To further investigate the filtering power of each algorithm with
various overlap constraints, we depicted the average length of pebble
signatures and the number of candidates for different algorithms
in Figure 5. It shows that, AU-Filter (heuristics) can filter out
50% to 60% candidate pairs, while AU-Filter (DP) can prune away
an impressive 70% to 90% pairs on both datasets. The dramatic
reduction brought by AU-Filter can undoubtedly accelerate the
verification process.

To evaluate the effect of similarity measures on join time, we ran
AU-Filter (DP) with seven different similarity measures and pre-
sented their running times in Figure 6. We found that although TJS
is the most comprehensive function, which combines three similarity
measures into one measure, its performance is still comparable to
a single measure. This owes to the powerful filters in AU-filter
(DP), which significantly reduces the number of candidates for final
verification. Together with the join effectiveness verified in Section
5.2, we emphasise that our unified similarity measure can return the

1 2 4 6 8
20
30
40
50

Overlap constraint τ

#
of

pe
bb

le
s

1 2 4 6 8
0

5

10

Overlap constraint τ

#
of

pa
ir

s
(1

07)

U-Filter AU-Filter (heuristics) AU-Filter (DP)

1 2 4 6 8
20
40
60
80

Overlap constraint τ

#
of

pe
bb

le
s

1 2 4 6 8
0
1
2
3

Overlap constraint τ

#
of

pa
ir

s
(1

08)

(a) Avg. signature length (MED) (b) Candidates (MED)

(c) Avg. signature length (WIKI) (d) Candidates (WIKI)

Figure 5: Filtering power of various filters, θ = 0.85.

0.75 0.85 0.95
100
101
102
103
104

Similarity threshold θ

Ti
m

e
(s

)

0.75 0.85 0.95
101
102
103
104
105

Similarity threshold θ

Ti
m

e
(s

)

T J S TJ JS TS TJS

(a) MED (b) WIKI

Figure 6: Join time of AU-Filter (DP) by similarity measures.
T: taxonomy; J: Jaccard; S: synonym.

best (i.e. the most comprehensive) join results while sacrificing only
a small amount of joining efficiency.

Scalability. We then assessed the effect of data sizes on join
time. As seen from Figure 7, the time overhead of AU-Filter with
heuristics and DP scale better than U-Filter. This is attributed
to the adaptive signature selection in AU-Filter, which enables join
algorithms to choose the best and fewest pebble signatures to reduce
running time. By using DP instead of heuristics, the scalability
of AU-Filter can be even further improved with the increase of join
data size. Furthermore, we broke the join time into three pieces (the
time to suggest the best parameter τ, filtering time, and verification
time) in Table 10. We observed that: (i) Both filtering and verifica-
tion times grows linearly instead of quadratically (considering the
nature of join operations). The ability of AU-Filter (DP) to scale up
can be credited to the effective signature selection, which removes
unfeasible pairs to avoid the quadratic growth of join time. (ii) The
cost to suggest the best parameters takes only less than 1% overhead
in most cases, which will be discussed in details in the next section.

5.4 Evaluation of Parameter Recommendation
The third set of experiments is to thoroughly evaluate the param-

eter recommendation algorithm proposed in Section 4, and under-
stand how it accelerates the join algorithms.

Effect on join time. To study the effect of the parameter τ on
the overall join time, we implemented experiments to compare
three different settings: (i) our suggested parameter, (ii) a random
parameter, and (iii) the worst parameter. Table 11 compares the
running time with various parameter settings for two datasets. As
shown in the figure, our suggested parameter can achieve the best
running time, which strongly motives for its use in practice.

Accuracy and efficiency. We then systematically evaluated the
recommendation accuracy with various thresholds. We ran our
suggestion algorithm for 100 times with various sampled data and
recommended parameters. We also exhaustively tested all possible
parameter values to obtain the optimal one. The accuracy ratios of
recommended parameters with various join thresholds are shown

1298

Table 10: Join time of AU-Filter (DP) breaks into suggestion,
filtering, and verification time (seconds).

MED
(θ = 0.9)

Size (K) 100 140 180 220 260 300
Suggestion 14.76 15.00 14.72 15.32 14.92 14.95
Filtering 23.11 48.43 62.13 100.64 119.72 123.26

Verification 31.69 47.97 67.67 115.06 144.68 142.54

WIKI
(θ = 0.95)

Size (M) 1.0 1.4 1.8 2.2 2.6 3.0
Suggestion 21.53 21.21 21.28 21.79 21.46 22.05
Filtering 63.13 135.32 192.54 262.15 306.52 337.07

Verification 86.60 134.05 209.71 299.73 370.42 389.82

100 200 300
0

0.5

1

Dataset size (K)

Ti
m

e
(1

03 s)

1 2 3
0

2

4

Dataset size (M)

Ti
m

e
(1

03 s)

U-Filter AU-Filter (heuristic) AU-Filter (DP)

(a) MED (θ = 0.9) (b) WIKI (θ = 0.95)

Figure 7: Scalability of proposed join algorithms.

in Table 12. In most empirical cases (95% for MED and 91% for
WIKI data), our algorithm can give accurate suggestions with small
samples. Note that, in this experiment setting, the size of each
sample is fixed to 100 strings for both datasets, which accounts
for a very small fraction of the original dataset, i.e., 0.034% for
MED and 0.0028% for WIKI, meaning that our algorithm can give
accurate suggestions even with a very tiny amount of samples in
each iteration. As shown in Table 12, the recommendation procedure
occupies less than 1% join time in most cases.

To further understand the relation between the sampling probabil-
ity of each iteration and the total number of iterations, we plotted
Figure 8, which depicts sampling times and the number of iterations
with various sampling probabilities. An interesting finding is that,
running times of the algorithm do not monotonically increase or
decrease with changes of the sample probability. This can be ex-
plained by the fact that a small sampling probability needs more
iterations to satisfy the predefined confidence level. Therefore, there
exists an optimal sampling probability for each dataset which min-
imises the total suggestion time. Finding such an optimum, which
strikes an appropriate balance between iteration times and sampling
probabilities, is an exciting direction for future research.

5.5 Comparison with State-of-the-art Alter-
natives

The final set of experiments is to compare our algorithm with
state-of-the-art alternatives. To the best of our knowledge, no previ-
ous work can handle multiple similarity measures as ours. There-
fore, we select several existing algorithms and then combine their
answers to provide comprehensive results. In particular, three rep-
resentative alternatives are PKduck [50] for synonym similarity,
K-Join [46] for taxonomy similarity, and AdaptJoin [53] for gram-
based measurement. Executable codes of AdaptJoin and PKduck
are available online6 and that of K-Join was kindly provided by the
authors of [46].

Effectiveness. Table 13 compares the join effectiveness of differ-
ent algorithms with varied datasets and join thresholds. Previous
methods suffer from low recalls because each of them can capture
similar strings with only one similarity measure. To improve the
recall, we combine their outputs together as Combination. However,
even with this enhancement, Table 13 shows that our method is still
better than Combination, thanks to our unified framework which

6AdaptJoin: https://www.cs.sfu.ca/˜jnwang/projects/adapt/
PKduck: https://github.com/tracyhenry/xClean

Table 11: Running time of AU-Filter (heuristics) w.r.t. differ-
ent parameter selection method.

Similarity threshold (θ) 0.75 0.80 0.85 0.90 0.95

MED
(103s)

Using suggested τ 17.30 6.47 1.88 0.64 0.09
Mean of random τ 24.81 9.47 2.70 0.92 0.27

Using worst τ 45.04 17.94 4.39 1.36 0.72

WIKI
(104s)

Using suggested τ 12.66 6.13 2.12 0.51 0.51
Mean of random τ 22.55 8.30 2.85 0.70 0.69

Using worst τ 34.41 13.01 3.91 1.18 0.89

0.1 1 2 3
0

1

2

Sample probability (10−3)

It
er

at
io

ns
(1

03)

0.1 1 2 3
0

20
40
60
80

Sample probability (10−3)

Ti
m

e
(s

)

0.3 2 4 6 8
0
1
2
3

Sample probability (10−4)

It
er

at
io

ns
(1

02)

0.3 2 4 6 8
0

10

20

Sample probability (10−4)

Ti
m

e
(s

)

(a) # iterations (MED) (b) Sugg. time (MED)

(c) # iterations (WIKI) (d) Sugg. time (WIKI)

Figure 8: Parameter suggestion while θ = 0.8. n∗ = 10,
t∗ = 1.036 (70% confidence level on two sides).

can apply a mixture of different similarity measures simultaneously.
Consider one example from WIKI dataset: “Anemone Flora United
States” and “Anemona Flora California” which involve two kinds
of similarities: “Anemona” is a wrongly spelt “Anemone” and
“California” is a state of “United States”. The string similarity is
less than the threshold (θ = 0.8) by using any individual similar-
ity measure, e.g. Jaccard and taxonomy. In contrast, our method
can seamlessly integrate two measures to recognise both types of
similarities.

Join time. Finally, we compared the join efficiency of various
algorithms. To make a fair comparison, we divide comparisons into
four groups, such that our algorithm (i.e., AU-Filter) is compared
to one or multiple existing algorithms using the same feature. For
example, to compare K-Join and AU-Filter, both algorithms use
the taxonomy similarity to find similar strings. Table 14 shows their
average running times of ten runs. It can be seen that, our methods
achieve a better performance than alternatives in most cases. This
can be explained by the fact that our AU-Filter can adaptively
select the key overlapping parameter τ to maximise the filtering
power and thus reduce the time cost of verification (recall Section
4). Note that in the WIKI dataset, AU-Filter takes more time than
other alternatives under high thresholds. Such discrepancy is due
to different numbers of candidates and results: for example, when
θ = 0.95, Combination finds only 17 similar pairs whilst AU-Filter
returns 111 (correct) results – six times more than Combination.

6. RELATED WORK
Similarity measures. Historically, there exists various similarity
measures to capture syntactic differences between strings, to name
a few: Levenshtein [53] and Hamming [29] distances, cosine simi-
larity [45] and Jaccard coefficient [14, 30]. Cohen et al. [15] exper-
imentally compared different string similarities to perform name-
matching task. In recent years, there are some efforts to use semantic
information to enhance the effectiveness of similarity joins, such as
synonym [2, 3, 7, 31] and taxonomy [46, 56]. In particular, Arasu
et al. [2] and Tao et al. [50] leveraged synonym and abbreviation
to extend similarity measures. Shang et al. [46] proposed K-Join

1299

https://www.cs.sfu.ca/~jnwang/projects/adapt/
https://github.com/tracyhenry/xClean

Table 12: Suggestion accuracy and the fraction on the overall
join time. Results are the average of 100 runs.

Similarity threshold (θ) 0.75 0.80 0.85 0.90 0.95

MED Accuracy 95% 95% 99% 95% 95%
Time fraction 0.09% 0.22% 0.71% 1.94% 1.38%

WIKI Accuracy 93% 100% 100% 92% 91%
Time fraction 0.02% 0.03% 0.09% 0.35% 0.34%

Table 13: Effectiveness of our measure vs existing algorithms.

Measure MED, θ: 0.7 MED, 0.75 WIKI, 0.7 WIKI, 0.75
P R F P R F P R F P R F

K-Join 0.89 0.12 0.20 0.86 0.09 0.17 0.83 0.08 0.15 0.83 0.05 0.10
AdaptJoin 0.81 0.19 0.30 0.79 0.15 0.25 0.71 0.28 0.40 0.64 0.15 0.24
PKduck 0.78 0.19 0.31 0.80 0.17 0.28 0.64 0.10 0.18 0.67 0.06 0.10

Combination 0.82 0.48 0.61 0.80 0.41 0.54 0.75 0.37 0.50 0.75 0.22 0.34
Ours 0.86 0.96 0.91 0.88 0.75 0.81 0.83 0.98 0.90 0.82 0.58 0.68

to introduce taxonomy knowledge in string matching. Further, K-
Join+ [46] adds an ad-hoc operation to match multiple taxonomy
nodes through approximate match preprocessing. This paper pushes
the frontier forward by proposing a new unified similarity framework
to seamlessly integrates different similarity measures together.
Similarity join algorithms. There are a plethora of studies on
efficient string similarity joins (e.g. [8, 14, 41, 43]). Jiang et al. [27]
performed an experimental survey to compare different similarity
join algorithms. The widely-adopted technique is prefix filtering. A
few papers recently aim to reduce the number of candidates in the
prefix filtering. For example, Xiao et al. [55] employed additional
filters to enhance the filtering power, and Rong et al. [43] proposed
multiple global orderings to perform filtering and join their results
to reduce false positives. Wang et al. [53] provided a cost model to
select an appropriate prefix for each string judiciously. However,
the existing methods cannot be straightforwardly adopted in our
problem because our measure requires to involve multiple different
similarity measures simultaneously to render a global similarity.
Machine learning for string similarity. Machine learning-based
methods aim to support string similarity matching by learning a
group of similar string as examples. In particular, Islam et al. [26]
determines the similarity of two pieces of text from semantic and
syntactic information through supervised and unsupervised learning.
Papers [34,44] parameterise different measures using machine learn-
ing techniques to choose an appropriate weight for each measure.
Further, there are approaches aiming to learn a similarity model
through logistic regression [51], SVM [11], or vector embedding
(e.g. word2vec [36] and GloVe [40]). This paper differentiates from
above previous works by addressing the important issue of efficiency
for similarity joins on large size of records.

7. CONCLUSION
We have studied a problem of integrating multiple similarity

measures for improving the quality of string similarity joins. We
proposed a unified similarity measure as well as its efficient compu-
tation algorithm. To perform joins efficiently, we have developed
several pebble-based filtering strategy which judiciously selecting
signature size and type. Experiments based on real datasets exhibit
the superiority of proposed algorithms for both effectiveness and
efficiency.

8. APPENDIX
Proof (Sketch) of Theorem 1. We now show a reduction from
maximum independent set (MIS) [39] to our problem USIM that
operates in polynomial time. Given a graph G = (V,E) of MIS, we
can build an instance of USIM as follows. For each vertex ui ∈ V,
we create two tokens mi, ni and for each edge ei ∈ E, we create
another two tokens pi, qi. Then let S = (

⋃|V|
i=1 mi) ∪ (

⋃|E|
j=1 p j) and

Table 14: Join time (s) of our algorithm vs existing methods.

Method MED (100K) WIKI (100K)
θ: 0.75 0.8 0.85 0.9 0.95 0.75 0.8 0.85 0.9 0.95

K-Join 2.8 2.7 2.2 2.1 1.8 5.4 5.0 3.1 3.0 2.7
Ours (T) 2.6 2.6 2.2 2.1 1.8 4.5 4.3 2.9 2.9 2.7

AdaptJoin 1045.8 675.4 270.6 48.3 10.5 1360.2 1044.6 480.6 120.0 16.9
Ours (J) 597.9 217.0 85.5 20.9 10.3 1301.3 644.5 274.2 62.6 11.3
PKduck 51.6 30.6 15.1 8.3 7.4 39.5 17.3 8.6 3.5 1.4
Ours (S) 20.8 18.0 14.7 7.0 6.8 15.8 11.1 8.0 4.3 3.2

Combination 1100.2 708.7 287.9 58.7 19.1 1405.1 1066.9 492.3 126.5 21.0
Ours (TJS) 842.1 413.8 253.7 54.7 18.9 1418.1 694.7 308.9 113.5 22.4

T = (
⋃|V|

i=1 ni) ∪ (
⋃|E|

j=1 q j). To construct synonym rules, for each
vertex ui ∈ V, we generate one rule Ri : {mi} ∪ {p j|∃e j connects ui }

→ ni with a weight C(Ri) = 1. For example, consider a simple graph
with two nodes v1 and v2 and one edge between them. Then we can
construct S = {m1,m2, p1} and T = {n1, n2, q1} and two synonym
rules: R1 : {m1, p1} → n1 and R2 : {m2, p1} → n2. Our goal is to
prove that finding a maximum independent set for MIS is equivalent
to compute a unified similarity on USIM .

First, we observe that given arbitrary partitions PS and PT in
USIM, max{|PS |, |PT |} = |V| + |E|, because (i) |PT | = |V| + |E|

regardless how many rules are selected, and (ii) |PS | 6 |V| + |E|.
Therefore, the denominator of Equation (6) is fixed. Hence, comput-
ing the maximal numerator of Equation (6) is equivalent to finding
the maximum independent set in G, because each rule corresponds
one vertex and we cannot select any two connected vertices (rules)
simultaneously.
Proof (Sketch) of Theorem 2. Suppose that I∗ is the optimal solu-
tion. Let n(I) and d(I) denote the nominator and denominator of
Equation (6) for a solution I. By the definition of approximate ratio,

USIM(I∗)
USIM(I)

=
n(I∗)/d(I∗)
n(I)/d(I)

=
n(I∗)
n(I)

·
d(I)
d(I∗)

(25)

Since SquareImp [10] can provide the guarantee on the approxi-
mation quality of w-MIS problem, we have

n(I∗)
n(I)

6
t

t − 1
·

k + 1
2

(26)

Furthermore, since any synonym rule or taxonomy pair contains
at most k-1 tokens in one-side, we have

d(I)
d(I∗)

6 k − 1 (27)

By applying Inequalities (26) and (27) with Equation (25), we
can establish the approximation ratio, as desired. Further, we con-
struct an instance to show that the bound of d(I), i.e. Equation
(27), is indeed tight. Let m, n, p, and q denote the set of tokens of
cardinalities k − 1, 1, (k − 1)2, and k − 1. Define a string S con-
taining k tokens: {m1, · · · ,mk−1, q1}, and T containing k(k-1) tokens:
{n1, p1, · · · , p(k−1)2 , q2, · · · , qk−1}. We then construct k + 1 synonym
rules. The first k− 1 rules are: Ri =

{
mi

}
→

{
p(k−1)i−(k−2), · · · , p(k−1)i

}
(i ∈ [1, k − 1]), the k-th rule: Rk =

{
q1

}
→

{
n1, q2, · · · , qk−1

}
, and the

final rule: Rk+1 =
{
m1, · · · ,mk−1

}
→

{
n1

}
. We can assign the weights

for all rules such that C(Rk+1) <
∑k

i=1 C(Ri), C2(Rk+1) >
∑k

i=1 C2(Ri),

and 1
t <

∑k
i=1 C(Ri)

k −
C(Rk+1)
k(k−1) given an arbitrary value t. Note that Algo-

rithm 1 uses SquareImp to select Rk+1 in Line 1, and the heuristics in
Lines 3-4 cannot improve this result. Thus, this ends up with the so-
lution d(I) = k(k − 1). In contrast, the optimal solution I∗ can select
R1, · · · ,Rk to achieve d(I∗) = k. This yields d(I)/d(I∗) = k − 1.

Finally, to analyse the time complexity, note that SquareImp runs
in polynomial of t · n [10]. Further, Lines 3-4 of Algorithm 1 run for
at most btc iterations, and each iteration checks claws whose number
is polynomial in n. Therefore, the overall time complexity is still
polynomial in t · n.

1300

9. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating

fuzzy duplicates in data warehouses. In VDLB, pages
586–597, 2002.

[2] A. Arasu, S. Chaudhuri, and R. Kaushik.
Transformation-based framework for record matching. In
ICDE, pages 40–49, 2008.

[3] A. Arasu, S. Chaudhuri, and R. Kaushik. Learning string
transformations from examples. PVLDB, 2(1):514–525, 2009.

[4] E. M. Arkin and R. Hassin. On local search for weighted k-set
packing. Math. Oper. Res., 23(3):640–648, 1998.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. G. Ives. Dbpedia: A nucleus for a web of open data. In
ISWC, pages 722–735, 2007.

[6] V. Bafna, B. O. Narayanan, and R. Ravi. Nonoverlapping
local alignments (weighted independent sets of axis-parallel
rectangles). Discrete Applied Mathematics, 71(1-3):41–53,
1996.

[7] J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive
searching in succinctly encoded binary relations and
tree-structured documents. In CPM, pages 24–35, 2006.

[8] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140. ACM, 2007.

[9] A. Behm, S. Ji, C. Li, and J. Lu. Space-constrained
gram-based indexing for efficient approximate string search.
In ICDE, pages 604–615, 2009.

[10] P. Berman. A d/2 approximation for maximum weight
independent set in d-claw free graphs. In SWAT, volume 1851
of Lecture Notes in Computer Science, pages 214–219.
Springer, 2000.

[11] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proceedings of
the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’03, pages
39–48, 2003.

[12] B. Chandra and M. M. Halldórsson. Greedy local
improvement and weighted set packing approximation. J.
Algorithms, 39(2):223–240, 2001.

[13] C. Chatfied and A. J. Collins. Introduction to multivariate
analysis. Springer, 2013.

[14] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, page 5, 2006.

[15] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for name-matching
tasks. In IIWeb, pages 73–78, 2003.

[16] C. Dela Higuera. Grammatical inference: learning automata
and grammars. Cambridge University Press, 2010.

[17] Z. Dong, J. Fan, Lu, X. Du, and T. W. Ling. Using
crowdsourcing for fine-grained entity type completion in
knowledge bases. In APWeb/WAIM (2), volume 10988 of
Lecture Notes in Computer Science, pages 248–263. Springer,
2018.

[18] Z. Dong, J. Lu, and T. W. Ling. PANDA: A platform for
academic knowledge discovery and acquisition. In BigComp,
pages 10–17, 2016.

[19] Z. Dong, J. Lu, T. W. Ling, J. Fan, and Y. Chen. Using hybrid
algorithmic-crowdsourcing methods for academic knowledge
acquisition. Cluster Computing, 20(4):3629–3641, 2017.

[20] M. Färber, F. Bartscherer, C. Menne, and A. Rettinger. Linked
data quality of dbpedia, freebase, opencyc, wikidata, and
YAGO. Semantic Web, 9(1):77–129, 2018.

[21] E. Ferrara, P. D. Meo, G. Fiumara, and R. Baumgartner. Web
data extraction, applications and techniques: A survey.
Knowl.-Based Syst., 70:301–323, 2014.

[22] T. Finch. Incremental calculation of weighted mean and
variance. University of Cambridge, 4:11–5, 2009.

[23] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some
simplified np-complete problems. In Proceedings of the sixth
annual ACM symposium on Theory of computing, pages
47–63. ACM, 1974.

[24] M. M. Halldórsson and J. Radhakrishnan. Greed is good:
Approximating independent sets in sparse and
bounded-degree graphs. Algorithmica, 18(1):145–163, 1997.

[25] C. A. J. Hurkens and A. Schrijver. On the size of systems of
sets every t of which have an sdr, with an application to the
worst-case ratio of heuristics for packing problems. SIAM J.
Discrete Math., 2(1):68–72, 1989.

[26] A. Islam and D. Z. Inkpen. Semantic text similarity using
corpus-based word similarity and string similarity. TKDD,
2(2):10:1–10:25, 2008.

[27] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An
experimental evaluation. PVLDB, 7(8):625–636, 2014.

[28] D. S. Johnson. Approximation algorithms for combinatorial
problems. J. Comput. Syst. Sci., 9(3):256–278, 1974.

[29] G. Kondrak. N-gram similarity and distance. In SPIRE, pages
115–126, 2005.

[30] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, 2008.

[31] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity
measures and joins with synonyms. In SIGMOD, pages
373–384, 2013.

[32] J. Lu, C. Lin, W. Wang, C. Li, and X. Xiao. Boosting the
quality of approximate string matching by synonyms. ACM
Trans. Database Syst., 40(3):15:1–15:42, 2015.

[33] Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi. Efficient
algorithms and cost models for reverse spatial-keyword
k-nearest neighbor search. ACM Trans. Database Syst.,
39(2):13:1–13:46, May 2014.

[34] P. Malakasiotis. Paraphrase recognition using machine
learning to combine similarity measures. In ACL/IJCNLP
(Student Research Workshop), pages 27–35. The Association
for Computer Linguistics, 2009.

[35] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic
stability. Springer Science & Business Media, 2012.

[36] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. In ICLR
(Workshop), 2013.

[37] C. Moore and S. Mertens. The nature of computation. OUP
Oxford, 2011.

[38] J. Munkres. Algorithms for the assignment and transportation
problems. Journal of the Society for Industrial and Applied
Mathematics, 5(1):32–38, 1957.

[39] T. Oosterwijk. On local search and LP and SDP relaxations
for k-set packing. CoRR, abs/1507.07459, 2015.

[40] J. Pennington, R. Socher, and C. D. Manning. Glove: Global
vectors for word representation. In EMNLP, pages 1532–1543.
ACL, 2014.

[41] J. Qin and C. Xiao. Pigeonring: A principle for faster
thresholded similarity search. PVLDB, 12(1):28–42, 2018.

[42] E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[43] C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, and A. K. H. Tung.

1301

Efficient and scalable processing of string similarity join.
IEEE Trans. Knowl. Data Eng., 25(10):2217–2230, 2013.

[44] T. Saikh, S. K. Naskar, C. Giri, and S. Bandyopadhyay.
Textual entailment using different similarity metrics. In
CICLing (1), volume 9041 of Lecture Notes in Computer
Science, pages 491–501. Springer, 2015.

[45] G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Inf. Process. Manage., 24(5):513–523,
1988.

[46] Z. Shang, Y. Liu, G. Li, and J. Feng. K-join:
Knowledge-aware similarity join. IEEE Trans. Knowl. Data
Eng., 28(12):3293–3308, 2016.

[47] K. Slabbekoorn, L. Hollink, and G. Houben. Domain-aware
ontology matching. In The Semantic Web ISWC, pages
542–558, 2012.

[48] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, pages 697–706, 2007.

[49] T. P. Tanon, D. Vrandecic, S. Schaffert, T. Steiner, and
L. Pintscher. From freebase to wikidata: The great migration.
In WWW, pages 1419–1428, 2016.

[50] W. Tao, D. Deng, and M. Stonebraker. Approximate string
joins with abbreviations. PVLDB, 11(1):53–65, 2017.

[51] Y. Tsuruoka, J. McNaught, J. Tsujii, and S. Ananiadou.
Learning string similarity measures for gene/protein name

dictionary look-up using logistic regression. Bioinformatics,
23(20):2768–2774, 2007.

[52] D. Vengerov, A. C. Menck, M. Zaı̈t, and S. Chakkappen. Join
size estimation subject to filter conditions. PVLDB,
8(12):1530–1541, 2015.

[53] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?:
an adaptive framework for similarity join and search. In
SIGMOD Conference, pages 85–96, 2012.

[54] Z. Wu and M. S. Palmer. Verb semantics and lexical selection.
In ACL, pages 133–138. Morgan Kaufmann Publishers / ACL,
1994.

[55] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity
joins for near duplicate detection. In WWW, pages 131–140.
ACM, 2008.

[56] P. Xu and Lu. Efficient taxonomic similarity joins with
adaptive overlap constraint. In ACM CIKM, pages 1563–1566,
2018.

[57] P. Xu and J. Lu. Top-k string auto-completion with synonyms.
In DASFAA, pages 202–218, 2017.

[58] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu. Hmsearch: an
efficient hamming distance query processing algorithm. In
SSDBM, pages 19:1–19:12, 2013.

[59] D. Zwillinger. CRC standard mathematical tables and
formulae. CRC press, 2002.

1302

	Introduction
	Similarity measures
	Preliminaries
	Unified String Similarity Measure
	Approximation Algorithm

	The unified join framework
	U-Filter: Unified Signature Filtering
	AU-Filter: Adaptive Signature Filtering
	Heuristic signature selection
	Signature selection by dynamic programming

	Parameter recommendation
	The Estimator
	Refinement and Parameter Suggestion

	Experimental analysis
	Datasets and Experimental Settings
	Evaluation of Similarity Measures
	Evaluation of Similarity Join Algorithms
	Evaluation of Parameter Recommendation
	Comparison with State-of-the-art Alternatives

	Related work
	Conclusion
	Appendix
	References

