
OBSCURE: Information-Theoretic Oblivious and Verifiable
Aggregation Queries∗

Peeyush Gupta1, Yin Li2, Sharad Mehrotra1, Nisha Panwar1, Shantanu Sharma1, and
Sumaya Almanee1

1University of California, Irvine, USA. 2Xinyang Normal University and
Henan Key Lab of Analysis and Application of Educating Big Data, China.

sharad@ics.uci.edu, shantanu.sharma@uci.edu

ABSTRACT
Despite extensive research on cryptography, secure and efficient
query processing over outsourced data remains an open challenge.
We develop communication-efficient and information-theoretically
secure algorithms for privacy-preserving aggregation queries us-
ing multi-party computation (MPC). Specifically, query processing
techniques over secret-shared data outsourced by single or multiple
database owners are developed. These algorithms allow a user to
execute queries on the secret-shared database and also prevent the
network and the (adversarial) clouds to learn the user’s queries, re-
sults, or the database. We further develop (non-mandatory) privacy-
preserving result verification algorithms that detect malicious be-
haviors, and experimentally validate the efficiency of our approach
over large datasets, the size of which prior approaches to secret-
sharing or MPC systems have not scaled to.

PVLDB Reference Format:
P. Gupta, Y. Li, S. Mehrotra, N. Panwar, S. Sharma, and S. Almanee.
OBSCURE: Information-Theoretic Oblivious and Verifiable Aggregation
Queries. PVLDB, 12(9): 1030-1043, 2019.
DOI: https://doi.org/10.14778/3329772.3329779

1. INTRODUCTION
Database-as-a-service (DaS) [33] allows authenticated users to

execute their queries on an untrusted public cloud. Over the last
two decades, several cryptographic techniques (e.g., [31, 41, 29, 9,
40]) have been proposed to achieve secure and privacy-preserving
computations in the DaS model. These techniques can be broadly
classified based on cryptographic security into two categories:
Computationally secure techniques that assume the adversary
lacks adequate computational capabilities to break the underlying

∗This material is based on research sponsored by DARPA under agreement number
FA8750-16-2-0021. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government. This work is partially sup-
ported by NSF grants 1527536 and 1545071. Y. Li’ work is supported by National
Natural Science Foundation of China (Grant no. 61402393, 61601396). The authors
are thankful to the reviewers to help to improve the presentation.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3329772.3329779

cryptographic mechanism in polynomial time. Non-deterministic
encryption [31], homomorphic encryption (HE) [29], order-
preserving encryption (OPE) [9], and searchable-encryption [41]
are examples of such techniques. HE mixed with oblivious-RAM
(ORAM) offers the most computationally secure mechanisms.
Information-theoretically secure techniques that are uncondi-
tionally secure and independent of adversary’s computational ca-
pabilities. Shamir’s secret-sharing (SSS) [40] is a well-known
information-theoretically secure protocol. In SSS, multiple (se-
cure) shares of a dataset are kept at mutually suspicious servers,
such that a single server cannot learn anything about the data.
Secret-sharing-based techniques are secure under the assumption
that a majority of the servers (equal to the threshold of the secret-
sharing mechanism) do not collude. Secret-sharing mechanisms
also have applications in other areas such as Byzantine agreement,
secure multiparty computations (MPC), and threshold cryptogra-
phy, as discussed in [12].

The computationally/information-theoretically secure database
techniques can also be broadly classified into two categories, based
on the supported queries: (i) Techniques that support selection/join:
Different cryptographic techniques are built for selection queries,
e.g., searchable encryption, deterministic/non-deterministic en-
cryption, and OPE; and (ii) Techniques that support aggregation:
Cryptographic techniques that exploit homomorphic mechanisms
such as homomorphic encryption, SSS, or MPC techniques.

While both computationally and information-theoretically se-
cure techniques have been studied extensively in the cryptographic
domain, secure data management has focused disproportionately
on computationally secure techniques (e.g., OPE, homomorphic
encryption, searchable-encryption, and bucketization [33]) result-
ing in systems such as CryptDB [38], Monomi [43], MariaDB [1],
CorrectDB [11]). Some exceptions to the above include [25, 26,
45, 24] that have focused on secret-sharing.

Recently, both academia and industries have begun to explore
information-theoretically secure techniques using MPC that effi-
ciently supports OLAP tasks involving aggregation queries, while
achieving higher security than computationally secure techniques.1

For instance, commercial systems, such as Jana [10] by Galois,
Pulsar [3] by Stealth Software, Sharemind [13] by Cybernetica,
and products by companies such as Unbound Tech., Partisia, Secret
Double Octopus, and SecretSkyDB Ltd. have explored MPC-based
databases systems that offer strong security guarantees. Benefits of
MPC-based methods in terms of both higher-level of security and
relatively efficient support for aggregation queries have been ex-
tensively discussed in both scientific articles [39, 27, 21, 37] and
popular media [4, 5, 6, 7].
1Computationally secure mechanisms may be vulnerable to computationally powerful
adversaries, e.g., Google, with sufficient computational capabilities, broke SHA-1 [2].

1030

Much of the above work on MPC-based secure data management
requires several servers to collaborate to answer queries. These col-
laborations require several rounds of communication among non-
colluding servers. Instead, we explore secure data management
based on SSS that does not require servers to collaborate to gener-
ate answers and can, hence, be implemented more efficiently. There
is prior work on exploring secret-sharing for SQL processing [25,
26, 45, 24], but the developed techniques suffer from several draw-
backs, e.g., weak security guarantees such as leakage of access pat-
terns, significant overhead of maintaining polynomials for generat-
ing shares at the database (DB) owner, no support for third-party
query execution on the secret-shared outsourced database, etc. We
discuss the limitations of existing secret-sharing-based data man-
agement techniques in details in §2.2.

Our contributions in this paper are twofold:
1. SSS-based algorithms (entitled OBSCURE) that support a large

class of access-pattern-hiding aggregation queries with selection.
OBSCURE supports count, sum, average, maximum, minimum,
top-k, and reverse top-k, queries, without revealing anything about
data/query/results to an adversary.

2. An oblivious result verification algorithm for aggregation queries
such that an adversary does not learn anything from the verifica-
tion. OBSCURE’s verification step is not mandatory. A querier may
run verification occasionally to confirm the correctness of results.

3. A comprehensive experimental evaluation of OBSCURE on vari-
ety of queries that clearly highlight its scalability to moderate size
datasets and its efficiency compared to both state-of-the-art MPC-
based solutions, as well as, to the simple strategy of downloading
encrypted data at the client, decrypting it, and running queries at
the (trusted) client.
OBSCURE is designed to work both in situations when a single DB
owner or when multiple DB owners outsource their data for oth-
ers (queriers) to analyze. Example of a scenario with a single DB
owner might be a hospital’s patient DB outsourcing [8] to allow re-
searchers to analyze the data. Example of a scenario with multiple
DB owners might be utility owners outsourcing their smart meter
data to enable others to analyze their utility consumptions as com-
pared the average utility consumed by households in the region.
Outline of the paper. §2 provides an overview of secret-sharing
techniques and related work. §3 and §4 provide the model, an ad-
versary model, security properties, and data outsourcing model. §5
provides conjunctive/disjunctive count queries and their verifica-
tion algorithm. §6 provides conjunctive/disjunctive sum queries
and their verification algorithm. §7 provides an algorithm for fetch-
ing tuples having maximum values in some attributes with their
verification. §8 provides an experimental evaluation.
Full version. Due to space limitations, we could not describe sev-
eral technical details of OBSCURE, which can be found in the full
version [32]. These include: detailed applications of OBSCURE,
an approach for finding maximum over SSS databases outsourced
by multiple DB owners, approaches for the minimum and top-k,
an example of count query verification on secret-shares, an ex-
ample of signbit computation on secret-shares, security proofs, a
communication-efficient strategy for determining which tuples sat-
isfied a query predicate, and range-queries evaluation.

2. BACKGROUND
Here, we provide an overview of secret-sharing with an example

and compare our proposed approach with existing works.

2.1 Building Blocks
OBSCURE is based on SSS, string-matching operations over

SSS, and order-preserving secret-sharing, discussed below.

Shamir’s secret-sharing (SSS). In SSS [40], the DB owner di-
vides a secret value, say S, into c different fragments, called shares,
and sends each share to a set of c non-communicating partici-
pants/servers. These servers cannot know the secret S until they
collect c′ < c shares. In particular, the DB owner randomly se-
lects a polynomial of degree c′ with c′ random coefficients, i.e.,
f(x) = a0 + a1x + a2x

2 + · · · + ac′x
c′ , where f(x) ∈ Fp[x],

p is a prime number, Fp is a finite field of order p, a0 = S, and
ai ∈ N(1 ≤ i ≤ c′). The DB owner distributes the secret S into
c shares by placing x = 1, 2, . . . , c into f(x). The secret can be
reconstructed based on any c′+1 shares using Lagrange interpola-
tion [19]. Note that c′ ≤ c, where c is often taken to be larger than
c′ to tolerate malicious adversaries that may modify the value of
their shares. For this paper, however, since we are not addressing
the availability of data, we will consider c and c′ to be identical.

SSS allows an addition of shares, i.e., if s(a)i and s(b)i are
shares of two values a and b, respectively, at the server i, then the
server i can compute an addition of a and b itself, i.e., a + b =
s(a) + s(b), without knowing real values of a and b.
String-matching operation on secret-shares. Accumulating-
Automata (AA) [23] is a new string-matching technique on secret-
shares that do not require servers to collaborate to do the operation,
unlike MPC-techniques [15, 22, 35, 14, 13, 10]. Here, we explain
AA to show string-matching operations on secret-shares.

Let D be the cleartext data. Let S(D)i (1 ≤ i ≤ c) be the ith

secret-share of D stored at the ith server, and c be the number of
non-communicating servers. AA allows a user to search a pattern,
pt , by creating c secret-shares of pt (denoted by S(pt)i, 1 ≤ i ≤
c), so that the ith server can search the secret-shared pattern S(pt)i
over S(D)i. The result of the string-matching operation is either 1
of secret-share form, if S(pt)i matches with a secret-shared string
in S(D)i or 0 of secret-share form; otherwise. Note that when
searching a pattern on the servers, AA uses multiplication of shares,
as well as, additive property of SSS, which will be clear by the
following example. If the user wishes to search a pattern of length l
in only one communication round, while the DB owner and the user
are using a polynomial of degree one, then due to multiplication of
shares, the final degree of the polynomial will be 2l, and solving
such a polynomial will require at least 2l + 1 shares.
Example. Assume that the domain of symbols has only three sym-
bols, namely A, B, and C. Thus, A can be represented as 〈1, 0, 0〉.
Similarly, B and C can be represented as 〈0, 1, 0〉 and 〈0, 0, 1〉, re-
spectively.
DB owner side. Suppose that the DB owner wants to outsource B
to the (cloud) servers. Hence, the DB owner may represent B as
its unary representation: 〈0, 1, 0〉. If the DB owner outsources the
vector 〈0, 1, 0〉 to the servers, it will reveal the symbol. Thus, the
DB owner uses any three polynomials of an identical degree, as
shown in Table 1, to create three shares.

Table 1: Secret-shares of vector 〈0, 1, 0〉, created by the DB owner.
Vector values Polynomials First shares Second shares Third shares
0 0 + 5x 5 10 15
1 1 + 9x 10 19 28
0 0 + 2x 2 4 6

User-side. Suppose that the user wishes to search for a symbol B.
The user will first represent B as a unary vector, 〈0, 1, 0〉, and then,
create secret-shares of B, as shown in Table 2. Note that there is no
need to ask the DB owner to send any polynomials to create shares
or ask the DB owner to execute the search query.

Table 2: Secret-shares of vector 〈0, 1, 0〉, created by the user.
Vector values Polynomials First shares Second shares Third shares
0 0 + x 1 2 3
1 1 + 2x 3 5 7
0 0 + 4x 4 8 12

1031

Table 3: Multiplication of shares and addition of final shares by
servers. Computation on

Server 1 Server 2 Server 3
5× 1 = 5 10× 2 = 20 15× 3 = 45
10×3 = 30 19× 5 = 95 28×7 = 196
2× 4 = 8 4× 8 = 32 6× 12 = 72
43 147 313

Server-side. Each server performs position-wise multiplication of
the vectors that they have, adds all the multiplication resultants, and
sends them to the user, as shown in Table 3. An important point to
note here is that the server cannot deduce the keyword, as well as,
the data by observing data/query/results.
User-side. After receiving the outputs (〈y1 = 43, y2 =
147, y3 = 313〉) from the three servers, the user executes La-
grange interpolation [19] to construct the secret answer, as follows:

(x−x2)(x−x3)

(x1−x2)(x1−x3)
× y1 +

(x−x1)(x−x3)

(x2−x1)(x2−x3)
× y2 +

(x−x1)(x−x2)

(x3−x1)(x3−x2)
× y3

=
(x−2)(x−3)
(1−2)(1−3)

× 43 +
(x−1)(x−3)
(2−1)(2−3)

× 147 +
(x−1)(x−2)
(3−1)(3−2)

× 313 = 1

The final answer is 1 that confirms that the secret-shares at the
servers have B.
Note. In this paper, we use AA that utilizes unary representation
as a building block. A recent paper Prio [20] also uses a unary
representation; however, we use significantly fewer number of bits
compared to Prio’s unary representation. One can use Prio’s unary
representation too or use a different private string-matching tech-
nique over secret-shares.
Order-preserving secret-sharing (OP-SS). The concept of OP-SS
was introduced in [25]. OP-SS maintains the order of the values in
secret-shares too, e.g., if v1 and v2 are two values in cleartext such
that v1 < v2, then S(v1) < S(v2) at any server. It is clear that
finding records with maximum or minimum values using OP-SS is
trivial. However, ordering revealed by OP-SS can leak more infor-
mation about records. Consider, for instance, an employee relation,
shown in Table 4 on page 5. For ease of exposition, we represent
Table 4 in cleartext. In Table 4, the salary field can be stored us-
ing OP-SS. If we know (background knowledge) that employees in
the security department earn more money than others, we can infer
from the representation that the second tuple corresponds to some-
one from the security department. Thus, OP-SS, by itself, offers
little security. However, as we will see later in §7, by splitting the
fields such as salary that can be stored using OP-SS, while storing
other fields using SSS, we can benefit from the ordering supported
by OP-SS without compromising security.

2.2 Comparison with Existing Work
Comparison with SSS databases. In 2006, Emekçi et al. [25]
introduced the first work on SSS data for executing sum, maxi-
mum, and minimum queries. However, [25] uses a trusted-third-
party to perform queries and is not secure, since it uses OP-SS to
answer maximum/minimum queries. Another paper by Emekçi et
al. [26] on OP-SS based aggregation queries requires the database
(DB) owner to retain each polynomial, which was used to create
database shares, resulting in the DB owner to store n × m poly-
nomials, where n and m are the numbers of tuples and attributes
in a relation. [26] is also not secure, since it reveals access-patterns
(i.e., the identity of tuples that satisfy a query) and using OP-SS.2

Like [26], [45] proposed a similar approach and also suffers from
similar disadvantages. [42] proposed SSS-based sum and average
queries; however, they also require the DB owner to retain tuple-ids
of qualifying tuples. [24] used a novel string-matching operation
2While [25, 26, 24, 10] have explored mechanisms to support selection and join op-
erations over the secret-shared data, these techniques are not secure (e.g., leak infor-
mation from access-patterns), are inefficient (often requiring quadratic computations),
and require transmitting entire dataset to users. SS can primarily be used to support
OLAP style aggregation queries, which is our focus in this paper.

over the shares at the server, but it cannot perform general aggre-
gations with selection over complex predicates. In short, all the
SSS-based solutions for aggregation queries either overburden the
DB owner (by storing enough data related to polynomials and fully
participating in a query execution), are insecure due to OP-SS, re-
veal access-patterns, or support a very limited form of aggregation
queries without any selection criteria.

In contrast, OBSCURE eliminates all such limitations. It provides
a fully secure and efficient solution for implementing aggregation
queries with selections. Our experimental results will show that
OBSCURE scales to datasets with 6M tuples on TPC-H queries, the
size of which prior secret-sharing and/or MPC-based techniques
have never scaled to. The key to the efficient performance of OB-
SCURE still is exploiting OP-SS – while OP-SS, in itself is not se-
cure (it is prone to background knowledge attacks, for instance).
The way OBSCURE uses OP-SS, as will be clear in §4, it prevents
such attacks by appropriately partitioning data, while still being
able to exploit OP-SS for efficiency. In addition, to support ag-
gregation with selections, OBSCURE exploits the string-matching
techniques over shares developed in [23].

Furthermore, as we will see in experimental section (§8), OB-
SCURE scales to datasets with 6M tuples on TPC-H queries.
Comparison with MPC-techniques. OBSCURE also overcomes
several limitations of existing MPC-based solutions. Recent work,
Prio [20] supports a mechanism for confirming the maximum num-
ber, if the maximum number is known; however, Prio [20] does not
provide any mechanism to compute the maximum/minimum. Also,
Prio does not provide methods to execute conjunctive and disjunc-
tive count/sum queries. Another recent work [14] deals with adding
shares in an array under malicious servers and malicious users, us-
ing the properties of SSS and public-key settings. However, [14] is
unable to execute a single dimensional, conjunctive, or disjunctive
sum query. Note that (as per our assumption) though, [14] can tol-
erate malicious users, while OBSCURE is designed to only handle
malicious servers, and it assumes users to be trustworthy.

Other works, e.g., Sepia [15] and [22], perform addition and
less than operations, and use many communication rounds. In con-
trast, OBSCURE uses minimal communication rounds between the
user and each server, (when having enough shares). Specifically,
count, sum, average, and their verification algorithms require at
most two rounds between each server and the user. However, max-
imum/minimum finding algorithms require at most four communi-
cation rounds. In addition, our scheme achieves the minimum com-
munication cost for aggregate queries, especially for count, sum,
and average queries, by aggregating data locally at each server.
Comparison with MPC/SSS-based verification ap-
proaches. [35] and [42] developed verification approaches
for secret-shared data. [35] considered verification process for
MPC using a trusted-third-party verifier. While overburdening
the DB owner by keeping metadata for each tuple, [42] provided
metadata-based operation verification (i.e., whether all the desired
tuples are scanned or not) for only sum queries, unlike OBSCURE’s
result verification for all queries. OBSCURE verification methods
neither involve the DB owner to verify the results nor require a
trusted-third-party verifier.

3. PRELIMINARY
This section provides a description of entities, an adversarial

model, and security properties for obliviously executing queries.

3.1 The Model
We assume the following three entities in our model.

1032

1. A set of c > 2 non-communicating servers. The servers do not
exchange data with each other to compute any answer. The only
possible data exchange of a server is with the user/querier or the
database owner.

2. The trusted database (DB) owner, that creates c secret-shares of the
data and transfers the ith share to the ith server. The secret-shares
are created by an algorithm that supports non-interactive addition
and multiplication of two shares, which is required to execute the
private string-matching operation, at the server, as explained in §2.3

3. An (authenticated, authorized, and trusted) user/querier, who ex-
ecutes queries on the secret-shared data at the servers. The query
is sent to servers. The user fetches the partial outputs from the
servers and performs a simple operation (polynomial interpolation
using Lagrange polynomials [19]) to obtain the secret-value.

3.2 Adversarial Model
We consider two adversarial models, in both of which the cloud

servers (storing secret-shares) are not trustworthy. In the hon-
est but curious model, the server correctly computes the assigned
task without tampering with data or hiding answers. However, the
server may exploit side information (e.g., query execution, back-
ground knowledge, and output size) to gain as much information as
possible about the stored data. Such a model is considered widely
in many cryptographic algorithms and in widely used in DaS [17,
33, 44, 46]. We also consider a malicious adversary that could de-
viate from the algorithm and delete tuples from the relation. Users
and database owners, in contrast, are assumed to be not malicious.

Only authenticated users can request query on servers. Further,
we follow the restriction of the standard SSS that the adversary can-
not collude with all (or possibly the majority of) the servers. Thus,
the adversary cannot generate/insert/update shares at the majority
of the servers. Also, the adversary cannot eavesdrop on a major-
ity of communication channels between the user and the servers.
This can be achieved by either encrypting the traffic between user
and servers, or by using anonymous routing [30], in which case the
adversary cannot gain knowledge of servers that store the secret-
shares. Note that if the adversary could either collude with or suc-
cessfully eavesdrop on the communication channels between the
majority of servers and user, the secret-sharing technique will not
apply.4 The validity of the assumptions behind secret-sharing have
been extensively discussed in prior work [39, 27, 21, 37]. The ad-
versary can be aware of the public information, such as the actual
number of tuples and number of attributes in a relation, which will
not affect the security of the proposed scheme, though such leakage
can be prevented by adding fake tuples and attributes.5

3.3 Security Properties
In the above-mentioned adversarial model, an adversary wishes

to learn the (entire/partial) data and query predicates. Hence, a se-
cure algorithm must prevent an adversary to learn the data (i) by
just looking the cryptographically-secure data and deduce the fre-
quency of each value (i.e., frequency-count attacks), and (ii) when
executing a query and deduce which tuples satisfy a query predicate
(i.e., access-pattern attacks) and how many tuples satisfy a query
3The choice of underlying non-interactive and string-matching-based secret-sharing
mechanisms do not change our proposed aggregation and verification algorithms.
4The DB owner/user can use anonymous routing to send their data to the servers,
thereby preventing an adversary from determining which user is connecting to which
server. If the adversary knows the majority of the communication channels/servers,
then it can construct the secret-shared query, outputs to the query, and the database.
5The adversary cannot launch any attack against the DB owner. We do not con-
sider cyber-attacks that can exfiltrate data from the DB owner directly, since defending
against generic cyber-attacks is outside the scope of this paper.

predicate (i.e., output-size attacks). Thus, in order to prevent these
attacks, our security definitions are identical to the standard secu-
rity definition as in [16, 28, 18]. An algorithm is privacy-preserving
if it maintains the privacy of the querier (i.e., query privacy), the
privacy of data from the servers, and performs identical operations,
regardless of the user query.
Query/Querier’s privacy requires that the user’s query must be
hidden from the server, the DB owner, and the communication
channel. Also, the server cannot distinguish between two or more
queries of the same type based on the output. Queries are of the
same type based on their output size, e.g., all count queries are of
the same type since they return almost an identical number of bits.
Definition: Users privacy. For any probabilistic polynomial time
adversarial server having a secret-shared relation S(R) and any
two input query predicates, say p1 and p2, the server cannot dis-
tinguish p1 or p2 based on the executed computations for either p1
and p2.

Privacy from the server requires that the stored input data, inter-
mediate data during a computation, and output data are not revealed
to the server, and the secret value can only be reconstructed by the
DB owner or an authorized user. In addition, two or more occur-
rences of a value in the relation must be different at the server to
prevent frequency analysis while data at rest. Recall that due to
secret-shared relations (by following the approach given in §2.1),
the server cannot learn the relations and frequency-analysis, and in
addition, due to maintaining the query privacy, the server cannot
learn the query and the output.

We, also, must ensure that the server’s behavior must be identical
for a given query, and the servers provide an identical answer to the
same query, regardless of the users (recall that user might be dif-
ferent compared to the data owner in our model). To show that we
need to compare the real execution of the algorithm at the servers
against the ideal execution of the algorithm at a trusted party having
the same data and the same query predicate. An algorithm main-
tains the data privacy from the server if the real and ideal executions
of the algorithm return an identical answer to the user.
Definition: Privacy from the server. For any given secret-shared
relation S(R) at a server, any query predicate qp, and any real
user, say U , there exists a probabilistic polynomial time (PPT) user
U ′ in the ideal execution, such that the outputs to U and U ′ for the
query predicate qp on the relation S(R) are identical.

Properties of verification. We provide verification properties
against malicious behaviors. A verification method must be obliv-
ious and find any misbehavior of the servers when computing a
query. We follow the verification properties from [35], as follows:
(i) the verification method cannot be refuted by the majority of the
malicious servers, and (ii) the verification method should not leak
any additional information.

3.4 OBSCURE Overview
Let us introduce OBSCURE at a high-level. OBSCURE allows

single-dimensional and multi-dimensional conjunctive/disjunctive
equality-based aggregation queries. Note that the method of OB-
SCURE for handling these types of queries is different from SQL,
since OBSCURE does not support query optimization and indexing6

due to secret-shared data. Further, OBSCURE handles range-based
6For the class of queries considered (viz. aggregation with selection), the main op-
timization in standard databases is to push selections down to determine whether an
index-scan should be used or not. In SSS, an index scan cannot be used (at least
not in any obvious way), since subsetting the data processed leads to revealing access-
patterns, making the technique less secure. Thus, we avoid using an indexing structure.

1033

queries by converting the range into equality queries. Executing a
query on OBSCURE requires four phases, as follows:
PHASE 1: Data upload by DB owner(s). The DB owner uploads
data to non-communicating servers using a secret-sharing mecha-
nism that allows addition and multiplication (e.g., [23]) at servers.
PHASE 2: Query generation by the user. The user generates a
query, creates secret-shares of the query predicate, and sends them
to the servers. For generating secret-shares of the query predicate,
the user follows the strategies given in §5 (count query), §6 (sum
queries), §7 (maximum/minimum), and §5.1,§6.1 (verification).
PHASE 3: Query processing by the servers. The servers process
an input query in an oblivious manner such that neither the query
nor the results satisfying the query are revealed to the adversary.
Finally, the servers transfer their outputs to the user.
PHASE 4: Result construction by the user. The user performs La-
grange interpolation on the received results, which provide an an-
swer to the query.

4. DATA OUTSOURCING
This section provides details on creating and outsourcing a

database of secret-shared form. The DB owner wishes to outsource
a relation R having attributes A1, A2, . . . , Am and n tuples, and
creates the following two relations R1 and R2:
• Relation R1 that consists of all the attributes A1, A2, . . . , Am

along with two additional attributes, namely TID (tuple-id) and
Index. As will become clear in §7, the TID attribute will help
in finding tuples having the maximum/minimum/top-k values, and
the Index attribute will be used to know the tuples satisfying the
query predicate. The ith values of the TID and Index attributes
have the same and unique random number between 1 to n.
• Relation R2 that consists of three attributes CTID (cleartext
tuple-id), SSTID (secret-shared tuple-id), and an attribute, say Ac,
on which a comparison operator (minimum, maximum, and top-k)
needs to be supported.7

The ith values of the attributes CTID and SSTID of the rela-
tion R2 keep the ith value of the TID attribute of the relation R1.
The ith value of the attributes Ac of the relation R2 keeps the ith

value of an attribute of the relation R1 on which the user wants to
execute a comparison operator. Further, the tuples of the relations
R2 are randomly permuted. The reason of doing permutation is
that the adversary cannot relate any tuple of both the secret-shared
relations, which will be clear soon by the example below.
Note. The relation S(R1) will be used to answer count and sum
queries, while it will be clear in §7 how the user can use the
two relations S(R1) and S(R2) together to fetch a tuple having
maximum/minimum/top-k/reverse-top-k value in an attribute.

Table 4: A relation: Employee.
EmpID Name Salary Dept
E101 John 1000 Testing
E101 John 100000 Security
E102 Adam 5000 Testing
E103 Eve 2000 Design
E104 Alice 1500 Design
E105 Mike 2000 Design

Example. Consider the Employee relation (see Table 4). The DB
owner creates R1 = Employee1 relation8 (see Table 5a) with
TID and Index attributes. Further, the DB owner creates R2 =
Employee2 relation (see Table 5b) having three attributes CTID,
SSTID, and Salary.
7If there are x attributes on which comparison operators is executed, the DB owner
creates x relations, each with attributes CTID, SSTID, and one of the x attributes.
8For verifying results of count and sum queries, we add two more attributes to this
relation. However, we do not show here, since verification is not a mandatory step.

Table 5: Two relations obtained from Employee relation.
EmpID Name Salary Dept TID Index
E101 John 1000 Testing 3 3
E101 John 100000 Security 2 2
E102 Adam 5000 Testing 5 5
E103 Eve 2000 Design 4 4
E104 Alice 1500 Design 1 1
E105 Mike 2000 Design 6 6

(a) R1 = Employee1 relation.

CTID SSTID Salary
1 1 1500
5 5 5000
3 3 1000
6 6 2000
2 2 100000
4 4 2000

(b) R2 = Employee2
relation.

Creating secret-shares. Let Ai[aj] (1 ≤ i ≤ m+1 and 1 ≤ j ≤ n)
be the jth value of the attribute Ai. The DB owner creates c secret-
shares of each attribute value Ai[aj] of the relation R1 using a
secret-sharing mechanism that allows string-matching operations
at the server (as specified in §2). However, c shares of the jth

value of the attribute Am+2 (i.e., Index) are obtained using SSS.
This will result in c relations: S(R1)1, S(R1)2, . . ., S(R1)c, each
having m + 2 attributes. The notation S(R1)k denotes the kth

secret-shared relation of R1 at the server k. We use the notation
Ai[S(aj)]k to indicate the jth secret-shared value of the ith at-
tribute of a secret-shared relation at the server k.

Further, on the relation R2, the DB owner creates c secret-shares
of each value of SSTID using a secret-sharing mechanism that al-
lows string-matching operations on the servers and each value of
Ac using order-preserving secret-sharing [25, 34, 26]. The secret-
shares of the relation R2 are denoted by S(R2)i (1 ≤ i ≤ c). The
attribute CTID is outsourced in cleartext with the shared relation
S(R2)i. It is important to mention that CTID attribute allows fast
search due to cleartext representation than SSTID attribute, which
allows search over shares.

Note that the DB owner’s objective is to hide any relationship be-
tween the two relations when creating shares of the relations S(R1)
and S(R2), i.e., the adversary cannot know by just observing any
two tuples of the two relations that whether these tuples share a
common value in the attribute TID/SSTID and Ac or not. Thus,
shares of an ith (1 ≤ i ≤ n) value of the attribute TID in the re-
lation S(R1)j and in the attribute SSTID of the relation S(R2)j
must be different at the jth server. Also, by default, the attribute
Ac have different shares in both the relations, due to using different
secret-sharing mechanisms for different attributes. The DB owner
outsources the relations S(R1)i and S(R2)i to the ith server.
Note. Naveed et al. [36] showed that a cryptographically secured
database that is also using order-preserving cryptographic tech-
nique (e.g., OPE or OP-SS) may reveal the entire data when mixed
with publicly known databases. Hence, in order to overcome such
a vulnerability of order-preserving cryptographic techniques, we
created two relations, and importantly, the above-mentioned repre-
sentation, even though it uses OP-SS does not suffer from attacks
based on background knowledge, as mentioned in §2. Of course,
instead of using the two relations, the DB owner can outsource only
a single relation without using OP-SS. In the case of a single rela-
tion, while we reduce the size of the outsourced dataset, we need to
compare each pair of two shares, and it will result in increased com-
munication cost and communication rounds, as shown in previous
works [22, 15], which were developed to compare two shares.

5. COUNT QUERY AND VERIFICATION
This section presents techniques to support count queries over

secret-shared dataset outsourced by a single or multiple DB own-
ers. The query execution does not involve the DB owner or the
querier to answer the query. Further, we develop a method to ver-
ify the count query results.
Conjunctive count query. Our conjunctive equality-based count
query scans the entire relation only once for checking sin-
gle/multiple conditions of the query predicate. Consider a conjunc-

1034

tive count query: select count(*) from R where A1 =
v1 ∧ A2 = v2 ∧ . . . ∧ Am = vm. The user transforms the
query predicates to c secret-shares that result in the following query
at the jth server: select count(*) from S(R1)j where
A1 = S(v1)j ∧ A2 = S(v2)j ∧ . . . ∧ Am = S(vm)j . Each
server j performs the following operations:

Output =
∑k=n

k=1

∏i=m
i=1 (Ai[S(ak)]j ⊗ S(vi)j)

⊗ shows a string-matching operation that depends on the underly-
ing text representation. For example, if the text is represented as
a unary vector, as explained in §2, ⊗ is a bit-wise multiplication
and addition over a vector’s elements, whose results will be 0 or 1
of secret-share form. Each server j compares the query predicate
value S(vi) against kth value (1 ≤ k ≤ n) of the attribute Ai,
multiplies all the resulting comparison for each of the attributes for
the kth tuple. This will result in a single value for the kth tuple,
and finally, the server adds all those values. Since secret-sharing
allows the addition of two shares, the sum of all n resultant shares
provides the occurrences of tuples that satisfy the query predicate
of secret-share form in the relation S(R1) at the jth server. On
receiving the values from the servers, the user performs Lagrange
interpolation to get the final answer in cleartext.
Correctness. The occurrence of kth tuple will only be included
when the multiplication of m comparisons results in 1 of secret-
share form. Having only a single 0 as a comparison resultant over
an attribute of kth tuple produce 0 of secret-share form; thus, the
kth tuple will not be included. Thus, the correct occurrences over
all tuples are included that satisfy the query’s where clause.
Example. We explain the conjunctive count query method
using the following query on the Employee relation (see
Table 4): select count(*) from Employee where
Name = ‘John’ and Salary = 1000. Table 6 shows the
result of the private string-matching on the attribute Name, denoted
by o1, and on the attribute Salary, denoted by o2. Finally, the last
column shows the result of the query for each row and the final an-
swer to the count query. Note that for the purpose of explanation,
we use cleartext values; however, the server will perform all opera-
tions over secret-shares. For the first tuple, when the servers check
the first value of Name attribute against the query predicate John
and the first value of Salary attribute against the query predicate
1000, the multiplication of both the results of string-matching be-
comes 1. For the second tuple, when the server checks the second
value of Name and Salary attributes against the query predicate
John and 1000, respectively, the multiplication of both the results
become 0. All the other tuples are processed in the same way.

Table 6: An execution of the conjunctive count query.
Name o1 Salary o2 o1 × o2
John 1 1000 1 1
John 1 100000 0 0
Adam 0 5000 0 0
Eve 0 2000 0 0
Alice 0 1500 0 0
Mike 0 2000 0 0

1

Disjunctive count query. Our disjunctive count query also scans
the entire relation only once for checking multiple conditions of
the query predicate. Consider a disjunctive count query: select
count(*) from R where A1 = v1 ∨ A2 = v2 ∨ . . . ∨
Am = vm. The user transforms the query predicates to c secret-
shares that results in the following query at the jth server: select
count(*) from S(R1)j where A1 = S(v1)j ∨ . . . ∨
Am = S(vm)j The server j performs the following operation:

Resultki = Ai[S(ak)]j ⊗ S(vi)j , 1 ≤ i ≤ m

Output =
∑k=n

k=1 (((Resultk1 OR Resultk2) ORResultk3) . . .

OR Resultkm)

To capture the OR operation for each tuple k, the server
generates m different results either 0 or 1 of secret-share
form, denoted by Result i (1 ≤ i ≤ m), each of which
corresponds to the comparison for one attribute. To com-
pute the final result of the OR operation for each tuple k,
one can perform binary-tree style computation. However,
for simplicity, we used an iterative OR operation, as follows:

tempk
1 = Resultk1 + Resultk2 − Resultk1 × Resultk2

tempk
2 = tempk

1 + Resultk3 − tempk
1 × Resultk3

...
Outputk = tempk

m−1 + Resultkm − tempk
m−1 × Resultkm

After performing the same operation on each tuple, finally, the
server adds all the resultant of the OR operation (

∑k=n
k=1 Outputk)

and sends to the user. The user performs an interpolation on the
received values that is the answer to the disjunctive count query.
Correctness. The disjunctive counting operation counts only those
tuples that satisfy one of the query predicates. Thus, by performing
OR operation over string-matching resultants for an ith tuple results
in 1 of secret-share form, if the tuple satisfied one of the query pred-
icates. Thus, the sum of the OR operation resultant surely provides
an answer to the query.
Information leakage discussion. The user sends query predicates
of secret-share form, and the string-matching operation is executed
on all the values of the desired attribute. Hence, access-patterns are
hidden from the adversary, so that the server cannot distinguish any
query predicate in the count queries. The output of any count query
is of secret-share form and contains an identical number of bits.
Thus, based on the output size, the adversary cannot know the exact
count, as well as, differentiate two count queries. However, the
adversary can know whether the count query is single dimensional,
conjunctive or disjunctive count query.

5.1 Verifying Count Query Results
In this section, we describe how results of count query can be

verified. Note that we explain the algorithms only for a single di-
mensional query predicate. Conjunctive and disjunctive predicates
can be handled in the same way.

Here, our objective is to verify that (i) all tuples of the databases
are checked against the count query predicates, and (ii) all answers
to the query predicate (0 or 1 of secret-share form) are included
in the answer. In order to verify both the conditions, the server
executes two functions, f1 and f2, as follows:

op1 = f1(x) =
∑i=n

i=1 (S(xi)⊗ oi)

op2 = op1 + f2(y) = op1 +
∑i=n

i=1 f2(S(yi)⊗ (1− oi))
i.e., the server executes the functions f1 and f2 on n secret-shared
values each (of two newly added attributes Ax and Ay , outsourced
by the DB owner, described below). In the above equations, oi is
the output of string-matching operation carried on the ith value of
an attribute, say Aj , on which the user wants to execute the count
query. The server sends the outputs of the function f1, denoted by
op1, and the sum of the outputs of f1 and f2, denoted by op2, to the
user. The outputs op1 and op2 ensure the count result verification
and that the server has checked each tuple, respectively. The count
query verification method works as follows:
The DB owner. For enabling a count query result verification over
any attribute, the DB owner adds two attributes, say Ax and Ay ,
having initialized with one, to the relation R1. The values of the
attributes Ax and Ay are also outsourced of SSS form (not unary
representations) to the servers.
Server. Each server k executes the count query, as mentioned in
§5, i.e., it executes the private string-matching operation on the ith

(1 ≤ i ≤ n) value of the attribute Aj against the query predicate

1035

and adds all the resultant values. In addition, each server k exe-
cutes the functions f1 and f2. The function f1 (and f2) multiplies
the ith value of the Ax (and Ay) attribute by the ith string-matching
resultant (and by the complement of the ith string-matching resul-
tant). The server k sends the following three things: (i) the sum
of the string-matching operation over the attribute Aj , as a result,
say 〈result〉k, of the count query, (ii) the outputs of the function
f1: 〈op1〉k, and (iii) the sum of outputs of the function f1 and f2:
〈op2〉k, to the user.
User-side. The user interpolates the received three values from
each server, which result in Iresult , Iop1, and Iop2. If the server
followed the algorithm, the user will obtain: Iresult = Iop1 and
Iop2 = n, where n is the number of tuples in the relation, and it is
known to the user.
Example. We explain the above method using the following
query on the Employee relation (refer to Table 4): select
count(*) from Employee where Name = ‘John’.
Table 7 shows the result of the private string-matching, functions
f1 and f2 at a server. Note that for the purpose of explanation,
we use cleartext values; however, the server will perform all
operations over secret-shares. For the first tuple, when the servers
check the first value of Name attribute against the query predicate,
the result of string-matching becomes 1 that is multiplied by the
first value of the attribute Ax, and results in 1. The complement of
the resultant is multiplied by the first value of the attribute Ay , and
results in 0. All the other tuples are processed in the same way.
Note that for this query, result = op1 = 2 and op2 = 6, if server
performs each operation correctly.

Table 7: An execution of the count query verification.
Name String-matching results f1 f2
John 1 1 0
John 1 1 0
Adam 0 0 1
Eve 0 0 1
Alice 0 0 1
Mike 0 0 1

2 2 4

Correctness. Consider two cases: (i) all servers discard an entire
identical tuple for processing, or (ii) all servers correctly process
each value of the attribute Aj , op1, and op2; however, they do not
add an identical resultant, oi (1 ≤ i ≤ n), of the string-matching
operation. In the first case, the user finds Iresult = Iop1 to be true.
However, the second condition (Iop2 = n) will never be true, since
discarding one tuple will result in Iop2 = n − 1. In the second
case, the servers will send the wrong result by discarding an ith

count query resultant, and they will also discard the ith value of the
attribute Ax to produce Iresult = Iop1 at the user-side. Here, the
user, however, finds the second condition Iop2 = n to be false.

Thus, the above verification method correctly verifies the count
query result, always, under the assumption of SSS that an adversary
cannot collude all (or the majority of) the servers, as given in §3.2.

6. SUM AND AVERAGE QUERIES
The sum and average queries are based on the search opera-

tion, as mentioned above in the case of count queries. This sec-
tion, briefly, presents sum and average queries on a secret-shared
database outsourced by single or multiple DB owners. Then, we
develop a result verification approach for sum queries.
Conjunctive sum query. Consider a query: select sum(A`)
from R where A1 = v1 ∧ A2 = v2 ∧ . . . ∧ Am = vm. In
the secret-sharing setting, the user transforms the above query into
the following query at the jth server: select sum(A`) from
S(R1)j where A1 = S(v1)j ∧ A2 = S(v2)j ∧ . . . ∧ Am =

S(vm)j . This query will be executed in a similar manner as con-
junctive count query except for the difference that the ith resultant
of matching the query predicate is multiplied by the ith values of
the attribute A`. The jth server performs the following operation
on each attribute on which the user wants to compute the sum, i.e.,
A` and Aq:∑k=n

k=1 A`[S(ak)]j × (
∏i=m

i=1 (Ai[S(ak)]j ⊗ S(vi)j))
Correctness. The correctness of conjunctive sum queries is similar
to the argument for the correctness of conjunctive count queries.
Disjunctive sum query. Consider the following query: select
sum(A`) from R where A1 = v1∨A2 = v2∨ . . .∨Am =
vm. The user transforms the query predicates to c secret-shares that
results in the following query at the jth server:

select sum(A`) from S(R1)j
where A1 = S(v1)j ∨ A2 = S(v2)j ∨ . . . ∨ Am = S(vm)j

The server j executes the following computation:
Resultki = Ai[S(ak)]j ⊗ S(vi)j , 1 ≤ i ≤ m, 1 ≤ k ≤ n

Output =
∑k=n

k=1 A`[S(ak)]j × (((Resultk1 OR Resultk2) OR
Resultk3) . . . OR Resultkn)

The server multiplies the kth comparison resultant by the kth

value of the attribute, on which the user wants to execute the sum
operation (e.g., A`), and then, adds all values of the attribute A`.
Correctness. The correctness of a disjunctive sum query is similar
to the correctness of a disjunctive count query.
Average queries. In our settings, computing the average query is a
combination of the counting and the sum queries. The user requests
the server to send the count and the sum of the desired values, and
the user computes the average at their end.
Information leakage discussion. Sum queries work identically to
count queries. Sum queries, like count queries, hide the facts which
tuples are included in the sum operation, and the sum of the values.

6.1 Result Verification of Sum Queries
Now, we develop a result verification approach for a single di-

mensional sum query. The approach can be extended for conjunc-
tive and disjunctive sum queries. Let A` be an attribute whose
values will be included by the following sum query. select
sum(A`) from R where Aq = v.

Here, our objective is to verify that (i) all tuples of the databases
are checked against the sum query predicates, Aq = v, and (ii) only
all qualified values of the attribute A` are included as an answer to
the sum query. The verification of a sum query first verifies the
occurrences of the tuples that qualify the query predicate, using the
mechanism for count query verification (§5.1). Further, the server
computes two functions, f1 and f2, to verify both the conditions of
sum-query verification in an oblivious manner, as follows:

op1 = f1(x) =
∑i=n

i=1 oi(xi + ai + oi)

op2 = f1(x) =
∑i=n

i=1 oi(yi + ai + oi)
i.e., the server executes the functions f1 and f2 on n values, de-
scribed below. In the above equations, oi is the output of the string-
matching operation carried on the ith value of the attribute Aq , and
ai be the ith (1 ≤ i ≤ n) value of the attribute A`. The server
sends the sum of the outputs of the function f1, denoted by op1,
and the outputs of f2, denoted by op2, to the user. Particularly, the
verification method for a sum query works as follows:
The DB owner. Analogous with the count verification method, if
the data owner wants to provide verification for sum queries, new
attributes should be added. Thus, the DB owner adds two attributes,
say Ax and Ay , to the relation R1. The ith values of the attributes
Ax and Ay are any two random numbers whose difference equals
to −ai, where ai is the ith value of the attribute A`. The values
of the attributes Ax and Ay are also secret-shared using SSS. For

1036

Table 8: An execution of the sum query verification.
Dept Salary o val-

ues
Ax and f1 Ay and f2

Testing 1000 1 1(200+1000+1)=1201 1(−1200+1000+1)=
−199

Security 100000 0 0(1000+100000+0)=0 0(−101000+100000+0)=0
Testing 5000 1 1(−5900+5000+1)=

−899
1(900+5000+1)=5901

Design 2000 0 0(2000+2000+0)=0 0(−4000+2000+1)=0
Design 1500 0 0(500+1500+0)=0 0(−2000+1500+0)=0
Design 2000 0 0(−2100+2000+0)=0 0(100+2000+0)=0

2
∑

f1 =302
∑

f2 =5702

example, in Table 8, boldface numbers show these random numbers
of the attribute Ax and Ay in cleartext.
Servers. The servers execute the above-mentioned sum query, i.e.,
each server k executes the private string-matching operation on the
ith (1 ≤ i ≤ n) value of the attribute Aq against the query predicate
v and multiplies the resultant value by the ith value of the attribute
A`. The server k adds all the resultant values of the attributes A`.
Verification stage. The server k executes the functions f1 and f2
on each value xi and yi of the attributes Ax and Ay , by follow-
ing the above-mentioned equations. Finally, the server k sends the
following three things to the user: (i) the sum of the resultant val-
ues of the attributes A`, say 〈sum`〉k, (ii) the sum of the output
of the string-matching operations carried on the attribute Aq , say
〈sumq〉k,9 against the query predicate, and (iii) the sum of outputs
of the functions f1 and f2, say 〈sumf1f2〉k.
User-side. The user interpolates the received three values from
each server, which results in Isum`, Isumq , and Isumf1f2. The
user checks the value of Isumf1f2 − 2 × Isumq and Isum`, and
if it finds equal, the server has correctly executed the sum query.
Example. We explain the above method using the following query
on the Employee relation (refer to Table 4): select sum(*)
from Employee where Dept = ‘Testing’. Table 8
shows the result of the private string-matching (o), the values of
the attributes Ax and Ay in boldface, and the execution of the func-
tions f1 and f2 at a server. Note that for the purpose of explanation,
we show the verification operation in cleartext; however, the server
will perform all operations over secret-shares.

For the first tuple, when the server checks the first value of Dept
attribute against the query predicate, the string-matching resultant,
o1, becomes 1 that is multiplied by the first value of the attribute
Salary. Also, the server adds the salary of the first tuple to the
first values of the attributes Ax and Ay with o1. Then, the server
multiplies the summation outputs by o1.

For the second tuple, the servers perform the same operations,
as did on the first tuple; however, the string-matching resultant o2
becomes 0, which results in the second values of the attributes Ax

and Ay to be 0. The servers perform the same operations on the
remaining tuples. Finally, the servers send the summation of oi
(i.e., 2), the sum of the salaries of qualified tuples (i.e., 6000), and
the sum of outputs of the functions f1 and f2 (i.e., 6004), to the
user. Note that for this query, Isumf1f2 − 2 × Isumq = Isum`,
i.e., 6004− 2× 2 = 6000.
Correctness. The occurrences of qualified tuples against a query
predicates can be verified using the method given in §5.1. Consider
two cases: (i) all servers discard an entire identical tuple for pro-
cessing, or (ii) all servers correctly process the query predicate, but
they discard the ith values of the attributes A`, Ax, and Ay .

The first case is easy to deal with, since the count query ver-
ification informs the user that an identical tuple is discarded by
the server for any processing. In the second case, the user finds
Isumf1f2 − 2 × Isumq 6= Isum`, since an adversary cannot
9If users are interested, they can also verify this result using the method given in §5.1.

provide a wrong value of Isumq , which is detected by count
query verification. In order to hold the equation Isumf1f2 − 2 ×
Isumq = Isum`, the adversary needs to generate shares such that
Isumf1f2−Isum` = 2×Isumq , but an adversary cannot generate
any share, as per the assumption of SSS that an adversary cannot
produce a share, since it requires to collude with all (or the majority
of) the servers, which is impossible due to the assumption of SSS,
as mentioned in §3.2.

7. MAXIMUM QUERY
This section provides methods for finding the maximum value

and retrieving the corresponding tuples for the two types of queries,
where the first type of query (QMax1) does not have any query con-
dition, while another (QMax2) is a conditional query, as follows:
QMax1. select * from Employee where Salary

in (select max(Salary) from Employee)
QMax2. select * from Employee as E1 where
E1.Dept = ’Testing’ and Salary in (select

max(salary) from Employee as E2 where
E2.Dept = ’Testing’)10

Note that the string-matching secret-sharing algorithms (as ex-
plained in §2) cannot find the maximum value, as these algo-
rithms provide only equality checking mechanisms, not compar-
ing mechanisms to compare between values. For answering max-
imum queries, we provide two methods: The first method, called
SDBMax is applicable for the case when only a single DB owner
outsources the database. It will be clear soon that SDBMax takes
only one communication round when answering an unconditional
query (like QMax1) and at most two communication rounds for an-
swering a conditional query (like QMax2). The second method,
called MDBMax is applicable to the scenario when multiple DB
owners outsource their data to the servers.
SDBMax. In this section, we assume that Ac be an attribute of
the relation S(R1) on which the user wishes to execute maximum
queries. Our idea is based on a combination of OP-SS [25, 34]
and SSS [40, 23] techniques. Specifically, for answering maxi-
mum queries, SDBMax uses the two relations S(R1) and S(R2),
which are secured using secret-shared and OP-SS, respectively, as
explained in §3.1. In particular, according to our data model (§3.1),
the attribute Ac will exist in the relations S(R1)i and S(R2)i at
the server i. The strategy is to jointly execute a query on the rela-
tions S(R1)i and S(R2)i and obliviously retrieve the entire tuple
from S(R1)i. In this paper, due to space restrictions, we develop
SDBMax for the case when only a single tuple has the maximum
value; for example, in Employee relation (see Table 4), the max-
imum salary over all employees is unique.

7.1 Unconditional Maximum Query
Recall that by observing the shares of the attribute Ac of the

relation S(R1), the server cannot find the maximum value of the
attribute Ac. However, the server can find the maximum value of
the attribute Ac using the relation S(R2), which is secret-shared
using OP-SS. Thus, to retrieve a tuple having the maximum value
in the attribute Ac of the relation S(R1)i, the ith server executes
the following steps:

1. On the relation S(R2)i. Since the secret-shared values of the at-
tribute Ac of the relation S(R2)i are comparable, the server i finds
a tuple 〈S(tk), S(value)〉i having the maximum value in the at-
tribute Ac, where S(tk)i is the kth secret-shared tuple-id (in the

10Note that we considered only a single dimensional condition in QMax2 query. Our
proposed algorithms (without any modification) can find maximum/minimum while
satisfying conjunctive and disjunctive conditions.

1037

attribute SSTID) and S(value)i is the secret-shared value of the
Ac attribute in the kth tuple.

2. On the relation S(R1)i. Now, the server i performs the
join of the tuple 〈S(tk), S(value)〉i with all the tuples of
the relation S(R1)i by comparing the tuple-ids (TID at-
tribute’s values) of the relation S(R1)i with S(tk)i, as follows:∑k=n

k=1 Ap[S(ak)]i × (TID[S(ak)]i ⊗ S(tk)i)
Where p (1 ≤ p ≤ m) is the number of attributes in the relation R
and TID is the tuple-id attribute of S(R1)i. The server i compares
the tuple-id 〈S(tk)〉i with each kth value of the attribute TID of
S(R1)i and multiplies the resultant by the first m attribute values
of the tuple k. The server i adds all the values of each m attribute.
Correctness. The server i can find the tuple having the maximum
value in the attribute Ac of the relation S(R2)i. Afterward, the
comparison of the tuple-id S(tk)i with all the values of the TID
attribute of the relation S(R1)i results in n − 1 zeros (when the
tuple-ids do not match) and only one (when the tuple-ids match) of
secret-share form. Further, the multiplication of the resultant (0 or
1 of secret-share form) by the entire tuple will leave only one tuple
in the relation S(R1)i, which satisfies the query.
Information leakage discussion. The adversary will know only
the order of the values, due to OP-SS implemented on the relation
S(R2). However, revealing only the order is not threatening, since
the adversary may know the domain of the values, for example, the
domain of age or salary. Recall that, as mentioned in §3.1, the rela-
tions S(R1) and S(R2) share attributes: TID/SSTID and Ac (the
attribute on which a comparison operation will be carried). How-
ever, by just observing these two relations, the adversary cannot
know any relationship between them, as well as, which tuple of
the relation S(R1) has the maximum value in the attribute Ac, due
to different representations of common TID/SSTID and Ac val-
ues between the relations. Furthermore, after the above-mentioned
maximum query (QMax1) execution, the adversary cannot learn
which tuple of the relation S(R1) has the maximum value in the
attribute Ac, due to executing an identical operation on each tuple
of S(R1) when joining with a single tuple of S(R2).

7.2 Conditional Maximum Query
The maximum value of the attribute Ac may be different from

the Ac’s maximum value of the tuple satisfying the where clause
of a query. For example, in Employee relation, the maximum
salary of the testing department is 2000, while the maximum salary
of the employees is 100000. Thus, the method given for answer-
ing unconditional maximum queries is not applicable here. In the
following, we provide a method to answer maximum queries that
have conditional predicates (like QMax2), and that uses two com-
munication rounds between the user and the servers, as follows:
Round 1. The user obliviously knows the indexes of the relation
S(R1) satisfying the where clause of the query (the method for
obliviously finding the indexes is given below).
Round 2. The user interpolates the received indexes and sends
the desired indexes in cleartext to the servers. Each server i finds
the maximum value of the attribute Ac in the requested indexes
by looking into the attribute CTID of the relation S(R2)i and
results in a tuple, say 〈S(tk), S(value)〉i, where S(tk)i shows
the secret-shared tuple-id (from SSTID attribute) and S(value)i
shows the secret-shared maximum value. Now, the server i per-
forms a join operation between all the tuples of S(R1)i and
〈S(tk), S(value)〉i, as performed when answering unconditional
maximum (QMax1) queries; see §7.1. This operation results in a
tuple that satisfies the conditional maximum query.

Note. The difference between the methods for answering uncon-
ditional and conditional maximum queries is that first we need to
know the desired indexes of S(R1) relation satisfying the where
clause of a query in the case of conditional maximum queries.
Correctness. The correctness of the above method can be argued in
a similar way as the method for answering unconditional maximum
queries.
Information leakage discussion. In round 1, due to obliviously
retrieving indexes of S(R1), the adversary cannot know which tu-
ples satisfy the query predicate. In round 2, the user sends only the
desired indexes in cleartext to quickly find the maximum salary.
Note that by sending indexes, the adversary learns the number of
tuples that satisfies the query predicate;11 however, the adversary
cannot learn which tuples of the relation S(R1) have those indexes.
Due to OP-SS, the adversary also knows only the order of values
of Ac attribute in the requested indexes. However, joining the tu-
ple of S(R2), which has the maximum value in Ac attribute, with
all tuples of S(R1) will not reveal which tuple satisfies the query
predicate, as well as, have the maximum value in Ac.
Aside: Hiding frequency-analysis in round 2 used for condi-
tional maximum queries. In the above-mentioned round 2, the
user reveals the number of tuples satisfying a query predicate. Now,
below, we provide a method to hide frequency-count information:
User-side. The user interpolates the received indexes (after round
1) and sends the desired indexes with some fake indexes, which do
not satisfy the query predicate in the round 1, in cleartext to the
servers. Let x = r + f be the indexes that are transmitted to the
servers, where r and f be the real and fake indexes, respectively.
Note that the maximum value of the attribute Ac over x tuples may
be more than the maximum value over r tuples. Hence, the user
does the following computation to appropriately send the indexes:
The user arranges the x indexes in a

√
x ×
√
x matrix, where all

r real indexes appear before f fake indexes. Then, the user creates√
x groups of tuples ids, say g1, g2, . . . , g√x, where all tuples ids

in an ith row of the matrix become a part of the group gi. Note
that in this case only one of the groups, say gmix , may contain both
the real and fake indexes. Now, the user asks the server to find the
maximum value of the attribute Ac in each group except for the
group gmix and to fetch all

√
x tuples of the group gmix .

Server. For each group, gj , except the group gmix , each server i
finds the maximum value of the attribute Ac by looking into the
attribute CTID of the relation S(R2)i and results in a tuple, say
〈S(tk), S(value)〉i. Further, the server i fetches all

√
x tuples of

the group gmix . Then, the server i performs a join operation (based
on the attribute TID and SSTID, as performed in the second step
for answering unconditional maximum queries; see §7.1) between
all the tuples of S(R1)i and 2

√
x − 1 tuples obtained from the

relation S(R2), and returns 2
√
x − 1 tuples to the user. The user

finds the maximum value over the r real tuples. Note that 2
√
x− 1

tuples must satisfy a conditional maximum query; however, due to
space restrictions, we do not prove this claim here.

Note that this method, on one hand, hides the frequency-count;
on the other hand, it requires the servers and the user process more
tuples than the method that reveals the frequency-count.
Obliviously finding the indexes. For finding the indexes, each
server k executes the following operation: Index[i]k × (Ap[i]k ⊗
S(v)k), i.e., the server executes string-matching operations on each

11The adversary may already know the classification of tuples based on some criteria,
due to her background knowledge. For example, the number of employees working
in a department or the number of employees of certain names/age. Hence, revealing
the number of tuples satisfying a query does not matter a lot; however, revealing that
which tuples satisfy a query may jeopardize the data security/privacy.

1038

Table 9: An execution of the tuple retrieval verification.
EmpID′ Name′ Salary′ Dept′ TID o Ax Ay

106 47 1000 80 3 1 1(500+1233)=1733 1(-733+1233)=500
106 47 100000 120 2 0 0(400+100273)=0 0(-99873+100273)=0
107 19 5000 80 5 0 0(200+5211)=0 0(-5011+5211)=0
108 32 2000 51 4 0 0(600+2195)=0 0(-1595+2195)=0
109 30 1500 51 1 0 0(300+1690)=0 0(-1390+1690)=0
110 38 2000 51 6 0 0(100+2199)=0 0(-2099+2199)=0

op1 = 1733 op2 = 500

Table 10: Exp. 1. Average time and size for shared
data generation using single-threaded implementation
at the DB owner.

Tuples Time Size (in GB)
1M ≈ 10 mins |S(R1)| = 1.3, |S(R2)| = 0.3
6M ≈ 1.4 hours |S(R1)| = 14, |S(R2)| = 3

value of the desired attribute, say Ap, of the relation S(R1) and
checks the occurrence of the query predicate v. Then, the server
k multiplies the ith resultant of the string-matching operation by
the ith value of Index attribute of the relation S(R1). Finally,
the server sends all the n values of the attribute Index to the user,
where n is the number of tuples in the relation. The user interpo-
lates the received values and knows the desired indexes.

7.3 Verification of Maximum Query
Verifying only the maximum value of the tuple is trivial, since
〈S(value)〉i of S(R2)i is also a part of the attribute of Ac of
S(R1)i, and servers send a joined output of the relations (see step
2 in §7.1). Thus, servers cannot alter the maximum value. How-
ever, servers can alter other attribute values of the tuple. Thus, we
provide a method to verify the received tuple.
Verification of retrieved tuple. This method is an extension of the
sum verification method (as given in §6.1). The server computes
two functions, f1 and f2, in an oblivious manner, as follows:

op1 = f1(x) =
∑i=n

i=1 oi(xi + sij)

op2 = f1(x) =
∑i=n

i=1 oi(yi + sij)
i.e., the server executes the functions f1 and f2 on n values, de-
scribed below. In the above equations, oi is the output of the string-
matching operation carried on the ith value of the TID attribute,
and si,j be the ith (1 ≤ i ≤ n) value of the attribute j, where
1 ≤ j ≤ m. The server sends the difference of the outputs of the
functions f1 and f2 to the user. Particularly, the tuple verification
method works as follows:
The DB owner. The DB owner adds one value to each of the at-
tribute values of a tuple along with new attributes, say Ax and Ay .

Let A1 be an attribute having only numbers. For A1 attribute, the
newly added ith value in cleartext is same as the existing ith value
in A1 attribute. Let A2 be an attribute having English alphabets,
say attribute Name in Employee relation in Table 4. The new value
is the sum of the positions of each appeared alphabet in English
letters; for example, the first value in the attribute Name is John,
the DB owner adds 47 (10+15+8+14). When creating shares of
the two values at the ith position of the attribute A1 or A2, the
first value’s shares are created using the mechanism that supports
string-matching at the server, as mentioned in §2.1, and the second
value’s shares are created using SSS.

The ith values of the attributes Ax and Ay are two random num-
bers whose difference equals to −ai, where ai is the ith value ob-
tained after summing all the newly added values to each attribute
of the ith tuple. The values of the attributes Ax and Ay are secret-
shared using SSS. E.g., in Table 9, numbers show newly added
values to attributes Name′, Dept′, and random numbers (in bold-
face) of the attributes Ax and Ay in cleartext (a prime (′) symbol is
used to distinguish these values from the original attribute values).
Servers. Each server k executes the method for tuple retrieval as
given in step 2 in §7.1. Then, the server k executes functions f1 and
f2, i.e., adds all the m newly added values (one in each attribute)
to xi and yi of the attributes Ax and Ay , respectively, and then,
multiply the resultant of the string-matching operation carried on
TID attribute of the relation S(R1)k. Finally, the server k sends
the following two things to the user: (i) the tuple having the maxi-
mum value in the attribute Ac of the relation S(R1)k; and (ii) the
difference of outputs of the functions f1 and f2, say 〈diff f1f2〉k.

User. After interpolation, the user obtains the desired tuple and
a value, say Idiff f1f2. Like the DB owner, the user generates a
value for each of the attribute values of the received tuple (see the
first step above for generating values), compares against Isumf1f2,
and if it finds equal, the server has correctly sent the tuple.
Example. Table 9 shows verification process for the first tuple-id
of employee relation; see Table 4. Note that the values and compu-
tation are shown in the cleartext; however, the values are of secret-
share form and the computation will be carried on shares at servers.

8. EXPERIMENTS
This section evaluates the scalability of OBSCURE and compares

it against other SSS- and MPC-based systems. We used a 16GB
RAM machine as a DB owner, as well as, a user that communicates
with AWS servers. For our experiments, we used two types of AWS
servers – a relatively weaker 32 GB, 2.5 GHz, Intel Xeon CPU (Exp
2, 5), and a powerful 144GB RAM, 3.0GHz Intel Xeon CPU with
72 cores to study impact of multi-threaded processing (Exp 3).

8.1 OBSCURE Evaluation
Secret-share (SS) dataset generation. We used four columns (Or-
derkey (OK), Partkey (PK), Linenumber (LN), and Suppkey(SK))
of LineItem table of TPC-H benchmark to generate 1M and 6M
rows. To the best of our knowledge, this is the first such exper-
iment of SSS-based approaches to such large datasets. We next
explain the method followed to generate SS data for 1M rows. A
similar method was used for generating SS data for 6M rows.

The four columns of LineItem table only contain numbers: OK:
1 to 300,000 (1,500,000 in 6M), PK: 1 to 40,000 (200,000 in 6M),
LN: 1 to 7, and SK: 1 to 2000 (200,000 in 6M). The following steps
are required to generate SS of the four columns in 1M rows:

1. The first step was to pad each number of each column with zeros.
Thus, all numbers in a column contain identical digits, preventing
an adversary to know the distribution of values. E.g., after padding
1 of OK was 000,001. Similarly, values of PK and SK were padded.
We did not pad LN values, since they took only one digit.

2. The second step was representing each digit into a set of ten num-
bers, as mentioned in §2.1, having only 0s or 1s. For example,
000,001 (one value of OK attribute) was converted into 60 num-
bers, having all zeros except at positions 1, 11, 21, 31, 41, and 52.
Here, a group of the first ten numbers shows the first digit, i.e., 0,
a group of 11th to 20th number shows the second digit, i.e., 0, and
so on.12 Similarly, each value of PK, SK, and LN was converted.
We also added columns for TID, Index, count, sum, and maximum
verification, and it resulted in the relation R1. Further, we created
another relation, R2, with three attributes CTID, SSTID, and OK,
as mentioned in §4.

12One may use binary representation for representing secret-shares, since it is compact
as compared to unary representation. However, in binary representation, polynomial
degree increases significantly, when we perform string-matching operations. For ex-
ample, consider a decimal number, say n (= 400), having ld (= 3) digits in decimal,
and takes lb (= 9) digits in binary (110010000). Here, representing 400 using unary
and binary representations will take 30 and 9 numbers, respectively. However, when
the user wishes to perform the minimum computation by interpolating only the desired
answer, we need at least 2× ld +1 and 2× lb +1 servers for string-matching, when
using unary and binary representation, respectively.

1039

1D-Count 2-CE
Count

3-CE
Count

2-DE
Count

3-DE
Count

1D-Sum 2-CE
Sum

3-CE
Sum

2-DE
Sum

3-DE
Sum

UnC-Max
Det

UnC-Max
Tuple-Fetch

Cond-Max
Det

Cond-Max
Tuple-Fetch

0

200

400

600

800

1000

1200

1400
Ex

ec
ut

io
n

Ti
m

e(
s)

Obscure (1M Rows)
Obscure (6M Rows)

Figure 1: Exp 2. OBSCURE performance using a single-threaded
implementation on 32GB RAM, 2.5GHz Intel Xeon CPU.

3. The third step was creating SS of these numbers. We selected a
polynomial f(x) = secret value + a1x, where a1 was selected
randomly between 1 to 10M for each number, the modulus is cho-
sen as 15,000,017, and x was varied from one to fifteen to obtain
fifteen shares of each value. On R2, we implemented OP-SS on
OK attribute, and also generated fifteen shares of SSTID. Thus,
we got S(R1)i and S(R2)i, 1 ≤ i ≤ 15. (Exp 5 will discuss in
detail why are we generating fifteen shares.) For sum and tuple re-
trieval queries’ time minimization, we add four more attributes cor-
responding to each of the four attributes in LineItem table. A value
of each of the four attributes has only one secret-shared value, cre-
ated using SSS (not after padding). But, one can also implement
the same query on secret-shared values obtained after step 2.

4. Lastly, we placed ith share of S(R1) and S(R2) to ith AWS server.
Exp 1. Data generation time. Table 10 shows the time to generate
secret-shared LineItem table of 1M and 6M rows, at the DB owner
machine. Note that due to unary representation, the size of the data
is large; but, the data generation time of OBSCURE is significantly
less than an MPC system, which will be discussed in §8.2.
Exp 2. OBSCURE performance on a single-threaded implemen-
tation. This experiment explores OBSCURE on a relatively weaker
single-threaded machine with 32GB. We chose this machine since
(as will be clear in §8.2) the used MPC system can only work on
a local single-threaded machine. To be able to compare against
that we also execute OBSCURE on 32GB AWS servers. Note
that single-threaded implementation of OBSCURE incurs time over-
heads, which are significantly reduced when using many threads on
powerful servers; see next Exp 3. We executed count, sum, uncon-
ditional and conditional maximum queries on the LineItem table
having 1M and 6M rows using fifteen shares; see Figure 1. Note
that as the size of data increases, the time increases slightly more
than linearly. This is due to the unary representation that requires
10 more numbers (for 6M rows table) to cover one new additional
digit in all attribute values (except LN attribute). This increase re-
sults in additional multiplications during string-matching.
Count and sum queries. Figure 1 shows the time taken
by one-dimensional (1D), two/three-dimensional conjunctive-
equality (2CE/3CE), and two/three-dimensional disjunctive-
equality (2DE/3DE) count and sum queries. CE queries were ex-
ecuted on OK and LN, and DE queries involved OK, PK, and LN
attributes. Observe that as the number of predicates increases, the
computation time also increases, due to an increasing number of
multiplications. The time difference between computations on 1M
and 6M rows is about 6-7.4%.
Maximum queries. Figure 1 shows that determining only the maxi-
mum value is efficient due to OP-SS, in case of unconditional max-
imum queries (UnC-Max-Det, QMax1, see §7). Time for deter-
mining the maximum value for conditional (Cond-Max-Det) query
requires first executing a query similar to 1D/CE/DE sum query.
We executed 1D conditional maximum query. The time is slightly
more than executing 1D sum query, since Cond-Max-Det requires
to know the tuple-ids that satisfy the condition in relation S(R1),
and then, determining the maximum value from S(R2). Note that

1 2 4 8 16 32 48
Number of Threads

5

10

15

20

25

30

35

40

Ti
m

e(
se

c)

1D Count
2CE Count
3DE Count
1D Sum
2CE Sum
3DE Sum
Unc-Max
Data Fetch Time(1D)
Data Fetch Time(DE)
Data Fetch Time(Unc-Max)

(a) 1M rows.

1 2 4 8 16 32 48
Number of Threads

50

100

150

200

250

300

350

Ti
m

e(
se

c)

1D Count
2CE Count
3DE Count
1D Sum
2CE Sum
3DE Sum
Unc-Max
Data Fetch Time(1D)
Data Fetch Time(DE)
Data Fetch Time(Unc-Max)

(b) 6M rows.

Figure 2: Exp 3. Impact of parallelism, evaluated using AWS
servers of 144GB RAM, 3.0GHz Intel Xeon CPU, and 72cores.

in both UnC-Max-Det and Cond-Max-Det, we achieve the maxi-
mum efficiently, due to OP-SS, (while also preventing background-
knowledge-based attacks on OP-SS). The time difference between
fetching a tuple having the maximum value from 1M and 6M data
is about 5.5-6.6%.
Exp 3. OBSCURE performance on multi-threaded implemen-
tation. In OBSCURE, the processing time at each server can be
greatly reduced by parallelizing the computation. Since identical
computations are executed on each row of the table, we can use
multiple cores of CPU by writing a parallel program, which re-
duces the processing time. We wrote parallel programs (for 1D
count/sum, 3DE count/sum, and unconditional maximum queries)
that divide rows into blocks with one thread processing one block,
and then, the intermediate results (generated by each thread) are re-
duced by the master thread to produce the final result. For this ex-
periment having 15 shares, we used AWS servers with 144GB RAM,
3.0GHz Intel Xeon CPU with 72 cores, and varied the degree of
parallelism up to 48 (number of parallel threads). Increasing more
threads did not provide speed-up, since the execution time reached
close to the time spent in the sequential part of the program (Am-
dahl’s law); furthermore, the execution time increases due to thread
maintenance overheads. Figure 2 shows as the number of threads
increases, the computation time decreases. Observe that the data
fetch time from the database remains (almost) same and less than
the processing time. Also, the computation time reduces signifi-
cantly due to using many threads on powerful servers (Figure 2),
than using a single thread on weaker servers (see Figure 1).
Exp 4. Impact of local processing at a resource-constrained
user. To show the practicality of OBSCURE, we did an experiment,
where a resource-constrained user downloads the entire encrypted

1040

1D-Count 2CE
Count

3DE
Count

1D-Sum 2CE
Sum

3DE
Sum

UnC-Max
Det

UnC-Max
Tuple-Fetch

Cond-Max
Det

Cond-Max
Tuple-Fetch

0

50

100

150

200

250
Ex

ec
ut

io
n

Ti
m

e(
s)

3
3

3

3

3

3

3

3 3

3

5
5

5

5

5

5

5

5
5

5

11
11

11

11

11

11

11

11
11

11

15
15

15

15

15

15

15

15 15

15

User Processing Time
Server Processing Time

Figure 3: Exp 6. Impact of the number of shares.
data and executes the computation at their end after decrypting the
data and loading into a database system. We restricted the user to
have a machine with 1GB RAM and single core 1.35GHz CPU us-
ing docker, unlike multicore servers used in Exp 3, and executed
the same queries that we executed in Exp 3. With this setup, de-
cryption time at the user side was 54s and 259s for 1M and 6M
rows, respectively. Further, loading decrypted data into a database
system (MySQL) at the user-side took 20s and 120s for 1M and 6M
rows, respectively. All queries used in Exp 2 were executed in 1-5s
for both 1M and 6M rows. Note that the user computation time is
significantly higher compared to the computation time of queries in
Exp 3. For example, end-to-end 1D count query execution in Exp
3 over 6M secret-shared rows took 26s (see Figure 2b), while the
same query took 385s when decrypting and loading the data into
MySQL at the resource-constrained user.
Exp 5. Impact of the number of shares. Now, we discuss the im-
pact of a different number of shares. For this experiment, we used
3, 5, 11, and 15 shares of the data. We show results of 1M rows.
Figure 3 shows the computation time at the server and user, when
having different shares, where black and white parts show the com-
putation time at the user and server, respectively, and a bar shows
the entire processing time. The results demonstrate two tradeoffs:
between the number of shares and computation time at a user, and
between the number of shares and the amount of data transferred
from a server to a user. As the number of shares decreases, the
computation time at the user increases; since the string-matching
operation results in the polynomial degree to be doubled, and if
servers do not have enough shares, they cannot compute the final
answer and may require more than one round of communication
with the user to compute the final SS aggregate value. Thus, the
communication cost also increases.

From Figure 3, it is clear that as the number of shares increases,
the computation time at user decreases and at the server increases.
The total processing time also decreases for all queries, except 1D-
Count, 2CE-Count, 1D-Sum, and 2CE-Sum. Due to space restric-
tions, we do not provide a detailed description of Figure 3, which
is discussed in the full version of the paper [32].
Exp 6. Impact of communication cost. An interesting point was
the impact of the communication cost. Since servers send data to
the user over the network, it may affect the overall performance.
As mentioned in Exp 4., using 3 servers, the communication cost
increases as compared to 15 servers. For instance, in executing DE
count/sum queries over PK, LN, and OK attributes took the highest
amount of data transfer when using 3 servers. Since the number of
digits of the three predicates was 12 in 1M rows and 14 in 6M rows,
each server sends 12 files (each of size 7MB) in case of 1M rows
and 14 files (each of size 48MB). Hence, the server to user commu-
nication was 84MB/server in case of 1M rows and 672MB/server
in case of 6M rows. However, in case of 15 servers, the server
to user communication was 7MB/server in case of 1M rows and
48MB/server in case of 6M rows. When using slow (100MB/s),
medium (500MB/s), and fast (1GB/s) speed of data transmission,
the data transmission time in case of 15 servers was negligible.

However, in case of 6M, it took 7s, 1s, less than 1s per server,
respectively, on slow, medium, and fast transmission speed.

Observe that the computation time at the server was at most 47s
in any query on 6M rows (when using 72 core servers; Figure 2b)
that was significantly more than the communication time between
user and servers. Thus, the communication time does not affect the
servers’s computation time, which was the bottleneck.
Note. Experiments on result verification are omitted from here due
to space restrictions and are given in [32].

8.2 Comparing with Other Works
The previous works on SSS-based techniques either did not re-

port any experiments [25, 23] or scaled to only a very small dataset,
or used techniques that, while efficient, were insecure [26, 45].
For instance, [26, 45] are both vulnerable to access-pattern attacks.
Furthermore, these approaches achieve efficient query processing
times (e.g., 90 ms for aggregation queries on databases of size
150K) by executing queries on SS data identically to that on cleart-
ext, which requires user sides to retain polynomials that were used
to generate SS-data. Thus, as mentioned in §2.2, the DB owner
keeps n×m polynomials, where n and m are the number of tuples
and attributes in a relation, respectively.

MPC-based methods, e.g., [15, 14, 10, 13], are secure; however,
they also do not scale to large datasets due to high overhead of
share creation and/or query execution. For example, MPC-based
Sepia [15] used 65K values for only count operation without any
condition with the help of three to nine servers, and recent pa-
per [14] used only 500K values for count and sum of numbers. Note
that Sepia [15] and [14] do not support conjunctive/disjunctive
count/sum queries.

We evaluated one of the state-of-the-art industrial MPC-based
systems, called system Z to get a better sense of its performance
compared to OBSCURE, whose performance is given in Figure 1.
We note that MPC systems, as mentioned in §1, are not available
as open source (and often not even available for purchase, except
in the context of a contract). We were able to gain access to Sys-
tem Z, due to our ongoing collaboration with the team under the
anonymity understanding. We installed system Z (having three SS
of LineItem) on a local machine, since it was not allowed to install
it on AWS. Also, note that we cannot directly compare system Z
and OBSCURE, since system Z uses a single machine to keep all
three shares. Inserting 1M rows in system Z took 9 hours, while
the size of SS data was 1GB. We executed the same queries using
the system Z, which took the following time: 532s for 1D count,
808s for CE count, 1099s for DE count, 531s for 1D sum, 801s for
CE sum, 1073s for DE sum, 2205s for UnC-Max-Tuple-Fetch, and
2304s for Cond-Max-Tuple-Fetch.

9. CONCLUSION
We proposed information-theoretically secure and communica-

tion efficient aggregation queries (count, sum, and maximum hav-
ing single dimensional, conjunctive, or disjunctive query predi-
cates) on a secret-shared dataset outsourced by either a single DB
or multiple DB owners. We proposed efficient result verification al-
gorithms to protect against malicious adversarial cloud servers that
deviate from the algorithm, due to software/hardware bugs. Our
experimental results on 1M rows and 6M secret-shared rows us-
ing AWS servers show better performance as compared a simple
strategy of downloading encrypted data, decrypting, and then, exe-
cuting the query at a resource-constrained user. Further, we showed
a tradeoff between the number of shares and performance. In the
future, we plan to extend this work on GPU-based efficient join and
nested queries.

1041

10. REFERENCES
[1] MariaDB, available at:https://mariadb.com/.
[2] https://shattered.io/.
[3] Stealth Pulsar, available

at:http://www.stealthsoftwareinc.com/.
[4] https://www.csoonline.com/article/3237685/identity-

management/biometrics-and-blockchains-the-horcrux-
protocol-part-3.html.

[5] https://bitcoinexchangeguide.com/binance-pays-6-cent-fee-
for-moving-204-million-worth-of-ethereum-eth/.

[6] https://cryptoslate.com/thailands-democrat-party-holds-first-
ever-election-vote-with-blockchain-technology/.

[7] https://blockonomi.com/coinbase-moves-5-billion-crypto/.
[8] R. Agrawal and C. M. Johnson. Securing electronic health

records without impeding the flow of information. I. J.
Medical Informatics, 76(5-6):471–479, 2007.

[9] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Order-preserving encryption for numeric data. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, Paris, France, June 13-18, 2004,
pages 563–574. ACM, 2004.

[10] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm,
K. Nielsen, J. I. Pagter, N. P. Smart, and R. N. Wright. From
keys to databases - real-world applications of secure
multi-party computation. IACR Cryptology ePrint Archive,
2018:450, 2018.

[11] S. Bajaj and R. Sion. Correctdb: SQL engine with practical
query authentication. PVLDB, 6(7):529–540, 2013.

[12] A. Beimel. Secret-sharing schemes: A survey. In Coding and
Cryptology - Third International Workshop, IWCC 2011,
Qingdao, China, May 30-June 3, 2011. Proceedings, pages
11–46, 2011.

[13] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
S. Jajodia and J. López, editors, Computer Security -
ESORICS 2008, 13th European Symposium on Research in
Computer Security, Málaga, Spain, October 6-8, 2008.
Proceedings, volume 5283 of Lecture Notes in Computer
Science, pages 192–206. Springer, 2008.

[14] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth.
Practical secure aggregation for privacy-preserving machine
learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 1175–1191. ACM, 2017.

[15] M. Burkhart, M. Strasser, D. Many, and X. A. Dimitropoulos.
SEPIA: privacy-preserving aggregation of multi-domain
network events and statistics. In 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010,
Proceedings, pages 223–240. USENIX Association, 2010.

[16] R. Canetti. Security and composition of multiparty
cryptographic protocols. J. Cryptology, 13(1):143–202,
2000.

[17] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively
secure multi-party computation. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24,
1996, pages 639–648, 1996.

[18] C. Chu and W. Tzeng. Efficient k-out-of-n oblivious transfer
schemes with adaptive and non-adaptive queries. In Public
Key Cryptography - PKC 2005, 8th International Workshop

on Theory and Practice in Public Key Cryptography, Les
Diablerets, Switzerland, January 23-26, 2005, Proceedings,
pages 172–183, 2005.

[19] R. M. Corless and N. Fillion. A graduate introduction to
numerical methods. AMC, 10:12, 2013.

[20] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In 14th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March
27-29, 2017, pages 259–282, 2017.

[21] R. Cramer, I. Damgård, and J. B. Nielsen. Secure Multiparty
Computation and Secret Sharing. Cambridge University
Press, 2015.

[22] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft.
Unconditionally secure constant-rounds multi-party
computation for equality, comparison, bits and
exponentiation. In Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, pages 285–304, 2006.

[23] S. Dolev, N. Gilboa, and X. Li. Accumulating automata and
cascaded equations automata for communicationless
information theoretically secure multi-party computation:
Extended abstract. In Proceedings of the 3rd International
Workshop on Security in Cloud Computing, SCC@ASIACCS
’15, Singapore, Republic of Singapore, April 14, 2015, pages
21–29, 2015.

[24] S. Dolev, Y. Li, and S. Sharma. Private and secure secret
shared MapReduce (extended abstract). In Data and
Applications Security and Privacy XXX - 30th Annual IFIP
WG 11.3 Conference, DBSec 2016, Trento, Italy, July 18-20,
2016. Proceedings, pages 151–160, 2016.

[25] F. Emekçi, D. Agrawal, A. El Abbadi, and A. Gulbeden.
Privacy preserving query processing using third parties. In
Proceedings of the 22nd International Conference on Data
Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA,
page 27, 2006.

[26] F. Emekçi, A. Metwally, D. Agrawal, and A. El Abbadi.
Dividing secrets to secure data outsourcing. Inf. Sci.,
263:198–210, 2014.

[27] J. Frankle, S. Park, D. Shaar, S. Goldwasser, and D. J.
Weitzner. Practical accountability of secret processes. In 27th
USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018., pages 657–674,
2018.

[28] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.
Keyword search and oblivious pseudorandom functions. In
Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings, pages 303–324, 2005.

[29] C. Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009.

[30] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion
routing. Commun. ACM, 42(2):39–41, 1999.

[31] S. Goldwasser and S. Micali. Probabilistic encryption. J.
Comput. Syst. Sci., 28(2):270–299, 1984.

[32] P. Gupta, Y. Li, S. Mehrotra, N. Panwar, S. Sharma, and
S. Almanee. OBSCURE: Information-theoretic oblivious and
verifiable aggregation queries. Technical Report, UCI, 2019.
https://isg.ics.uci.edu/publications/.

[33] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing
SQL over encrypted data in the database-service-provider
model. In Proceedings of the 2002 ACM SIGMOD

1042

https://mariadb.com/
http://www.stealthsoftwareinc.com/
https://isg.ics.uci.edu/publications/

International Conference on Management of Data, Madison,
Wisconsin, USA, June 3-6, 2002, pages 216–227, 2002.

[34] M. A. Hadavi, E. Damiani, R. Jalili, S. Cimato, and
Z. Ganjei. AS5: A secure searchable secret sharing scheme
for privacy preserving database outsourcing. In Data Privacy
Management and Autonomous Spontaneous Security, 7th
International Workshop, DPM 2012, and 5th International
Workshop, SETOP 2012, Pisa, Italy, September 13-14, 2012.
Revised Selected Papers, pages 201–216, 2012.

[35] W. Jiang, C. Clifton, and M. Kantarcioglu. Transforming
semi-honest protocols to ensure accountability. Data Knowl.
Eng., 65(1):57–74, 2008.

[36] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks
on property-preserving encrypted databases. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6,
2015, pages 644–655, 2015.

[37] C. Orlandi. Is multiparty computation any good in practice?
In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, ICASSP 2011,
May 22-27, 2011, Prague Congress Center, Prague, Czech
Republic, pages 5848–5851, 2011.

[38] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: processing queries on an
encrypted database. Commun. ACM, 55(9):103–111, 2012.

[39] A. Rajan, L. Qin, D. W. Archer, D. Boneh, T. Lepoint, and
M. Varia. Callisto: A cryptographic approach to detecting
serial perpetrators of sexual misconduct. In Proceedings of
the 1st ACM SIGCAS Conference on Computing and
Sustainable Societies, COMPASS 2018, Menlo Park and San
Jose, CA, USA, June 20-22, 2018, pages 49:1–49:4, 2018.

[40] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[41] D. X. Song, D. A. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In IEEE
Symposium on Security and Privacy, pages 44–55. IEEE
Computer Society, 2000.

[42] B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao.
Privacy-preserving computation and verification of aggregate
queries on outsourced databases. In Privacy Enhancing
Technologies, 9th International Symposium, PETS 2009,
Seattle, WA, USA, August 5-7, 2009. Proceedings, pages
185–201, 2009.

[43] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data. PVLDB,
6(5):289–300, 2013.

[44] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked
keyword search over encrypted cloud data. In 2010
International Conference on Distributed Computing Systems,
ICDCS 2010, Genova, Italy, June 21-25, 2010, pages
253–262, 2010.

[45] T. Xiang, X. Li, F. Chen, S. Guo, and Y. Yang. Processing
secure, verifiable and efficient SQL over outsourced
database. Inf. Sci., 348:163–178, 2016.

[46] S. Yu, C. Wang, K. Ren, and W. Lou. Attribute based data
sharing with attribute revocation. In D. Feng, D. A. Basin,
and P. Liu, editors, Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security,
ASIACCS 2010, Beijing, China, April 13-16, 2010, pages
261–270. ACM, 2010.

1043

	Introduction
	Background
	Building Blocks
	Comparison with Existing Work

	Preliminary
	The Model
	Adversarial Model
	Security Properties
	Obscure Overview

	Data Outsourcing
	Count Query and Verification
	Verifying Count Query Results

	Sum and Average Queries
	Result Verification of Sum Queries

	Maximum Query
	Unconditional Maximum Query
	Conditional Maximum Query
	Verification of Maximum Query

	Experiments
	Obscure Evaluation
	Comparing with Other Works

	Conclusion
	References

