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ABSTRACT
Given a database network where each vertex is associated
with a transaction database, we are interested in finding
theme communities. Here, a theme community is a cohe-
sive subgraph such that a common pattern is frequent in
all transaction databases associated with the vertices in the
subgraph. Finding all theme communities from a database
network enjoys many novel applications. However, it is chal-
lenging since even counting the number of all theme com-
munities in a database network is #P-hard. Inspired by
the observation that a theme community shrinks when the
length of the pattern increases, we investigate several prop-
erties of theme communities and develop TCFI, a scalable
algorithm that uses these properties to effectively prune the
patterns that cannot form any theme community. We also
design TC-Tree, a scalable algorithm that decomposes and
indexes theme communities efficiently. Retrieving a ranked
list of theme communities from a TC-Tree of hundreds of
millions of theme communities takes less than 1 second. Ex-
tensive experiments and a case study demonstrate the effec-
tiveness and scalability of TCFI and TC-Tree in discover-
ing and querying meaningful theme communities from large
database networks.
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1. INTRODUCTION
Finding communities from large networks is a fundamen-

tal data mining problem that enjoys various applications,
such as targeted advertisement in e-commerce networks [3,
21], friend recommendation in social networks [20, 23] and
research group discovery in co-author networks [36].

Conventional community detection methods, such as
graph partitioning [31, 26], dense subgraph mining [7, 27]
and truss detection [9, 33], model real world networks as
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simple networks that contain only graph structures. To en-
hance the model of simple network, vertex attributed net-
works further profile the attributes of each vertex by a set
of items [32, 38]. Community detection in vertex attributed
networks aims to find communities such that all vertices in
the same community contain the same set of items and are
densely connected [5, 28]. Due to the homogeneity of vertex
attributes, these communities are usually more meaningful
and accurate [17, 25].

However, in most real world networks, the items of a ver-
tex are not equally important and often do not co-occur
all together. The valuable vertex information, such as item
co-occurrence and the frequency of co-occurring items, is
much beyond the limited descriptive power of the single set
of items associated with the vertex. To tackle this problem,
in this paper, we propose to model real world networks as
DataBase Networks (DBN), where every vertex is associated
with a transaction database named vertex database.

DBN is a natural descriptive model for many real world
networks. For example, in e-commerce networks where each
vertex represents a customer, every set of items purchased
together by the customer is recorded as a transaction, and
a vertex database stores all transactions of the customer. In
location-based social networks where each vertex represents
a user, the set of locations that the user checks in during a
period (e.g., a day, a week or a month) can be recorded as
a transaction, and the user’s all transactions form a vertex
database. The co-author network can also be enhanced by
associating with each author a vertex database, where each
transaction stores the keywords in an article published by
the author.

The vertex databases of DBN accurately describe the co-
occurrences and frequencies of different sets of items. A
set of co-occurring items is called a pattern [1, 16], and a
pattern with high frequency in a vertex database dominates
the properties of the vertex. Therefore, in DBNs, it is more
interesting to consider item co-occurrences and pattern fre-
quencies, and find communities such that all vertices in the
same community share the same dominant pattern and are
densely connected. We call such communities theme com-
munities, where each theme is the dominant pattern of a
community.

For example, in a co-author network, authors are vertices
and two authors are linked if they collaborated before. Each
author is associated with a transaction database where each
transaction is the set of keywords in an article published by
the author. In this DBN, a pattern is a set of keywords that
describes a research topic, and a theme community repre-
sents a group of closely collaborating authors who frequently
publish papers in the same research topic.

1071



Can we adapt existing methods straightforwardly to find
theme communities in DBNs? Unfortunately, the answer is
no due to the following challenges.

First, a vertex database may contain an exponential num-
ber of patterns. Since the conventional methods that work
on simple networks can only detect communities of one pat-
tern at a time, it is computationally intractable to call those
methods for each of an exponential number of patterns.

Second, the existing methods that work on vertex at-
tributed networks only consider the case where each ver-
tex is associated with a single set of items. In such a case,
all items of a vertex occur together and thus the pattern
frequencies for all patterns of the same vertex are trivially
the same. Therefore, these methods cannot distinguish the
different frequencies of different patterns in DBNs.

Last but not least, theme community finding can be a
fast query answering service – different users can easily use
the service to efficiently explore a DBN and quickly retrieve
theme communities of their own interest in real time. Pro-
viding this service requires enumerating and indexing all
theme communities in a DBN, which is challenging because
a large DBN usually contains a huge number of arbitrar-
ily overlapping theme communities, and even counting the
number of theme communities is #P-hard.

In this paper, we tackle the problem of finding theme com-
munities from DBNs and make the following contributions.

First, we introduce the notion of DBN to model real net-
works in a natural and expressive manner. A DBN con-
tains rich information about item co-occurrencess, pattern
frequencies and graph/subgraph structures.

Second, we motivate the novel problem of finding theme
communities from DBNs and prove that even counting the
number of theme communities in a DBN is #P-hard.

Third, we propose to find theme communities by enumer-
ating maximal (p, α)-trusses in DBNs. A (p, α)-truss is a
subgraph of a DBN such that the vertex databases of all ver-
tices in the subgraph contain pattern p, and the cohesion of
every edge in the subgraph passes a non-negative threshold
α. Here, the cohesion of an edge incorporates the rich infor-
mation about item co-occurrencess and pattern frequencies
comprehensively, and is closely related to the structure of
the (p, α)-truss.

We propose a greedy algorithm and two effective pruning
methods to enumerate maximal (p, α)-trusses. In our ex-
periments, the pruning methods reduce the time cost of the
greedy algorithm by over two orders of magnitude without
any sacrifice in detection accuracy.

Fourth, we advocate the construction of a data warehouse
of maximal (p, α)-trusses. To facilitate indexing and query
answering in the data warehouse, we show that a maximal
(p, α)-truss can be efficiently decomposed and stored in a
linked list. We use the decomposition to design an efficient
indexing tree, and develop a query answering method that
takes less than 1 second to retrieve a ranked list of theme
communities from the indexing tree storing hundreds of mil-
lions of theme communities. Moreover, to ensure usability
and avoid user disappointment due to queries that retrieve
no valid theme community, we develop a query recommen-
dation method that efficiently explores the indexing tree to
recommend to the user a ranked list of new queries, which
are highly similar to the user query, and can retrieve mean-
ingful theme communities with large cohesiveness.

Last, we report extensive experimental results that
demonstrate the accuracy and efficiency of the proposed
methods in the enumeration, indexing and query answer-
ing of theme communities. A case study shows that, by ex-
ploring the indexing tree that stores hundreds of millions of
theme communities in a large co-author network, the query
recommendation method quickly discovers meaningful re-

search topics from an exponential number of combinations of
user-interested keywords, and the query answering method
efficiently retrieves the communities of closely collaborat-
ing scholars who frequently publish papers in those research
topics discovered.

The rest of the paper is organized as follows. We review re-
lated works in Section 2 and formulate the theme community
finding problem in Section 3. We present a baseline method
and a maximal (p, α)-truss detection method in Section 4.
We develop our major theme community finding algorithms
in Section 5, and the indexing and querying answering algo-
rithms in Section 6. We report a systematic empirical study
in Section 7 and conclude the paper in Section 8.

2. RELATED WORKS
To the best of our knowledge, systematically finding

theme communities from DBNs is novel and has not been
formulated or tackled in literature. Broadly, it is related
to frequent pattern mining, truss detection and vertex at-
tributed network clustering.

Frequent pattern mining is to find frequent patterns from
a transaction database. Some typical methods include Apri-
ori [1] and FP-Growth [16]. Since frequent pattern mining
methods do not handle densely connected graph structures,
they cannot find communities in DBNs.

Truss detection aims to detect k-trusses from unweighted
simple networks. Cohen [9] defined k-truss as a subgraph
S where each edge is contained in at least k − 2 triangles.
As demonstrated by many studies [8, 9, 10], k-truss natu-
rally models cohesive communities in social networks and
is elegantly related to some other graph structures, such as
k-core [30] and k-clique [22].

The elegance of k-truss attracts much research attention.
Wang et al. [33] proposed two memory efficient methods
to find k-trusses for all possible values of k in unweighted
simple networks. Huang et al. [35] proposed (k, γ)-truss to
extend the concept of k-truss from deterministic networks to
probabilistic networks. Huang et al. [18] designed an online
community search method to query k-trusses by vertices.

The above methods do not consider attributes of vertices,
thus the detected communities may be hard to interpret due
to the heterogeneity of vertex attributes [19]. One may also
wonder whether we can enumerate theme communities by
finding k-trusses in each of the simple networks induced by
a pattern. However, this is impractical because a DBN may
contain an exponential number of patterns.

Vertex attributed network clustering methods aim to find
communities such that all vertices in the same commu-
nity contain the same pattern and are densely connected.
ABACUS [5] finds multi-dimensional communities by min-
ing frequent itemsets. CoPaM [25] uses pruning methods
to find maximal cohesive communities. Prado et al. [28]
designed interestingness measures to find cohesive commu-
nities. Moosavi et al. [24] used frequent pattern mining
to find cohesive groups of users sharing similar features.
Huang et al. [19] formulated the ATC problem, which finds
a community containing a query vertex. The ATC prob-
lem is NP-hard [19] and is substantially different from our
problem, because our goal is to enumerate all theme commu-
nities, and even counting the number of theme communities
in a DBN is #P-hard. There are also effective methods that
detect communities in vertex attributed networks by graph
weighting [32, 12], structural embedding [11, 13], statistical
inference [4, 37] and subspace clustering [14, 34].

Since the above methods cannot distinguish different item
co-occurrences and the corresponding pattern frequencies in
DBNs, they cannot be directly applied to enumerate theme
communities in DBNs. One may also wonder whether we
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Figure 1: A toy example of DBN, theme network and theme community. The pattern frequencies are labeled
beside each vertex. The theme communities marked bold in (b) are valid when α ∈ [0, 0.2). The theme
community marked in bold in (c) is valid when α ∈ [0.2, 0.4).

can transform a DBN into a vertex attributed network by
treating every transaction as a set-valued item or by taking
the union of all transactions per vertex database. Unfortu-
nately, these transformations are ineffective because they
lose the valuable information about item co-occurrencess
and pattern frequencies.

3. PROBLEM DEFINITION
In this section, we first introduce the notions of DBN,

theme network and theme community, and then formalize
the theme community finding problem.

3.1 Database Network and Theme Network
Let S = {s1, . . . , sm} be a set of items. An itemset x

is a subset of S. A transaction t is an itemset. Transac-
tion t is said to contain itemset x if x ⊆ t. The length of
transaction t, denoted by |t|, is the number of items in t.
A vertex database b = {t1, . . . , th} (h ≥ 1) is a multi-set of
transactions, that is, an itemset may appear multiple times
as transactions in a vertex database.

A database network (DBN) is an undirected graph de-
noted by G = (V,E,B, S), where each vertex is associated
with a vertex database. Specifically, V = {v1, . . . , vn} is a
set of vertices; E = {eij = (vi, vj) | vi, vj ∈ V } is a set
of edges; B = {b1, . . . ,bn} is a set of vertex databases,
where bi is the vertex database associated with vertex vi;
and S = {s1, . . . , sm} is the set of items that constitute all
vertex databases in B. That is, S = ∪bi∈B ∪t∈bi t.

Figure 1(a) gives a toy DBN, where the details of vertex
databases are omitted due to the limit of space.

A pattern is an itemset p ⊆ S [1, 16]. The length of p,
denoted by |p|, is the number of items in p. The absolute
frequency of p in vertex database bi is the number of trans-
actions in bi that contain p. The relative frequency of p in
bi is the proportion of such transactions in bi [1, 16]. Our
method works well for both absolute frequency and relative
frequency. For the sake of clarity, we use relative frequency
by default in the rest of the paper, and write the relative
frequency of p in bi as fi(p).

Given a pattern p, the theme network Gp is a subgraph
induced from G by the set of vertices satisfying fi(p) > 0,
denoted by Gp = (Vp, Ep), where Vp = {vi ∈ V | fi(p) > 0}
is the set of vertices and Ep = {eij ∈ E | vi, vj ∈ Vp} is the
set of edges. A subgraph Cp of Gp is written as Cp ⊆ Gp.

Figures 1(b)-(c) show two theme networks induced by dif-
ferent patterns p and q, respectively. The edges and vertices
in dashed lines are not contained in the theme networks.

We can induce a theme network by each pattern p ⊆ S.
A DBN G can induce at most 2|S| theme networks, where
G itself is the theme network of p = ∅.

3.2 Theme Community
A theme community is a subgraph of a theme network

such that the vertices form a cohesively connected subgraph.
We define a theme community by extending the well-defined

k-truss [9] from simple networks to DBN, such that it nat-
urally models communities that are highly cohesive in both
graph structure and pattern frequency, and is elegantly re-
lated to some well-established graph structures such as k-
core [30] and k-clique [22]. Moreover, theme communities in
different theme networks may arbitrarily overlap with each
other, which reflects the application scenarios where a vertex
may participate in communities of different themes.

The intuition of k-truss is that, if every edge of a com-
munity is contained in more triangles, then the vertices in
the community are more densely connected [9]. Here, a tri-
angle, denoted by 4ijk = {vi, vj , vk}, is a clique containing
vertices vi, vj and vk. If a triangle 4ijk is a subgraph of a
graph T , we say 4ijk is in T .

In simple networks, Cohen [9] first measured the cohesion
of an edge eij in a subgraph T by the number of triangles
in T that contain eij ; then he defines k-truss as a subgraph
T such that the cohesion of every edge in T is at least k−2.
Essentially, every triangle 4ijk in a subgraph T contributes
a weight of 1.0 to the cohesion of each edge in 4ijk, and
the cohesion of an edge eij in T is the sum of the weights
contributed by all triangles in T that contain eij .

Next, we illustrate how to integrate the rich information
about item co-occurrencess and pattern frequencies with the
edge cohesion in DBNs.

In a DBN, to incorporate item co-occurrences and the
corresponding pattern frequencies, the contribution of a tri-
angle 4ijk to the cohesion of each edge in 4ijk should be
relevant to two factors: 1) a pattern p ⊆ S, that is, a set of
co-occurring items; and 2) the frequencies of p in the vertex
databases bi, bj and bk.

Intuitively, if p has higher frequencies in bi, bj and bk,
then all vertices in the triangle 4ijk are dominated by the
pattern p, thus 4ijk should contribute a heavier weight to
the cohesion of each edge in 4ijk. If the frequency of p
is zero in any of bi, bj and bk, then at least one vertex
in 4ijk is not associated with p, therefore 4ijk should not
contribute any weight to the cohesion of any edge of 4ijk.

Following the above intuition, for a pattern p, we define
the contribution of a triangle 4ijk to the cohesion of each
edge in 4ijk as

min (fi(p), fj(p), fk(p)).

For any pattern p, a triangle 4ijk contributes a none-
zero weight to the cohesion of its edges if and only if 4ijk
is in the theme network Gp. The reason is that if 4ijk is
not in Gp, then the frequency of p is zero in at least one
of the vertex databases bi, bj and bk. In this case, 4ijk
does not contribute any weight to the cohesion of its edges.
Accordingly, we define the edge cohesion in DBNs as follows.

Definition 1 (Edge Cohesion). Consider a pattern
p and the theme network Gp, for a subgraph Cp ⊆ Gp and
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an edge eij in Cp, the edge cohesion of eij in Cp is

ecoij(Cp) =
∑

4ijk⊆Cp

min (fi(p), fj(p), fk(p))

Example 1. In Figure 1(b), for subgraph Cp induced by
the set of vertices {v1, v2, v3, v4, v5}, edge e12 is contained in
4123 and 4125, thus the edge cohesion of e12 is eco12(Cp) =
min(f1(p), f2(p), f3(p)) + min(f1(p), f2(p), f5(p)) = 0.2.

The edge cohesion in simple networks [9] is a special case
of the edge cohesion in Definition 1. Because, when fi(p) =
1 for the vertex database of every vertex vi in Cp, ecoij(Cp)
is exactly the number of triangles in Cp that contain eij .

Based on the edge cohesion in DBNs, we smoothly extend
the notion of k-truss [9] in simple networks to the notion of
(p, α)-truss in DBNs as follows.

Definition 2 ((p, α)-Truss). Given a pattern p and a
minimum cohesion threshold α ≥ 0, a (p, α)-truss, denoted
by Cp,α, is a subgraph of the theme network Gp such that
the edge cohesion ecoij(Cp,α) of every edge in Cp,α is larger
than α.

A (p, α)-truss Cp,α is elegantly related to some well-
established graph structures, such as k-truss [9], k-core [30]
and k-clique [22], when fi(p) = 1 for the vertex database of
every vertex vi in Cp,α. First, if α = k − 3, Cp,α becomes
a k-truss. Second, if α = k − 2 and Cp,α is a maximal con-
nected subgraph in Gp, it is a k-core. Last, if α = k−3 and
Cp,α contains k vertices, it is a k-clique.

A (p, α)-truss is not necessarily a connected subgraph,
and the union of multiple (p, α)-trusses is still a (p, α)-
truss. For example, consider the edges in bold in Fig-
ure 1(b). When α ∈ [0, 0.2), the two subgraphs induced
by {v1, v2, v3, v4, v5} and {v7, v8, v9} are both (p, α)-trusses.
The union of the two subgraphs is still a (p, α)-truss, but it
is not a connected subgraph.

Definition 3 (Maximal (p, α)-Truss). A maximal
(p, α)-truss, denoted by C∗p,α, is a (p, α)-truss in Gp such
that any proper superset of C∗p,α is not a (p, α)-truss in Gp.

Since the union of multiple (p, α)-trusses is still a (p, α)-
truss, a maximal (p, α)-truss is the union of all (p, α)-trusses
in Gp. Apparently, a maximal (p, α)-truss is still not neces-
sarily a connected subgraph.

Now we are ready to define theme community.

Definition 4 (Theme Community). Every maximal
connected subgraph in a maximal (p, α)-truss is a theme
community.

Example 2. In Figure 1(b), when α ∈ [0, 0.2),
{v1, v2, v3, v4, v5} and {v7, v8, v9} are two theme commu-
nities in Gp. In Figure 1(c), when α ∈ [0.2, 0.4),
{v2, v3, v5, v6, v7, v9} is a theme community in Gq, and par-
tially overlaps with the two theme communities in Gp.

We write the set of all theme communities in the maximal
(p, α)-truss as Tp,α = {T 1

p,α, . . . , T
m
p,α}, where T ip,α is the i-

th theme community in Tp,α (i ∈ {1, . . . ,m}). Every theme
community T ip,α ∈ Tp,α is also a (p, α)-truss. We define the
cohesiveness of a theme community as follows.

Definition 5 (Cohesiveness of Theme Community).
The cohesiveness of a theme community is the minimum
cohesion of its edges.

There are several important benefits from modeling theme
communities using maximal (p, α)-trusses. First, there exist
polynomial time algorithms to find maximal (p, α)-trusses.
Second, maximal (p, α)-trusses of different theme networks
may overlap with each other, which reflects the application
scenarios where a vertex may participate in communities
of different themes. Last, as to be proved in Sections 5.1
and 6.1, maximal (p, α)-trusses have many desirable prop-
erties that enable us to design efficient mining and indexing
algorithms for theme community finding.

3.3 Problem Definition and Complexity
Definition 6 (Theme Community Finding). Given

a DBN G and a minimum cohesion threshold α, the
problem of theme community finding is to enumerate
all theme communities in G.

Theorem 1 (Complexity). Given a DBN G and a
minimum cohesion threshold α, the problem of counting the
number of theme communities in G is #P-hard.

Proof. We prove by a reduction from the Frequent Pat-
tern Counting (FPC) problem, which is #P-complete [15].

Given a vertex database b and a minimum support thresh-
old α ≥ 0, an instance of the FPC problem is to count the
number of patterns p in b such that f(p) > α. Here, f(p)
is the frequency of p in b.

We construct a DBN G = (V,E,B, S), where V =
{v1, v2, v3}. E = {(v1, v2), (v2, v3), (v3, v1)} forms a trian-
gle; B = {b1,b2,b3 | b1 = b2 = b3 = b}; and S is the set
of items appearing in b. Apparently, G can be constructed
in O(|b|) time.

For any pattern p ⊆ S, since b1 = b2 = b3 = b, it
follows f1(p) = f2(p) = f3(p) = f(p). According to Defi-
nition 1, eco12(Gp) = eco13(Gp) = eco23(Gp) = f(p). By
Definition 4, Gp is a theme community in G if and only if
f(p) > α. Therefore, for any threshold α ≥ 0, the number
of theme communities in G is equal to the number of pat-
terns in b satisfying f(p) > α, which is exactly the answer
to the FPC problem.

The theme community finding problem is challenging be-
cause a DBNG can induce up to 2|S|−1 theme networks, and
each theme network may contain many theme communities.
Denote by n the number of vertices in G. Since the small-
est theme community is a triangle that is not connected to
any other vertices, the maximum number of theme commu-
nities in a theme network is

⌊
n
3

⌋
for a fixed threshold α ≥ 0.

Therefore, the maximum number of theme communities in
G is

⌊
n
3

⌋
(2|S| − 1). However, this theoretical worst case sel-

dom occurs in real-world datasets, since a large proportion
of patterns do not induce any theme community. This is
because a longer pattern p is less likely to appear in a ver-
tex database, and the sparse structure of G makes it even
harder for a small number of vertices containing p to form a
theme community. As demonstrated by our experiments in
section 7, the proposed methods efficiently enumerate and
index theme communities in large real-world DBNs.

Since extracting theme communities (i.e., maximal con-
nected subgraphs) from a maximal (p, α)-truss is straight-
forward, the core of the theme community finding problem is
to identify the maximal (p, α)-trusses of all theme networks.
In the rest of the paper, we develop an exact algorithm to
find maximal (p, α)-truss and investigate various techniques
to speed up the search.

4. BASELINE
In this section, we first introduce Maximal (p, α)-Truss

Detector (MTD), which finds the maximal (p, α)-truss of a
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given theme network Gp. Then, we present a baseline for
theme community finding.

4.1 Maximal (p, α)-Truss Detector
Given Gp and α, an edge in Gp is called an unqualified

edge if the edge cohesion is not larger than α. The key
idea of MTD is to iteratively remove all unqualified edges so
that the remaining edges and connected vertices constitute
the maximal (p, α)-truss. By Definition 1, the cohesion of
an edge eij depends on the structure of subgraph Cp ⊆ Gp

that contains eij , thus removing an edge from Cp reduces
the cohesion of some remaining edges. As a result, MTD
iteratively updates the cohesion of all remaining edges af-
ter removing each unqualified edge. The iteration continues
until there is no unqualified edge to remove.

As shown in Algorithm 1, MTD consists of two phases.
Phase 1 (Lines 1-8) computes the initial cohesion of each
edge and pushes unqualified edges into queue Q. Phase 2
(Lines 9-18) iteratively removes the unqualified edges in Q
from Ep. Since removing eij also breaks 4ijk, we update
ecoik(Gp) and ecojk(Gp) in Lines 12-13. If consequently eik
or ejk become unqualified, they are pushed into Q (Lines
14-15). Finally, the surviving edges and connected vertices
are returned as the maximal (p, α)-truss.

We show the correctness of MTD as follows. If C∗p,α = ∅,
then all edges in Ep are removed as unqualified edges and
MTD returns ∅. If C∗p,α 6= ∅, then only the edges in Ep that
are not contained in C∗p,α are removed as unqualified edges,
and MTD returns exactly C∗p,α.

The time complexity of Algorithm 1 is dominated by the
complexity of triangle enumeration for each edge eij in Ep.
This requires checking all neighboring vertices of vi and vj ,
which costs O(d(vi) + d(vj)) time, where d(vi) and d(vj)
are the degrees of vi and vj , respectively. Since all edges
in Ep are checked, the cost for Lines 1-8 in Algorithm 1 is
O(
∑
eij∈Ep

(d(vi)+d(vj))) = O(
∑
vi∈Vp

d2(vi)). The cost of

Lines 9-18 is alsoO(
∑
vi∈Vp

d2(vi)). The worst case happens

when all edges are removed. Therefore, the time complexity
of MTD is O(

∑
vi∈Vp

d2(vi)). In many real networks, most

vertices have very small degrees. Thus, MTD can efficiently
find the maximal (p, α)-truss of a sparse theme network.

4.2 Theme Community Scanner: A Baseline
Since a DBN G may induce up to 2|S| theme networks,

running MTD on all theme networks is impractical. In-
tuitively, patterns with low frequencies may be less likely
to induce a theme community. Thus, a simple idea is to
first filter out the patterns whose maximum frequencies in
all vertex databases fail a minimum frequency threshold ε,
then apply MTD to detect the maximal (p, α)-truss on each
theme network induced by the remaining patterns.

Following the above idea, we introduce a baseline method,
called Theme Community Scanner (TCS). Given a fre-
quency threshold ε, TCS first obtains the set of candi-
date patterns P = {p | ∃vi ∈ V, fi(p) ≥ ε} by enu-
merating all patterns in each vertex database. Then, for
each candidate pattern p ∈ P, we induce theme network
Gp and find the maximal (p, α)-truss by MTD. The fi-
nal result is a set of maximal (p, α)-trusses, denoted by
C(α) = {C∗p,α | C∗p,α 6= ∅,p ∈ P}.

The filtering step of TCS improves the detection efficiency
of theme communities, however, it may miss some theme
communities, since a pattern p with relatively small fre-
quencies on all vertex databases can still form a good theme
community, if a large number of vertices containing p form
a densely connected subgraph. As a result, TCS trades ac-
curacy for efficiency, which, however, is not as effective as
one may expect according to our experiments in Section 7.2.

Algorithm 1: Maximal (p, α)-Truss Detector

Input: A theme network Gp and a user input α.
Output: The maximal (p, α)-truss C∗p,α in Gp.

1: Initialize: Q← ∅.
2: for each eij ∈ Ep do
3: ecoij(Gp)← 0.
4: for each vk ∈ 4ijk do
5: ecoij(Gp)← ecoij(Gp) + min(fi(p), fj(p), fk(p)).
6: end for
7: if ecoij(Gp) ≤ α then Q.push(eij).
8: end for
9: while Q 6= ∅ do

10: eij ← Q.pop().
11: for each vk ∈ 4ijk do
12: ecoik(Gp)← ecoik(Gp)−min(fi(p), fj(p), fk(p)).
13: ecojk(Gp)← ecojk(Gp)−min(fi(p), fj(p), fk(p)).
14: if ecoik(Gp) ≤ α then Q.push(eik).
15: if ecojk(Gp) ≤ α then Q.push(ejk).
16: end for
17: Remove eij from Gp.
18: end while

19: return C∗p,α = Gp.

5. THEME COMMUNITY FINDING
In this section, we first explore several fundamental prop-

erties of maximal (p, α)-truss, then apply them to develop
two fast and exact theme community finding methods.

5.1 Properties of Maximal (p, α)-Truss
Theorem 2 (Graph Anti-monotonicity). If pat-

terns p1 ⊆ p2, then maximal (p, α)-trusses C∗p2,α ⊆ C
∗
p1,α.

Proof. Since C∗p1,α is the union of all (p1, α)-trusses, we
prove C∗p2,α ⊆ C

∗
p1,α by proving C∗p2,α is also a (p1, α)-truss.

First, we prove that there exists a subgraph Hp1 in Gp1

such that Hp1 = C∗p2,α, that is, Hp1 and C∗p2,α have exactly
the same sets of vertices and edges. Since p1 ⊆ p2, it follows
the anti-monotonicity [1, 16] that ∀vi ∈ V, fi(p1) ≥ fi(p2).
Thus, Gp2 ⊆ Gp1 . Since C∗p2,α ⊆ Gp2 , C∗p2,α ⊆ Gp1 .
Therefore, Hp1 exists.

Next, we prove Hp1 and C∗p2,α are both (p1, α)-trusses.
Since ∀vi ∈ V, fi(p1) ≥ fi(p2), the following inequality
holds for every triangle 4ijk in Hp1 .

min(fi(p1), fj(p1), fk(p1)) ≥ min(fi(p2), fj(p2), fk(p2))

Since Hp1 = C∗p2,α, it follows the above inequality that
ecoij(Hp1) ≥ ecoij(C∗p2,α) for every edge eij in Hp1 .

Since C∗p2,α is the maximal (p2, α)-truss, ecoij(C
∗
p2,α) > α

for every edge eij in C∗p2,α.
Now we can conclude from the above that ecoij(Hp1) ≥

ecoij(C
∗
p2,α) > α for every edge eij in Hp1 . This means both

Hp1 and C∗p2,α are (p1, α)-trusses. The theorem follows.

Proposition 1 (Pattern Anti-monotonicity).
For patterns p1 ⊆ p2 and a cohesion threshold α,

1. If C∗p2,α 6= ∅, then C∗p1,α 6= ∅.

2. If C∗p1,α = ∅, then C∗p2,α = ∅.
Proof. According to Theorem 2, since p1 ⊆ p2, C∗p2,α ⊆

C∗p1,α. The proposition follows immediately.

Proposition 2 (Graph Intersection Property).
If p1 ⊆ p3 and p2 ⊆ p3, then C∗p3,α ⊆ C

∗
p1,α ∩ C

∗
p2,α.

Proof. By Theorem 2, since p1 ⊆ p3, C∗p3,α ⊆ C∗p1,α.
Similarly, C∗p3,α ⊆ C

∗
p2,α. The proposition follows.
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Algorithm 2: Generate Apriori Candidate Patterns

Input: The length-(k − 1) qualified patterns Pk−1.
Output: The set of length-k candidate patterns Mk.

1: Initialize: Mk ← ∅.
2: for {p,q} ⊂ Pk−1 ∧ |p ∪ q| = k do
3: h← p ∪ q.
4: if all length-(k − 1) sub-patterns of h are qualified

then Mk ←Mk ∪ h.
5: end for

6: return Mk.

Algorithm 3: Theme Community Finder Apriori

Input: A DBN G and a user input α.
Output: The set of maximal (p, α)-trusses C in G.

1: Initialize: P1, C← C1, k ← 2.
2: while Pk−1 6= ∅ do
3: Call Algorithm 2: Mk ← Pk−1.
4: Pk ← ∅, Ck ← ∅.
5: for each length-k pattern h ∈Mk do
6: Induce Gh from G.
7: Compute C∗h,α using Gh by Algorithm 1.

8: if C∗h,α 6= ∅ then Ck ← Ck ∪ C∗h,α, Pk ← Pk ∪ h.
9: end for

10: C← C ∪ Ck and k ← k + 1.
11: end while

12: return C.

5.2 Theme Community Finder Apriori
In this subsection, we introduce algorithm Theme Com-

munity Finder Apriori (TCFA) to solve the theme commu-
nity finding problem. The key idea of TCFA is to improve
theme community finding efficiency by early pruning un-
qualified patterns in an Apriori-like manner [1].

A pattern p is said to be unqualified if C∗p,α = ∅, and to
be qualified if C∗p,α 6= ∅. For two patterns p1 and p2, if
p1 ⊆ p2, p1 is called a sub-pattern of p2.

According to the second item in Proposition 1, for two
patterns p1 and p2, if p1 ⊆ p2 and p1 is unqualified, then p2

is unqualified, either, thus p2 can be immediately pruned.
Therefore, we can prune a length-k pattern if any of its
length-(k − 1) sub-patterns is unqualified.

Algorithm 2 shows how we generate the set of length-k
candidate patterns by retaining only the length-k patterns
whose all length-(k − 1) sub-patterns are qualified.

Algorithm 3 introduces the details of TCFA. Line 1 com-
putes the set of length-1 qualified patterns P1 = {p ⊂ S |
C∗p,α 6= ∅, |p| = 1} and the corresponding set of maximal

(p, α)-trusses C1 = {C∗p,α | p ∈ P1}. This requires to run
MTD on each theme network induced by a single item in S.
Line 3 calls Algorithm 2 to generate the set of length-k can-
didate patternsMk. Lines 5-9 remove the unqualified candi-
date patterns in Mk by discarding every candidate pattern
that cannot form a non-empty maximal (p, α)-truss. In this
way, we iteratively generate the set of length-k qualified pat-
terns Pk from Pk−1 until no qualified patterns can be found.
Last, the exact set of maximal (p, α)-trusses C is returned.

Comparing with the baseline TCS in Section 4.2, TCFA
achieves a good efficiency improvement by effectively prun-
ing a large number of unqualified patterns using the Apriori-
like method. However, due to the limitation of Apriori [1],
the set of candidate patterns Mk is often very large and

still contains many unqualified candidate patterns. Conse-
quently, Lines 5-9 of Algorithm 3 become the bottleneck of
TCFA. We solve this problem next.

5.3 Theme Community Finder Intersection
The Theme Community Finder Intersection (TCFI)

method significantly improves the efficiency of TCFA by
pruning unqualified patterns in Mk using Proposition 2.

Consider pattern h of length k and patterns p and q both
of length k − 1. According to Proposition 2, if h = p ∪ q,
then C∗h,α ⊆ C∗p,α ∩C∗q,α. Therefore, let Z = C∗p,α ∩C∗q,α, if
Z = ∅, then C∗h,α = ∅. That is, we can prune h immediately.
If Z 6= ∅, we can induce theme network Gh from Z and find
C∗h,α within Gh by MTD.

Accordingly, TCFI improves TCFA by modifying only
Line 6 of Algorithm 3. Instead of inducing Gh from G, TCFI
induces Gh from Z when Z 6= ∅. Here, Z = C∗p,α ∩ C∗q,α
where p and q are qualified patterns in Pk−1 such that
h = p ∪ q.

TCFI dramatically improves the detection efficiency.
First, TCFI prunes a large number of candidate patterns
inMk by efficiently checking whether Z = ∅. Second, when
Z 6= ∅, inducing Gh from Z is more efficient than inducing
Gh from G, since Z is often much smaller than G. Third,
Gh induced from Z is often much smaller than Gh induced
from G, which significantly reduces the time cost of run-
ning MTD on Gh. Last, according to Theorem 2, the size
of a maximal (p, α)-truss decreases when the length of the
pattern increases. Thus, when a pattern grows longer, the
size of Z decreases rapidly, which significantly improves the
pruning effectiveness of TCFI.

6. THEME COMMUNITY INDEXING
In practice, different users may be interested in theme

communities in different maximal (p, α)-trusses. Unfortu-
nately, for every new threshold α, TCS, TCFA and TCFI
have to recompute from scratch. Can we save the re-
computation cost by providing a fast query answering ser-
vice that allows users to efficiently explore a DBN and
quickly retrieve theme communities of their own interest? In
this section, we propose Theme Community Tree (TC-Tree)
to provide fast query answering service by decomposing and
indexing all maximal (p, α)-trusses in a DBN.

We first introduce how to decompose maximal (p, α)-
truss. Then, we illustrate how to build TC-Tree with de-
composed maximal (p, α)-trusses. Last, we present a query
answering method that can efficiently retrieve a ranked list
of theme communities to answer a user query, and can also
recommend a ranked list of meaningful new queries to ad-
dress user disappointment when a query does not return any
community.

6.1 Maximal (p, α)-Truss Decomposition
In this subsection, we introduce how to decompose a max-

imal (p, α)-truss into multiple disjoint sets of edges.

Theorem 3. Given a maximal (p, α1)-truss C∗p,α1
with

minimum edge cohesion βp,α1 , for any cohesion threshold
α2 ≥ βp,α1 , C∗p,α2

⊂ C∗p,α1
.

Proof. First, we prove α2 > α1. By Definition 2, for
any edge eij in C∗p,α1

, ecoij(C
∗
p,α1

) > α1. Since βp,α1 is
the minimum edge cohesion of C∗p,α1

, βp,α1 > α1. Since
α2 ≥ βp,α1 , α2 > α1.

Second, we prove C∗p,α2
⊆ C∗p,α1

. Since α2 > α1, it follows
Definition 2 that, for any edge eij in C∗p,α2

, ecoij(C
∗
p,α2

) >
α2 > α1. This means C∗p,α2

is also a (p, α1)-truss. Since
C∗p,α1

is the maximal (p, α1)-truss, C∗p,α2
⊆ C∗p,α1

.
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Figure 2: An example of SE-Tree and TC-Tree when
S = {s1, s2, s3, s4} and Lp0 = Lp2 = Lp8 = Lp9 = Lp11 =
Lp14 = Lp15 = ∅. SE-Tree includes all nodes marked
in solid and dashed lines. TC-tree contains only the
nodes in solid line.

Last, we prove C∗p,α2
6= C∗p,α1

. Let e∗ij be the edge that
has the minimum edge cohesion βp,α1 in C∗p,α1

. Since α2 ≥
βp,α1 , e∗ij is not an edge of C∗p,α2

. Thus, C∗p,α2
6= C∗p,α1

.
Recall that C∗p,α2

⊆ C∗p,α1
, the theorem follows.

Theorem 3 indicates that the size of C∗p,α1
is smaller

than C∗p,α2
only when α2 ≥ βp,α1 . Thus, we can iter-

atively compute a sequence of ascending cohesion thresh-
olds Ap = α0, α1, . . . , αh, where α0 = 0, αk = βp,αk−1 for
k ∈ {1, . . . , h}, and αh is the largest α in Gp such that
C∗p,α = ∅ for all α ≥ αh.

We use Ap to decompose a maximal (p, α)-truss as fol-
lows. First, we call MTD to compute C∗p,α0

, which is the
largest maximal (p, α)-truss in Gp. Then, for α1, . . . , αh,
we decompose C∗p,α0

into a sequence of sets of edges
Rp,α1 , . . . , Rp,αh , where Rp,αk is the set of edges that are
contained in C∗p,αk−1

but not in C∗p,αk
.

The decomposition results are stored in a linked list
Lp = Lp,α1 , . . . ,Lp,αh , where the k-th node stores Lp,αk =
(αk, Rp,αk ). Since Lp stores the same number of edges as
C∗p,α0

, it does not incur much extra memory cost.
Using Lp, we can efficiently get the set of theme com-

munities Tp,α = {T 1
p,α, . . . , T

m
p,α} in two steps. Denote by

E∗p,α the set of edges of C∗p,α, in the first step, we compute
E∗p,α =

⋃
αk>α

Rp,αk , and induce C∗p,α from E∗p,α. In the

second step, we obtain Tp,α by finding the set of maximal
connected subgraphs in C∗p,α.

Next, we introduce how to compute the cohesiveness of
every theme community in Tp,α.

Theorem 4. Given a theme community T ip,α ∈ Tp,α, de-

note by γ the cohesiveness of T ip,α, if αk is the smallest cohe-

sion threshold in Ap such that T ip,α 6⊆ C∗p,αk
, then γ = αk.

Proof. First, we prove γ ≤ αk. By Definition 5, γ is the
minimum cohesion of all edges in T ip,α. Since T ip,α 6⊆ C∗p,αk

,
it follows Definition 2 that γ ≤ αk.

Second, we prove γ ≥ αk. Since αk is the smallest co-
hesion threshold in Ap such that T ip,α 6⊆ C∗p,αk

, we have

T ip,α ⊆ C∗p,αk−1
, and thus γ ≥ βp,αk−1 . Since αk = βp,αk−1 ,

γ ≥ αk. The theorem follows.

According to Theorem 4, Ap is exactly the set of the co-
hesiveness of all theme communities in Gp. To compute the
cohesiveness of a theme community T ip,α ∈ Tp,α, we simply

use Lp to find the smallest αk ∈ Ap such that T ip,α 6⊆ C∗p,αk
.

Next, we introduce how to use the decomposition property
of maximal (p, α)-truss to build a TC-Tree.

6.2 Theme Community Tree
A TC-Tree, denoted by T , is an extension of a set enu-

meration tree (SE-Tree) [29] and is carefully customized for
efficient theme community indexing and query answering.

A SE-Tree is a basic data structure that enumerates all
the subsets of a set S. A total order ≺ on the items in S is
assumed. Thus, any subset of S can be written as a sequence
of items in the order of ≺.

Every node of a SE-Tree uniquely represents a subset of
S. The root node represents empty set ∅. For subsets S1

and S2 of S, the node representing S2 is the child of the node
representing S1, if S1 ⊂ S2, |S2 \ S1| = 1, and S1 is a prefix
of S2 when S1 and S2 are written as sequences of items in
order ≺. Each node of a SE-Tree only stores the item in S
that is appended to the parent node to extend the child from
the parent. In this way, the set of items represented by node
ni is the union of the items stored in all the nodes along the
path from the root to ni. Figure 2 shows an example of the
SE-tree of set S = {s1, s2, s3, s4}. For node n13, the path
from the root to n13 contains nodes n0-n1-n6-n13, thus the
set of items represented by n13 is {s1, s3, s4}.

A TC-Tree is an extension of a SE-Tree. In a TC-Tree,
each node ni represents a pattern pi, which is a subset of
S. The item stored in ni is denoted by sni . We also store
the decomposed maximal (p, α)-truss Lpi in ni. To save
memory, we omit the nodes nj (j ≥ 1) whose decomposed
maximal (p, α)-trusses are Lpj = ∅.

We can build a TC-Tree in a top-down manner efficiently.
If Lpj = ∅, we can prune the entire subtree rooted at nj
immediately. This is because, for node nj and its descendant
nd, we have pj ⊂ pd. Since Lpj = ∅, we can derive from
Proposition 1 that Lpd = ∅. As a result, all descendants of
nj can be immediately pruned.

Algorithm 4 gives the details of building a TC-Tree T .
Lines 2-5 generate the nodes at the first layer of T . Since
the theme networks induced by different items in S are in-
dependent, we can compute Lpi in parallel. Our imple-
mentation uses multiple threads for this step. Lines 6-12
iteratively build the rest of the nodes of T in breadth first
order. Here, nf .siblings is the set of nodes that have the
same parent as nf . The children of nf , denoted by nc, are
built in Lines 8-11. In Line 9, we apply Proposition 2
to efficiently calculate Lpc . Since pc = pf ∪ pb, we have
pf ⊂ pc and pb ⊂ pc. From Proposition 2, we know
C∗pc,α0

⊆ C∗pf ,α0
∩ C∗pb,α0

. Therefore, we can find C∗pc,α0

within a small subgraph C∗pf ,α0
∩ C∗pb,α0

using MTD, and

then get Lpc by decomposing C∗pc,α0
.

In summary, every node of a TC-Tree stores the decom-
posed maximal (p, α)-truss Lp of a unique pattern p ⊆ S.
Next, we introduce how to efficiently query a TC-Tree.

6.3 Querying and Query Recommendation
In this subsection, we first introduce how to query a TC-

Tree T by a query pattern q, then we illustrate how to
recommend new queries based on a user-provided query pat-
tern q.

When querying a TC-Tree T by a query pattern q, the
answer to the query, denoted by Rq, is a ranked list of all
the theme communities in Gq, that is, ∪αi∈ApTq,αi .

We obtain Rq in the following steps: First, we find the
node ni in T such that the pattern of ni is pi = q. Second,
we obtain the set of theme communities in Gq using the
Lq stored in ni. Last, we obtain Rq by sorting the theme
communities in the descending order of their cohesiveness.

From time to time, a user-provided query pattern q may
not lead to any answer. The cohesiveness and size of the
retrieved theme communities may be too small or the an-
swer to the query can even be Rq = ∅. In such a case, we
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can explore the TC-Tree to recommend a ranked list of new
query patterns, denoted by U = q1, . . . ,qk.

Those recommended query patterns in U should satisfy
three conditions. First, querying T by any query pattern
qi ∈ U leads to a non-empty set of theme communities,
that is, Lqi 6= ∅. Second, the recommended query patterns
should be contained in q, because querying T by a pattern
containing q only retrieves those theme communities with
smaller cohesiveness and size. Third, every query pattern
qi ∈ U should be the most similar to the original query
pattern q, that is, among all query patterns that satisfy
the previous two conditions, qi has the minimum size of set
difference |q \ qi|.

According to the third condition, the set differences of q
and every query pattern in U must have the same size. Since

a query pattern q contains at most
(|q|
m

)
patterns that have

the same set difference size m with respect to q, the num-

ber of query patterns in U is at most
( |q|
b|q|/2c

)
. In practice,

since many query patterns contained in q retrieve no theme
community from T , the actual volume of U is very small.

Now, we illustrate how to rank all the recommended query
patterns in U . For each query pattern qi ∈ U , we first access
the last entry of Lqi to obtain α∗qi

, which is the maximum
cohesiveness of all theme communities in Gqi . Then, we
rank the new query patterns in U in the descending order
of α∗qi

, so that the user can first explore the query patterns
that retrieve theme communities with large cohesiveness.

As shown in Algorithm 5, the query recommendation
method simply traverses the TC-Tree in the breadth first
manner and collects the set of new queries that satisfy the
above conditions for the new query patterns in U .

In summary, TC-Tree enables fast user query answering
and efficient query recommendation. As demonstrated by
the case study in Section 7.1 and the experiments in Sec-
tion 7.4, TC-Tree is efficient to build, easy to query, and
scales well to index a large number of theme communities
using practical size of memory.

7. EXPERIMENTS
In this section, we first present a case study to demon-

strate how theme community finding is useful. Then, we
comprehensively evaluate the performance of Theme Com-
munity Scanner (TCS), Theme Community Finder Apriori
(TCFA), Theme community Finder Intersection (TCFI) and
Theme Community Tree (TC-Tree). Last, we compare the
theme community detection performance of TCFI and that
of two vertex attributed network methods, CESNA [37] and
SCI [34].

For each of our proposed methods, the final output is the
set of theme communities obtained by finding the maximal
connected subgraphs in the detected maximal (p, α)-trusses.
We use the absolute frequency for TC-Tree. However, since
the absolute frequency is unnormalized, which makes it dif-
ficult to set the frequency threshold ε for TCS, we adopt
the relative frequency for TCS, and also use the relative
frequency for TCFA and TCFI to fairly compare with TCS.
Since TC-Tree is an indexing method, it is not directly com-
parable with TCS, TCFA and TCFI.

We implement TCS, TCFA and TCFI in Java. In order
to efficiently index the theme communities in large DBNs,
we implement TC-Tree in C++ and parallelize the steps
in Lines 2-5 of Algorithm 4 with 4 threads using OpenMP.
The source code of CESNA and SCI was provided by their
authors. All experiments are performed on a Windows 7 PC
with Core-i7 CPU, 32GB RAM and a 5400 rpm hard drive.

The following 3 data sets are used.
The Brightkite (BK) data set is a public check-in data

set produced by the location-based social networking web-

Algorithm 4: Build Theme Community Tree

Input: A DBN G.
Output: The TC-Tree T with root node n0.

1: Initialization: Q← ∅, sn0 ← ∅, Lp0 ← ∅.
2: for each item si ∈ S do
3: sni ← si, pi ← si and compute Lpi .
4: if Lpi 6= ∅ then n0.addChild(ni) and Q.push(ni).
5: end for
6: while Q 6= ∅ do
7: nf ← Q.pop().
8: for each node nb ∈ nf .siblings do
9: if snf ≺ snb then snc ← snb , pc ← pf ∪ pb, and

compute Lpc .
10: if Lpc 6= ∅ then nf .addChild(nc) and Q.push(nc).
11: end for
12: end while

13: return The TC-Tree T with root node n0.

Algorithm 5: Query Recommendation

Input: A TC-Tree T and a query q.
Output: A ranked list U = q1, . . . ,qk.

1: Initialization: Q← n0, U ← ∅.
2: while Q 6= ∅ do
3: nf ← Q.pop().
4: for each node nc ∈ nf .children ∧ snc ∈ q do
5: if Lpc 6= ∅ then U ← U ∪ pc; Q.push(nc).
6: end for
7: end while
8: Keep each query pattern qi ∈ U that has the smallest

size of set difference |q \ qi|, and remove the others.
9: Rank all patterns in U by α∗qi

.

10: return The ranked list U .

site BrightKite.com [6]. It includes a friendship network of
58,228 users and 4,491,143 user check-ins; every user check-
in contains the check-in time and location. We construct
a DBN using this data set by taking the user friendship
network as the network of the DBN. To create the vertex
database for a user, we treat each check-in location as an
item, and cut the check-in history of a user into periods of
2 days. The set of check-in locations within a period is a
transaction. A theme community in this DBN is a group of
friends who frequently visit the same set of places.

The Gowalla (GW) data set is a public data set
produced by the location-based social networking website
Gowalla.com [6]. It includes a friendship network of 196,591
users and 6,442,890 user check-ins that contain the check-in
time and location. We transform this data set into a DBN
in the same way as BK.

The AMINER data set is built from the Citation net-
work v2 (CNV2) data set [2]. CNV2 contains 1,397,240
papers. We transform it into a DBN in the following two
steps. First, we treat each author as a vertex and build an
edge between a pair of authors who co-author at least one
paper. Second, to build the vertex database for an author,
we treat each keyword in the abstract of a paper as an item,
and all the keywords in the abstract of a paper are turned
into a transaction. An author vertex is associated with a
vertex database of all papers the author publishes. In this
DBN, a theme community represents a group of authors who
collaborate closely and share the same research interest that
is described by the same set of keywords.

The statistics of all data sets are given in Table 1.
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Table 1: Statistics of the DBNs. #Trans. is the
number of transactions. #Items is the number of
items stored in all vertex databases.

Data sets #Vertices #Edges #Trans. #Items
BK 5.1×104 2.1×105 1.2×106 1.7×106

GW 1.1×105 9.5×105 2.0×106 3.5×106

AMINER 1.1×106 2.6×106 3.1×106 9.2×106

𝜶∗

𝒂$

Query	Pattern
Data	mining,	face	recognition,	clustering	algorithm,	image	retrieval,	
principal	component	analysis,	gene	expression,	linear	discriminant	analysis,	
hierarchical	clustering,	dimensionality	reduction

0

Data	mining,	principal	component	analysis,	gene	expression,	
dimensionality	reduction𝒃$ 7

Image	retrieval,	principal	component	analysis,	linear	discriminant	
analysis,	dimensionality	reduction 3𝒃&
Clustering	algorithm,	gene	expression,	linear	discriminant	analysis,	
hierarchical	clustering𝒃' 3

Face	recognition,	principal	component	analysis,	linear	discriminant	
analysis,	dimensionality	reduction 3𝒃(
Data	mining,	principal	component	analysis,	hierarchical	clustering,	
dimensionality	reduction 2𝒃)
Clustering	algorithm,	gene	expression,	hierarchical	clustering,	
dimensionality	reduction 2𝒃*
Data	mining,	principal	component	analysis,	linear	discriminant	
analysis,	dimensionality	reduction 1𝒃+
Face	recognition,	image	retrieval,	principal	component	analysis,	
linear	discriminant	analysis 1𝒃,

Face	Recognition,	principal	component	analysis,	linear	
discriminant	analysis 6𝒄$
Image	retrieval,	principal	component	analysis,	linear	
discriminant	analysis 3𝒄&

Figure 3: The query patterns for the theme com-
munities in Figure 4 and Figure 5. a1 is the user
provided query pattern. {b1, . . . ,b8} are the recom-
mended query patterns based on a1. {c1, c2} are the
top-1 and top-2 recommended query patterns for b8,
respectively. α∗ is the maximum cohesiveness of all
theme communities induced by a query pattern.

7.1 A Case Study
In this subsection, we demonstrate the query recommen-

dation and query answering process of the TC-Tree that in-
dexes all the theme communities in the DBN of AMINER.
Each theme community retrieved by a query pattern rep-
resents a group of co-working scholars who share the same
research interest characterized by the set of keywords con-
tained in the query pattern.

We start our case study with a user who wants to find
theme communities that apply the classic methods, such as
“hierarchical clustering” (HC), “principal component anal-
ysis” (PCA), “linear discriminant analysis” (LDA) and “di-
mensionality reduction” (DR), in the research areas of “data
mining” (DM), “face recognition” (FR), “image retrieval”
(IR) and “gene expression” (GE).

Since the user may have little prior knowledge about the
theme communities in the DBN, it is difficult for him to de-
sign an appropriate query that successfully retrieves valid
theme communities. Therefore, he simply put all his inter-
ested key words together and starts querying the TC-Tree
using the query pattern a1 in Figure 3.

Unfortunately, no theme community in the DBN of
AMINER is induced by a1, therefore querying the TC-Tree
by a1 returns no theme community. In this case, we use the
query recommendation method in Algorithm 5 to recom-
mend to the user a ranked list of query patterns {b1, . . . ,b8}
in Figure 3. Each of {b1, . . . ,b8} is a meaningful combina-
tion of the user-interested keywords that describes an inter-

[𝒃" ,	top	1	of	1	,	Cohesiveness	=	7] (a)

Junying Zhang		
Sunyuan Kung		
Jianhua Xuan	

Yue	Wang Robert	Clarke
Javed Khan
Richard	Lee
Zuyi Wang

Jianping Lu

[𝒃# ,	top	1	of	1,	Cohesiveness	=	3] (c)

Hong	Yan

Alan	W.	Liu
Lap	Keung	Szeto

Mengsu Yang
Sy-sen Tang

[𝒃$ ,	top	1	of	1,	Cohesiveness	=	2] (e)

Bin	Jiang

Qiang Guo

Jing	Chang	Pan

Zhen	Ping	Yi

[𝒃% ,	top	1	of	1,	Cohesiveness	=	1] (g)

Jiawei	Han

Deng	Cai

Xiaofei He

[𝒃& ,	top	1	of	1,	Cohesiveness	=	3] (b)

Chun	Chen

Jun	Zhao

Jiajun Bu

Xiaofei He

Deng	Cai

Can	Wang

[𝒃' ,	top	1	of	3,	Cohesiveness	=	3] (d)

Jie yang

Fan	Yang

Wenan Tan

Zhonglong Zheng

Jiong Jia

[𝒃( ,	top	1	of	1,	Cohesiveness	=	2] (f)

Rui Xu

Donald	C.	Wunsch II

Boaz	Nadler

Steven	Damelin

[𝒃) ,	top	1	of	1,	Cohesiveness	=	1] (h)

Zhongzhi Shi

Fei Ye

Zhiping Shi

Figure 4: The top-1 theme communities retrieved
by the query patterns {b1, . . . ,b8} in Figure 3.

[𝒄" ,	top	1	of	40,	Cohesiveness	=	6] (a)

[𝒄# ,	top	1	of	4,	Cohesiveness	=	3] (c)

[𝒄" ,	top	2	of	40,	Cohesiveness	=	4] (b)

[𝒄# ,	top	2	of	4,	Cohesiveness	=	2] (d)

Hongjiang Zhang

Xiaofei He Shuicheng Yan

Yuxiao Hu
Joseph	Colineau

Anouar Mellakh

Dijana Petrovska-Delacrétaz

Sylvie	Lelandais
Bernadette	Dorizzi Anis Chaari

Johan	Dhose
Souhila Guerfi

Chun	Chen
Jun	Zhao
Jiajun Bu

Xiaofei He
Deng	Cai
Can	Wang Nikos	Nikolaidis

Ioannis Pitas Spiros	Nikolopoulos

Stafanos Zafeiriou

Figure 5: The top-1 and top-2 theme communities
retrieved by the query patterns c1 and c2 in Figure 3.

esting research direction. For example, b1 characterizes the
research direction that applies PCA and DR in the area of
DM and GE, and b2 is the research direction that applies
PCA, LDA and DR in the area of IR.

Figure 4 shows the top-1 theme communities retrieved by
the recommended query patterns in {b1, . . . ,b8}. Most of
the top-1 theme communities are cliques, because a clique
is a special case of (p, α)-truss, and the dense connection
between the vertices of a clique produces a high cohesiveness.
Interestingly, the theme community in Figure 4(b) is not a
clique. This demonstrates the flexibility of the proposed
(p, α)-truss in detecting communities that are not cliques
but still have large cohesiveness.

We can also see that the theme communities in Fig-
ures 4(b) and 4(g) both contain “Xiaofei He” and “Deng
Cai”. This shows that the proposed theme community find-
ing allows arbitrary overlap between communities of differ-
ent themes.

As shown in Figure 4(h), the query pattern b8 retrieves
only one theme community that is small in both size and
cohesiveness. This is because FR and IR are separate sub-
disciplines in the research field of computer vision, and it is
rare for a paper to focus on both of them at the same time.

If the user is not happy with the small theme community
retrieved by b8, we can further apply Algorithm 5 to recom-
mend to the user the query patterns c1 and c2 in Figure 3.
Obviously, c1 describes the sub-discipline that applies PCA
and LDA in FR, and c2 characterizes the sub-discipline that
uses PCA and LDA in IR.

Figure 5 shows the theme communities retrieved by c1

and c2. Since c1 and c2 characterize the two sub-disciplines
more precisely than b8, c1 and c2 retrieve more theme com-
munities than b8, and the cohesiveness of the theme com-
munities retrieved by c1 and c2 are much larger than the
one retrieved by b8.

In summary, the proposed theme community finding dis-
covers meaningful theme communities and allows arbitrary
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overlap between theme communities. The proposed query
recommendation method effectively recommends meaning-
ful query patterns, and the proposed TC-Tree makes it pos-
sible to efficiently retrieve ranked lists theme communities
from large DBNs.

7.2 Effect of Parameters
In this subsection, we analyze the effect of the cohesion

threshold α and the frequency threshold ε. The settings
of parameters are α ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0} and
ε ∈ {0.1, 0.2, 0.3}.

We do not evaluate the performance of TCS for ε = 0.0
and ε > 0.3, because TCS cannot stop in reasonable time
when ε = 0.0, and it loses too much accuracy when ε > 0.3.
Since TCS with ε ∈ {0.1, 0.2, 0.3} still run too slow on the
original DBNs of BK, GW and AMINER, we use smaller
DBNs that are sampled from the original DBNs by doing a
breadth first search from a random seed vertex. From each
of BK and GW, we sample one DBN with 10,000 edges. For
AMINER, we sample a DBN of 5,000 edges.

Figures 6(a), 6(c) and 6(e) show the number of theme
communities, denoted by “#TCs”, found by TCFA, TCFI
and TCS from BK, GW and AMINER, respectively. As
it is shown, TCFA and TCFI detect the same number of
theme communities for all values of α on all DBNs. This
is because both TCFA and TCFI produce the exact result
in finding all theme communities in a DBN. However, TCS
does not always produce the exact result. The reason is that
vertices with small pattern frequencies can still form a good
theme community with large edge cohesion if they form a
densely connected subgraph. Such theme communities may
be missed if the patterns with low frequencies are dropped
by the pre-filtering step of TCS.

Figures 6(b), 6(d) and 6(f) show the time cost of TCFA,
TCFI and TCS on BK, GW and AMINER, respectively.
The time cost of both TCFA and TCFI decreases when α
increases, because increasing α reduces the size of Pk−1,
which further reduces the size of Mk.

When α is small, the time cost of TCFI is much lower
than the time cost of TCFA. This is due to the following
two effects of applying the graph intersection property in
Proposition 2. First, most maximal (p, α)-trusses are small
local subgraphs that do not intersect with each other, thus
many unqualified patterns in Mk are pruned by TCFI us-
ing the graph intersection property. Second, for each call
of MTD, TCFA computes the maximal (p, α)-truss in the
large theme network induced from the entire DBN, however,
TCFI operates on the small theme network induced from the
intersection of two maximal (p, α)-trusses.

When α is large, the time cost of TCFI and TCFA be-
comes comparable. This is because increasing α reduces the
size ofMk and the size of the maximal (p, α)-truss for each
pattern in Mk. Therefore, the effectiveness of applying the
graph intersection property is reduced.

Take the sampled DBN of AMINER as an example. When
α = 0, TCFA calls MTD 622,852 times and TCFI calls MTD
152,396 times. TCFI effectively prunes 75.5% of the candi-
date patterns used by TCFA. Moreover, as shown in Fig-
ure 6(f), TCFI is nearly 3 orders of magnitude faster than
TCFA when α = 0. This is because TCFI always oper-
ates on small theme networks. We can also see that, when
α ≥ 1, the time cost of TCFI and TCFA becomes compara-
ble. This is because, when α ≥ 1, AMINER contains only
one maximal (p, α)-truss, thus TCFI cannot prune any can-
didate pattern in Mk or induce any smaller theme network
by applying the graph intersection property.

The time cost of TCS is not affected by α, because it is
largely dominated by the size of P (see Section 4.2), which
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Figure 6: The effects of parameters α and ε. In (c)
and (e), #TCs is zero when α = 2.0.
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Figure 7: The #TCs and the time cost of TCS,
TCFA and TCFI on different sizes of networks.

is irrelevant to α. Increasing ε reduces the size of P and
improves the efficiency of TCS. However, since the size of
P is still too large, TCS is orders of magnitude slower than
TCFI on all DBNs.

In summary, TCFI produces the best detection results of
theme communities and achieves the best efficiency perfor-
mance for all values of α on all DBNs.

7.3 Scalability of Theme Community Finding
In this subsection, we analyze the runtime of all methods

with respect to the size of the DBNs. For each DBN, we
generate a series of DBNs with different sizes by sampling
the original DBN using the sampling method introduced in
Section 7.2. Since TCS and TCFA run too slow on large
DBNs, we stop reporting the performance of TCS and TCFA
when they cost more than one day. The performance of
TCFI is evaluated on all sizes of DBNs including the original
ones. To evaluate the worst case performance of all methods,
we set α = 0.

Figures 7(a), 7(c) and 7(e) show the number of theme
communities found by TCFA, TCFI and TCS from BK, GW
and AMINER, respectively. When the number of sampled
edges increases, the numbers of theme communities reported
by all methods increase. Increasing the size of the DBN in-
creases the number of maximal (p, α)-trusses, which further
increases the number of theme communities. Both TCFI
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Table 2: The performance of indexing of TC-Tree
on the full data sets of BK, GW and AMINER.

Indexing Time Memory #Nodes
BK 215 seconds 0.35 GB 18,581
GW 1,812 seconds 2.66 GB 11,750,761

AMINER 41,958 seconds 22.84 GB 122,337,700
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Figure 8: The effect of the length of query pattern.
“Avg.”, “Cohe.” and “QR” are abbreviations for
“Average”, “Cohesiveness” and “Query Recommen-
dation”, respectively.

and TCFA consistently produce the exact results. Due to
the accuracy loss caused by pre-filtering the patterns with
low frequencies, TCS cannot produce the same results as
TCFI and TCFA.

Figures 7(b), 7(d) and 7(f) show the performance of time
cost. When the number of sampled edges increases, the time
cost of all methods increases, because increasing the size of
the DBN increases the number of theme communities. The
time cost of TCS and TCFA grows much faster than that
of TCFI. This is because TCS generates a large number of
unqualified candidate patterns by enumerating the patterns
of all vertex databases, and TCFA also generates many un-
qualified candidate patterns by taking the pairwise unions
of the patterns of the detected maximal (p, α)-trusses. By
applying the graph intersection property, TCFI efficiently
generates a substantially smaller number of candidate pat-
terns by the pairwise unions of the patterns of two inter-
secting maximal (p, α)-trusses, and only runs MTD on the
small intersection of two maximal (p, α)-trusses. This sig-
nificantly reduces the time cost. As a result, TCFI achieves
the best scalability and is more than two orders of magni-
tude faster than TCS and TCFA on large DBNs.

7.4 Performance of Theme Community Tree
In this subsection, we analyze the performance of Theme

Community Tree (TC-Tree), including the indexing effi-
ciency of TC-Tree, the effect of the length of query pattern
and the distribution of retrieved theme communities.

The indexing efficiency of TC-Tree in all DBNs is shown
in Table 2. “Indexing Time” is the cost to build a TC-Tree;
“Memory” is the peak memory usage when building a TC-
Tree; “#Nodes” is the number of nodes in a TC-Tree.

Building a TC-Tree is efficient in both Indexing Time and
Memory. For the largest DBN AMINER, TC-Tree scales up
well and indexes more than 120 million nodes.

To analyze the effect of the length of query pattern on the
querying performance, we generate a set of query patterns
B by randomly sampling 1,000 nodes from the TC-Tree and
using the patterns of the sampled nodes as query patterns.
Denote by Bl = {q | q ∈ B, |q| = l} the set of length-l
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Figure 9: The distribution of retrieved theme com-
munities. Each bin on the x-axis represents an in-
terval of the cohesiveness of theme communities.
“#TCs” is the number of theme communities in a
bin. “Avg. #Edges” is the average number of edges
of all theme communities in a bin.

query patterns in B, and by L the maximum length of all
query patterns in B, we have B = B1 ∪ · · · ∪BL. We use the
query patterns in B to query the TC-Tree and analyze the
following querying performance.

The “Avg. #TCs per Query” in Figure 8(a) is the average
number of theme communities retrieved by the query pat-
terns in each set of Bl, l ∈ {1, . . . , L}. In Figure 8(a), the
Avg. #TCs per Query decreases quickly when the length
of query pattern increases, this verifies our analysis in Sec-
tion 3.3 that a longer pattern is less likely to induce a theme
community. For query patterns with length larger than 1,
the average number of retrieved theme communities is less
than 100. It is not a heavy burden for users to analyze such
a small number of theme communities.

In Figure 8(b), the “Avg. Max Cohe.” is the average
cohesiveness of the top-1 theme communities retrieved by
the query patterns in each set of Bl, l ∈ {1, . . . , L}. The
Avg. Max Cohe. decreases when the length of query pattern
increases, because a longer pattern has a lower frequency,
which limits the cohesiveness of the corresponding theme
communities.

Figure 8(c) shows the average query time for the query
patterns in each set of Bl, l ∈ {1, . . . , L}. For all DBNs, the
average query time is less than 1 second when the length of
pattern is 1, and decreases quickly to less than 0.1 second
when the length of query pattern increases. The query time
is dominated by the time to compute the theme communi-
ties and their cohesiveness using the decomposed maximal
(p, α)-truss stored in a node of the TC-Tree. When the
length of query pattern increases, the size of the maximal
(p, α)-truss reduces, thus the query time decreases.

Figure 8(d) shows the average query recommendation
time for the query patterns in each set of Bl, l ∈ {1, . . . , L}.
When the length of query pattern increases, the average
query recommendation time increases, because a longer
query pattern requires Algorithm 5 to visit more TC-Tree
nodes. The query recommendation is highly efficient, and
the time cost is less than 1 second on all DBNs.

Next, we query the TC-Tree by the query patterns in B,
and show the distribution of all retrieved theme communities
in Figure 9. A large proportion of the retrieved theme com-
munities have very small cohesiveness, and contain a larger
number of edges. These theme communities are trivially
induced by the patterns that are contained in a large num-
ber of vertex databases with low pattern frequencies, and
they have low ranks in the retrieved ranked list of theme
communities due to their small cohesiveness.
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There are a lot of theme communities that have large cohe-
siveness and contain a small number of edges. Those theme
communities are usually induced by the patterns that fre-
quently appear in the vertex databases of a small number of
strongly connected vertices. As demonstrated by the case
study in Section 7.1, these theme communities are ranked
high in the retrieved ranked list and often reveal interesting
patterns and communities in DBNs.

7.5 Comparison with Two Vertex Attributed
Network Methods

In this subsection, we evaluate the theme community de-
tection performance of TCFI and two community detection
methods for Vertex Attributed Networks (VAN), such as
CESNA [37] and SCI [34]. We set α = 0 for TCFI, and
use the default settings of CESNA and SCI, respectively.
Since SCI cannot efficiently process large networks, we sam-
ple one DBN with 10,000 edges from each of BK, GW and
AMINER using the sampling method in Section 7.2. Both
CESNA and SCI cannot directly process a DBN, thus we
extend them by first converting a DBN into a VAN, then
applying them to detect communities from the VAN.

We adopt the following three types of extensions.
Extension A: we convert each vertex database into a set

of items by taking the union of all transactions in it. The
pattern of a detected community is a set of items, which is
used as the theme of the community.

Extension B: we regard a transaction as a set-valued
item, and treat each vertex database as a set of set-valued
items. The pattern of a detected community is a set of
transactions, where each transaction is used as a theme of
the community.

Extension C: we convert a DBN in the same way as
Extension B. Instead of using each transaction as a theme,
we treat the union of the set of transactions as the theme of
the detected community.

Denote by D a detected community with a theme p. We
measure the quality of D by the following metrics.

Average Edge Strength (AES): denote by E and V
the sets of edges and vertices of D, respectively. The edge
strength of an edge eij ∈ E is measured by ESij = fi(p)×
fj(p). The AES of D is

AES =
2
∑
eij∈E ESij

|V|(|V| − 1)
,

which is the ratio between the sum of edge strength of all
edges in E and the number of edges of a clique containing a
number of |V| vertices. A large AES means the vertices in
V have a high frequency of p, and are densely connected by
the edges in E . Obviously, a larger AES indicates a higher
quality of the theme community.

Cohesiveness (COHE): as defined in Definition 5, the
cohesiveness of D is the minimum cohesion of its edges. If
COHE is 0, then either at least one vertex of D does not
contain p in its vertex database, or at least one edge of D is
not contained in any triangle. Thus, we say D is an invalid
theme community if its COHE is 0, and say D is valid if
its COHE is positive. Obviously, a larger COHE indicates
a higher quality of D.

Both AES and COHE are computed based on the absolute
frequency of the theme p.

Figure 10 shows the Average (Avg.) COHE and the Avg.
AES of the top-k detected theme communities with the
largest COHE and AES, respectively. Both CESNA and SCI
do not achieve a good performance of Avg. COHE or Avg.
AES for all types of extensions, because all the extensions
lose the valuable information about item co-occurrences and
pattern frequencies when converting a vertex database into
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Figure 11: The PVC performance.

a set of items. Since TCFI effectively explores the item co-
occurrence and pattern frequency of DBNs, it achieves the
best performance on all data sets.

Figure 11 shows the Proportion of Valid Community
(PVC) of all compared methods. Here, PVC is the propor-
tion of valid theme communities in the set of all detected
communities. The PVC of CESNA and SCI is low for Ex-
tensions A and C, because both of them take the union
of transactions, which generates a lot of new patterns that
do not exist in the DBN. These new patterns induce many
detected communities, which are invalid in the DBN. The
extension B does not take the union of transactions, thus it
achieves a higher PVC than Extensions A and C. However,
since CESNA and SCI do not strictly require every vertex
in the same community to have exactly the same pattern,
nor do they require every edge of a community to be con-
tained in one or more triangles, many communities detected
by CESNA-B and SCI-B are invalid, thus their PVC is still
much lower than TCFI. The PVC of TCFI is always 1.0,
which demonstrates the superior performance of TCFI in
accurately finding valid theme communities.

In sum, a DBN naturally models the rich and valuable
vertex information, such as item co-occurrence and pattern
frequency, which is way beyond the limited descriptive power
of VANs. As a result, it is difficult to straightforwardly
extend VAN-based methods, such as CESNA and SCI, to
effectively enumerate the theme communities in DBNs.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we tackle the novel problem of finding theme

communities from DBNs. We first introduce the novel con-
cept of DBN, which is a natural abstraction of many real
world networks. Then, we propose TCFI and TC-Tree that
efficiently discover and index hundreds of millions of theme
communities in large DBNs. As demonstrated by exten-
sive experiments, TCFI and TC-Tree are highly efficient and
scalable. As future work, we will extend TCFI and TC-Tree
to find theme communities from edge DBNs, where each
edge is associated with a database that describes relation-
ships between vertices.
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