
iBTune: Individualized Buffer Tuning for Large-scale
Cloud Databases

Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang,
Honglin Qiao, Yue Shi, Wei Cao, Rui Zhang

Alibaba Group

{j.tan, tieying.zhang, lifeifei, aiao.cj, q.zheng, chiyuan.zp, kenny.qhl,
yue.s, mingsong.cw, jacky.zhang}@alibaba-inc.com

ABSTRACT
Tuning the buffer size appropriately is critical to the per-
formance of a cloud database, since memory is usually the
resource bottleneck. For large-scale databases supporting
heterogeneous applications, configuring the individual buffer
sizes for a significant number of database instances presents
a scalability challenge. Manual optimization is neither effi-
cient nor effective, and even not feasible for large cloud clus-
ters, especially when the workload may dynamically change
on each instance. The difficulty lies in the fact that each
database instance requires a different buffer size that is high-
ly individualized, subject to the constraint of the total buffer
memory space. It is imperative to resort to algorithms that
automatically orchestrate the buffer pool tuning for the en-
tire database instances.

To this end, we design iBTune that has been deployed
for more than 10, 000 OLTP cloud database instances in our
production system. Specifically, it leverages the information
from similar workloads to find out the tolerable miss ratio
of each instance. Then, it utilizes the relationship between
miss ratios and allocated memory sizes to individually opti-
mize the target buffer pool sizes.

To provide a guaranteed level of service level agreement
(SLA), we design a pairwise deep neural network that uses
features from measurements on pairs of instances to predict
the upper bounds of the request response times. A target
buffer pool size can be adjusted only when the predicted
response time upper bound is in a safe limit. The success-
ful deployment on a production environment, which safely
reduces the memory footprint by more than 17% compared
to the original system that relies on manual configurations,
demonstrates the effectiveness of our solution.

PVLDB Reference Format:
Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping
Zhang, Honglin Qiao, Yue Shi, Wei Cao, and Rui Zhang. iBTune:
Individualized Buffer Tuning for Large-scale Cloud Databases.
PVLDB, 12(10): 1221 - 1234, 2019.
DOI: https://doi.org/10.14778/3339490.3339503

1. INTRODUCTION
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 10
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3339490.3339503

Buffer pool is a critical resource for an OLTP database,
serving as a data caching space to guarantee desirable sys-
tem performance. Empirical studies on Alibaba’s OLTP
database clusters with more than 10, 000 instances show that
the buffer pool consumes on average 99.27% of the memo-
ry space on each instance, as shown in Table 1. Existing
buffer pool configurations are almost unanimously based on
database administrators (DBAs)’ experiences and often take
a small and fixed number of recommended values. This man-
ual process is neither efficient nor effective, and even not fea-
sible for large cloud clusters, especially when the workload
may dynamically change on individual database instances.

Table 1: Usage of different memory pools
Memory buffer insert log join key read sort

Pool pool buffer buffer buffer buffer buffer buffer
Avg. Size 29609.98M 8.00M 200.00M 0.13M 8.00M 0.13M 1.25M
Percent 99.27% 0.03% 0.67% 0.00% 0.03% 0.00% 0.00%

To demonstrate, Figure 1 plots the buffer pool size versus
the cache miss ratio and response time for each instance on
a subset of 10, 000 instances. It uses a box plot with each
box covering 25%− 75% sample values for each buffer pool
size on a log-log scale. There are two observations: 1) only
a small number of buffer pool size configurations (10 in this
case) are used by DBAs in this environment; 2) for the same
buffer size configuration, database instances exhibit a wide
spectrum of cache miss ratios and response times.

Figure 1: Miss ratio/response time versus buffer pool size

More importantly, Figure 1 reveals that solely relying on
DBAs to optimize the buffer sizes is not scalable for a large
cloud database cluster that contains tens of thousands of
servers, especially when a variety of diverse workload and
applications can dynamically change over time. It is im-
perative to develop a principled and automatic method to
optimize individual buffer pool size for a production cloud
database cluster that is at large scale.

1221

To that end, we propose iBTune to automatically reduce
buffer size for any individual database instance while stil-
l maintaining the quality of service for its response time,
without relying on DBA to set forth a predefined level. The
memory saving is critical for efficiently running a large-scale
cloud database cluster. However, this saving should only
have minimal negative effects on query response times and
throughputs. Since iBTune is deployed online, we have suc-
cessfully reduced the memory consumption by more than
17% while still satisfying the required quality of service for
our diverse business applications.

We emphasize that bluntly reducing all instances’ mem-
ory footprint by 17% or randomly reducing their sizes can
lead to very negative impacts (i.e., query response times will
rise abruptly and violate business application constraints or
SLA), as each instance’s query workload is different and re-
quires careful individual analysis. iBTune learns which in-
stances it can reduce buffer sizes aggressively without nega-
tively impacting the response times, and which instances it
should maintain the same buffer sizes to yield stable, target-
ed query response times. Figure 2 compares the cumulative
percentage distributions of the individual buffer pool sizes
before and after the iBTune applies the online adjustments,
respectively. iBTune does so through learning algorithms

Figure 2: Distribution of the individual buffer pool sizes

without relying on DBAs, since DBAs simply cannot tune
10,000 instances in real-time. The overall memory footprint
of the entire buffer pool is reduced yet not a single instance’s
query response time is negatively impacted to an extent such
that the hosted business applications violate their business
constraints or specified SLA.

From the system perspective, online adjusting the buffer
size of an instance is through switching the roles of a primary
instance and a backup. If the adjusted buffer pool size turns
out to be bad, a failure recovery mechanism can bring the
instance back to its previous state. Given the overhead of
switching roles and failure recovery, gradually reducing the
buffer sizes of selected instances until failure recoveries oc-
cur is not an option. Unnecessary switch and rollbacks can
create too much intrusion and overhead to the supported
business applications.

Even though automatic database tuning has been exten-
sively studied [42, 29, 31, 27, 39, 9, 25], it still remains as
an open problem how to tune individual buffer size for a
large cloud database cluster. There are two key challenges:
1) decide the proper buffer pool size for each individual in-
stance and 2) estimate the new response times (RT) due to
adjusting buffer pool sizes dynamically.

Determining the proper memory size for a OLTP database
buffer pool is different from estimating other resource con-
sumption such as CPU, heap/stack space and disk. The dis-
tinction lies in the fact that almost all the allocated memory
resource will be completely consumed by the buffer pool that
is predominantly running either least recently used (LRU)

caching algorithm or its variants [43, 33], e.g, CLOCK [7],
LRU-K[30], LRFU [24], EELRU [36]. As a consequence, the
measured memory consumption will always be close to the
configured buffer pool size. Nevertheless, the impact indi-
rectly affects critical performance indicators, e.g., response
times and cache miss ratios, which cannot be directly trans-
lated to specific buffer pool size values.

Furthermore, the problem to accurately predict response
times for different buffer pool sizes, albeit important, is quite
challenging. Using the best algorithm that we have tested so
far (a pairwise deep neural network that takes the features
from measurements on pairs of instances) still results in a
prediction error around 30% (see Table 7). Therefore, we use
it as a sanity check, by predicting the upper bounds of the
response times. A target buffer pool size can be adjusted
only when the predicted response time upper bound is in
a safe limit. The safe limit is determined by performance
statistics or specified SLA depending on applications.

A common engineering approach in configuring the buffer
pool sizes is to over-provision memory in order to guaran-
tee service quality. For example, based on the diagnoses of
DBAs, if the miss ratio is too high, or the response time
is too large, or the IO read is overwhelming, or too many
slow SQL queries negatively impact the business applica-
tions, the buffer pool size would be manually reconfigured,
e.g., by doubling its size. This commonly used aggressive
approach is often by compulsion, not by choice, in order to
quickly provide enough resources for a database instance to
fulfill business performance goals and to avoid possible risks
induced by frequent reconfigurations. However, it can incur
significant operational cost and result in wasted memory re-
source. Note that memory is often the critical bottleneck
for high-performance OLTP databases.
Overview and our contributions. To this end, we present
iBTune that has been deployed in our production system of
more than 10, 000 database instances. Specifically, we u-
tilize the relationship between miss ratios and buffer pool
sizes to optimize the memory allocation. Our models lever-
age the information from similar instances. Meanwhile, we
design a novel pairwise deep neural network that uses the
features from measurements on pairs of instances to predict
the upper bounds of the response times. Specifically,

1) We integrate caching algorithms with learning tech-
niques on measured data. It relies on a model-driven large
deviation analysis for LRU caching and a data-driven deep
neural network for measurements. Specifically, we infer the
tolerable miss ratio mrtolerable for each database instance
using its similar instances that report larger but acceptable
miss ratios. Then, using the tolerable miss ratio and the
current buffer size bpcur of the given instance as two param-
eters, we compute the target buffer pool size bptarget based
on a large deviation analysis for LRU caching models.

2) Since mrtolerable cannot be explicitly translated to RT
that DBAs care the most, we design a neural network to
predict a RT upper bound due to adjusting the buffer pool
size from bpcur to bptarget by leveraging workload character-
istics and configurations. Since overestimation of RT is not
as harmful as underestimation, we introduce an asymmetric
loss function to measure errors. To improve the predict ac-
curacy, we design a pairwise deep neural network that takes
the measurements from a pair of similar instances as inputs.
Paper organization. We present an overview of iBTune
and its system design in Section 2, and discuss specific al-

1222

Figure 3: Workflow and overall architecture of iBTune

gorithmic and technical details in Section 3. We evalu-
ate iBTune with extensive experiments using real workloads
on a large production environment with more than 10,000
database instances in Section 4. We review related works in
Section 5 and conclude in Section 6.

2. OVERVIEW OF IBTUNE
In this section, we present an overview of iBTune and

describe the details of the system design. We also explain
how it works in our production environment. To this end, we
first explain its workflow and key components based on the
system architecture. Then we introduce how to guarantee
system availability through a rollback mechanism, which is
critical for deployment in a production environment.
System implementation. We implement a full-fledged
platform to provide monitoring, optimization, parameter
configuration, testing, failure recovery and rollback mecha-
nism for our production database cluster that contains tens
of thousands of instances. Note that these functionalities
are necessary for all large-scale production OLTP database
clusters. Therefore, they do not introduce any overhead
for deploying our iBTune algorithms. Our algorithm how-
ever relies on these system features to provide the service.
Specifically, there are three key challenges.

Measurement collection: the database metrics are collected
for feature engineering and model training. In our produc-
tion system, the DBMS forms a complete ecosystem as illus-
trated in Figure 3. Our database kernel captures and out-
puts critical runtime performance information with 1, 000
different types of metrics. These metric data are stored and
processed in our production platform that contains a dis-
tributed storage layer. For the purpose of optimizing buffer
pool sizes, we only use relevant metrics including logical
reads, io reads, QPS, CPU usage and response times. The
details are described in Section 3.3.1.

Online processing: our buffer pool optimization is based on
a model trained offline and all results are also computed of-
fline. However, the suggested target buffer pool size bptarget
needs to be configured and take effect in the online run-
time. The executing component is responsible for enforcing
this online reconfiguration. The implementation is through
switching the roles of a master node and a backup node for
the same instance. Note that this DOES NOT introduce
any overhead, as each database instance is running a high
availability protocol (e.g., Paxos [23]) with at least 3 copies.

Specifically, to reconfigure the buffer pool size, the DB k-
ernel suspends the service of the master node for a short
period of time. Typically this time period ranges from sev-
eral seconds to 20 seconds, which depends on the size of the
buffer pool. Due to the strong support of high availability
by the DB kernel, the leader (master node) can be quick-
ly taken over by one of the followers (backup nodes). The
system availability is maintained throughout this transition.

Failure recovery and rollback mechanism: since reconfigur-
ing buffer pool sizes is expensive, this operation is only con-
ducted when the system workload is low in order to reduce
the impact to business. The DB kernel provides high avail-
ability based on PAXOS [23]. If a leader fails, the DBMS
automatically selects a new one from several followers and
switches its role without interrupting the running service.

2.1 System architecture and workflow
Figure 3 presents an overview of iBTune’s architecture

and workflow. There are four key components: data collec-
tion, data processing, decision making, and execution. The
iBTune workflow forms a closed cycle, since data is first col-
lected from DBMS kernel, processed and used for training,
and then resulting models are applied to the DBMS again.
Data collection. We use customized agents to collect vari-
ous database metrics and logs from DBMS. More than 1,000
metrics are collected. The agent sits outside DBMS to avoid
unnecessary performance overhead to the DBMS kernel. All
metrics and logs are collected in one second granularity and
fed into the data processing component. The specific metrics
that iBTune collects are discussed in Section 3 along with
the specific algorithms and models that they feed into.
Data processing. These metrics are first ingested into a
message queue system, which decouples data collection and
data processing. A stream processing system then read-
s data from the message queue and performs certain data
manipulation/standardization operations such as normaliza-
tion, aggregation and log transformation. After that, the
processed metrics and logs are stored in a distributed data
store for analysis and model training.
Decision Making. Although we collect a lot of metrics,
iBTune may select to only use part of them. Some key met-
rics consist of logical reads, io reads, RT, miss ratio, QPS,
CPU usage, etc. Logical reads are the read counts including
memory reads and IO reads. IO writes are also taken into
the consideration, but since the result in most cases is no
difference from without it, we did not use IO writes in our

1223

model. We use the method proposed in Section 3 to pre-
dict RT and compute the new BP (buffer pool) size. If the
predicted RT meets the requirement, the computed new BP
size is sent to the execution component.
Execution. This component consists of action planner and
action scheduler. To process a large number of database
instances, action planner aims to make a globally efficien-
t and non-conflicting execution plan for tens of thousands
of actions. It includes priority settings among different ac-
tion categories, action merging for the same instance, action
conflict detection and resolution, canary executing strategy
and so on. This is done through a series of optimizations
that are not the main focus of this paper. Its final output
consists of several action sequences to action scheduler.

Action scheduler sets up specific execution time for all ac-
tions. For example, some actions execute in real time man-
ner, and some execute during off peak hours. Our DBMS
has the ability to resize buffer pool online. That means
it is not necessary to restart the database instance, but it
introduces less than a few to 10-20 seconds un-availability
(system halting) during buffer pool online resizing.

With a high performance PAXOS [23] implementation, we
avoid halting the system when adjusting BP sizes by lever-
aging the high availability of the system. Specifically, we
have a leader (master node) with at least 2 followers (back-
up nodes). To adjust the buffer pool size, we first change a
follower’s buffer pool size, which typically takes several sec-
onds. Then this follower switches its role with the leader.
This transition is transparent to the application. Resultant-
ly, iBTune provides high availability when adjusting BP sizes
on the fly. Note that iBTune does not depend on PAXOS.
Any other protocols that provide high availability can be
used seamlessly with our system.

2.2 Rollback mechanism
If the response time slows down after the new BP size is

applied, i.e., the number of slow SQLs increases, the DBMS
will rollback to the previous BP size. This involves two
steps: 1) slow SQL detection; 2) rollback operation.
SSAD service. In iBTune, slow SQL is used to measure
how well the DBMS is running. SSAD (Slow SQL Anoma-
ly Detection) service is implemented for this purpose. It
detects the slow SQL differences comparing with the past
in minute-by-minute statistics. A data collector agent out-
side the database sends the slow SQL statistics to SSAD
periodically. SSAD then analyzes the running status of the
database. If multiple consecutive anomaly values are de-
tected, the SSAD service determines the DBMS state is un-
healthy and triggers a rollback operation. In practice, we set
the time span of multiple consecutive anomaly as 3 minutes.
Rollback. When SSAD determines a DBMS is unhealthy, it
rollbacks to the previous BP size. With a PAXOS based high
availability protocol, the rollback procedure is the reverse of
applying new BP size. Specifically, we first set up a follower
with the previous BP size, and then switch this follower and
the leader. Similarly, it is transparent and non-interruptive
to user applications.

3. ALGORITHM DESIGN IN IBTUNE
The optimization engine either routinely schedules or on

demand triggers the invocation, e.g., in the mid-nights. Sec-
tion 3.1 contains the high-level description. The details are
presented in Section 3.2 on adjusting buffer pool sizes by

miss ratios, Section 3.3 on finding similar instances, and
Section 3.4 on predicting the response times, respectively.

3.1 High-level description
Top level. Each invocation processes multiple rounds of
buffer pool size adjustment, as shown by the for-loop in Al-
g. 1. The instances are partitioned into N (e.g., N = 10)
groups. Each round only adjusts the instances in a group
based on their immediately similar neighbors. These groups
can be sequentially adjusted, since each group can lever-
age the information from other already adjusted groups. In
addition, groups avoid adjusting too many instances online
at the same time to increase robustness. It may take mul-
tiple rounds for the adjustments originated from “source”
instances to propagate to others along the neighbors.

Algorithm 1: Top level of the algorithm

1 Parameter: a threshold δ for adjustment
2 Trigger: scheduled by the optimization engine
3 Divide the instances into N groups {g1, g2, · · · , gN};
4 δ ← threshold;
5 while δ ≥ threshold do
6 for each group gi do
7 δi = a round of adjustment by Alg. 2 for all of

the instances in gi, protected by rollback;

8 end
9 δ = max{δi}1≤i≤N

10 end

This whole process stops when no improvement, as quanti-
fied by a threshold δ (e.g., threshold = 5%) in Algorithm 1,
can be further realized. Note that for each round, the roll-
back mechanism protects the performance by, if necessary,
recovering the previous buffer pool sizes.

After each round of adjustment is completed, we keep
monitoring the experimented instances by collecting their
health information. If their adjusted buffer pool sizes lead to
unacceptable performance, the DBPaaS system immediately
recovers these instances through the rollback mechanism.
However, rollbacks introduce much intrusion to the running
applications, which should be avoided if possible.

As shown in Algorithm 2, our algorithm adjusts the buffer
pool size for each instance using a reference from its similar
instances that can tolerate larger miss ratios and longer re-
sponse times. Each instance i reports its current miss ratio
mrcur,i. Then, among its similar instances (denoted by a
set N(i)), we restrict to the subset with miss ratios larg-
er than mrcur,i, and compute a target miss ratio mrtarget,i
for instance i. This set N(i) is constructed from a weight-
ed graph G that connects each instance with its k-nearest
neighbors (e.g., k = 6). In order to translate this infor-
mation to buffer pool sizes, we characterize the functional
relationship between miss ratios and buffer pool sizes by a
large deviation analysis. This analysis addresses the wide-
ly used least recently used (LRU) caching algorithm under
empirically observed heavy-tailed item popularity distribu-
tions, which computes the target buffer pool size bptarget,i.

Based on the target miss ratio and relevant performance
metrics, we estimate an upper bound of the response time
(RT) using a deep neural network based on pairwise instance
comparisons. Notably, to accurately predict response time
for different buffer pool sizes is extremely difficult due to a
number of factors, e.g., shared workloads, I/O competition,
server hardware differences, changing work dynamics. Af-

1224

Algorithm 2: Compute targeted buffer pool size
bp(target,i) by measurements of similar instances

Data: QPSi, mr(cur,i), logical readi, RTi, bp(cur,i)
of all instances indexed by i

Result: Compute bp(target,i) for each instance i
1 Construct feature vector F (i) for instance i in

Section 3.3;
2 Build a graph G by {F (i)} (connect each instance

with its k-nearest neighbors) ;
3 for each instance i do
4 N(i)← connected nodes of i on G;
5 for each instance j in N(i) do
6 if mr(cur,j) > mr(cur,i) then
7 wij = exp((F (j)− F (i))2/(2σ2)) ;
8 else
9 wij = 0;

10 end

11 end

12 mr(tolerable,i) ←
∑

j∈N(i) wijmr(cur,j)∑
j∈N(i) wij

;

13 Compute bp(target,i) for i using mr(tolerable,i),
mr(cur,i) and bp(cur,i) by equation (3) ;

14 δi ←
(
bp(cur,i) − bp(target,i)

)
/bp(cur,i);

15 if δi ≥ threshold then
16 Adjust the buffer pool size from bp(cur,i) to

bp(target,i) ;

17 end

18 end
19 return max{δi} ;

ter testing many different algorithms, so far the best result
that we can obtain is to use a pairwise deep neural net-
work, with an adjusted mean relative absolute error around
30% (see Table 7). To this end, we only estimate an upper
bound of the response time and use it as a sanity check.
A buffer pool adjustment is invalid when the predicted re-
sponse time upper bound is within a safe limit. Such a safe
limit is based on the response time distributions for differ-
ent applications. Therefore, our approach combines domain
knowledge on caching algorithms and learning techniques on
measured data. As detailed in Sections 3.3 and 3.4, our cur-
rent deployment collects one week and four weeks of mea-
surements for RT prediction and similarity identification,
respectively. Therefore, the adjustment frequency for each
instance is on weeks.

3.2 Functional relationship between miss ra-
tios and buffer pool sizes for LRU caching

Our database instances are serving mission critical appli-
cations, which require that the hit ratios of interests are in
the typical range of 90.0% ∼ 99.99%. Thus, the LRU model
naturally fits in the large deviation analysis that charac-
terizes events with small probabilities, i.e., missed requests
from buffer pools. Thus, from this point onwards, we focus
on miss ratios.

There are three reasons for us to choose the miss ratio
to bridge the buffer pool size and the desired system per-
formance. First, the configured buffer pool size based on
DBA’s experiences only take on a small set of values, as il-
lustrated in Figure 1 and analyzed in Section 1. Due to this
coarse-grained value set, it is difficult to distinguish different
instances in a refined manner. Second, using miss ratios pro-

vides a continuous way to interpolate the target buffer pool
sizes, so that the suggested buffer pool sizes can take a wide
spectrum of values beyond the existing set. Third, we have
explained in Section 3.1 that predicting the response time is
quite difficult. Thus, we cannot directly reply on predicted
response times to determine the target buffer sizes.

For a large class of heavy-tailed requests with popularities
following a power law [5, 3, 45, 32, 46], it has been shown
that [12, 19, 40, 4, 38], under mild conditions, for instance
i, there exist pi, ci such that

log (miss ratio)− pi
log (buffer pool size)− ci

≈ −αi, (1)

where αi is the index of the power law request popularity
distribution. A number of empirical measurements on re-
al systems have shown power law popularity distributions,
e.g., αi ∈ (0.6, 0.86) for content distribution systems [8] and
αi ∈ (0.2, 1.2) for the block I/O traces of storage system-
s [46]. For example in Figure 4, we vary the buffer size
of an instance to obtain the corresponding miss ratios. In
the log-log scale, it is very well approximated by a straight
line (with an index αi = 0.752), which implies a power law
miss ratio distribution. Note that αi, ci, pi depend on the
workload characteristics and the configuration of instance i.
Thus, these values vary across different instances.

Figure 4: Illustration of power law

Given the measured current miss ratio mrcur, the cur-
rent buffer pool size bpcur, and the computed target miss
ratio mrtarget, by equation (1), we can derive the following
relationship for the target buffer pool size bptarget

log (mrtarget)− log (mrcur)

log
(
bpbptarget

)
− log (bpcur)

≈ −αi. (2)

In order to apply equation (2), we need to estimate αi
for instance i. To this purpose, we distinguish two cases.
The first case is when the instance i has already adjusted
its buffer pool size in the previous rounds. Thus, we have
observed multiple (at least 2) previous measurements

{(mr1, bp1), (mr2, bp2), · · · }

for instance i. These observed samples can be used to es-
timate αi based on regression (e.g., Huber’s method [18]).
The second degenerate case is when we have only observed
a single measurement point (mrcur, bpcur). It prevents us
from estimating αi based on instance i’s history information.
For this case, we conduct extensive measurements on various
applications, and also use the reported statistical character-
istics from literature [8, 46]. We observe that αi ≤ 1.2 is sat-
isfied by the investigated SQL requests. Thus, for instances
lacking enough history information, we choose αi = 1.2 to
provide a conservative buffer pool size adjustment.

There is still one issue about applying equation (1), which
requires miss ratio > 0. We again distinguish two cases:

1225

normal instances with positive miss ratios and special in-
stances with zero miss ratios. In practice, instead of using
zero as the threshold to separate the two cases, we empiri-
cally choose ζ = 0.0002 so that mrcur > ζ indicates a normal
instance and otherwise a special instance.

3.2.1 Normal instances
To apply equation (1) in our real system, we need to

measure the current miss ratio mrcur, which however could
change from time to time. In order to reduce the variance,
we choose the average miss ratio mrcur during a time win-
dow, e.g., 24 × 5 hours during business days. In addition,
we also consider certain percentile points that are more ro-
bust to noise. For example, we use the 70% percentile point
mrP70 during the same time window as computing mrcur.
In order to combine the previous two estimates, we empiri-
cally choose the current miss ratio to be the mean of mrcur
and mrP70. Therefore, we obtain an estimation of bptarget

bptarget
bpcur

=

(
mrcur +mrP70

2×mrtarget

)1/α

. (3)

Note that for normal instances, mrcur > ζ implies that
mrcur, mrP70 and mrtarget are all positive. This formula
is used in Algorithm 2 to compute the target buffer pool
size based on the target miss ratio obtained from similar
instances.

3.2.2 Special instances
Since equation (1) assumes that the observed miss ratios

are strictly positive, we need to treat the case when mrcur,
mrP70, mrP80 and mrtarget contain zeros separately. For
such an instance i, we use the similarity used in Algorithm 2
to find the nearest instance j that is a normal instance. That
normal instance will be used as a reference. Recall that in
Section 3.2.1 we have already obtained bptarget,j/bpcur,j for
all normal instances. Then, we use this ratio to adjust the
special instance i, in a way such that

bptarget,i/bpcur,i = bptarget,j/bpcur,j .

3.3 Finding similar instances
In order to find the target miss ratios of a studied instance,

we need to use the information from its similar instances.
Measuring the similarity between different instances is crit-
ical to the performance of iBTune. We construct a feature
vector F (i) for each instance i, using both the low-level re-
source consumption measurements and the service quality
related metrics, e.g., response time (RT) and query per sec-
ond (QPS). Section 3.3.1 describes the feature engineering
based on the raw database metrics. Section 3.3.2 provides
the details on defining F (i) based on direct performance
measurements.

3.3.1 Feature engineering
The database metrics selected for RT prediction are logi-

cal read, io read, QPS, CPU usage and previously observed
RT. The measurement is taken once every minute and sum-
marized once every hour. Figure 5 plots the observed raw
metrics on 7 consecutive days for one instance. It shows a
clear daily pattern, which should be contrasted with Fig-
ure 13 that demonstrates the difference between workdays
and holidays.

In Figure 5, the blue dots represent the hourly averages
of the corresponding metrics. The hourly average of RT for

Figure 5: Database metrics over 7 days

this instance shows a daily pattern of a hump lasting for
about 9 hours. However, over the same 9 hour period, the
hourly mean of all other metrics are in the valley, which
contradicts our common belief of the positive correlation
between RT and the other metrics. Only after normalizing
(dividing) CPU, logical read and io read by QPS, a daily
pattern matching the one of RT appears in the normalized
version. Here is one explanation. While the RT is the av-
eraged response time per query, the raw measurements of
QPS, CPU usage, logical read and io read are the summa-
tions within one minute. The normalized version gives the
per-query value that is important for accurately predicting
RT. The effectiveness of such an normalization is confirmed
by the observation that Pearson correlation coefficients be-
tween RT and CPU, logical read and io read increase from
0.055, 0.127 and 0.017 to 0.093, 0.394 and 0.117, respective-
ly. For the rest of the paper, CPU usage, logical read and
io read are all normalized by QPS.

The prominent daily pattern in Figure 5 suggests that the
time period within a day is also a factor for predicting RT.
Thus we use the one-hot encoding for 6 periods with each
period spanning 4 hours. For example, if the measurement
is taken from 12 AM to 3:59 AM, the first time-encoding bit
is 1 and the rest bits are 0; if from 4 AM to 7:59 AM, the
second time-encoding bit is 1 and the rest bits are 0; and
so on. These time encodings are used in the pairwise DNN
model described in Figure 8.

After examining the time series of the database metric-
s for various instances, we realize that different instances
exhibit distinguishing behaviors. Some manifest daily pat-
terns while others have no patterns at all. Their RT values
have complex dependency on other covariate metrics. To
characterize the difference (or the similarity) among differ-
ent instances, we construct a feature vector based on the
normalized measurements in Section 3.3.2.

3.3.2 Similarity based on feature vector distance
We have described the 5 critical performance metrics, in-

cluding CPU usage, logical read, io read, miss ratio and

1226

RT (the first four metrics are divided by QPS, as explained
earlier). However, they could have a large variation and pos-
sibly change dramatically on weekends compared to normal
business days. Therefore, we select a relatively long time
window, e.g., 4 weeks, and remove all the measurements on
weekends. Since we focus on the system performance during
peak hours, we use certain percentiles of the measurements
to restrict the attention to important data.

Specifically, we collect the daily performance metrics on
business days for each instance and compute 4 statistics (the
90th percentile, 70th percentile, median and mean values)
for each of the 5 metrics. Thus, every business day yields a
4 × 5 = 20 dimensional data point. To further reduce the
variance, we compute the average of each dimension over a
time window of 4 weeks, excluding the weekends. To make
sure that each of the dimension is equally weighted in com-
puting the distances, the values on each dimension are nor-
malized to be in the range (0, 1] by dividing the maximum
value. Last, these values are concatenated to form the fea-
ture vector F (i) for each instance i. The parameter σ in Al-
g. 2 is chosen to be the average of |F (i)−F (j)| for j ∈ N(i)
and all i.

In order to find similar instances, we use the L2 norm to
measure the distance between a pair of distances. Based
on the distances, we can rank the similar neighbors. For
illustration, Figure 6 plots two pairs of similar instances.

0 2 4 6 8 10 12 14 16 18 20 22-2
2
6

10
14

R
T(

m
s)

Instance A1 Instance A2

0 2 4 6 8 10 12 14 16 18 20 220.7
0.925

1.15
1.375

1.6
Instance B1 Instance B2

0 2 4 6 8 10 12 14 16 18 20 22-0.06
-0.03

0
0.03
0.06

M
is

s
ra

tio

0 2 4 6 8 10 12 14 16 18 20 22-0.002
0.001
0.004
0.007

0.01

0 2 4 6 8 10 12 14 16 18 20 224
7.5
11

14.5
18

C
PU

 u
sa

ge

0 2 4 6 8 10 12 14 16 18 20 223.5
4.25

5
5.75

6.5

0 2 4 6 8 10 12 14 16 18 20 220
40
80

120
160

Q
PS

0 2 4 6 8 10 12 14 16 18 20 224
5.5

7
8.5
10

0 2 4 6 8 10 12 14 16 18 20 220
3500
7000

10500
14000

Lo
gi

ca
l r

ea
d

0 2 4 6 8 10 12 14 16 18 20 220
175
350
525
700

0 2 4 6 8 10 12 14 16 18 20 22
Hour

-0.05
0.025

0.1
0.175

0.25

IO
 r

ea
d

0 2 4 6 8 10 12 14 16 18 20 22
Hour

-0.005
0.005
0.015
0.025
0.035

Figure 6: Two pairs of similar instances

Notably, measurements show that the types of server hard-
wares could significantly impact the response times caused
by, e.g., I/O times. Therefore, in our algorithm and real
deployment, we only compare two instances that are hosted
on the same type of bare-metal server.

3.4 Pairwise DNN for RT prediction
As already explained in the introduction, to accurately

predict response times after adjusting buffer pool sizes turns
out to be very difficult. Therefore, we instead predict the
upper bounds of the response times, which are compared
with the safe limit. A target buffer pool size can be ad-
justed only when the predicted response time upper bound
is within the safe limit. This mechanism provides a level
of protection for the online adjustment. In addition, these
predicted response times serve as references for DBAs.

Regarding the safe limit, we group all the instances into
different applications, and find the 95% percentile of the re-

sponse times in each group as the corresponding safe limit
for that application. For example, Figure 7 plots the re-
sponse time empirical distribution for 6 applications in our
production cluster.

Figure 7: Determine the safe limits of response times

After adjusting the buffer pool size of an instance, it could
experience a change of workload characteristics. When up-
dating bpcur to bptarget, the miss ratio is expected to change
towards mrtolerable. However, the instance may never have
worked at this level of new miss ratio. It requires the RT
prediction model to have a good generalization capability
under possibly unseen environments.

The solution we propose is a pairwise DNN model, which
is described in Section 3.4.1. When predicting RT for a
specific instance, the pairwise model uses not only the mea-
sured performance metrics of the investigated instance but
also the metrics of other instances that are most similar to
this instance. Since we want to estimate the upper bound
of the response times, we describe the asymmetric loss func-
tion that puts more weights on the large response times in
Section 3.4.2. To reduce the generalization error, we design
the training data set from pairs of instances based on their
similarities in Section 3.4.3. We also compare our proposed
model and other popular regression models in Section 3.4.4,
which are validated by more concrete experiments in Sec-
tion 4.2.3.

3.4.1 Pairwise DNN model
The proposed model for RT prediction is a DNN shown

in Figure 8. Its inputs take the measurements from a pair
of instances (left, right) as well as the time encoding that is
described in Section 3.3.1.

time encoding

QPS of left sample

CPU usage of left sample

…
…

…
…

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Predicted RT
of left sample

……

…
…

QPS of right sample

CPU usage of right sample…

RT of right sample

…
…

Hidden
Layer 3

Figure 8: Neural network for predicting RT change

In the training phase, the left sample represents the in-
stance whose response time we want to predict. The right
sample represents a similar instance that contains history
measurements. Therefore, the right sample has its response
time RT available. In the testing phase, we apply this mod-

1227

el to predict the RT due to changing the buffer pool size.
Both left and right samples are actually collected from the
same instance. Thus, the inputs have duplicates. Specifi-
cally, we use the performance metrics, including the already
observed RT, on the last time period as the right sample,
and the identical performance metrics except that the miss
ratio mrcur is replaced by mrtolerable as the left sample.

We use the mean values for all the inputs. Actually, we
have tested other statistics, such as max, median and 90th
percentile, as features in the RT prediction model. We only
observe small improvements in the training errors at the cost
of slightly larger testing errors. Therefore, we use only mean
values for RT prediction.

Regarding the network structure, this pairwise DNN mod-
el has three hidden layers with 100, 50 and 50 neurons, re-
spectively. All the layers are fully connected with rectified
linear units (ReLU) as the activation function and the Re-
LU function is again used in the output layer to make sure
the predicted RT is non-negative. The output of the DNN
is compared with the measured RT to generate the error.
The pairwise DNN model is trained with Adam optimiza-
tion for 20 epochs using the ReL1 loss function introduced
in Section 3.4.2.

Using this model, we estimate an upper bound for the RT
due to adjusting the buffer pool size, which is used for qual-
ity control in Algorithm 1 and provides a level of protection.

3.4.2 Loss function
Due to system stability, underestimating RT has more se-

vere consequences than overestimating. Therefore, we define
the following asymmetric loss function, for a given l(·),

L : (e, λ)→
{
l(e)I(e ≥ 0)
λl(e)I(e < 0)

(4)

where I(.) is the indicator function, e is the error equal to
the actual RT minus the predicted RT and λ ∈ [0, 1] is a
tuning parameter to control the impact of underestimation.

Regarding l(·), instead of using the mean square error (L2
norm l(e) = e2) and mean absolute error (L1 norm l(e) =
|e|), we define the relative error loss (ReL1), for η = 0.1,

l(e) =

∣∣∣∣ e

y + η

∣∣∣∣ (5)

where y is the actual RT. The error e is normalized by the
actual value y, because RT can vary by orders of magni-
tude across different instances. Minimizing the relative error
is more meaningful than the absolute error, since an error
of 1ms impacts instances with RT=0.1ms much more than
instances with RT=10ms. The factor η = 0.1 in the de-
nominator is to prevent the optimization result from being
dominated by samples with very small RT.

3.4.3 Constructing pairwise training data set
The generalization capability of the proposed model is

improved by forming pairwise samples based on the original
data set for individual instances.

1. By the feature vector {F (i)} computed in Section 3.3.2,
we find the kpair nearest neighbors for each instance,
including itself, using the distance ||F (i) − F (j)|| be-
tween instances i and j.

2. For each sample in the original data set (called a left
sample), we find one data sample (called a right sam-
ple) from the same hour on a different date within the
instance’s kpair nearest neighbors. This precedure ex-
pands the original data set to ktrainkpair(kdate − 1)/2
pairs of training points, where ktrain is the sample size
of the original data set and kdate is the number of dif-
ferent testing dates.

3. For each pair of (left, right) instances, as shown in
Figure 8, we concatenate the features of the left sam-
ple, including CPU, logical read, io read, miss ratio,
QPS and one-hot time encoding, with the features of
the right sample, including CPU, logical read, io read,
miss ratio, QPS and RT to form the new feature vector
as the model input with RT of the left sample being
the label.

Compared with a model that only uses a single data point
in the original data set, we improve the performance by u-
tilizing all observations in similar environments, as demon-
strated by real experiments in Section 4.2.2. Since the work-
load of the left sample can be different from the right sample,
we force the pairwise model to learn the RT difference when
the workload or the configurations change.

3.4.4 Comparison with other prediction algorithms
In order to demonstrate the superior performance of our

newly designed pairwise neural network, we compare it-
s performance with other commonly used algorithms, in-
cluding linear regression(LR), XGBoost regressor (XGB) [6],
RANSAC regressor (RANSAC) [10], decision tree regressor
(DTree) [34], elastic net regressor (ENet) [48], AdaBoost
linear regressor (Ada) [35], gradient boosted decision trees
(GBDT) [47], K-Neighbors regressor (KNR) [14], bagging
Regressor (BR) [20], extremely randomized trees regressor
(ETR) [16], random forest (RF) [26], sparse subspace clus-
tering (SSC) [11], as well as a deep neural network with
instance-to-vector embedding (I2V-DNN) but without pair-
wise comparisons. All these algorithms except the last one
use the pairwise training technique, since otherwise the per-
formance is much worse.

After a thorough examination of these prediction algo-
rithms, we find that SSC, XGB and I2V-DNN yield the
most competitive results among all the comparison candi-
dates. However, these methods are still not as good as our
designed pairwise neural network.

The SSC approach assumes that there exists a simple re-
lationship for each database instance

RTi = a×QPSi + b×mr(cur,i) × logical readi
+ c× logical readi + d×mr(cur,i) + e, (6)

with the covariants coming from queueing delay, execution
time and overhead, respectively. These features are careful-
ly chosen from a variety of measurements. For example, we
realize that in our case, pages flushed, as an indicator for
IO performance, does not really impact the response time.
To apply SSC, the SQL workloads on different instances are
assumed to form multiple unknown subgroups with differ-
ent parameters (a, b, c, d, e). Each instance belongs to one
subspace, but its membership, i.e., on which subspace it sat-
isfies (6), is unknown. Given the representation in (6), the

1228

objective is to find out all the subspaces as well as the mem-
bership of each instance. Then, within each subspace, we
can apply all of the afore-mentioned prediction algorithms.

The DNN with instance-to-vector embedding (I2V-DNN)
is illustrated in Figure 9. The unique instance name is

…

Embedding
Layer

instance name

QPS

miss ratio

io read

logical read

CPU usage

…
…

…
…

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Predicted
RT…

time encoding

…
…

Hidden
Layer 3

𝒗𝒆𝒎𝒃𝒆𝒅

Figure 9: Instance2Vec embedding for I2V-DNN

passed into an embedding layer with a vocabulary size e-
qual to the total number of unique instance names. The
embedding size Nembed is chosen to be 20 after careful tun-
ing. Then the output of the embedding layer, an Nembed×1
dense vector, is concatenated with other features. The com-
parison results are presented in Section 4.2.3.

4. EXPERIMENT
This section describes the setting and results of our exper-

iments. The deployed DBMS is called PolarDB-X, a MySQL
compatible database based on LSM-Tree storage engine [17].
The experiments are divided into two parts: 1) online test-
ing for buffer pool size adjustment; 2) offline testing for re-
sponse time prediction. To test the iBTune performance in
the online environment, we select instances from different
business units and present the experiments and the analy-
sis. To quantitatively evaluate Pairwise DNN for predicting
RT, we design a training and testing data set that spans
over a holiday season. This evaluation is conducted offline
to test the generalization capability of our model.

4.1 Workload and test setting
Online testing. In Algorithm 1, the database instances
are divided into groups, which in our setting is selected to
be 10 groups with each containing 1, 000 instances scattered
across different applications. We conduct multiple rounds
of online adjustments sequentially. Since we need to collect
the feedbacks when adjusting buffer pool sizes, our system
currently adjusts 1, 000 instances per week in the production
environment that has 10, 000 instances. As our system is
continuously evolving, in the following part, we report the
results from one typical week, covering 1, 000 instances from
more than 4 business units. The statistics of Select, Insert,
Update and Delete SQL requests from these business units
are provided in Table 2. It demonstrates that our proposed
iBTune algorithm supports various workloads.

Table 2: Average QPS from different business units
Taobao Tmall Youku Fliggy Others

Select 5245/s 2815/s 1017/s 22930/s 120/s
Insert 4222/s 0/s 1/s 1520/s 10/s

Update 0/s 30/s 315/s 4/s 980/s
Delete 2708/s 0/s 10/s 0/s 0/s

The buffer pool size distribution of these instances is shown
in Figure 10, which differs from the distribution of the w-
hole cluster in Figure 2. Among these instances, 286 are

from Taobao1, 212 from Tmall2, 88 from Youku3, 32 from
Fliggy4 and 382 from other business units. Each instance is
loaded into a container (docker [1]). A container is hosted
on a physical machine. We use two types of hosts, as in
Table 3.

Table 3: Machine configurations
Type1 Type2

CPU Intel E5-2682 V4 × 2 Intel E5-2650 V2 × 2
Memory 32G × 24 16G × 24

NIC 10Gbps × 2 10Gbps × 2
HyperThreading 64 32

Offline testing. In order to quantitatively evaluate the
accuracy of the response time prediction algorithm, we of-
fline construct a training and testing data set by choosing
a special holiday season. The performance metrics of most
instances vary significantly before and during the holidays.
We use the measurements before the season as the train-
ing data and the measurements during the holidays as the
testing data. Judging by how well a model predicts the RT
during holidays using data observed before the season, we
can evaluate the generalization capability. We use a Tesla
P100 GPU machine, with 512G memory and 64 CPU pro-
cessors, to train our pairwise DNN model.

2G 8G 20G 45G 64G 96G 168G 188G 400G
0

200

400

600

Co
un

ts
8

604

256

20 4 44 8 48 8

Buffer Pool Size

Figure 10: Buffer pool size distribution of 1, 000 instances

4.2 Results
We first examine the online buffer pool adjustments in

our production environment in Section 4.2.1. We compare
the instances’ performance before and after the adjustments
using extensive measurements, statistics as well as the feed-
backs from the business sides. In order to quantify the ac-
curacy of the prediction algorithm, we design a training and
testing data set to evaluate the prediction results in Sec-
tion 4.2.2. Finally, we compare our algorithm with other
methods in Section 4.2.3.

4.2.1 Online adjustment of buffer pool sizes
We compare the performance before and after adjusting

the buffer pool sizes, using the sizes computed by iBTune.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.4
0.5
0.6
0.7
0.8

RT
(m

s) Predicted RT

Before adjustment After adjustment

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
98.5
99.0
99.5

100.0

Hi
t r

at
io

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4.0
4.5
5.0
5.5

CP
U

us
ag

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

10
11
12
13
14

QP
S

Figure 11: Performance comparison before and after adjustment

1Taobao is a customer-to-customer online retail service.
2Tmall is a business-to-consumer online retail service.
3Youku is a video hosting service.
4Fliggy is a travel ticket booking service.

1229

1 2 3 4 5 6 7 8 9 10
0

50

100

BP
 si

ze
(G

)
20 6 2

96

8 20 20

96

20 816 5 1

78

6 18 17

76

15 7

Before adjustment After adjustment

1 2 3 4 5 6 7 8 9 10
0

20

40

RT
(m

s)

3.56 4.95 2.44 1.18 0.57 0.75
16.83

0.73 0.48 4.95

43.09

5.09 4.48 1.34 0.68 0.88
18.17

0.86 0.75
12.82

1 2 3 4 5 6 7 8 9 10

10^0
10^-2
10^-4
10^-6
10^-8

10^-10

m
iss

 ra
tio

1.39e-06 9.72e-07 5.55e-07 1.39e-07 2.01e-06

0.01

6.94e-08
1.60e-06

0

2.31e-043.50e-03 2.31e-04
3.09e-06 2.08e-06

2.48e-04
0.01

7.15e-06 1.19e-05 1.45e-04 2.03e-03

1 2 3 4 5 6 7 8 9 10
0%

20%
40%
60%
80%

CP
U

us
ag

e

4.55% 6.09% 6.32% 7.84% 6.85%

54.65%

8.33% 16.44% 12.59% 11.02%5.66% 6.53% 7.12% 8.43% 6.95%

62.87%

9.24% 17.14% 13.29% 11.85%

1 2 3 4 5 6 7 8 9 10
Instance ID

0

50

100

QP
S

11.36 15.01 23.50 26.18 27.88
47.66 57.40

73.46
96.92 99.94

11.34 16.12 23.93 29.08 27.93
45.29 56.90

77.68
94.29 83.77

Figure 12: Performance illustration before and after adjustment

Figure 11 shows the result of a typical instance. Our al-
gorithm adjusts the buffer pool size from 96GB to 86GB,
about 10% reduction. We see that RT increases around
30% ∼ 50%, but the latency still keeps relatively low (under
1ms). Furthermore, most RT after adjustment is under and
close to the predicted upper bound of the response time.
This indicates that our algorithm predicts the upper bound
of RT reasonably well (see the comparison with other dif-
ferent algorithms in Section 4.2.3). Meanwhile, the QPS
remains almost the same before and after the adjustment.
This is exactly our goal to avoid the negative impact on the
throughput when using a smaller buffer size. The hit ratio
decreases from 100.0% to around 99.1%, which demonstrates
that it is unnecessary to keep the hit ratio as high as 100.0%
for many realistic applications. The performance (RT and
QPS) still meets the quality of service after we reduce the
buffer size.

To further visualize the overall performance, we randomly
select 10 representative instances and plot their performance
metrics in Figure 12. The memory saving ranges from 50%
to 10%, which strongly supports that a single number does
not fit all for the individualized buffer pool configuration.
After the adjustments, all RT values are still acceptable,
although their values do increase as expected. Most of the
CPU utilizations still remain low (under 20%) although their
average value relatively increases by 10%.

We briefly explain why instance 1 has a large increase
in RT after the adjustment. Its QPS is low (around 11
queries/s) before and after the adjustment. We find that
there is one query that consumes 99.97% of the total re-
sponse time. The lookup value in WHERE condition changes
for this query. Thus, the logical read, physical read, the rows
of examined increase dramatically after the adjustment. Re-
sultantly, the response time increases from 3.56 ms to 43.09
ms. But it does not trigger a rollback, since it still satisfies
SLA constraints and no slow SQL anomalies are found.

Last, we use the statistics of the experimental results from
the 1, 000 instances to characterize the results after adjust-
ing the buffer pool sizes. We analyze the average percentage
of saved memory for each of the 9 sizes in Table 4. The sav-
ings vary from 10% to 50%, which verify that we need to

Table 4: Average memory saving ratios for different sizes
Before change 400G 188G 168G 96G 64G 45G 20G 8G 2G
After change 259G 167G 152G 76G 48G 33G 17G 7G 1G
Saving ratio 35% 11% 10% 21% 25% 27% 15% 13% 50%

use individualized numbers to tune different instances. For
example, the instances of sizes 20G and 8G account for the
majority (over 80%) of the instances (see Figure 10). Their
saving ratios are 15% and 13%, respectively.

In Table 5, RTpred and RTob are the RT values predict-
ed by the model and observed online, respectively. Corre-
spondingly, MRpred and MRob are the miss ratios chosen
by the model and observed in the real system, respective-
ly. After shrinking the buffer pool size, both the miss ratio

Table 5: Online performance
Metrics Workday Holiday

RT
RTpred > RTob 83.3% 88.3%
RTpred < RTob 16.7% 11.7%

MR
MRpred < MRob 86.7% 85.0%
MRpred > MRob 13.3% 15.0%

Sum (before change) 14458G
BP Sum (after change) 11976G

Memory Saving 17.2%

and the RT should increase but RTob are expected to be
smaller than RTpredict as the latter is an upper bound. Al-
so, all these predicted upper bounds should be within the
safe limit. Our experiments show that indeed all the pre-
dicted values are within the safe limit. In addition, most of
the observed results (more than 83% for RT and 85% for
MR) are consistent with the predictions. A small number
of the results (11.7% ∼ 16.7% for RT and 11.7% ∼ 16.7%
for MR) are different from the predictions. These RT/MR
values that are higher than expected can potentially trigger
the rollbacks, but we did not receive the negative feedback
from the business units. Therefore, these instances are ac-
ceptable to the applications in our production environment.
After the adjustment, the total memory saving is 17.2%.

4.2.2 Offline evaluation of RT prediction algorithm
To quantify the accuracy of the pairwise DNN for predict-

ing the response times, we carefully design an offline test by
building a benchmark using real measurements. The train-
ing data set is the hourly database metrics measured in a
time period of 7 days before the holiday season. The testing
set is the response times measured on one particular date

1230

during the holiday season. The average of the hourly RT
varies by more than 70% on the training and testing data
sets due to workload change. It makes the RT prediction
difficult. Therefore, it is a representative test for evaluating
the generalization capability of our prediction model.

Figure 13: Performance during holidays and workdays

To visualize the variation across the holiday season as well
as the relationship between the performance metrics and
RT, we select a sample instance, whose buffer size is changed
from 45G to 21G. In Figure 13, the plots before and after the
red line compare the system performance before and after
the buffer pool size is adjusted. The results on holidays
are between the first and second green lines in Figure 13.
The QPS and logical reads decrease significantly during the
holidays compared with workdays. This immediately leads
to lower RT and miss ratios, which explains why the results
during holidays are better than workdays in Table 5. Each
point represents a mean value of the metric within one hour.
It is clear that the I/O reads increase notably after changing
BP while the logical reads and QPS only experience slight
variations. Resultantly, both the miss ratio and RT increase
as expected. Note that the RT after changing BP is smaller
than our prediction. The mean value of RT is 1.3ms and the
predicted RT is 2.9ms, as an upper bound is computed.

We form the pairwise training set as described in Sec-
tion 3.4.3. Then, we use the metrics (RT excluded) from
the testing set as left sample and the metrics from the same
instance in the same hour of the last date of the training set
as right sample, which form the input to the pairwise DNN
model. The output of the model is the predicted RT.

The performance of RT prediction is evaluated by the ad-
justed mean relative absolute error (AMRAE), mean abso-
lute error (MAE) and underestimation mean absolute error
(UMAE), as defined below. Notice that AMRAE and MAE
are the overall performance metrics, while UMAE measures
the severity of underestimation. For the same reason as us-
ing ReL1 as the loss function, AMRAE is the main metric
for consideration and MAE and UMAE are supplemental.

AMRAE =
1

Nt

Nt∑
i=1

∣∣∣∣ yi − ŷiyi + 0.1

∣∣∣∣× 100% (7)

MAE =
1

Nt

Nt∑
i=1

|yi − ŷi| (8)

UMAE =
1

Nt

Nt∑
i=1

|yi − ŷi| I(yi − ŷi > 0) (9)

where Nt is the sample size of the testing set, yi is the actual
RT and ŷi is the predicted RT of the i-th sample.

We compare the performance of PW-DNN-1/2/3 (pair-
wise DNN with kpair =1, 2 and 3, respectively), I2V-DNN
(Instance2vec DNN) and DNN (regular DNN) with different
loss functions, e.g., ReL1 (defined in Eq. 5), L1 (L1 norm or
MAE) and L2 (L2 norm or MSE) and different values of λ
in Eq. 4 for asymmetric loss function, in Table 6 and 7. We
make the following observations:

• From row 1 and 2 in both tables, we see that reducing
λ improves UMAE at the cost of larger AMRAE.

• Results from row 2, 3 and 4 in both tables show that
ReL1 loss function is most effective for minimizing
AMRAE.

• Row 1, 5 and 6 compare pairwise DNN model with
different values of kpair and we can conclude that kpair
must be at least 2 for good AMRAE result. Notice that
training error naturally gets worse when we increase
kpair to add more pairs of different instances to the
training set.

• It is shown that embedding improves RT prediction for
I2V-DNN by comparing row 7 and 8.

• The training error is small in row 5 and 7, while the
corresponding testing error is much larger. But when
we add information from nearest neighboring instances,
the training and testing errors are much closer (see row
1, 2 and 6). We conclude that the pairwise DNN with
pairwise training samples has a stronger generalization
capability.

• Row 9 in Table 7 is when we directly use RT of the
last day in the training set as the predicted RT for the
corresponding instance in the testing set. We can see
that the resulting AMRAE is large, indicating large
RT variations before and during the holidays.

Table 6: Training set performance (%)
Model Loss λ AMRAE MAE UMAE
1 PW-DNN-2 ReL1 0.4 31.53 1.51 1.34
2 PW-DNN-2 ReL1 1 28.42 1.64 1.56
3 PW-DNN-2 L2 1 210.15 2.07 0.61
4 PW-DNN-2 L1 1 44.68 1.27 0.96
5 PW-DNN-1 ReL1 0.4 14.38 0.56 0.31
6 PW-DNN-3 ReL1 0.4 38.06 1.93 1.76
7 I2V-DNN ReL1 0.4 24.10 0.88 0.49
8 DNN ReL1 0.4 49.00 2.48 2.35

Table 7: Testing set performance (%)
Model Loss λ AMRAE MAE UMAE
1 PW-DNN-2 ReL1 0.4 34.58 1.08 0.77
2 PW-DNN-2 ReL1 1 31.83 1.18 0.98
3 PW-DNN-2 L2 1 124.96 1.60 0.42
4 PW-DNN-2 L1 1 45.69 1.04 0.58
5 PW-DNN-1 ReL1 0.4 40.28 1.02 0.55
6 PW-DNN-3 ReL1 0.4 34.96 1.24 0.95
7 I2V-DNN ReL1 0.4 43.00 1.11 0.53
8 DNN ReL1 0.4 46.65 2.03 1.89
9 Direct guess - - 76.05 1.31 0.50

As shown in Table 6, I2V-DNN achieves good performance
on the training set, but its errors on the testing set are much
larger as shown in Table 7, implying a weak generalization
capability. On the other hand, the pairwise DNN model

1231

exhibits good performance on both the training and test-
ing sets, with smaller errors than I2V-DNN on the testing
set. One explanation is that pairing similar instances better
characterizes the variations to predict the change in RT.

Based on the observations above, the final model we use in
our production system is PW-DNN-2 with ReL1 loss func-
tion (row 1 and 2), which has the smallest AMRAE value.
The tuning factor λ is set to 0.4 for a good tradeoff between
minimizing AMRAE and keeping underestimation low.

4.2.3 RT prediction compared with other algorithms
We compare our DNN model (PW-DNN-2) with the other

algorithms introduced in Section 3.4.4. Figure 14 plots the
results of AMRAE, MAE, and UMAE. They are all com-

0%
30%
60%
90%

120% 95.4%
62.3%

103.1%
74.3% 89.9% 74.6% 67.3% 82.7% 66.9% 64.6% 68.4% 62.5%

34.6%

AMRAE

0.0
0.4
0.8
1.2
1.6 1.35 1.13

1.46 1.36 1.33 1.26 1.17 1.36 1.15 1.30 1.16 1.12 1.08

MAE

LR XGB RANSAC DTree ENet Ada GBDT KNR BR ETR RF SSC PW-DNN-20.00
0.25
0.50
0.75
1.00 0.74 0.64

0.85 0.74 0.71 0.68 0.66 0.67 0.61 0.70 0.61 0.67 0.77
UMAE

Figure 14: AMRAE, MAE and UMAE of different algorithms

bined with the pairwise technique. Our model outperforms
all the other algorithms on AMRAE and MAE. For UMAE,
XGB is the best. However, XGB has bad performance on
AMRAE and MAE. The reason why PW-DNN-2 is relative-
ly high for UMAE is because it is conservative in predicting
the RT upper bound. For AMRAE, all the afore-mentioned
algorithms are significantly worse than our model. Specifi-
cally, the best AMRAE among them is over 62%, which is
unacceptable in the production environment.

5. RELATED WORK
Database parameter tuning has been an active area in re-

cent years. Andy Pavlo et al. proposed a framework [31]
for self-driving DBMS including several key components,
like runtime architecture, workload modeling and control
framework. They extended the details of this framework to
automatically tune DBMS knob configurations, called Ot-
terTune [42]. OtterTune uses a LASSO algorithm to select
the most impactful knobs and recommends knob settings
based on Gaussian Processes. OtterTune uses many (more
than hundreds) metrics of different configurations to train
the model. OtterTune’s objective is to achieve a good per-
formance of a single DBMS instance by tuning important
parameters in the configuration file of a DBMS kernel while
our goal is to optimize memory usage by tuning buffer pool
sizes of many different database instances.

Others have looked at scaling system by modeling DBMS
workload [27, 39, 9]. They use system metrics, like QPS of
different queries, to predict the future workload. However,
they mainly focused on workload estimation or prediction
rather than system tuning.

P-Store [39] scales the DBMS by using a time-series model
to predict the load for different applications. It utilizes a dy-
namic programming algorithm to reconfigure the database.
The purpose of P-Store is different from this paper. Our
idea is to optimize the buffer pool management of a large
number of DBMS instances, by training models to save the

memory usage without negatively impacting these database
instances’ performance.

In a previous study, IBM developed a Self-Tuning Mem-
ory Manager (STMM) system for different components of
memory consumers in DB2 [37]. The feedback controller re-
quires frequent changes of the buffer pool sizes, ranging from
30 seconds to 10 minutes per change in DB2’s STMM. This
is prohibited in our setting due to the stability requirement
of OLTP DBMS services. Since OLTP services are mission-
critical, DBAs are very cautious at each online parameter
adjustment. At Alibaba, typically buffer adjustment fre-
quency is on weeks. MT-LRU algorithm [28] was developed
for multi-tenants buffer pool memory sharing. Tran et al.
proposed a buffer miss ratio equation to tune the buffer pool
sizes, and validated with different buffer replacement poli-
cies [41]. These methods are based on heuristic that are
different from what we proposed in this paper. In our al-
gorithm, we rely on large deviation analysis to characterize
missed requests that happen with a small probability. We
infer a tolerable buffer miss ratio to satisfy the service level
agreement of response times after changing buffer pool sizes.
In our system, response time prediction is used as a verifi-
cation and provides reference information for monitoring.

Query execution time prediction, which is quite related
to response time prediction, has been extensively studied in
previous research. In [29], a transaction based statistical
model is developed to predict the system performance with
varying resources. An analytical model for query execution
time prediction is proposed in [44]. Machine learning based
single query prediction has been studied in [2, 13]. How-
ever, they focus on execution times rather than response
times. Further more, the query-level prediction is not easy
to be used for the response time of an instance. Our system
directly predicts instance-level response times.

Lastly, there is an increasing amount of interest in using
machine learning techniques to tune and optimize database
performance from various aspects, e.g., index building [21],
clock synchronization [15], SQL join optimization [22]. iB-
Tune leverages similar approaches to tune system perfor-
mance at scale.

6. CONCLUSION
In this paper, we propose iBTune to adjust DBMS buffer

pool sizes by using a large deviation analysis for LRU caching
models and leveraging the similar instances based on per-
formance metrics to find tolerable miss ratios. To provide
a level of protection, we build a pairwise deep neural net-
work to predict the upper bounds of the response times.
The adjustments are considered to be valid only when the
estimations are within the safe limits that are inferred from
the collected traces. The deployment on our large-scale pro-
duction environment shows that this solution can save more
than 17% memory resource compared to the original system
that only relies on experienced DBAs.

Future work. This paper focuses on shrinking buffer
pool sizes to reduce cost, which by far is the most impor-
tant issue with our production deployment. On a different
direction, for certain cases it is also necessary to increase the
buffer pool sizes. Currently we rely on DBAs to manually
analyze the system expanding requirements before taking
important actions. We will explore how to automatically
expand the buffer pools in the future.

1232

7. REFERENCES

[1] Docker. https://www.docker.com.

[2] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and
S. B. Zdonik. Learning-based query performance
modeling and prediction. In Proceedings of the 2012
IEEE 28th International Conference on Data
Engineering, ICDE ’12, pages 390–401, Washington,
DC, USA, 2012. IEEE Computer Society.

[3] M. Arlitt and L. W. C.˙Internet web servers:
Workload characterization and performance
implications. In IEEE/ACM Transaction on
Networking, October 1997.

[4] C. Berthet. Approximation of LRU caches miss rate:
Application to power-law popularities.
arXiv:1705.10738, 2017.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
evidence and implications. In Proceedings of the 18th
Conference on Information Communications, 1999.

[6] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge
discovery and data mining, pages 785–794. ACM,
2016.

[7] F. J. Corbato. A paging experiment with the multics
system. MIT Project MAC Report, MAC-M-384,
1968.

[8] G. Dán and N. Carlsson. Power-law revisited: Large
scale measurement study of p2p content popularity. In
Proceedings of the 9th International Conference on
Peer-to-peer Systems, IPTPS’10, pages 12–12,
Berkeley, CA, USA, 2010. USENIX Association.

[9] S. Das, F. Li, V. R. Narasayya, and A. C. König.
Automated demand-driven resource scaling in
relational database-as-a-service. In Proceedings of the
2016 International Conference on Management of
Data, SIGMOD ’16, pages 1923–1934, New York, NY,
USA, 2016. ACM.

[10] K. G. Derpanis. Overview of the ransac algorithm.
Image Rochester NY, 4(1):2–3, 2010.

[11] E. Elhamifar and R. Vidal. Sparse subspace
clustering: Algorithm, theory, and applications. IEEE
transactions on pattern analysis and machine
intelligence, 35(11):2765–2781, 2013.

[12] C. Fricker, P. Robert, and J. Roberts. A versatile and
accurate approximation for lru cache performance. In
Proceedings of the 24th International Teletraffic
Congress, page 8. International Teletraffic Congress,
2012.

[13] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener,
A. Fox, M. Jordan, and D. Patterson. Predicting
multiple metrics for queries: Better decisions enabled
by machine learning. In Proceedings of the 2009 IEEE
International Conference on Data Engineering, ICDE
’09, pages 592–603, Washington, DC, USA, 2009.
IEEE Computer Society.

[14] S. Garcia, J. Derrac, J. Cano, and F. Herrera.
Prototype selection for nearest neighbor classification:
Taxonomy and empirical study. IEEE transactions on
pattern analysis and machine intelligence,
34(3):417–435, 2012.

[15] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar,
M. Rosenblum, and A. Vahdat. Exploiting a natural
network effect for scalable, fine-grained clock
synchronization. In 15th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI 18), pages 81–94, Renton, WA, 2018. USENIX
Association.

[16] P. Geurts, D. Ernst, and L. Wehenkel. Extremely
randomized trees. Machine learning, 63(1):3–42, 2006.

[17] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He,
T. Zhang, F. Li, S. Wang, W. Cao, and Q. Li.
X-engine: An optimized storage engine for large-scale
e-commerce transaction processing. In Proceedings of
the 2019 ACM International Conference on
Management of Data, SIGMOD ’19. ACM, 2019.

[18] P. J. Huber. Robust estimation of a location
parameter. Ann. Math. Statist., 35(1):73–101, 03 1964.

[19] P. R. Jelenković. Least-recently-used caching with
Zipfs law requests. In The Sixth INFORMS
Telecommunications Conference. Boca Raton, Florida,
2002.

[20] A. Kadiyala and A. Kumar. Applications of python to
evaluate the performance of bagging methods.
Environmental Progress & Sustainable Energy,
37(5):1555–1559, 2018.

[21] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The case for learned index structures. In
SIGMOD, pages 489–504, 2018.

[22] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and
I. Stoica. Learning to Optimize Join Queries With
Deep Reinforcement Learning. ArXiv e-prints, Aug.
2018.

[23] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

[24] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. On the existence of a
spectrum of policies that subsumes the least recently
used (lru) and least frequently used (lfu) policies. In
Proceedings of the 1999 ACM SIGMETRICS
International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’99,
pages 134–143, New York, NY, USA, 1999. ACM.

[25] Z. L. Li, M. C.-J. Liang, W. He, L. Zhu, W. Dai,
J. Jiang, and G. Sun. Metis: Robustly tuning tail
latencies of cloud systems. In ATC (USENIX Annual
Technical Conference). USENIX, July 2018.

[26] A. Liaw, M. Wiener, et al. Classification and
regression by randomforest. R news, 2(3):18–22, 2002.

[27] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane,
A. Pavlo, and G. J. Gordon. Query-based workload
forecasting for self-driving database management
systems. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18,
pages 631–645, New York, NY, USA, 2018. ACM.

[28] V. Narasayya, I. Menache, M. Singh, F. Li,
M. Syamala, and S. Chaudhuri. Sharing buffer pool
memory in multi-tenant relational
database-as-a-service. PVLDB, 8(7):726–737, 2015.

[29] D. Narayanan, E. Thereska, and A. Ailamaki.
Continuous resource monitoring for self-predicting
dbms. In 13th IEEE International Symposium on

1233

Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 239–248, Sept
2005.

[30] E. J. O’neil, P. E. O’neil, and G. Weikum. The lru-k
page replacement algorithm for database disk
buffering. ACM SIGMOD Record, 22(2):297–306,
1993.

[31] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,
P. Menon, T. Mowry, M. Perron, I. Quah,
S. Santurkar, A. Tomasic, S. Toor, D. V. Aken,
Z. Wang, Y. Wu, R. Xian, and T. Zhang. Self-driving
database management systems. In Proceedings of the
2017 Conference on Innovative Data Systems
Research, CIDR ’17, 2017.

[32] J. Petrovic. Using Memcached for data distribution in
industrial environment. In Proceeding ICONS ’08
Proceedings of the Third International Conference on
Systems, pages 368–372, April 2008.

[33] S. Podlipnig and L. Böszörmenyi. A survey of web
cache replacement strategies. ACM Computing
Surveys (CSUR), 35(4):374–398, Dec. 2003.

[34] L. Rokach and O. Z. Maimon. Data mining with
decision trees: theory and applications, volume 69.
World scientific, 2008.

[35] D. L. Shrestha and D. P. Solomatine. Experiments
with adaboost. rt, an improved boosting scheme for
regression. Neural computation, 18(7):1678–1710,
2006.

[36] Y. Smaragdakis, S. Kaplan, and P. Wilson. The eelru
adaptive replacement algorithm. Perform. Eval.,
53(2):93–123, July 2003.

[37] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone,
Y. Diao, and M. Surendra. Adaptive self-tuning
memory in db2. In Proceedings of the 32Nd
International Conference on Very Large Data Bases,
VLDB ’06, pages 1081–1092. VLDB Endowment,
2006.

[38] T. Sugimoto and N. Miyoshi. On the asymptotics of
fault probability in least-recently-used caching with
Zipf-type request distribution. Random Structures &
Algorithms, 29(3):296–323, 2006.

[39] R. Taft, N. El-Sayed, M. Serafini, Y. Lu,
A. Aboulnaga, M. Stonebraker, R. Mayerhofer, and
F. Andrade. P-store: An elastic database system with
predictive provisioning. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD ’18, pages 205–219, New York, NY, USA,
2018. ACM.

[40] J. Tan, G. Quan, K. Ji, and N. Shroff. On resource
pooling and separation for LRU caching. In
Proceedings of the 2018 ACM SIGMETRICS
International Conference on Measurement and
Modeling of Computer Science. ACM, 2018.

[41] D. N. Tran, P. C. Huynh, Y. C. Tay, and A. K. H.
Tung. A new approach to dynamic self-tuning of
database buffers. Trans. Storage, 4(1):3:1–3:25, May
2008.

[42] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning
through large-scale machine learning. In Proceedings
of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, pages 1009–1024,

New York, NY, USA, 2017. ACM.

[43] J. Wang. A survey of web caching schemes for the
internet. SIGCOMM Computer Communication
Review, 29(5):36–46, Oct. 1999.

[44] W. Wu, Y. Chi, H. Haćıgümüş, and J. F. Naughton.
Towards predicting query execution time for
concurrent and dynamic database workloads. PVLDB,
6(10):925–936, 2013.

[45] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Characterizing facebook’s memcached workload. IEEE
Internet Computing, 18(2):41–49, 2014.

[46] Y. Yang and J. Zhu. Write skew and zipf distribution:
Evidence and implications. ACM Trans. Storage,
12(4):21:1–21:19, June 2016.

[47] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic
gradient boosted distributed decision trees. In
Proceedings of the 18th ACM conference on
Information and knowledge management, pages
2061–2064. ACM, 2009.

[48] H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
67(2):301–320, 2005.

1234

