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ABSTRACT
Social platforms became a major source of rumours. While rumours
can have severe real-world implications, their detection is notori-
ously hard: Content on social platforms is short and lacks semantics;
it spreads quickly through a dynamically evolving network; and
without considering the context of content, it may be impossible to
arrive at a truthful interpretation. Traditional approaches to rumour
detection, however, exploit solely a single content modality, e.g.,
social media posts, which limits their detection accuracy. In this
paper, we cope with the aforementioned challenges by means of a
multi-modal approach to rumour detection that identifies anomalies
in both, the entities (e.g., users, posts, and hashtags) of a social
platform and their relations. Based on local anomalies, we show
how to detect rumours at the network level, following a graph-based
scan approach. In addition, we propose incremental methods, which
enable us to detect rumours using streaming data of social platforms.
We illustrate the effectiveness and efficiency of our approach with a
real-world dataset of 4M tweets with more than 1000 rumours.
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1. INTRODUCTION
Social platforms became widely popular as a means for users to

share content and interact with other people. Due to their distributed
and decentralised nature, content on social platforms is propagated
without any type of moderation and may thus contain incorrect
information. Wide and rapid propagation of such incorrect informa-
tion quickly leads to rumours that may have a profound real-world
impact. For instance, in April 2013, there was rumour about two
explosions in the White House, injuring also Barrack Obama [55].
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The rumour was fuelled by content posted using a hacked Twitter
account associated with a major new agency. The resulting panic
had major economic consequences, such as a $136.5 billion loss at
the stock market. This incident highlights the need for early and
accurate rumour detection, in particular on social platforms.

It is notoriously hard to detect rumours [47]. Posts on social
platforms are short and lack semantics. For instance, tweets have a
limited number of characters, and comprise slang and spelling mis-
takes. Hence, traditional techniques to assess the credibility of (long,
well-written) documents are of limited use for social platforms. Also,
user interactions at unprecedented scale lead to rumours spreading
quickly. Earliness of rumour detection is as important as detection
accuracy. Moreover, social platforms are dynamic. Content is posted
continuously, so that rumour detection cannot exhaustively collect
data before giving results, but needs to work with streaming data.
Finally, posts on social platforms are contextual. A post in isolation
may not provide sufficient information for rumour detection. Instead,
modalities such as user backgrounds, hashtags, cross-references, and
user interactions must be considered to improve detection accuracy.

Several debunking services such as snopes.com have been es-
tablished to expose rumours and misinformation. They harness
collaborative user efforts to identify potential rumours, which are
then verified by experts. Due to such manual processing, the number
of potential rumours that can be assessed is limited and significant
time is needed for verification, which motivated work on automated
rumour detection. Given the short length of posts on social plat-
forms, rumour detection is often approached by grouping posts that
relate to a single event [30]. This does not work in an online setting,
though, since the posts related to an event are not available a priori.

Traditional rumour detection techniques tend to rely solely on the
textual information of posts, potentially combined with features on
post authors and their relations. However, focusing on one or two
modalities of posts on social platforms is insufficient. For instance,
users posting rumour-related content are often ignored by other
users, which is not directly visible in features that capture solely the
characteristics of a single user. In another example, posts circulating
among a group of users that believe in conspiracy theories are likely
to refer to rumours. Without information from outside the group, it
is impossible to know whether these posts are related to a rumour.

Against this background, we argue for a novel approach to rumour
detection that identifies anomalies on social platforms by compar-
ing data between peers and with the past. Such anomalies can be
observed for different modalities (e.g., users, tweets) and at varying
levels of granularity. For example, a sudden increase or decrease in
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the number of followers of a user may be related to the user spread-
ing rumours. Also, within a group of users, the credibility of one
user being significantly lower than their peers may stem from the
propagation of rumours. Moreover, relations between entities (e.g.,
users, posts, hashtags, links) may hint at anomalies, e.g., differences
in time and location mentioned in a tweet and in a linked article.

In this paper, we present models and methods to realise the idea of
detecting rumours based on anomalies. To this end, we follow a data
management approach: We ground rumour detection in algorithms
that work on a generic graph representation of social data, thereby
achieving a solution that is applicable for any type of social platform.
We first show how to identify anomalies locally, by assessing entities
and relations of a social platform in comparison to their peers and
to their past. Yet, acknowledging the inherent randomness of social
platforms, anomalies are then viewed at a broader scale. To conclude
on the spread of rumours, which is deemed more important than their
classification [47], we incorporate the vicinity of local anomalies.

Our contributions and the structure of the paper (following a
discussion of some background in §2) are summarised as follows:
• Social Platform Model and Rumour Detection (§3). Based on

a model for social platforms, we develop a general process to
detect rumours based on local and global anomalies.
• Local Anomaly Detection (§4). We propose a non-parametric

method for anomaly detection at the level of individual entities,
based on differences between (i) current and past observations
related to an entity, and (ii) the entity and its peers.
• Global Anomaly Detection (§5). We lift anomaly detection to

groups of entities, taking into account relations between them.
• Streaming Setting (§6). We show how to apply our approach for

streaming data by incrementally computing anomaly scores on
the local and global level.

An evaluation of our approach with more than 4M real-world tweets,
spanning more than 1000 rumours, is presented in §7. We review
related work in §8 and conclude in §9.

2. BACKGROUND
Anomalies in social media. Abnormal propagation of information
on social platforms can be classified as different types of anomalies,
including hypes, fake news, satire news, disinformation, misinfor-
mation, and rumours [57]. For hypes, information is propagated
in cascades that accidentally ‘blow-up’ on social platforms, e.g.,
related to popular events. Rumours, in turn, originate from the fact
that people tend to exaggerate what they dislike [6]. Their veracity
needs to be assessed, which is commonly done by assigning a trust
score to entities, such as users and posts [2].

Here, we focus on detecting rumours. While hypes and rumours
share some characteristics, they differ in how information is propa-
gated. In hypes, information is spread randomly and chaotically. As
revealed in a recent survey [47], however, rumours are propagated in
a channelled manner, spreading ‘farther, faster, and deeper’ through
interactions of actual users rather than bot accounts.

Type of anomalies differ in their sets of indicative signals. For
example, detection of hypes (e.g., breaking news) focuses on peak
volume of social posts and sharing activities [36, 37]. Spam detec-
tion of online reviews, in turn, uses user signals, such as average
rating, number of reviews, and selectivity [51]. Our approach for
rumour detection looks at inconsistency signals, exemplified below.

Twitter as an example. While we use Twitter as an example of
a social platform throughout the paper, our model is applicable to
other social platforms [40], as it is based on a universal graph rep-
resentation (§3), generic statistical measures to compute anomalies
(§4), and a graph-based anomaly detection algorithm (§5).

Figure 1: Multi-modal social graph

Consider a snapshot of Twitter social graph, as shown in Fig. 1. It
includes users, tweets, hashtags, and linked articles. Each entity has
different features, e.g., a user has a registration date and a number
of followers. Entities are connected by relations. For instance, the
relation between a tweet and an article indicates that the content of
the tweet contains a link to that article. Moreover, each relation has
an attribute value, e.g., the tweet-article relation has an attribute that
indicates the difference between the publication dates of the tweet
and the article, respectively.

Rumours are often manifested in anomalies related to entities
and their relations. In Fig. 1, one may observe that the highlighted
user has a registration date that is significantly newer than those of
related users. At the same time, the number of followers is very high,
compared to the historical record of the user. Other entities in this
example are also suspicious, due to anomalies. For the highlighted
tweet, the number of retweets is suddenly higher than in the past, as
is the number of mentions for the highlighted linked article.

The above local anomalies provide a first signal for rumour detec-
tion. Yet, in isolation, these signals are not reliable. For instance, a
user sparking a hype will also experience a sudden increase in the
number of followers. We therefore need to consider global anoma-
lies that comprise connected entities for which local anomalies have
been observed. In the example, a rumour-related user is expected to
post a rumour-related tweet, which links to a rumour-related article.
Moreover, these connections between entities are also meaningful
for rumour detection. For instance, in Fig. 1, the time difference
between the highlighted tweet and linked article is suspicious, as
is the difference between the regular linguistic style of this user
(derived from past tweets) and the style of this particular tweet.

In this work, we provide the methods to realise the above idea:
We exploit local anomalies and, based thereon, global anomalies
among the entities of a social platform to reliably detect rumours.

3. MODEL AND APPROACH
Below, we present a model to capture entities of a social platform

and their relations (§3.1). We then define the rumour detection
problem (§3.2) and outline our approach to address it (§3.3).

3.1 A Model of Social Platforms
A social platform comprises many entities that are linked to each

other by relations.
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Entities (nodes). Our model comprises entities of specific types,
i.e., modalities, such as tweets, links, users, and hashtags. Entities
are modelled using feature vectors, where the features depend on the
entity type. For the example in Fig. 1, each user has registration date
and number of followers as features. While we limit the discussion
to the above modalities in the remainder of this paper, our model
is generic in the sense that further modalities such as images and
videos [27] can be incorporated.
Relations (edges). Characteristics of entities in isolation are not
sufficient to detect rumours. The relations between them provide a
richer picture and thus can be expected to be beneficial for rumour
detection. Each relation is also modelled by a feature vector, which
is specific to the the type (or modality) of the relation. For the
example in Fig. 1, each tweet-article relation has the time difference
between the publication times of tweets and linked articles.
Multi-modal social graph. A multi-modal social graph, or social
graph, is composed of modalities, entities, and relations between
entities. We denote by D = {D1, . . . ,Dn} a set of entity types, while
V =V1∪ . . .∪Vn is a set of entities, such that Vi is the set of entities
of type Di. Similarly, C ⊆ [D]2 = {C1, . . . ,Cm} is a set of relation
types ([D]2 being the 2-element subsets of D), E = E1∪ . . .∪Em are
sets of relations, where Ei is the set of relations of type Ci.

Based thereon, a social graph is defined as G=(Q,V,E, f ), where
Q = D∪C is called the set of modalities of G. The feature infor-
mation f of entities and relations is used to capture rumour signals
in a social graph. Formally, f = { f1, . . . , fn+m} is a set of mapping
functions, where fi : Qi → Rqi defines an qi-dimensional feature
vector fi(x) for each element x of the modality Qi.

The notion of a social graph enables us to address rumour detec-
tion with techniques for data management. As such, the developed
algorithms are also applicable to data of social platforms that can be
transformed to a graph representation [54, 45, 23, 42].

3.2 Rumour Detection
In a social graph, rumours materialise for a subset of its entities.

The definition of this subset is not known, so that its identification is
referred to as the rumour detection problem. That is, there is some
(unknown) function that assigns truth values to entities (regular or
rumourous), which shall be approximated.

Problem Statement Given a social graph G = (Q,V,E, f ) and a
ground-truth set R∗ ⊆ Q, the rumour detection problem is to find
a label function l : Q → {1,0} to categorize which entities are
rumourous, such that detection coefficient is maximized:

|R∗∩R|
|R∗∪R|

with R = {x ∈ Q | l(x) = 1}.

While the above definition is independent of the type of entity that is
considered rumourous, in the remainder, we focus on the detection
of rumourous tweets. The reason being that there is no clear-cut
truth function to label other entities. For example, users may spread
rumours in some tweets, but propagate regular information in others.

3.3 Approach Overview
Addressing the above problem requires us to overcome the trade-

off between accuracy and completeness, which is difficult [12]. A
common strategy is to first focus on completeness and subsequently
optimize the accuracy of rumour detection. Filtering out false posi-
tives is often easier than finding additional true positives.

Following this line, we first strive for completeness by collecting
all rumourous signals in data features: The more anomalous a feature
of a tweet, the more rumourous it is. However, such a feature-based
approach alone will not yield high accuracy of rumour detection.

Figure 2: Rumour as Anomaly Detection Process

Since there is always randomness and noise in the data of a social
platform, we conclude that a tweet is rumourous only if it is part of
a rumourous graph structure. For example, in Fig. 1, the highlighted
subgraph denotes such a structure for the respective tweet, capturing
rumourous context related to a user, hashtag, and linked article.

Retrieving all rumour signals from a social graph, we then re-
duce false positives by cross-checking between the signals, while
incorporating their contexts. More precisely, we use the structural
information of a social graph (i.e. relations between entities) to find
a subgraph that is most rumourous. The tweets contained in this
subgraph are then considered to be the actual rumour.

Rationale. Our approach is driven by the following observations:
• Identifying solely individual rumourous tweets ignores the ru-

mour structure, i.e., it neglects that a cluster of rumourous tweets
denotes a single rumour. Hence, rumour detection shall incorpo-
rate the co-occurrence of rumourous tweets as part of a rumour.
• Identifying rumours solely on the level of tweets neglects the

interplay of modalities in rumour propagation. A social graph
defines complex relations between entities, so that the identifi-
cation of rumourous tweets, e.g., leads to the identification of
rumourous users, hashtags, and links. Hence, the structure of
a social graph shall be exploited to assess the propagation of
rumourous information. This way, the need to detect explicit
events by aggregating entities is eliminated, which is a common
first step in traditional rumour detection [38].

Framework. Against this background, we design a two-step rumour
detection process, illustrated in Fig. 2. In a first step, we aim to
detect local anomalies in entities and relations. In a second step,
these local anomalies and the relations in the graph enable the
detection of rumours at the subgraph level. Below, we summarise
the two steps, while their details are given in §4 and §5, respectively.

Local anomaly detection. First, we design a function that assigns
an anomaly score to each entity. We argue that an anomaly scoring
shall satisfy the following requirements:

(R1) Completeness: In order to eliminate false negatives in ru-
mour detection, the identification of anomalies in the data shall
be comprehensive. That is, complementary angles to identify
deviations from expected observations should be considered.

(R2) Uniformity: For entities of all modalities, there shall be a
uniform scoring domain (independent of the number of fea-
tures), with a uniform ordering (lower value indicating more ru-
mourousness), and a uniform distribution (scores are uniformly
distributed in [0,1]). The latter is important as thresholding for
rumour detection is challenging for non-uniform distributions.

(R3) Non-parametric: We assume that features follow an unknown
baseline distribution. It is estimated based on the data and serves
to assess the level of anomalousness per entity.

Global anomaly detection. Second, we rely on the detected local
anomalies and aim at the detection of global anomalies, which
indicate rumours. This shall incorporate the following requirements:
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(R4) Cross-checking: In order to avoid false positives, rumourous-
ness between neighbouring entities shall be cross-checked in
the social graph. As content on social platforms is dynamic
and rumours may propagate very quickly, a rumourous entity
is expected to affect its neighbours immediately. Hence, global
anomaly detection shall consider the context of local anomalies.

(R5) Structuredness: Any algorithmic solution to detect global
anomalies shall acknowledge the structure of rumours. The
‘rumour-related’ parts of a social graph, in terms of rumourous
information that jointly denotes a rumour, shall be detected.

(R6) Non-parametric: The scoring of a global anomaly shall not
assume any prior distribution of local anomaly scores. This
supports multi-modality and robustness to different datasets.

4. LOCAL ANOMALY DETECTION
This section is devoted to the computation of local anomaly scores

in a social graph. Guided by the above requirements (R1, R2, R3),
we first show how to construct features for identifying rumours
(§4.1). Then, we introduce history-based anomaly scores (§4.2) and
similarity-based anomaly scores (§4.3). Based thereon, a unified
anomaly score is derived for each graph element (§4.4).

4.1 Features to Identify Rumours
Feature engineering is the only domain-specific step of our ap-

proach, which we illustrate here for the case of Twitter. We dis-
tinguish history-based and similarity-based features. The former
capture differences between the current and past state of an entity.
The latter help to cross-check the differences between entities and
relations of the same type. Specifically, we consider the following
features per modality, see also Table 1:
• User: The registration age and credibility score are considered

indicators for rumours, since users spreading rumours tend to
create new accounts to hide their identity. Moreover, sudden
changes in the frequency of status updates, the number of fol-
lowers, and the number of #friends may be related to rumours.
• Tweet: We consider keywords and the linguistic style. Tweets

that are subjective or emotional are more likely to be rumour-
related as they aim to provoke strong emotions to promote shar-
ing. Also, the number of retweets may indicate rumours.
• Link: Articles linked in tweets may indicate rumours, which we

assess based on the credibility score and linguistic style of the
linked source and article, respectively. Furthermore, the number
of mentions over time is used as a feature.
• Hashtag: The popularity, as measured by a semantic rank-

ing [10], and sudden changes in the number of usages of a
hashtag are expected to be rumour-related.

We further consider the features of relations between entities:
• Tweet-Link: The time, location, and event mentioned in a tweet

may be different from the respective details given in the linked
article. Also, the linguistic style of the tweet may be different
from the one of the linked article.
• User-Tweet: The linguistic style of a tweet may differ from the

regular style of the user.
• User-Link: The source linked in a tweet is anomalous.
• User-Hashtag: The hashtag is novel, i.e., it has not been used by

the user before.
• Link-Hashtag: The hashtag has been mentioned in the linked

article very frequently.
While some of the features are static (similarity-based), others are
dynamic (history-based), so that they are derived from time snap-
shots using streaming APIs, such as [32]. We compute the features
using established methods, whose details are described in §7.2.

Table 1: Features to identify local anomalies.

Element Feature Anomaly Type

E
nt

iti
es

User

registration age similarity-based
credibility score similarity-based
status frequency history-based
#followers history-based
#friends history-based
#tweets history-based

Tweet
keywords similarity-based
linguistic style similarity-based
#retweet history-based

Link
credibility score similarity-based
linguistic style similarity-based
#mentions history-based

Hashtag popularity score similarity-based
#usages history-based

R
el

at
io

ns

Tweet-Link

time history-based
location similarity-based
event similarity-based
style similarity-based

User-Tweet linguistic style similarity-based

User-Link source similarity-based

User-Hashtag novelty similarity-based

Link-Hashtag mentioning similarity-based

Using the above features independently may lead to false positives.
For instance, although rumours usually have a specific linguistic
style, the reverse is not always true as, e.g., news about tragedies
also adopt an emotional style. To mitigate such effects, we consider
the above diverse set of features, which addresses requirement R1.

4.2 History-based Scoring
An anomaly score may be based on the differences between the

current and past values of a feature vector. To this end, we establish
a baseline distribution for each attribute to represents the normal
behaviour, in the absence of any rumour. Then, based on the baseline
distribution and the current feature values, we estimate an empirical
p-value to measure the anomalousness of a feature. Aggregating
these values, we asses the anomalousness of an entity or relation.

Deriving historic data. To derive historic values of features of
entities or relations, we apply a temporal window. For an entity or
relation x, the historic data is denoted by Xt = {x1, . . . ,xt}, where all
xi are temporal snapshots of x. This way, historic data of the same
length is considered for different history-based features of x, which
enables the integration of features with varying temporal properties.
Yet, t is not fixed across entities or relations, so that historic data
of different lengths may be incorporated for different modalities.
Note that collecting historic data is straight-forward for common
platforms. Details on our data collection can be found in §7.2.

Anomaly score of a history-based feature. Our computation is
based on the following null hypothesis: If there is no rumour and we
select a random observation from the past, how likely is it that its
value is greater than or equal the current one? Based on historic data,
the anomaly score of a feature j ∈ [1,qi] of an element (entity or
relation) x ∈Qi at timestamp t is defined as the statistical confidence
degree (i.e., the p-value, the lower the better):

pT ( fi, j(xt)) =
|{xr ∈ Xt−1 : fi, j(xr)≥ fi, j(xt)}|

|Xt−1|
(1)

where fi, j(xt) refers to the j-th component of the feature vector
fi(xt) of an element x at timestamp t. In other words, the p-value is
computed based on the number of past values fi, j(xr) that are greater
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than the current observation fi, j(xt). This is a non-parametric statis-
tical measure (addressing requirement R3), since it does not assume
any prior distribution on the historic data.

Example 1. Consider a Twitter user @jacobawohl (x), who is re-
lated to rumours about the Las Vegas shooting in 2017 [4]. The num-
ber of active followers (feature 1) and the number of tweets (feature
2) of the user at three consecutive time points is {4.72K,294,7.03K}
and {102,43,51} respectively. At the third time point, the p-values
of feature 1 and feature 2 are p( f1(x3)) =

0
2 = 0 and p( f2(x3)) =

1
2 = 0.5. At the second time point, these values are p( f1(x2)) =

1
1 =

1 and p( f2(x2)) =
1
1 = 1. Moreover, at the first time point, there is

no historic value and we set p( f1(x1)) = p( f2(x1)) = 1.

History-based anomaly score. The non-parametric p-value of an
entity or relation x specifies its anomaly score based on historic
observations. We aggregate these anomaly scores as follows:

pT (xt) =
|{xr ∈ Xt−1 : pmin(xr)≤ pmin(xt)}|

|Xt−1|
(2)

where pmin(xr) = min j=1...qi p( fi, j(xr)). That is, at each timestamp,
we compute the minimum value over all features. Then, the anomaly
score pT (xt) is the number of past minimum feature values pmin(xr)
that are less than the current minimum feature value pmin(xt).

The reason for using min for the aggregation is to avoid false
negatives, where some features are anomaly-significant, whereas
others are not. Moreover, we do not consider the minimum p-value
over all features at a single timestamp directly, since elements can
have different numbers of features. Rather, our idea is to cross-check
the scores between different timestamps across features, so that our
aggregation yields uniform scores over all entities and relations,
regardless of their modality, which addresses requirement R2.

Example 2. Taking up Example 1, we derive that pmin(x1) =
min{p( f1(x1)), p( f2(x1))}= 1 as well as pmin(x2)=min{p( f1(x2)),
p( f2(x2))} = 1, and pmin(x3) = min{p( f1(x3)), p( f2(x3))} = 0.
The p-value of user x at the current timestamp is p(x3) = (0+0)/2=
0. With a confidence level of 99%, we say that the user is involved
in some rumour, since p(x3)≤ 0.01.

4.3 Similarity-based Scoring
Anomalousness can also be quantified by differences between

entities and relations of the same type. For instance, the linguistic
style of a tweet is a static property, that often lacks historic data,
but may be a strong indicator of rumours. We therefore establish a
baseline for features of static properties, as detailed below.
Anomaly score of a similarity-based feature. The null hypothesis
of this case is summarised as: If there is no rumour, how likely does
a randomly selected set of observations for a feature of different
elements (entities or relations) of the same modality would have
values greater than the considered element. We capture the null
distribution of a feature of an element x of modality Qi using the
feature values of its peers (x′ ∈Qi). Then, the p-value of a similarity-
based feature j = 1 . . .qi of an element x is defined as follows:

pS( fi, j(x)) =
|x′ ∈ Qi : fi, j(x′)≥ fi, j(x)|

|Qi|
(3)

That is, the p-value is computed based on the number of values
fi, j(x′) from other elements of the same modality that are greater
than the value of the current element, fi, j(x). This p-value is also
non-parametric (as defined by requirement R3), since it does not
assume any prior distribution on the elements.

Example 3. Now, consider three Twitter users @prisonplanet
(x), @wes chu (y), @jacobawohl (z), who have registration ages
(feature 1) of {8, 6, 1} and average credibility scores (feature 2)
of {-5, -4, -3} (0 means least credible). For feature 1, we have
p( f1(x)) = 1 , p( f1(y)) = 2/3, p( f1(z)) = 1/3. For feature 2, we
have p( f2(x)) = 1 , p( f2(y)) = 2/3, p( f2(x)) = 1/3.

Similarity-based anomaly score. Again, based on the p-value
of a similarity-based feature of an element x, the similarity-based
anomaly score of x is defined as follows:

pS(x ∈ Qi) =
|x′ ∈ Qi : pmin(x′)≤ pmin(x)|

|Qi|
(4)

where pmin(x′) = min j=1...qi pS( fi, j(x′)). For each element, we com-
pute the minimum value over all features. Then, the anomaly score
of an element is the number of elements such that the minimum
feature value of the current element is larger than their minimum
feature values. As above, we choose min as an aggregation function
to avoid outliers. We also aggregate across elements rather than fea-
tures of a single element only. This yields uniform anomaly scores
of elements from different modalities (requirement R2).

Example 4. We continue with Example 3 and derive pmin(x) =
min{p( f1(x)), p( f2(x))}= 1, pmin(y)=min{p( f1(y)), p( f2(y))}=
2/3, and pmin(z) = min{p( f1(z)), p( f2(z))}= 1/3. The p-value of
z is p(z) = (0+0+1)/3 = 0.33. With a confidence level of 65%,
we say that user z is involved in some rumour, since p(z)≤ 0.35.

4.4 Unified Scoring
As both entities and relations show history-based and similarity-

based features, we combine the respective anomaly scores:

p(x) = min{pT (x), pS(x)} (5)

where pT (x) = 1, if x has no history-based features, and pS(x) = 1,
if x has no similarity-based features. Again, min is used in the
aggregation to avoid outliers.

We note that pT (.) and pS(.) are uniformly distributed in [0,1]
under the assumption that, in the absence of rumours, (i) the cur-
rent observations are interchangeable with observations in the past;
and (ii) the current observations of an element are interchangeable
with observations from other elements. Based thereon, the probabil-
ity that fi, j(xr)≥ fi, j(x) and fi, j(x′)≥ fi, j(x) is 0.5, which makes
pT ( fi, j(x)) and pS( fi, j(x)) follow a uniform distribution in [0,1].
Also, the minimum of p-values from different features are inter-
changeable with past minimum values or from other peers, so that
pT (x) and pS(x) are uniformly distributed in [0,1].

The uniform distribution of p-values is important: It enables us to
handle the heterogeneity of a social graph, as different elements and
modalities are mapped to the same domain of p-values. Moreover,
the model facilitates the integration of multiple features for a single
user, tweet, link, or hashtag, without a priori knowledge on the im-
portance of feature for rumour detection. Finally, the overall p-value
is non-parametric, since it does not assume any prior distribution,
but integrates any correlation of p-values of different features.

5. GLOBAL ANOMALY DETECTION
Guided by the requirements for global anomaly detection (R4,

R5, R6), we introduce the notion of an anomaly graph (§5.1), before
turning to the computation of the anomalousness of a subgraph
(§5.2), and the detection of a most anomalous subgraph (§5.3).
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5.1 Anomaly Graph
Rumour detection using solely local information is not reliable.

Local anomalies may be outliers (false positives), as features on
social platforms are often noisy [32] and there are no clear-cut
thresholds to filter false positives. Hence, rumour detection shall
incorporate information from several elements (entities and rela-
tions) of a social graph, each providing a different view on a rumour
and, thus, potentially reinforcing each other. A global view is fur-
ther valuable to differentiate between anomalies that stem from the
random nature of social platforms from those that originate from
rumours. Finally, the propagation of rumourous information in a
social graph helps to understand the rumour structure.

Formally, using the local anomaly detection, each element (entity
or relation) in a social graph is associated with a p-value of being
rumour-related. Given a social graph G = (Q,V,E, f ), this yields an
anomaly graph A = (Q,V,E, p), where p : Q→ [0,1] is a mapping
that assign anomaly scores to entities or relations. This anomaly
graph is the starting point for the identification of global anomalies,
which materialise as subgraphs of the anomaly graph.

5.2 Anomalousness of a Subgraph
Rumour structure. Given an anomaly graph A = (Q,V,E, p), a
rumour structure is a subgraph of A that is induced and connected,
which are standard graph properties [18]. Connectedness is required
to cross-check anomaly scores between different elements. The
subgraph shall be induced as we shall consider all relations between
connected entities as a whole to eliminate false positives.

The anomalousness of a rumor structure is assessed based on:
• Direct connections, i.e., the relations (edges) of the graph. While

both entities and relations are assigned anomaly scores, we need
to conclude on the anomalousness of entities only (e.g., a tweet
may be rumourous, while it is not meaningful to consider a
tweet-link relation as rumourous). Hence, anomaly scores of a
relation and its endpoints need to be unified.
• Indirect connections hold between entities that are connected by

a path (of length larger than one) in the graph. The longer the
path, the smaller the effect of the entities on each other, though.

Anomaly Hypergraph. To incorporate the above aspects, we pro-
pose to transform the anomaly graph to an anomaly hypergraph.
The idea is to replace every two entities and the relation between
them by a hypernode, which represents the collective information
on the entities and the relation, while also providing an aggregated
view on their anomaly scores. The hypernode inherits all further
relations of the two original entities, i.e., it is connected to all en-
tities to which the original entities had been connected. Formally,
given two entities v1,v2 ∈ V and a relation e = {v1,v2} ∈ E of an
anomaly graph A = (Q,V,E, p), we define the respective hypernode
as vH = {v1,v2,e} with an anomaly score:

pH(vH) = max{p(v1), p(v2), p(e)} (6)

Since p(.) is uniformly distributed in [0,1], pH(.) also follows a
uniform distribution in [0,1]. Here, using max for aggregation
reduces the chance of false positives, following requirement R4.

Processing all pairs of entities that are connected by a relation
in the anomaly graph A = (Q,V,E, p) as detailed above yields an
anomaly hypergraph H = (QH ,VH ,EH , pH), with QH ⊂ [Q]2 being
a set of modalities, VH being a set of hypernodes, EH ⊆ [VH ]

2

being a set of edges, and pH being a mapping function that assigns a
anomaly score to each hypernode. Fig. 3 illustrates this construction.

Anomalousness measurement. Using the hypergraph H, we strive
for a connected subgraph S that shows the highest level of anomaly.
Since the hypernodes already include the original relations, it is

Figure 3: Hypergraph construction

straightforward to revert a subset of connected hypernodes to an
induced connected subgraph of the original anomaly graph.

To this end, we first measure the anomalousness of a subgraph,
acknowledging the structure of rumours, see requirement R5. We
employ the idea of scan statistics [26], which computes the statistical
significance of a subgraph S being anomalous without assuming any
prior distribution of the subgraph:

P(S) = max
0<α≤αmax

φ(α, |Vα(S)|, |V (S)|) (7)

where αmax is the maximum statistical significance level (αmax =
0.05 indicates that the value is at least 95% statistical significant),
V (S) is the node set of S, Vα(S) = {v ∈ V (S) : pH(v) ≤ α} is the
set of nodes in S with anomaly scores that are significant at the
confidence level α > 0.

To maximize the detection coefficient (see §3.2), function φ(.)
shall favour the propagation of rumours, meaning that ‘insignificant’
nodes (V (S)\Vα(S)) are also accepted as long as they are connected
with enough ‘significant’ entities (Vα(S)). This is motivated by
the dynamic nature of a rumour: Anomaly scores of rumourous
entities vary over time and may not be significant at the same time.
Moreover, function φ(.) shall be non-parametric (requirement R6),
i.e., a function that compares the observed number of α-significant
p-values |Vα(S)| to the expected number of α-significant p-values
E[|Vα(S)|. Since our p-values are uniformly distributed in [0,1],
we have E[|Vα(S)|] = α|V (S)|. Therefore, we can directly compare
|V (S)| and |Vα(S)| as follows [11]:

φ(α, |Vα(S)|, |V (S)|) = |V (S)|×KL(
|Vα(S)|
|V (S)|

,α) (8)

where KL is the Kullback-Leibler divergence defined as KL(x,y) =
x log(x/y)+(1− x) log( (1−x)

(1−y) ). Since KL(x,y)≥ 0, it follows that
P(S)≥ 0 (the higher, the more anomalous). Based thereon, our goal
is to detect subgraphs as large as possible (via |V (S)|), that have a
high confidence level of anomalousness (via |Vα(S)|/|V (S)|).

Example 5. Consider a subgraph S with nodes V (S) = {v1 =
0.02,v2 = 0.03} and αmax = 0.05. We have |V (S)|= 2. With α =
0.05, we have |V0.05(S)|= 2 and φ(0.05,2,2)= 2×(1log(1/0.05)+
0log(0/0.95)) = 2.6. With α = 0.02, we have φ(0.02,1,2) = 1.1.
With α = 0.03, φ(0.03,2,2) = 3.0. Therefore, we say that with at
least 95% statistical significance (αmax = 0.05), we are confident
that the anomalousness of S4 is P(S) = max{2.6,1.1,3.0} = 3.0.

5.3 Detection of a Most Anomalous Subgraph
Detecting a rumour structure in an anomaly graph A= (Q,V,E, p)

is equivalent to finding a connected subgraph with maximal anoma-
lousness in the anomaly hypergraph H = (QH ,VH ,EH , pH):

argmax
S∈S(H)

P(S) (9)

where S(H) contains all possible connected subgraphs of H.
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Figure 4: Illustration of Alg. 1

Proposition 1 Solving Eq. 9 is NP-hard.

PROOF. With a given α, we can construct a weight function on
the node set as w(v) = 1 if p(v)≤ α and w(v) = 0 otherwise [16].
It is known that φ(.) is monotonically increasing w.r.t. |Vα(.)| [11].
Thus, φ(.) is monotonically increasing w.r.t. ∑v∈S w(v). Solving
Eq. 9 is now equivalent to finding a solution to the maximum
weighted subgraph problem, which is known to be NP-hard [9].

As the above problem is computationally expensive, we develop
an approximation solution that scales to real-world social graphs. In
the context of online social platforms, we argue that such a detection
algorithm needs to satisfy two additional requirements:

• Extensibility. In practice, multiple rumours may occur at the
same time. Hence, we consider a threshold as a relaxation
parameter. We then aim at detecting all subgraphs in the anomaly
graph that have an anomalousness value above this threshold.
Such a threshold may be set based on rumours detected and
verified in the past.

• Incremental processing: To cope with continuous data generated
by social platforms, detection shall be incremental, incorporat-
ing new data as it arrives.

An Extensible and Incremental Algorithm. Due to the inherent
complexity of Eq. 9, we present an approach to approximate a
solution, see Alg. 1. It takes as input an anomaly graph and a
detection threshold, and returns a sorted list of the most anomalous
subgraphs that satisfy the threshold. The solution to Eq. 9 is simply
the top-1 in the list. Moreover, in the light of the rumour detection
problem (§3.2), only the tweet nodes of the output graph may be
considered. Since multiple rumours may spread simultaneously on
social platforms, however, we include a coverage level K as an input
parameter, to cover rumours with smaller anomalousness values.

Our algorithm first expands the subgraphs from a seed node to
their neighbours, before greedily optimising the anomaly score for
the subgraphs. Specifically, we construct a hypergraph H (line 1), in
which each hypernode has an anomaly score, as detailed above. We
sort the hypernodes by these scores as this later improves the run-
time of the scan statistics subproblem. We then select a root node
(line 6), determine its neighbourhood (line 8), and find the subgraph
in this neighbourhood with the highest anomaly score (line 9) using
Alg. 2 (extended from [35]). The latter greedily retains nodes in
the increasing order of p-values (the smaller, the better). Then, we
continue to expand the subgraph until our root node set is equal to
the most anomalous node set (line 10), i.e., it cannot be expanded
further to increase the anomaly score. This guarantees that the
subgraph is connected and its anomaly score is maximal.

Fig. 4 illustrates the core step of extending the neighbourhood of
a root node and finding the optimal subgraph in Alg. 1 (line 6- 10).

Proposition 2 The output of Alg. 1 is a sorted list of subgraphs in
the decreasing order of anomaly level.

Algorithm 1: Anomalous Subgraphs Detection
input :An anomaly graph A = (Q,V,E, p),

a retain threshold τ (for streaming version),
a coverage level of anomaly K (default = 5),
a specified number of hops Z (default = log(|V |))

output : A sorted list of subgraphs S
1 Construct anomaly hypergraph H = (QH ,VH ,EH , pH ) from A;
2 Sort the nodes in H by anomaly score;
3 αmax = 0.05,S= C= /0;
4 for q ∈ [1, . . . , |QH |] do
5 for k ∈ [1, . . . ,K] do
6 R = {vk}, vk is the k-th most anomalous node in VH of modality q ;
7 for z ∈ {1, ...,Z} do
8 H ′ = {v ∈VH \R : ∃v′ ∈ R,{v,v′} ∈ EH};
9 〈S,P(S)〉= bestNeighbourhood(H ′,R,αmax) ;

10 if S\R 6= /0 then R = S ;
11 else break;

12 S= S∪{R};

13 for S ∈ S do
14 if P(S)≥ τ then C= C∪{S} ; // candidate rumours

15 return S;

Algorithm 2: Optimal subgraph in the neighbourhood
input :An anomaly hypergraph H, a root set R, a threshold αmax
output : The most anomalous subset S∗ and its score P(S∗)

1 W = {p(v) : v ∈ S}∪{αmax};
2 S∗ = /0;P(S∗) = 0;
3 for α ∈W do
4 S = /0;S∗α = /0;P(S∗α) = 0;
5 for v ∈ sorted(V (H)∪R) do
6 S = S∪{v};
7 P(S) = φ(α, |Vα(S)|, |V (S)|);
8 if P(S)> P(S∗α) and R⊆ S then
9 S∗α = S;

10 P(S∗α) = P(S);

11 if P(S∗α)> P(S∗) then
12 S∗ = S∗α;
13 P(S∗) = P(S∗α);

14 return 〈S∗,P(S∗)〉 ;

PROOF. Alg. 1 processes the nodes in increasing order of p-
values (line 6). Since φ(.) is monotonically increasing w.r.t. |Vα(.)|
and monotonically decreasing w.r.t. α and |V (.)| [11], a detected
subgraph has smaller anomalousness value than its predecessor.

6. THE STREAMING SETTING
We now lift our approach to a streaming setting. We first discuss

how local anomaly scores of a social graph can be computed incre-
mentally (§6.1), before turning to the incremental computation of
anomalous subgraphs detection (§6.2).

6.1 Incremental Anomaly Computation
Recall that computing local anomaly scores is based on histor-

ical data. However, in a streaming setting only a window w of
data is available, and current observations continuously become
historic observations; i.e. Xt+|w| ← Xt ∪w. To avoid continuous
re-computation of anomaly scores, we propose a heuristic that es-
timates the score, but works incrementally. Below, we discuss this
heuristic for history-based anomaly scores. However, the same
approach can also be followed for similarity-based scores.

Intuitively, our approach avoids evaluating Eq. 1 and Eq. 2 when-
ever new data arrives. To this end, we approximate Eq. 1 with an
incremental approach, as long as the respective feature is expected
to have no effect on the anomaly score computation. In addition, we
discuss how Eq. 2 can be evaluated efficiently.
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Feature-level. To approximate Eq. 1, we assume that the historical
data of a feature of an element x (entity or relation), i.e. fi, j(XT−1)=
{ fi, j(xt) : xt ∈ XT−1} where T is the current timestamp, follows a
normal distribution. Note that we consider this assumption solely
in the streaming setting, as it yields runtime improvements by not
using historic data. In practice, the anomaly scores can be justified
by periodic updates from historic data. This distribution, denoted
by N j,x(µ,σ), is induced by the empirical mean µ and standard
deviation σ computed from historic data. The empirical mean µ and
standard deviation σ are updated incrementally as new data arrives:

µt+1 =
µt × t + xt+1

t +1
; µ′t+1 =

µt × t + x2
t+1

t +1
; σt+1 =

√
µ′t+1−µ2

t+1

as derived from µ =E[X ] and σ =
√
E[X2]−E2[X ].

Under the above assumption, Eq. 1 is approximated using µ and σ.
Eq. 1 essentially counts the number of past values fi, j(XT−1) that
are greater than the current observation fi, j(xT ). Given a new obser-
vation fi, j(xT+1) and the historical data captured by N j,x(µ,σ), we
derive the percentile of fi, j(x). This percentile is an approximation
of how many past observations are greater than the current one. To
compute the percentile, we convert fi, j(x) to a z-critical value:

zi, j(x) =
fi, j(x)−µ

σ

Based thereon, the percentile is computed as follows:

P(Z ≥ z) =
∫ +∞

z

1√
2π

e
−x2

2 dx

The percentile value provides us with approximation of the p-value
of a specific feature: p j(x = z) = P(Z ≥ z).

The above approximation is used to determine when Eq. 1 shall
be evaluated from scratch. To this end, we exploit that p j(x) is used
to calculate pmin(xt) = min j=1...qi p( fi, j(xt)), while pmin(xT+1) is
compared with other {pmin(xt)}t=1...T in Eq. 2. Thus, p j(x) has an
effect on the anomaly score of entity x only if it is smaller than the
smallest value pmin(xt). That is, if p̂ j(x) < min{pmin(xt)}t=1...T ,
we do not need to re-evaluate Eq. 1. We later demonstrate experi-
mentally that this heuristic helps to reduce the runtime significantly.
However, the heuristic requires us to maintain min{pmin(xt)}t=1...T ,
which is done as part of the computation on the entity-level.
Entity-level. When new data arrives, many terms of Eq. 2 remain
unchanged, such as the anomaly score of a feature of an element in
the past, pmin(xt). The only term that needs re-computation is the
anomaly score of features at the current timestamp, pmin(xT+1).
Therefore, to evaluate Eq. 2 efficiently, we maintain all values
pmin(xt). Given the requirement of maintaining min{pmin(xt)}t=1...T ,
these values are kept in a sorted list. Evaluating Eq. 2 then becomes
counting the number of values stored in the list before pmin(xT+1).

6.2 Incremental Subgraph Detection
To handle streaming data in the computation of anomalous sub-

graphs, we realise the following idea: Upon the arrival of new data,
the anomaly hypergraph will contain new nodes. For these nodes,
we identify whether they are rumour-related due to being connected
to existing anomalous subgraphs or inducing a new such subgraph.
To this end, we associate nodes which belong to an anomalous sub-
graph with an identifier of the root node used for expansion (nodes
may have several such identifiers). This way, upon adding a node,
we immediately identify the subgraphs that it may be related to.
These subgraphs can be rumour-related (S in Alg. 1) or potentially-
anomalous (C in Alg. 1), which we distinguish as follows:

In case the new node connects to a rumour-related subgraph, the
node is assessed based on a property of Alg. 2. Recall that in Alg. 1,

we detect anomalous connected subgraphs by expanding subgraphs
from root nodes using their neighbours. For each candidate set, we
strive for the maximal connected subgraph (Alg. 2). The algorithm
relies on a list of nodes, sorted by their p-values. When a new node
arrives, we identify the related anomalous subgraphs (if any) and
add the new node to the sorted list. If the p-value of the new node
is higher than the value of any other node in the subgraph, the new
node is rumour-related and added to the subgraph. If a node can be
added to several rumour-related subgraphs, the subgraph with the
highest anomalousness value is chosen.

In the case that the new node connects to a potentially-anomalous
subgraph, Alg. 2 is re-run to identify whether the addition of the
node yields a new anomalous subgraph.

7. EMPIRICAL EVALUATION
We evaluated our approach with a large real-world dataset ob-

tained from Twitter. Below, we introduce our experimental setting
(§7.1), data collection methodology (§7.2), and report characteristics
of our data (§7.3). We show that our approach outperforms baseline
methods for rumour detection in terms of effectiveness (§7.4) and
explore the design choices of our model (§7.5). Next, we evaluate
the scalability of our methods, including their use in a streaming
setting (§7.6). Finally, we present an illustrative case study (§7.7).

7.1 Experimental Setting
Metrics. We use the following evaluation metrics:
• The detection coefficient, first proposed in [41], can be seen as a

combination of precision and recall applied to a graph setting.
R∗ is defined as the set of rumour-related entities, whereas R
is the set of entities labelled by a rumour detection technique.
Then, the measure is defined as:

Coefficient =
|R∗∩R|
|R∗∪R|

• The run-time of processing a set of tweets.
• The lag time to detection, which is the time difference the first

occurrence of a rumour (i.e., the first rumour-related entity) and
its detection (i.e., a first entity is labelled accordingly).

Baselines. State-of-the-art rumour detection [57] is not applicable
in our context, as it aims at learning a classification model based
on a collection of entities that have been labelled with rumours.
Such a collection is typically extracted by a pre-processing step that
crawls the data related to a particular event, thereby assuming that
the extracted elements can be labelled accordingly. As a result, the
performance of these approaches strongly depends on the accuracy
of such pre-processing [14, 29]. In our work, we progressively
detect rumour-related entities by scanning abnormal signals (entities
with high anomaly scores) in the social graph.

This fundamental difference in the taken approach is also reflected
in the employed evaluation measures. Existing rumour detection
techniques are evaluated using machine learning metrics, applied
per rumour. This is not possible for our approach, so that we rely on
the detection coefficient, applied per graph entity. In a broad sense,
most rumour detection techniques focus on maximizing accuracy,
instead of striving for a balance of accuracy and completeness.

Against this background, we consider several baseline methods.
We implemented these methods based on the respective papers.
• Decision [13]: A decision tree classifier that is based on the

Twitter information credibility model. The decision tree is con-
structed based on several hand-crafted features.
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• Nonlinear [50]: An SVM-based approach that uses a set of
hand-crafted features, selected for the tweets to classify.
• Rank [55]: A rank-based classifier that aims to identify rumours

based on enquiry tweets.
In addition, we also compare our approach with methods based

on homogeneous graphs that contain only a single modality. For
instance, a tweet graph contains only tweets, while edges between
tweets represent that tweets stem from the same user, have retweet
relations, or share a keyword. We constructed four such homoge-
neous graphs, for users, tweets, links, and hashtags, respectively.

Parameters. We set the statistical significance level αmax = 0.05
(i.e. the result is guaranteed to be at least 95% confidence). The
coverage level K in Alg. 1 has been varied, so that we can detect
multiple rumours at the same time.

For the static version of our approach, our rumour detection
algorithm is executed multiple times by gradually extending the
historical data Xt = {x1, . . . ,xt} from the first day (t = 1) to the
last day of each dataset. At each extension, all tweets in detected
rumours will be removed to avoid that some rumours in the future
will have smaller anomaly scores than the past (and thus the p-values
might not be high enough with 95% confidence threshold).

For the incremental version, we set the window size |w| to 12
hours; i.e. the historical data is defined by Xt = {xt−|w|, . . . ,xt}.
Again, all tweets in detected rumours are removed. Note that, how-
ever, we cannot remove other types of entities (users, hashtags)
since they potentially participate in different rumours. The threshold
τ to retain the candidate rumours is set by the 20-quantiles of the
anomalousness values of returned subgraphs.

Experimental environment. All results have been obtained on an
Intel Core i7 system (2.8 Ghz, 32GB RAM).

7.2 Data Collection
Rumour collection. Snopes is a world-leading rumour-debunking
service. Unlike other organizations such as Politifact and Urbanle-
gends, it is considered to be objective when evaluating the veracity
of rumours [3, 46]. Snopes editors investigate each rumour along
different dimensions and provide an argumentative report as shown
in Table 2. For example, the claim describes the rumour succinctly
and the rating represents its truth value according to the fact-checker.

Table 2: Information about a rumour.

Attribute Example

id trump-aid-puerto-rico
date 10/2/2017
genesis tweet [..] President Trump has dispatched 140 helicopters [..]
sources of veracity press reports, local officials, organizations
rating MIXTURE [5]

Multi-model social graph construction. Twitter is a large social
platform with tweets covering various domains such as politics and
crime. It is frequently used by users to express their opinions in a
timely manner, e.g., by retweeting others, which provides insights
into how rumours propagate. These characteristics make Twitter
data particularly suitable for evaluating rumour detection methods.

We followed the dataset construction process described in [28].
For each rumour, we identify its fingerprint, which is a set of key-
words. Then, we use these keywords to search for tweets that are
related to this rumour using Spinn3r [1]. We take the ID of a Snopes
article as the starting point to create the fingerprint of a rumour.
If the ID is not unique or too general, keywords are manually se-
lected from the rumour’s claim and the respective Snopes article.
Applying modifications to these keywords provided us with a set of

search queries to identify rumourous tweets. Since the queries may
not identify all tweets that are rumour-related, we also considered
retweets. To obtain negative samples, we collected further tweets
from the timelines of users that authored rumourous tweets and of
other users identified by retweets of regular tweets.

At this point, the social graph contains two entity types (tweets
and users) and one relation type (user-tweet). The remaining entity
and relation types are constructed as follows. For each tweet, we
extract the links using regular expressions and crawl the correspond-
ing articles, which results in a tweet-link relation. The link-hashtag
relation is created by connecting an article to any hashtag it men-
tions. The user-hashtag relation is created by connecting a user to a
hashtag they used in their tweets. The user-link relation stems from
connections of a user to an article they mentioned in their tweets.

Feature engineering. Features of each individual entity are en-
gineered as follows. Static features (similarity-based) have been
extracted directly from the Twitter REST API [27], including user
features such as registration age. To assess the credibility of a user,
we relied on Tweetcred framework [21], which is an aggregation
of 45 characteristics such as #retweets, #favorites, #replies, and
presence of swear words into Likert Scale (score 1-5). The credibil-
ity feature of linked articles was assessed using the Alexa ranking
(higher ranking, higher credibility). Popularity of hashtags was quan-
tified using semantic ranking [10]. The linguistic style of tweets and
linked articles was evaluated using OpenIE framework [34]. Each
linguistic feature is measured as the fraction of English words in a
tweet that reflect the writing style of the user. Six linguistic features
are used: discrepancy words (e.g., could, would), tentative words
(e.g., perhaps), filter words (e.g., I mean), punctuations, swear words
(e.g., damn), and exclusion words (e.g., but).

Dynamic features (history-based) are extracted using the Twitter
Streaming API [32]. For instance, the number of retweets of a tweet
is collected over time by monitoring the respective tweet. Similarly
process is used for status frequencies, numbers of followers and
friends of a user. Numbers of tweets as well as mentions of hashtags
and links were obtained using this way.

Similarly, data is collected for features of relations. For example,
the difference between the time mentioned in a tweet and given in
a linked article is assessed for all tweets in a specific time window.
Then, upon receiving a tweet that links to an article, the respective
time difference can be compared to those observed for historic data.
Location and event features, in turn, are binary and capture whether
the tweet and link originate from the same location or event.

Datasets. The collected data comprises 4 million tweets, 3 million
users, 28893 hashtags, and 305115 linked articles, revolving around
1022 rumours from 01/05/2017 to 01/11/2017. This period was
chosen as it contains several rumours, e.g., related to the Las Vegas
shooting and information published by the US administration. Our
data spans over 20 different domains, available at [8]. Here, we
report results for the most popular ones:
• Politics: rumours related to all political issues.
• Fraud & Scam: rumours related to online hoax/scam entreating

users to share posts and photographs under the false premise of
a greater good.
• Fauxtography: rumours related to images or videos circulating

on the Web.
• Crime: rumours related to criminology and incidents, such as

the Las Vegas shooting.
• Science & Technology: rumours related to scientific myths and

exaggerated technological inventions.
Each of the datasets is a full view of the social graph. The modelled
entity types, relation types, and features are summarised in Table 1.
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Figure 6: Relations between user features and rumours

7.3 Understanding Rumour Characteristics
What are the rumours about? In order to understand the diffusion
of rumours on social platforms, we plot the distribution of rumours
with their respective tweets in Fig. 5. The top-3 domains with the
most number of rumours and tweets are Politics, Fraud & Scam,
and Fauxtography. In total, they comprise over 80% of number of
rumours and tweets. This implies that rumours are easily spread in
the domains where being right or wrong is rather subjective.

We also observe discrepancies between the number of rumours
and the number of tweets in each domain. Although the majority of
tweets is in the Politics domain, the number of rumours belonging
to this domain is only the third highest. As political rumours are
controversial, they tend to attract more interactions, leading to a
high number of tweets [47]. On the other hand, although more than
30% of rumours are Fauxtography, only 10% of the tweets belong
to this category. An explanation may be that false pictures are easy
to create, but may not deceive people easily.
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Who post rumours? To investigate the features of rumour-related
users, Fig. 6 displays boxplots of the relations between the number
of friends, followers, lists [25] (groups on Twitter that a user can
subscribe to) and likes of a user and the domain of rumours to which
they contributed. Interestingly, users who post fraud & scam tweets
have lower numbers of features on average in comparison with other
domains. Moreover, there seems to be no correlation between the
number of friends and followers and the domain of rumours.

Where are the rumours from? Fig. 7 shows the number of users
who tweet about rumours by country. Here, the most prominent
countries are English-speaking (US, UK) or populous (China, India).
The majority of users in our dataset, however, resides in the US, with
nearly 0.4M users. Fig. 8 analyses whether there is an indication
that the location of the users affects the domain of their tweets. The
top popular domains for most countries are Politics, Fraud, and
Faux, which is similar to the top domains in overall. This fits with
the data collection period after the 2016 US presidential election.

In Fig. 9, we show a histogram of the numbers of users who
post tweets related to different rumours. The histogram follows a
long-tail distribution in which most users tweet about 1-2 rumours.
There are users who tweet about more than 100 rumours. However,
their number is extremely small. Analysing these users, we identify
several interesting characteristics. The accounts who post about
most rumours are extremely similar. We suspect that they are bots
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Figure 9: Users who tweet-
/retweet rumours
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Figure 10: Propagation of rumours

or part of a network. Given our focus on rumour detection, however,
we refer to [47] for an in-depth analysis of user accounts.
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Figure 11: Rumour Detection Coefficient across datasets

How do rumours propagate? To illustrate the propagation of
rumours, we collect the number of retweets per tweet, which is a
measure of its influence. Fig. 10 shows the number of retweets per
rumor per domain in the first 13 hours.

We observe that political rumours are extremely bursty. In the first
hour, the average number of retweets of these rumours is over 1000,
which indicates that these rumours can spread in a short amount of
time. After the first hour, these rumours keep propagating extremely
fast, following a linear trend. Therefore, it is important that rumours
belonging to this domain are detected early. On the other hand,
rumours in other domains follow a log-scale increase after the first
hour. In addition, rumours in these domains are not as bursty. The
number of retweets after the first hour is moderate as most of them
have less than 500 retweets in the first hour.

7.4 Effectiveness of Rumour Detection
Detecting rumourous tweets. We evaluate the detection coefficient
of our approach versus the baseline methods in Fig. 11 for the
domains Politics and Crime (the same trends emerge for the other
domains). We vary the amount of rumours contained in the dataset,
i.e. data sparsity, by randomly removing some rumours, so that the
remaining rumours cover 30%, 60%, 100% of the original count.

In general, our approach outperforms the baseline methods in the
detection of rumour-related tweets. For instance, taking the results
of the Politics dataset, when considering 30% of the rumours, our
approach achieves a coefficient of 0.82, whereas the best baseline
method achieves solely a coefficient of 0.62.
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Figure 12: Coefficients for different modalities
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Figure 13: With vs. without relations
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Figure 14: Heterogeneous vs. homogeneous graphs

Going beyond the detection of tweets. Our multi-modal approach
enables not only the detection of rumour-related tweets, but also
rumour-related users, hashtags and links. We therefore evaluated the
effectiveness of rumour detection for these modalities, in compari-
son with the baseline methods. As the baseline methods detect solely
rumour-related tweets,we used these tweets to determine rumour-
related users, hashtags, and links that are their direct neighbours
in the social graph. We assessed the performance of our approach
and the baseline methods in terms of the achieved coefficient, when
varying the amount of rumours contained in the dataset.

Fig. 12 shows the results obtained for users, links and hashtags
on Politics (results for other datasets are similar). Our approach
still outperforms in the detection of rumour-related users, links, and
hashtags. This is expected as our approach incorporates multiple
modalities explicitly, which yields a synergistic effect when trying
to detect rumour-related entities of different types.

7.5 Model Design Choices
Effects of Relations. We analyse the effect of considering relations
of the social graph when detecting rumours. To this end, we detected
anomalies using only entities (node) and compare the results to our
actual approach (edge+node). We varied the coverage level in Alg. 1
to obtain multiple anomalous subgraphs.

The results in Fig. 13 show that using solely entities yields worse
coefficients, e.g., a value of 0.64 instead of 0.85, when considering
K = 15 in the Politics dataset (again, trends are consistent over all
domains). This highlights that relations constitute an important
source of information for rumour detection.
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Figure 15: Incremental vs. non-incremental

Effects of Multi-Modality. We further evaluated the impact of
multi-modal information, by comparing our approach with rumour
detection based on homogeneous graphs, built of a single modality.
The respective modality is then taken as the target for rumour de-
tection, e.g., the user graph is used to detect rumour-related users.

We measure the detection coefficient, while considering the best
coverage level K = 15 from the previous experiment.

As illustrated in Fig. 14 for two domains, the multi-modal social
graph yields a better coefficients. This underlines the importance of
a rich model, with multiple modalities, for rumour detection.

7.6 Scalability and Streaming Settings
Effects of data size. This experiment compared the non-incremental
and incremental versions of our approach. We constructed sub-
datasets to vary the number of nodes in the social graph of the
Politics dataset from 103 to 106 and compare the observed coeffi-
cient and run-time. Fig. 15 shows that the incremental computation
indeed improves the run-time of our approach, halving the time
needed to process a graph of size 106. Moreover, the error intro-
duced by incremental computation stays within reasonable bounds.
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Figure 16: Streaming setting: effects of window size

Effects of window size. We varied the window size, from 12 to 60
hours, while considering the coverage level K = 15. The results
in terms of coefficients and lag time to detection are shown in
Fig. 16. With larger windows, the coefficient increases, since rumour
detection exploits more information. The lag time to detection also
increases, until reaching a plateau. Again, this is due to the amount
of available information. Initially, some rumours cannot be detected
and thus do not affect the lag time. With larger windows, these
rumours are detected and increase the lag time.

Distribution of lag time. Further, we studied the relation between
lag time and detection accuracy. For our incremental approach, we
computed the lag time for each rumour and aggregate them into
several bins. For all other methods, we constructed datasets with
varying detection deadlines θ, controlling that for each rumour, only
tweets from the start of the rumour (θ0) until θ0 +θ are kept. We
then report the percentage of detected rumours for each such dead-
line. According to Fig. 17, our approaches outperform the baseline
methods, especially for small lag times. For instance, in the Politics
dataset, with a lag time of 48 hours, our non-incremental approach
detects 84% of rumours, whereas the best baseline achieves 64%.

Average delay analysis. We provide a fine-grained view of the
lag time by computing the difference between the timestamps at
which the same rumour was first detected (i.e. any tweet related to
that rumour is flagged) by different methods. Table 3 presents the
analysis within 1 day after the genesis of rumours. Our approach
detect rumours earlier than the baselines a few hours in average.
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Figure 17: Timeliness of rumour detection

Figure 18: Timeline of rumours about the Las Vegas
shooting in October 2017

Table 3: Delay analysis
(within 1 day)

Baseline Rumours detected Average delay

our 68.29% +0.0h
decision 59.46% +1.7h
nonlinear 47.73% +2.3h
rank 38.23% + 3.1h
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Figure 19: Correctness of anomaly scores

7.7 Case Study
Effects of timeline. Fig. 18 highlights some detected rumours from
the Crime dataset along a timeline. Most of the rumours are related
to the Las Vegas shooting, one of the biggest events of the year that
attracts many hoaxes, fake news, and viral misinformation [7]. It
plots the hourly numbers of tweets for each rumour. Here, most
rumours occurred around on October 2, the date of the incident.
Most rumour-related tweets are about the shooting being caused
by a member of ISIS. Also, two days after the incident, there was
rumour that the shooter had an accomplice (second-shooter rumour).

Correctness of anomaly scores. Fig. 19 depicts the correctness of
our anomalousness measure on subgraphs. When a rumour happens
(genesis), we compute its anomalousness score, do the same at ±
1 day and ± 2 days, and then normalize by the maximum values
among all rumours. These scores are compared with those of other
subgraphs, which are constructed by randomly adding regular tweets
into the rumours (this noise ratio is varied from 0.0 to 1.0). Finally,
we do a histogram by counting the number of rumours and subgraphs
with scores that fall into 0.1-bins.

At the genesis, the scores of positive samples (i.e. rumours) turn
out to be significantly higher than noisy samples (i.e. other sub-
graphs), supporting effective detection. Before the genesis, anomaly
scores are small and nearly uniform, as historic data is not anoma-
lous. After the genesis, the scores decrease. Yet, they are still
relatively high, since anomalies are still present, which captures the
temporal movement of rumours.

8. RELATED WORK
Rumour detection. While there is a large body of work on ru-
mour detection on social platforms, surveyed in [56], little has been
done to exploit multiple modalities to detect rumours. Most work
leverages only textual data such as tweets [13, 55, 21]; whereas
others consider different data entities such as users and hashtags
but still treat them as additional features or textual data only [30,
19]. Techniques based on hand-crafted features [13, 55, 50] are
grounded in an ad-hoc definition of features, which are expected to
be strong indicators of rumours. Recently, deep features based on
temporal dependencies of the posts have been proposed [30]. While
this approach achieves high detection accuracy, it first requires the
detection of an explicit event and thus depends on the accuracy of
this event detection step. There are further approaches [31, 48] that

take into account how rumours propagate. However, these tech-
niques require large collections of tweets to conduct the respective
analysis. As such, they cannot be expected to yield small lag times
in the detection of rumours and are not well-suited for a streaming
setting. Our approach is the first to leverage not only the textual
data, but also other modalities in both offline and online settings.
Anomaly detection. Anomaly detection can be classified into point
or group-based techniques [53]. Point-based anomaly detection
aims to detect individuals, for which the behaviour is different
from the general population [39, 24, 22]. Group-based anomaly
detection, in turn, strives for groups of individuals that collectively
behave differently compared to some population [15, 17, 16, 52,
33, 49]. However, none of the above techniques has been applied
to rumour detection. While [16] addresses a similar use case, it
neglects the anomalies related to feature differences between entities.
Our technique is the first one for group-based anomaly detection
that simultaneously identify anomalies in all features, entities, and
relations. Most of the work on anomaly detection in general and
rumour detection in particular focuses on accuracy. Here, we define
the detection coefficient to capture the balance between accuracy
and completeness, which is optimised by our approach.
Information networks. There exists various graph-based mod-
els for data of social platforms, referred to as information net-
works [40]. Some models capture real-world entities, such as users
and posts [43], while others represent derived data elements, such
as topics [44]. Existing work on anomaly detection in information
networks focuses on modelling the propagation patterns of known
phenomena [20, 57] or classifies known events [55]. This setting is
orthogonal to our work, since we strive for the detection of phenom-
ena that emerge on social networks, but are not known a priori.

9. CONCLUSION
This paper proposed an approach for rumour detection that is

grounded in the anomalies of a social graph. Unlike traditional
approaches that focus only on accuracy, we optimised the detection
coefficient, which represents the trade-off between accuracy and
completeness. We presented a two-step detection approach that
detects anomalies at the local and global level. While the former
increases the completeness of detection by reducing false negatives,
the latter optimises the detection accuracy by reducing false pos-
itives. Our experiments showed that our method is effective and
efficient, detecting rumours early and accurately. It outperformed
several baselines in both static and streaming settings.
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weight connected subgraph problem. In Facets of
Combinatorial Optimization, pages 245–270. 2013.

[10] P. Bansal, S. Jain, and V. Varma. Towards semantic retrieval of
hashtags in microblogs. In WWW, pages 7–8, 2015.

[11] R. H. Berk and D. H. Jones. Goodness-of-fit test statistics that
dominate the kolmogorov statistics. Probability theory and
related fields, pages 47–59, 1979.

[12] M. Buckland and F. Gey. The relationship between recall and
precision. Journal of the American society for information
science, 45(1):12–19, 1994.

[13] C. Castillo, M. Mendoza, and B. Poblete. Information
credibility on twitter. In WWW, pages 675–684, 2011.

[14] S. Cazalens, J. Leblay, P. Lamarre, I. Manolescu, and
X. Tannier. Computational fact checking: a content
management perspective. PVLDB, 11(12):2110–2113, 2018.

[15] V. Chandola, A. Banerjee, and V. Kumar. Outlier detection: A
survey. ACM Computing Surveys, 2007.

[16] F. Chen and D. B. Neill. Non-parametric scan statistics for
event detection and forecasting in heterogeneous social media
graphs. In KDD, pages 1166–1175, 2014.

[17] K. Das, J. Schneider, and D. B. Neill. Detecting anomalous
groups in categorical datasets. Carnegie Mellon University,
2009.

[18] R. Diestel. Graph theory. Springer Publishing Company,
Incorporated, 2018.

[19] C. T. Duong, Q. V. H. Nguyen, S. Wang, and B. Stantic.
Provenance-based rumor detection. In ADC, pages 125–137,
2017.

[20] A. Friggeri, L. A. Adamic, D. Eckles, and J. Cheng. Rumor
cascades. In ICWSM, 2014.

[21] A. Gupta, P. Kumaraguru, C. Castillo, and P. Meier.
Tweetcred: Real-time credibility assessment of content on
twitter. In SocInfo, pages 228–243, 2014.

[22] A. Ihler, J. Hutchins, and P. Smyth. Adaptive event detection
with time-varying poisson processes. In KDD, pages 207–216,
2006.

[23] X. Jin, C. X. Lin, J. Luo, and J. Han. Socialspamguard: A data
mining-based spam detection system for social media
networks. PVLDB, 4(12):1458–1461, 2011.

[24] W.-H. Ju and Y. Vardi. A hybrid high-order markov chain
model for computer intrusion detection. Journal of
Computational and Graphical Statistics, 10(2):277–295,
2001.

[25] D. Kim, Y. Jo, I.-C. Moon, and A. Oh. Analysis of twitter lists
as a potential source for discovering latent characteristics of

users. In ACM CHI workshop on microblogging, page 4, 2010.
[26] M. Kulldorff. A spatial scan statistic. Communications in

Statistics-Theory and methods, pages 1481–1496, 1997.
[27] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a

social network or a news media? In WWW, pages 591–600,
2010.

[28] S. Kwon, M. Cha, and K. Jung. Rumor detection over varying
time windows. PloS one, 12(1):e0168344, 2017.

[29] J. Leblay, I. Manolescu, and X. Tannier. Computational
fact-checking: Problems, state of the art, and perspectives. In
The Web Conference, 2018.

[30] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong,
and M. Cha. Detecting rumors from microblogs with recurrent
neural networks. In IJCAI, pages 3818–3824, 2016.

[31] J. Ma, W. Gao, and K.-F. Wong. Detect rumors in microblog
posts using propagation structure via kernel learning. In ACL,
pages 708–717, 2017.

[32] F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley. Is the
sample good enough? comparing data from twitter’s
streaming api with twitter’s firehose. In ICWSM, 2013.

[33] K. Muandet and B. Schölkopf. One-class support measure
machines for group anomaly detection. arXiv preprint
arXiv:1303.0309, 2013.

[34] S. Mukherjee, G. Weikum, and C. Danescu-Niculescu-Mizil.
People on drugs: credibility of user statements in health
communities. In KDD, pages 65–74, 2014.

[35] D. B. Neill. Fast subset scan for spatial pattern detection.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 74(2):337–360, 2012.

[36] A. Olteanu, C. Castillo, N. Diakopoulos, and K. Aberer.
Comparing events coverage in online news and social media:
The case of climate change. In ICWSM, pages 288–297, 2015.

[37] A. Olteanu, C. Castillo, F. Diaz, and S. Vieweg. Crisislex: A
lexicon for collecting and filtering microblogged
communications in crises. In ICWSM, pages 376–385, 2014.

[38] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour.
Dropout improves recurrent neural networks for handwriting
recognition. In ICFHR, pages 285–290, 2014.

[39] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus,
and Y. Vardi. Computer intrusion: Detecting masquerades.
Statistical science, pages 58–74, 2001.

[40] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip. A survey of
heterogeneous information network analysis. TKDE,
29(1):17–37, 2017.

[41] S. Speakman, Y. Zhang, and D. B. Neill. Dynamic pattern
detection with temporal consistency and connectivity
constraints. In ICDM, pages 697–706, 2013.

[42] Y. Sun, C. C. Aggarwal, and J. Han. Relation strength-aware
clustering of heterogeneous information networks with
incomplete attributes. PVLDB, 5(5):394–405, 2012.

[43] Y. Sun and J. Han. Mining heterogeneous information
networks: principles and methodologies. Synthesis Lectures
on Data Mining and Knowledge Discovery, 3(2):1–159, 2012.

[44] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei.
Line: Large-scale information network embedding. In WWW,
pages 1067–1077, 2015.

[45] I. Taxidou and P. Fischer. Realtime analysis of information
diffusion in social media. PVLDB, 6(12):1416–1421, 2013.

[46] N. Thanh Tam, M. Weidlich, H. Yin, B. Zheng, N. Quoc
Viet Hung, and B. Stantic. User guidance for efficient fact
checking. PVLDB, 12(8):850–863, 2019.

1028

http://docs.spinn3r.com/
https://www.engadget.com/2018/08/21/facebook-rates-user-trustworthiness/
https://www.engadget.com/2018/08/21/facebook-rates-user-trustworthiness/
https://www.networkworld.com/article/2235277/ data-center/data-center-fact-checking-the-fact-checkers-snopes-com-gets-an-a.html
https://www.networkworld.com/article/2235277/ data-center/data-center-fact-checking-the-fact-checkers-snopes-com-gets-an-a.html
https://www.networkworld.com/article/2235277/ data-center/data-center-fact-checking-the-fact-checkers-snopes-com-gets-an-a.html
https://www.snopes.com/fact-check/las-vegas-shooting-rumors-hoaxes-and-conspiracy-theories/
https://www.snopes.com/fact-check/las-vegas-shooting-rumors-hoaxes-and-conspiracy-theories/
https://www.snopes.com/fact-check/trump-aid-puerto-rico/
https://www.theverge.com/2018/8/21/17763886/ facebook-trust-ratings-fake-news-reporting-score
https://www.theverge.com/2018/8/21/17763886/ facebook-trust-ratings-fake-news-reporting-score
http://tiny.cc/las-vegas-shooting
http://tiny.cc/p1s2qy


[47] S. Vosoughi, D. Roy, and S. Aral. The spread of true and false
news online. Science, 359(6380):1146–1151, 2018.

[48] K. Wu, S. Yang, and K. Q. Zhu. False rumors detection on
sina weibo by propagation structures. In ICDE, pages
651–662, 2015.
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