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ABSTRACT
Personalized PageRank (PPR) is a well-known proximity
measure in graphs. To meet the need for dynamic PPR
maintenance, recent works have proposed a local update
scheme to support incremental computation. Nevertheless,
sequential execution of the scheme is still too slow for high-
speed stream processing. Therefore, we are motivated to
design a parallel approach for dynamic PPR computation.
First, as updates always come in batches, we devise a batch
processing method to reduce synchronization cost among ev-
ery single update and enable more parallelism for iterative
parallel execution. Our theoretical analysis shows that the
parallel approach has the same asymptotic complexity as
the sequential approach. Second, we devise novel optimiza-
tion techniques to e↵ectively reduce runtime overheads for
parallel processes. Experimental evaluation shows that our
parallel algorithm can achieve orders of magnitude speedups
on GPUs and multi-core CPUs compared with the state-of-
the-art sequential algorithm.
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1. INTRODUCTION
Personalized PageRank is one of the most widely used

proximity measure in graphs. While PageRank quantifies
the importance of vertices overall, the PPR vector measures
the importance of vertices w.r.t to a given source vertex s.
For instance, a vertex v with a larger PPR value w.r.t. s
implies that a random walk starting from s has a higher
probability to reach v. PPR is used in applications of many
fields, such as web search for Internet individuals [39, 22],
user recommendation [8, 19], community detection [48] and
graph partitioning [6, 5].

Most existing works [39, 22, 6, 5, 30, 31, 29, 11] fo-
cus on PPR computation on static graphs. However, the
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representative graphs often evolve rapidly in many applica-
tions. For example, network tra�c data averages 109 pack-
ets/hour/router for large ISPs [17] and Twitter has more
than 500 million tweets per day [3]. Since computation of
PPR from scratch is prohibitively slow against high rate of
graph updates, recent works [38, 49] focus on incremental
PPR maintenance. The state-of-the-art dynamic PPR ap-
proaches are based on a local update scheme [6, 5, 11, 31, 29,
38, 49]. This scheme takes two steps against each single up-
date: (1) restore invariants; (2) perform local pushes. More
specifically, each vertex v keeps two values P

s

(v) and R
s

(v)
where P

s

(v) is the current estimate to the PPR value of v
w.r.t. the source vertex s and R

s

(v) is the upper bound on
the estimation bias. We call P

s

(v) and R
s

(v) as the estimate
and residual of v respectively. The invariant is maintained
for all vertices to ensure the residual is valid. To handle
any update, e.g., an edge insertion/deletion, the invariant is
first restored which results in change in the residual. Subse-
quently, if the residual of a vertex v is over a user-specified
threshold, i.e., ✏, the residual is pushed to v’s neighbors.
Although it has been shown in [49] that only a few op-

erations are needed to handle any single edge update (in-
sertion/deletion) under the common edge arrival models, it
is practically ine�cient. We have observed latency of up to
2 � 3 minutes against an update batch consisting of 5000
edges using the state-of-the-art approach [49] in our exper-
iments. This hardly matches the streaming rates of real-
world dynamic graphs (e.g., 7000 tweets are generated per
second in Twitter [3]). Meanwhile, the emerging hardware
architectures provide the consumers with massive computa-
tion power. The two of the most popular hardwares, multi-
core CPUs and GPUs have shown their great potentials in
accelerating the graph applications [42, 36, 47, 34, 25, 35].
By utilizing the emerging hardwares, we are motivated to
devise an e�cient parallel approach for dynamic PPR com-
putation under the state-of-the-art local update scheme to
achieve high-speed stream processing.
Parallelizing dynamic PPR computation poses two new

challenges. First, as the update often comes in batches, it
remains unclear if the batch can be updated in parallel for
the local update scheme. A naive solution is to synchro-
nize on each single update to repair the invariant and then
launch the local push. However, this solution causes sig-
nificant synchronization overheads against batch updates.
Second, parallelizing the local push is non-trivial as it in-
curs extra overheads compared with a sequential approach.
We call the local push getting parallelized as the parallel
push. The extra overheads of the parallel push come from
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two sources: (a) the parallel push, can take more operations,
as it reads stale values of the residual at the beginning of it-
erations and then propagates less probability mass from the
frontier vertices (the frontier contains vertices that need to
be pushed in current iteration); (b) the parallel push needs
to iteratively maintain a vertex frontier and thus results in
synchronization costs to merge duplicate vertices.

In this paper, we propose a novel parallel approach to
tackle the aforementioned challenges. First, we devise a
batch processing method to avoid synchronization costs within
a batch as well as to generate enough workloads for paral-
lelism. Our theoretical analysis proves that the parallel ap-
proach has the same asymptotic complexity as its sequential
counterparts. Second, we propose novel optimization tech-
niques to practically reduce the number of local push op-
erations (eager propagation) and to e�ciently maintain the
vertex frontier in parallel by utilizing the monotonicity of
the local push process (local duplicate detection).

We hereby summarize our contributions as follows:

• We introduce a parallel approach to support dynamic
PPR computation over high-speed graph streams. One
salient feature is that updates are processed in batches.
Theoretical analysis shows that the parallel approach
has the same asymptotic complexity with its sequen-
tial counterpart under the two common edge arrival
models. To the best of our knowledge, this is the first
work on parallelizing dynamic PPR processing.

• We propose several optimization techniques to improve
the performance of the parallel push. Eager propaga-
tion helps to reduce the number of local push opera-
tions. Our novel frontier generation method e�ciently
maintains the vertex frontier by mitigating synchro-
nization overheads to merge duplicate vertices.

• We implement our parallel approach on GPUs and
multi-core CPUs. The experiments over real-world
datasets have verified the e↵ectiveness of our proposal
over both architectures. The proposed approach can
achieve orders of magnitude speedups on GPUs and
multi-core CPUs compared to the state-of-the-art se-
quential approach.

The remaining part of this paper is organized as follows. Sec-
tion 2 introduces preliminaries and the background. Section
3 presents the parallel local update approach, together with
its theoretical analysis. We propose the optimizations for
the parallel push in Section 4. Section 5 reports the exper-
imental results. The related works are discussed in Section
6. Finally, we conclude the paper in Section 7.

2. PRELIMINARY
In this section, we briefly describe the PPR problem and

review the state-of-the-art local update scheme for dynamic
PPR maintenance.

2.1 Personalized PageRank (PPR)
Let G(V,E) be a directed graph with the vertex set V

and the edge set E. Intuitively, PPR can be interpreted
as a random walk process on G that starts from a source
vertex s and then iteratively jumps to an uniformly chosen
out-neighbor or teleports to s with probability ↵. The PPR
value ⇡

s

(v) is the probability that such random walk starts
from s and stops at v. We denote A as the adjacent matrix of
G and D as the diagonal matrix, where the diagonal entries

Algorithm 1 RestoreInvariant

Input: (G,P
s

,R
s

,u,v,op)
Require: (u, v, op) is the updating edge with op being the in-

sert/delete operation.

1: procedure Insert(u, v)

2: R
s

(u) +=

(1�↵)·P
s

(v)�P

s

(u)�↵·R
s

(u)+↵·1
u=s

d

out

(u) · 1
↵

3: procedure Delete(u, v)

4: R
s

(u) �= (1�↵)·P
s

(v)�P

s

(u)�↵·R
s

(u)+↵·1
u=s

d

out

(u) · 1
↵

are the out degrees of all vertices in G. The PPR vector ⇡
s

w.r.t. s is the solution of the following linear equation:

⇡
s

= ↵e
s

+ (1� ↵)W⇡
s

(1)

where ↵ is the teleport probability (which is a constant and
it is typically set to 0.15), e

s

is a personalized unit vector
with a single non-zero entry of 1 at s, andW is the transition
matrix s.t. W = ATD�1.
Note that general PPR formulation does not restrict the

personalized vector to be a unit vector. We omit the dis-
cussion for the general case as it can be reduced to the case
with the unit vector scenario. In fact, many existing works
study how to use the unit vector formulation as a building
block to e�ciently support the general case by maintaining
multiple PPR vectors with di↵erent personalized unit vec-
tors. Interested readers are referred to [49, 38, 10, 31, 6, 9,
29, 11]. Henceforth, this paper focuses on providing e�cient
parallel approach for the unit vector formalization.

2.2 Dynamic Graph Model
We introduce a typical dynamic graph model [10, 49] to

articulate the dynamic PPR problem. The dynamic model
consists of an unbounded sequence of updates �Et, which
indicate the set of edges arriving at time step t. Each el-
ement of �Et is (u, v, op) that means an edge u ! v with
op denoting the type (insertion/deletion). Note that in pre-
vious works [38, 49] only one single edge update arrives at
time step t, in the following we will discuss them with the
same notations but readers should notice

���Et

�� = 1 for the
case of single update.
Initially, the graph is G0 = (V 0, E0) at time step 0. At

time step t > 0, �Et is applied to Gt�1 and produces a new
graph as Gt 1. Note that an edge insertion may introduce
new vertices to V t and the deletion of an edge may discard
some vertices with zero degree from V t�1. Given the model,
the goal of dynamic PPR problem is to incrementally main-
tain the PPR vector for each update.

2.3 Sequential Local Update
The state-of-the-art approaches on dynamic PPR vector

maintenance relies on a local update scheme [49, 6, 5]. The
PPR value of a vertex returned by the local update scheme is
an ✏-approximation to the true PPR value, i.e., the absolute
error is smaller than the error threshold ✏. The scheme keeps
two values for each vertex v: P

s

(v) and R
s

(v) where P
s

(v) is
the current estimate to the PPR value of v w.r.t. the source
vertex s, and R

s

(v) is the “residual” which bounds the es-
timation bias. Given a vertex v 2 V with its out neighbor

1To simplify the presentation, the time step subscript is
dropped when the context is clear.

94



a. Initial state

1 2 3

4

R1(1) P1(1)
0.0625 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.0625 0.0625

b. Single update on e1

1 2 3

4

R1(1) P1(1)
0.1562 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.0625 0.0625

c. Push frontier: v1

1 2 3

4

R1(1) P1(1)
0.1562 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.0625 0.0625

d. Convergent state

1 2 3

4

R1(1) P1(1)
0.0 0.5812

R1(2) P1(2)
0.0781 0.25

R1(3) P1(3)
0.039 0.1875

R1(4) P1(4)
0.0625 0.0625

normal vertex frontier vertex a�ected vertex during restore invariant normal edge traversed edge during neighbor propagation new edge

Figure 1: An example of the sequential local update. Assuming ↵ = 0.5 and ✏ = 0.1. When a new edge e1 arrive, invoke
Algorithm 1 to restore the invariant for v1 and then launch Algorithm 2 to proceed the local push.

Algorithm 2 SequentialLocalPush

Input: (G,P
s

,R
s

,✏)
1: while max

u

R
s

(u) > ✏ do

2: SeqPush(u)

3: while min
u

R
s

(u) < �✏ do

4: SeqPush(u)

5: return (P
s

, R
s

)

6: procedure SeqPush(u)
7: P

s

(u) += ↵ · R
s

(u)
8: for all v 2 N

in

(u) do

9: R
s

(v) += (1� ↵) · R
s

(u)/d
out

(v)

10: R
s

(u) = 0

set N
out

(v) and out degrees d
out

(v), an invariant [49, 6] is
formulated as follows to ensure P

s

(v) is R
s

(v)-approximate.

P
s

(v) + ↵R
s

(v) =
X

x2N

out

(v)

(1� ↵) · P
s

(x)
d
out

(v)
+ ↵ · 1

v=s

(2)

To handle an update in the dynamic graph model, the
framework of the scheme takes a two-step procedure: (1)
restore invariant ; (2) perform local pushes. When an edge
update (u, v, op) arrives, the scheme repairs the invariant
specified in Equation 2, which may change the residual value
of u and v. In case this activates any vertex, which means
the residual value exceeds ✏, the local push is invoked. It up-
dates the estimate of this vertex and propagates the residual
to its neighbors, which may activate more vertices. The pro-
cess continues until no residual exceeds ✏.

The step (1) and step (2) of the local update scheme are
presented in Algorithm 1 (RestoreInvariant) and Algo-
rithm 2 (SequentialLocalPush) respectively. Restor-
eInvariant describes how to maintain the invariant for all
vertices for an update of directed edge u ! v. We present
the case for insertion and the case for deletion is similar.
Note that the only vertex where the invariant does not hold
is u as d

out

(u) becomes larger with the extra out-neighbor v.
In this case, it su�ces to change only R

s

(u) without touch-
ing any other vertices. After invoking RestoreInvariant,
if the residual value exceeds ✏, SequentialLocalPush is
launched to preserve the approximate guarantee.
There are two phases in SequentialLocalPush. The

first one handles vertices with positive excessive residuals
and the second one deals with negative residuals. Each
phase iteratively invokes SeqPush (Lines 6-10) until no resid-
ual has an absolute value larger than ✏. When this happens,
it is guaranteed that |⇡

s

(u)� P
s

(u)|  ✏ for any u 2 V .
And we say the local push converges at this time. Lemma
1 ensures the invariant holds throughout the local push.

Lemma 1 ([5]). For any vector p, the following trans-
formation from P

s

and R
s

to P 0
s

and R0
s

maintains the in-
variant shown by Equation 2.

P 0
s

= P
s

+ ↵p

R0
s

= R
s

� p+ (1� ↵)WT p

Zhang et al. [49] prove the complexity required for the
sequential local update to maintain the PPR vector under
two common edge arrival models.

Theorem 1 ([49]). Given a random source vertex, the
number of operations required by the sequential local update
to maintain a valid approximate solution on the dynamic
graph is at most O(K+K/(n✏)+d/✏) for K updates (d is the
average degree), under two edge arrival models: random edge
permutation of a directed graph and arbitrary edge updates
of an undirected graph.

Example 1. We show a running example in Figure 1 to
illustrate the sequential local update. As a new edge v1 ! v2
arrives in Figure 1(b), RestoreInvariant is invoked to
modify R1(1), which will activate v1. SeqPush performs
local push on v1. It updates R1(2) and R1(3) but does not
activate v2 and v3. Since there is no active vertex after-
wards, convergence is achieved.

Although there are many variants of the local update
scheme [49, 6, 5, 38, 31, 11], they share the similar behavior
(i.e., restore invariant against an update and then perform
local pushes to reduce the residuals). We thus focus on the
state-of-the-art approach proposed in [49] and omit other
approaches as there is no essential di↵erence in parallelizing
them compared to parallelizing the approach in [49]. Before
moving on to the technical contributions of this paper, we
summarize the frequently used notations in Table 1.

3. DYNAMIC PPR IN PARALLEL
As previously mentioned in the Introduction, the sequen-

tial approach for dynamic PPR is practically ine�cient to
meet the requirement for real-world stream processing. We
thus propose a novel parallel approach to boost the perfor-
mance of dynamic PPR computation.

3.1 Parallel Local Update
A naive parallel approach is to synchronize on each single

update to repair the invariant and then push all vertices
in the frontier in parallel (the frontier consists of vertices
which have larger residuals than ✏). However, a single edge
update is not expected to result in substantial change in
the representative graph, and hence the residuals will not
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Table 1: Frequently used notations in this paper.
Symbol Descriptions

Gt, V t, Et

the graph, the vertex set and
the edge set at time step t

N
in

(u), N
out

(u) in- and out- neighbor set of u
d
out

(u) Out-degree of u
d the average degree
K Total number of edge updates
s the source vertex of PPR
↵ Teleport probability of PPR
⇡
s

True PPR vector w.r.t s
e
s

Unit vector with 1 at s
✏ Error threshold
P
s

Estimate PPR vector w.r.t. s
R

s

Residual vector of P
s

w.r.t. s

vary significantly as well. Thus, the single update scenario
often causes a small frontier for any parallel approach to be
e↵ective. Moreover, as updates often come in batches, the
naive approach causes significant synchronization overheads
against batch updates.

In this paper, we propose a simple-to-implement yet e↵ec-
tive approach to support e�cient batch processing in paral-
lel. Given a batch of k updates, we first restore the invari-
ant by calling RestoreInvariant (Algorithm 1) k times
to adapt to the graph changes for the batch and then paral-
lelize the local push. The critical component of our approach
is the parallel local push presented in Algorithm 3. Simi-
lar to SequentialLocalPush (Algorithm 2), there are two
phases to handle positive and negative residuals respectively.
In each phase, it first initializes a frontier queue FQ and then
iteratively invokes the push procedure (ParallelPush) un-
til no vertex in the frontier. ParallelPush consists of two
parallel sessions. The first session takes out the residual of
each frontier vertex, and increments the estimate by ↵ por-
tion of its residual. The second session updates the neigh-
bors of the frontier vertex with the remaining 1�↵ portion
of the residual and generates a new frontier queue FQ0 if
necessary. To simplify the presentation, we refer to the first
parallel session as self-update and the second session as
neighbor-propagation .
We note that in Line 21, atomic operations are utilized

to ensure the residuals are correctly transferred from the
frontier to their neighbors. An alternative method to avoid
atomic operations is to run a parallel sort on the key-value
pairs consisting of the neighbor vertex ids and the corre-
sponding residuals. Then, it runs a parallel reduce opera-
tion to aggregate the residuals with the same keys and then
transfer the residuals to the designated vertices. However,
this sorting-and-aggregate method incurs significant over-
heads for large frontiers. In fact, most graph processing
systems [42, 47, 16, 36, 23] and similar applications [13, 33,
44, 43, 35] adopt atomic operations over the sorting-and-
aggregate method to update the neighbors. Thus, we use
the atomic method in our implementation 2.

Example 2. We continue the running example in Figure
2 for the parallel local update. Two new insertions v1 ! v2
and v4 ! v1 arrive in Figure 2(b), RestoreInvariant is

2We will not show the experimental results for using the
sorting-and-aggregate method as the performance is signif-
icantly worse than the atomic method according to our in-
vestigations and results.

Algorithm 3 ParallelLocalPush

Input: (P
s

,R
s

,G,✏)
1: FQ = {u 2 V | pushCond(R

s

(u), POS)}
2: while FQ 6= ; do

3: FQ = ParallelPush(P
s

, R
s

, FQ, POS)

4: FQ = {u 2 V | pushCond(R
s

(u), NEG)}
5: while FQ 6= ; do

6: FQ = ParallelPush(P
s

, R
s

, FQ,NEG)

7: return (P
s

, R
s

)

8: procedure pushCond(r, phase)
9: if phase = POS then return r > ✏
10: else return r < �✏
11: procedure ParallelPush(P

s

, R
s

, FQ, phase)
12: S = ;
13: parallel for u 2 FQ

14: S = S [ (u,R
s

(u))
15: P

s

(u) += ↵ · R
s

(u)
16: R

s

(u) = 0

17: synchronize

18: FQ0
= ;

19: parallel for (u,w) 2 S

20: parallel for (v, u) 2 N
in

(u)

21: atomicAdd(R
s

(v), (1� ↵) · w/d
out

(v))
22: if pushcond(v, phase) then

23: UniqueEnqueue(FQ0, v)

24: synchronize

25: return FQ0

invoked for both insertions and changes the residuals of v1
and v4. Then, v1 and v4 become the frontier as their resid-
uals exceed ✏ and ParallelLocalPush is launched corre-
spondingly. It achieves convergence in one iteration.

3.2 Theoretical Analysis
Although it is apparently simple to implement our parallel

approach, we note the theoretical analysis is intricate. In
this section, we verify the soundness and e�ciency of our
proposed approach. First, we need to examine if the parallel
approach produces a valid approximation result. Second,
we check the complexity of the parallel approach against
the sequential approach in terms of number of operations
performed. In the following, we prove the correctness of the
parallel push in Theorem 2.

Theorem 2. For a given ✏, the parallel push (Algorithm 3)
can produce a valid approximate result with the same error
threshold as the sequential push (Algorithm 2).

Proof. We borrow Lemma 1 to aid our proof. Lemma 1
suggests that, as long as the vector p used for the self-update
and the neighbor-propagation is the same, the invariant al-
ways holds. Let � be the vector s.t. �(u) = 1 if u 2 FQ and
zero otherwise, where u 2 V . We rewrite the parallel push
with a transformation in a vector form:

P 0
s

= P
s

+ ↵ · (� �R
s

)

R0
s

= R
s

� (� �R
s

) + (1� ↵)WT (� �R
s

)

Let p = � � R
s

, the above transformation maintains the in-
variant by Lemma 1. The rest of the proof naturally follows
as when Algorithm 3 terminates, |R

s

(u)| < ✏ for any u 2 V ,
and the invariant still holds.

We are left to examine the complexity of the parallel local
update. Previous study on the sequential local update [49]
bounds the complexity for dynamic PPR maintenance by
tracking the residual change caused by each edge update,
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a. Initial state

1 2 3

4

R1(1) P1(1)
0.0625 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.0625 0.0625

b. Batch update on e1, e2

1 2 3

4

R1(1) P1(1)
0.1562 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.2187 0.0625

c. Push frontier: v1, v4

1 2 3

4

R1(1) P1(1)
0.1562 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.2187 0.0625

d. Convergent state

1 2 3

4

R1(1) P1(1)
0.0546 0.5781

R1(2) P1(2)
0.0781 0.25

R1(3) P1(3)
0.039 0.1875

R1(4) P1(4)
0.039 0.1718

normal vertex frontier vertex a�ected vertex during restore invariant normal edge traversed edge during neighbor propagation new edge

Figure 2: An example of the parallel local update. Assume ↵ = 0.5 and ✏ = 0.1. When new edges e1 and e2 arrive, invoke
Algorithm 1 to restore the invariant for both v1 and v4 and then launch Algorithm 3 to proceed the local push.

under the two common edge arrival models mentioned in
Theorem 1. Following this method, we analyze the com-
plexity for the parallel local update. The major di↵erence
is that we track the residual change caused by a batch up-
date instead of a single update. Our subsequent analysis
is structured as follows: Lemma 2 computes the number of
operations required for the parallel local update as a func-
tion of the residual change. Lemma 3 thus deduces an upper
bound on the residual change for an arbitrary batch update.
By combining Lemmas 2 and 3, the overall complexity of the
parallel local update is presented in Theorem 3.

Lemma 2. Given a number of t batches which collectively
contains K updates and a random source vertex, the total
number of operations required by the parallel local update to
process the t batches is bounded by  

d

under random edge
permutation of a directed graph.

 
d

=
d

↵✏
+K · ↵+ 4

n↵2
+

1
n
·

tX

i=1

X

u2V

di
out

(u) ·
P

s2V

�i

s

(u)

↵✏

and it is bounded by  
u

under arbitrary edge updates of an
undirected graph.

 
u

=
d

↵✏
+K · 2

↵
+

1
n
·

tX

i=1

X

u2V

di
out

(u) ·
P

s2V

�i

s

(u)

↵✏

Note that �i

s

(u) is the residual change of a vertex u caused
by restoreinvariant at time step i.

Since the proof process is similar to Theorem 1, we refer
interested readers to our extended version [1]. Note that the
expressions above are both associated with

P
s2V

�i

s

(u), for
which we derive an upper bound in the following lemma.

Lemma 3. At time step i, suppose the batch contains k
directed edge updates that start from u, i.e. (u ! v

j

, op
j

),
for 1  j  k, we have:

X

s2V

�i

s

(u)  2n✏+ 2

↵di
out

(u)
· k

Proof. To facilitate our proof, we define op = 1 for in-
sertion and op = �1 for deletion. We further denote the
residual and out-degrees of u after applying jth update as
r
j

(u) and d
j

(u). So r0(u) and r
k

(u) are the initial value
and new value of R

s

(u) respectively after invoking restor-
einvariant on these k updates. To bound

P
s2V

�i

s

(u), we

first compute �i

s

(u). Define A
j

, B
j

and �
j

as follows:
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By Algorithm 1, we have the recursive formula for r
j

(u):

r
j

(u) = �
j

· r
j�1(u) +A

j

+B
j

Based on the above equation, we can start from r
k

(u) and
recursively substitute r

j

(u) with r
j�1(u), and derive the re-

lationship between r
k

(u) and r0(u).

r
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�
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�
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Note that �
j

is the ratio of u’s out-degree before and af-

ter jth edge update, i.e.
d

j�1(u)

d

j

(u) , so we have the following

proposition for �
j

.

bY
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�
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=
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(u)
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d
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(u)
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Replace the multiplication sequence of �
j

in Equation 3 with
the above proposition, which will cancel d

j

(u) in A
j

and B
j

.
Using the fact that

P
k

j=1 opj = d
k

(u)�d0(u), we can further
reorganize Equation 3 as:

�i

s

= r
k

(u)� r0(u) =

P
k

j=1 opj · U(u, v
j

)

↵d
k

(u)

where U(u, v
j

) = (1�↵)·P
s

(v
j

)�P
s

(u) �↵·r0(u) +↵·1
u=s

.
To calculate the upper bound of �i

s

(u), take out the abso-
lute value of each term in op

j

·U(u, v
j

) and have the following
expression. We use the fact that P

s

(v
j

)  ⇡
s

(v
j

) + ✏ and
r0(u)  ✏.

(1� ↵) · P
s

(v
j

) + P
s

(u) + ↵ · r0(u) + ↵ · 1
u=s

(1� ↵) · (⇡
s

(v
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) + ✏) + (⇡
s

(u) + ✏) + ↵✏+ ↵ · 1
u=s

Now the numerator of �i

s

(u) is at most k times the above
expression. Notice that

P
s2V

⇡
s

(v
j

) = 1 (similarly for u),

if we take the summation of �i

s

(u) over s 2 V , ⇡
s

(v
j

) and
⇡
s

(u) will be canceled. In this way, we can complete the
proof for the lemma.

Theorem 3. The number of operations required by the
parallel local update to maintain a valid approximate solution
is asymptotically the same as that by the sequential local
update, under the two edge arrival models (see Theorem 1).
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a(1)/b(1). The initial frontier of both approaches: v1

1 2 3

4

R1(1) P1(1)
1.0 0.0

R1(2) P1(2)
0.0 0.0

R1(3) P1(3)
0.0 0.0

R1(4) P1(4)
0.0 0.0

a(2). Push frontier: v2, v3

1 2 3

4

R1(1) P1(1)
0.0 0.5

R1(2) P1(2)
0.5 0.0

R1(3) P1(3)
0.25 0.0

R1(4) P1(4)
0.0 0.0

a(3). Push frontier: v3, v4

1 2 3

4

R1(1) P1(1)
0.0 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.125 0.125

R1(4) P1(4)
0.125 0.0

a(4). Convergent state

1 2 3

4

R1(1) P1(1)
0.0625 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.0625 0.0625

b(2). Push frontier: v2

1 2 3

4

R1(1) P1(1)
0.0 0.5

R1(2) P1(2)
0.5 0.0

R1(3) P1(3)
0.25 0.0

R1(4) P1(4)
0.0 0.0

b(3). Push frontier: v3

1 2 3

4

R1(1) P1(1)
0.0 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.375 0.0

R1(4) P1(4)
0.0 0.0

b(4). Push frontier: v4

1 2 3

4

R1(1) P1(1)
0.0 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.1875 0.0

b(5). Convergent state

1 2 3

4

R1(1) P1(1)
0.0937 0.5

R1(2) P1(2)
0.0 0.25

R1(3) P1(3)
0.0 0.1875

R1(4) P1(4)
0.0 0.0937

normal vertex frontier vertex normal edge traversed edge during neighbor propagation

Figure 3: The comparison of the parallel push (Algorithm 3) a(1)-a(4) and the sequential push (Algorithm 2) b(1)-b(5).
Assume ↵ = 0.5 and ✏ = 0.1. Starting from the same initial state, the parallel push pushes {v1, v2, v3, v3, v4}, while the
sequential push pushes {v1, v2, v3, v4}. The parallel push performs one more push operation on v3.

Proof. Suppose at time step i there are ki(u) directed
edge updates that start from u. By Lemma 3, we have
the following inequality for the third term in  

d

and  
u

(Lemma 2).
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out

(u) ·
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↵✏


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(u)
↵✏

· 2n✏+ 2

↵di
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(u)
· ki(u)


tX

i=1

X

u2V

ki(u) · 2n✏+ 2
↵2✏

In the following, we consider di↵erent edge arrival models.
In a directed graph with random edge permutation, as-

suming the total number of edge updates over t time steps
is K, we have

P
t

i=1

P
u2V

ki(u) = K. Thus, we can obtain
the upper bound of  

d

as:

 
d

 d

↵✏
+K · ↵+ 4

n↵2
+K · ( 2

↵2
+

2
↵2n✏

) (4)

In an undirected graph with arbitrary edge updates, we
need to apply restoreinvariant twice as an undirected
edge update is treated as two directed updates, and thus the
total number of directed edge updates is 2K, which meansP

t

i=1

P
u2V

ki(u) = 2K. Thus, we obtain the upper bound
of  

u

.

 
u

 d

↵✏
+K · 2

↵
+K · ( 4

↵2
+

4
↵2n✏

) (5)

The asymptotic bound of  
d

and  
u

is O(K+K/(n✏)+d/✏),
which is the same as the sequential local update specified in
Theorem 1. Thus we conclude the proof.

4. OPTIMIZATION
As repairing the invariant only takes a constant time, the

parallel push dominates the running performance of the par-
allel local update approach. In this section, we describe our
novel optimization techniques, i.e., eager propagation and
local duplicate detection, to improve the performance of the
parallel push.

4.1 Eager Propagation
Parallel execution accelerates the local push, but the im-

provement does not come for free. Compared with the se-
quential push, we find the parallel push can take more op-
erations in many cases. This is caused by a phenomenon we
call parallel loss. To solve this problem, we propose a tech-
nique called eager propagation to bridge the gap between
the parallel and sequential push.

4.1.1 Parallel Loss

Consider an example shown in Figure 3. To achieve con-
vergence (i.e., all vertices have smaller residual than ✏), both
the parallel and sequential push perform push operations on
the same set of vertices {v1, v2, v3, v4}, but the parallel push
costs one more operation because v3 is pushed twice. For
the first time to push v3 in a(2) of Figure 3, the frontier
vertices are v2 and v3. Since v3 is the in-neighbor of v2, v2
propagates some residual to v3. This amount is large enough
to activate v3 in the next iteration. Thus in a(3), v3 needs to
be pushed once more. The sequential push, however, does
not need such e↵ort. In b(2), it pushes v2 and v2 propagates
its residual to v3. In b(3), v3 has a large amount of residual,
0.375, consisting of the amount it has in b(2) 0.25 and the
propagation from v2 0.125. The sequential push can resolve
this residual with only one push operation. In b(2), if push-
ing both v2 and v3 in parallel, we will lose the opportunity
to process a larger residual. In the end, it may take more
operations to converge. This phenomenon, caused by con-
current push operations on multiple frontier vertices in one
iteration, is called parallel loss.
Parallel loss cannot be avoided as long as we parallelize

the local push. Although we prove the worst-case complex-
ity of the parallel approach matches that of the sequential
approach (Section 3), the former can take more operations
at runtime. We introduce Lemma 4 to support this argu-
ment. It shows that when ✏ is su�ciently small, the overall
residual of the parallel push is always larger than that of the
sequential push because of parallel loss. With larger overall
residual, the parallel push takes more operations than the
sequential push under the same convergence condition.
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Lemma 4. Let Rp

x

and Rq

x

be the residuals for the par-
allel and sequential push in iteration x for any fixed source
vertex. Given any iteration x and a corresponding frontier,
the sequential push handles all vertices in its frontier one by
one in serial, whereas the parallel push handles the frontier
vertices all at once. Given the same initial residual distri-
bution, i.e. Rp

0 = Rq

0, if ✏ ! 0, the sum of absolute residual
values for the parallel push is always larger than that of the
sequential push. That is kRp

s

(x)k1 � kRq

s

(x)k1, for any it-
eration x.

Proof. First of all, when ✏ ! 0, the frontiers of every
iteration are the same for the parallel and sequential push
since the initial residual distribution is the same. This can
be proved by induction. The base case is trivial. Suppose in
iteration x, the frontiers for both local pushes are the same,
then any in-neighbor v of the frontier vertex u will become
frontier in iteration x + 1 as the propagated residual from
u always activates v, i.e., (1 � ↵) · R

s

(x, u)/d
out

(v) � ✏.
Thus the frontiers for both local pushes at iteration x + 1
are the same. To facilitate our proof, we denote FQx as the
common frontier for both local pushes at iteration x.

Next, we show that if the sum of absolute residuals of the
parallel push are larger than or equal to that of the sequen-
tial push in iteration x, i.e., kRp

x

k1 � kRq

x

k1, then kRp

x+1k1
� kRq

x+1k1. Suppose there are k frontier vertices in iteration
x, v

i

2 FQx, 1  i  k, we denote b(v1), b(v2), . . . , b(vk) as
the residual values pushed at iteration x for the sequential
push. Assuming the order of pushing the frontier vertices
by the sequential push is v1,v2,..., we have
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Since the residuals of frontier vertices are either all positive
or all negative, we have |b(v
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)| from the above
equation. By Equation 2, the change of the residual sum of
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For the parallel push, kRp
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result as the above equation except that b(v
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we have the following inequality.
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With this condition, kRq

x+1k1  kRp

x+1k1. Thus, we prove
the lemma by induction as the base case always holds.

4.1.2 Mitigate Loss

The major issue of parallel loss is due to the fact that the
parallel push reads stale residual values and thus results in
pushing smaller amount of residual. More specifically, as a
vertex v is pushing its residual to its incoming neighbors, an
out-going neighbor of v is pushing some amount of residual
to v and v is not aware of the additional residual pushed to
itself. Motivated by this issue, we propose eager propagation
that reads the recent residuals of frontier vertices to mitigate
parallel loss.
In the parallel push, Algorithm 3 reads the residuals of

frontier vertices before the neighbor-propagation, without
being aware of the potential increase of the residuals. In-
stead, eager propagation is anxious for more residuals to
push and proactively reads the recent residuals of frontier
vertices, which may get increased by the neighbors. To im-
plement eager propagation, we redesign the parallel push:
(1) We alter the order of the two parallel sessions, and (2)
ensure the residuals of frontier vertices that are used in both
sessions to be consistent.
Algorithm 4 shows the optimized parallel push that im-

plements eager propagation. Compared with Algorithm 3,
there are several major di↵erences due to eager propagation.
First, the local push executes the two parallel sessions in the
reverse order, i.e. neighbor-propagation first and self-update
afterwards. Second, the accesses to the residual values of
frontier vertices are di↵erent. Note that at Line 10 we read
the up-to-date residual of u as r

u

, which is the key step for
eager propagation. Since this read is in the loop of neighbor-
propagation, R

s

(u) can be increased by concurrent propaga-
tion from u’s neighbors and the value r

u

is potentially larger
than the value of R

s

(u) before the neighbor-propagation ses-
sion starts. To ensure the consistent residual value used in
both sessions, r

u

is recorded in E at Line 11, which will be
passed down to later session. Then R

s

(u) is subtracted with
the consistent r

u

at Line 21, instead of being zeroed as in
Algorithm 3.
There are also some other di↵erences in Algorithm 4 com-

pared with Algorithm 3. First, there is an additional round
of frontier generation in the self-update at Lines 22-23. Note
that the absolute value of R

s

(u) could be larger than ✏ af-
ter the subtraction at Line 21, making u as the potential
frontier for the next iteration, since R

s

(u) can still be in-
creased by u’s neighbors after u pushes out its residual.
Compared with the other frontier generation process in the
neighbor-propagation, this one is to take care of those ver-
tices that are frontier in both the current and next iteration,
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i.e. u 2 FQ ^ u 2 FQ0, while the other is for those vertices
that are frontier in the next iteration but not in the current
iteration, i.e. u 2 FQ0 ^ u /2 FQ. Second, the frontier gen-
eration in the neighbor-propagation of Algorithm 4 is also
di↵erent from that in Algorithm 3. Both of these di↵erences
are related to our novel optimization technique for the fron-
tier generation, which we will discuss in the next subsection.

4.2 Frontier Generation

Algorithm 4 OptParallelPush

1: procedure PushCondLocal(r
pre

, r
cur

, phase)
2: if !pushcond(r

pre

, phase) then

3: if pushCond(r
cur

, phase) then

4: return true
5: return false

6: procedure OptParallelPush(P
s

, R
s

, FQ, phase)
7: FQ0

= ;
8: E = ;
9: parallel for u 2 FQ

10: r
u

 R
s

(u)
11: E = E [ (u, r

u

)

12: parallel for v 2 N
in

(u)

13: inc = (1� ↵) · r
u

/d
out

(v)
14: r

pre

=atomicAdd(R
s

(v), inc)
15: r

cur

= r
pre

+ inc
16: if PushCondLocal(r

pre

, r
cur

, phase) then

17: enqueue(FQ0, v)

18: synchronize

19: parallel for (u, r
u

) 2 E

20: P
s

(u) += ↵ · r
u

21: R
s

(u) �= r
u

22: if pushCond(R
s

(u), phase) then

23: enqueue(FQ0, u)

24: synchronize

25: return FQ0

In general, there are two methods for frontier generation
[21, 34, 35, 25, 26, 13], and both of them cannot give sat-
isfactory performance for the parallel push. The first one
is a topology-driven method, which inspects all vertices at
the start of each iteration to construct the frontier. This
method is not work-e�cient especially when the frontier size
is small. The second one is a data-driven method that takes
in a frontier queue and generates a frontier queue for the
next iteration. However, to avoid duplicate items during
frontier generation, such a method requires atomic opera-
tions, which incurs expensive overheads. The unoptimized
parallel push, i.e., Algorithm 3, adopts the second method.
The duplicate detection in uniqueenqueue of Algorithm 3
can cause significant synchronization overheads.

In fact, this overhead can be avoided by exploring appli-
cation properties: monotonicity . Note that in the work
flow of the parallel push, the positive residuals are pushed
out in the first phase and then the negative residuals in the
second phase. Thus, during neighbor-propagation, the resid-
uals are changing monotonically, increasing in the first phase
and decreasing in the second phase. Take the first phase for
example, for a vertex v, its residual absorbs incoming prop-
agation from v’s out-neighbors. There is one and only one
out-neighbor, u, that turns v from the state when R

s

(v) < ✏
to the other state when R

s

(v) > ✏. Therefore, we can des-
ignate u as the one responsible to put v into new frontier
queue, and others can avoid the attempt to enqueue v. But
this raises a question: how can u know the value of R

s

(v)
during frontier generation?

Note that in most parallel architectures like GPUs and
multi-core CPUs we can implement an atomic operation that

performs the addition to a 32/64 bit address atomically and
returns the before-value after finishing this operation. For
some architectures, such an atomic addition can be directly
supported by the hardware intrinsics. For the remaining ar-
chitectures where it cannot be directly supported, observe
that the compare-and-swap intrinsics are always supported
[20, 12], and we can use such intrinsics to implement the
functionality of the atomic addition. atomicAdd at Line
14 is the implementation of such an operation. The before-
value r

u

is the by-product of updating R
s

(u). With the
before-value, the after-value can be computed locally. To
perform duplicate detection on v, u enqueues v as the fron-
tier if the before-value of R

s

(v) does not meet the push
condition, but the after-value of R

s

(v) does. In this way,
threads can identify duplicates locally without synchroniz-
ing globally on shared data structures. We call this e�cient
technique as local duplicate detection.
We implement local duplicate detection at Lines 14-17 of

Algorithm 4. At Line 14, the residual of v is atomically
updated and the before-value of R

s

(v) is returned as r
pre

.
At Line 15, the after-value is calculated as r

cur

. If a vertex v
can pass the test at Line 16, it means that v passes the push
condition and putting v to FQ0 will not cause duplicates. At
Line 17, we enqueue those qualified vertices with enqueue.
The di↵erence between enqueue here and uniqueenqueue
is that enqueue removes the duplicate detection process.
Note that Algorithm 4 has one more frontier generation

process at Lines 22-23. This is because the first frontier
generation process cannot handle the case when a vertex is
in the frontier for both the current and the next iteration.
Given a frontier vertex u, i.e. |R

s

(u)| > ✏, a neighbor of
u updates R

s

(u) and gets the before-value of R
s

(u) as r
pre

( |r
pre

| > ✏). Under such circumstances, the after-value
r
cur

= r
pre

+inc also satisfies |r
cur

| > ✏ due to monotonicity.
Thus, u is never enqueued, even if u can meet the push
condition after self-update. To remedy this, we add the
second frontier generation to handle the frontier vertices. As
the parallel-for loop at Lines 19-23 of Algorithm 4 does not
have shared vertices, the frontier can be generated e�ciently
without duplicate detection.

5. EXPERIMENTS
In this section, we will first introduce the experimental

setups and then report the results of the experimental study.

5.1 Experimental Setup
Implementation. We implement the proposed parallel lo-
cal update approach on both the CPU and GPU architec-
tures. For comparison, we also implement various baselines.
The details are shown as follows.

• CPU Sequential Push with Single Update (CPU-Base):
We implement the state-of-the-art sequential algorithm
for dynamic PPR computation [49]. For each edge up-
date, it repairs the invariant and then invokes the sequen-
tial push.

• CPU Sequential Push with Batch Update (CPU-Seq): We
add the batch update optimization for CPU-Base. To
handle a batch of size k, it repairs the invariant for k
updates and then launches the sequential push.

• CPU Parallel Push with Batch Update (CPU-MT): We im-
plement our parallel local update using the multi-thread
framework CilkPlus [24] to manage parallel contexts and
resources on CPUs.
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• GPU Parallel Push with Batch Update (GPU): We imple-
ment our parallel local update on GPUs using CUDA [37].

• Incremental Monte-Carlo on CPU (Monte-Carlo): We
implement the state-of-the-art incremental Monte-Carlo
approach [10]. To improve the performance, we parallelize
the maintenance of random walks with the multi-thread
framework CilkPlus [24].

• Vertex-centric implementation in Ligra (Ligra): We im-
plement our approach, i.e. parallel push with batch up-
date, on top of Ligra [42], the state-of-the-art in-memory
graph processing system on multi-core architectures.

Datasets. Our experiments are conducted on the following
real-world graph data sets 3.

• Pokec has 1.6M vertices and 30.6M edges, generated by
the most popular on-line social network in Slovakia.

• LiveJournal has 4.8M vertices and 68.9M edges, gener-
ated by an online community that allows users to declare
friendships with others.

• Youtube has 1.1M vertices and 2.9M edges, extracted
from the users’ friendships of Youtube.

• Orkut has 3.0M vertices and 117.1M edges, extracted
from users’ friendships of an online social network.

• Twitter has 41.6M vertices and 1.4B edges, generated
by Twitter network of followed-by relationships from a
sample in 2010.

Graph Stream. For all data sets, they do not possess
a timestamp for each edge. Following previous works [10,
38, 49], we simulate the random edge arrival model by ran-
domly setting the timestamps for all edges. Then, the graph
stream of each dataset receives the edges with increasing
timestamps. To evaluate both insertions and deletions on
the arrival of graph streams, the sliding window model is
adopted in the experiments. For initialization, the first 10%
edges in the stream are used to construct the sliding window
before updates start. As the window slides for a batch size
of k, k edges are inserted and the same number of edges
are deleted according to their timestamps. The experimen-
tal results are the average of 10 slides for Twitter and the
average of 100 slides for the other data sets.
Parameter setting. We summarize the parameters used
in the experiments together with their highlighted default
values in Table 2. For a source vertex, No. of random walk

samples maintained by Monte-Carlo is w � 3log(2/p
f

)

✏

2
r

�

[46],

where �, p
f

, ✏
r

are the result threshold, failure probability
and relative error. Normally, �, p

f

and ✏
r

are set to 1/|V |,
1/|V | and 0.5 respectively [46, 29, 31]. This makes w huge
for large graphs like Twitter and leads to poor performance.
In our experiment, we favor Monte-Carlo and set w to
a smaller value, i.e. 6|V | to improve the performance by
trading accuracies (with � = 1/|V |, p

f

= 2/e, ✏
r

= 0.71).
Experimental Environment. We conduct all the experi-
ments on two machines.

• For CPU-based implementations (i.e. CPU-Base, CPU-Seq,
CPU-MT, Monte-Carlo and Ligra), the experiments are
performed on a machine running Ubuntu 16.04 with four
10-core Intel Xeon E7-4820 processors clocked at 1.9 GHz
and 128GB main memory. Each core owns a private 32
KB L1 cache and a private 256 KB L2 cache. Every 10

3https://snap.stanford.edu/data/

Table 2: All parameters used in the experiments. The
default values are highlighted.

Parameter Values
↵ 0.15
✏ 10�5, 10�6, 10�7, 10�8,10�9, 10�10

source vertex s
randomly chosen vertices with
Top-10, Top-1K and Top-1M

out-degrees

batch size
1%, 0.1% and 0.01%
of sliding window size

No. of random
6|V | (|V | is No. of vertices)

walk samples

Table 3: Variants of the parallel push
Opt Eager DupDetect Vanilla

Eager Propagation X X ⇥ ⇥
Local Duplicate X ⇥ X ⇥

Detection

cores share a 25 MB L3 cache and a 64 GB local DRAM.
The programs are compiled with GCC 5.4.0 using �O3
flag. For multi-threaded execution, the program is also
compiled with CilkPlus from GCC 5.4.0.

• For GPU-based implementation (GPU), we run the exper-
iments on a CentOS server that has 64GB main memory
and one Intel(R) Core(TM) i7-3820 4-core processor with
the frequency of 3.60 GHz, and GeForce GTX TITAN
X GPU with 12GB device memory that is connected to
PCIe v2.0 ⇥16. The programs are compiled with CUDA-
7.0 and GCC 4.4.7 with �O3 flag.

5.2 Effects of Optimizations
In this subsection, we evaluate the e↵ectiveness of the

optimization techniques, including eager propagation and
local duplicate detection. For comparison, we implement
di↵erent variants of the parallel push with these techniques
enabled or disabled, as shown in Table 3.
We run these variants of the parallel local update and re-

port the average latency. As shown in Figure 4, the fully
optimized algorithm can achieve about 2.5 times speedups
compared with the unoptimized version for GPUs and multi-
cores. Each of the techniques provides significant perfor-
mance improvement over the unoptimized version. For eager
propagation, the speedup comes from the mitigation of par-
allel loss. The number of required operations is reduced. For
local duplicate detection, it achieves speedups by reducing
synchronization e↵orts at runtime. Notice that both tech-
niques show more significant improvements in larger data
sets. This is because large data sets lead to large frontier
sizes, which introduce more severe parallel loss and incur
higher frontier generation costs.

5.3 Stream Throughtput
In this subsection, we compare the stream throughput be-

tween the parallel local update and various baselines. We
report the number of edges consumed per second after run-
ning for 5 minutes. Meanwhile, we vary the batch size to
evaluate its e↵ect over the stream throughput.
In Figure 5, we can see the parallel local update achieves

significant speedups over the sequential local update. Com-
pared with CPU-Base, which is the state-of-the-art approach
[49], GPU and CPU-MT achieve the speedups of more than
100-7000 and 30-4000 times respectively with the batch size
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Figure 4: E↵ect of optimizations for the parallel local update.

Figure 5: The comparison of streaming throughput.

of 105. Compared with CPU-Seq, GPU and CPU-MT achieve
the speedups of more than 12 � 74 and 6 � 20 times re-
spectively. The performance improvement of our approach
comes from two dimensions. One is the parallel push and
the other is the batch update. First, GPU and CPU-MT

achieve speedups over CPU-Seq, which shows that the par-
allel push e↵ectively accelerates the local push. Second, as
the batch size increases, the throughputs of GPU and CPU-MT
get larger, because the batch update raises the degree of
parallelism. With a large batch size, there are more work-
loads in each iteration, so parallel threads can process more
frontier vertices all at once. As CPU-Base is significantly
slower than the other approaches,we will omit the results for
CPU-Base in the rest of the experiments.
Figure 5 shows our parallel local update has superior per-

formance over the incremental Monte-Carlo approach. Com-
pared with Monte-Carlo, GPU and CPU-MT achieve the
speedups of 18 - 254 and 9 - 135 times respectively with the
batch size of 105. We attribute the unsatisfactory perfor-
mance of Monte-Carlo to the huge overheads of incremental
maintenance of random walk samples. The overheads come
from two sources. First, the number of random walk sam-
ples w is huge especially for large graphs like Twitter (al-
though we set w to a value smaller than existing works [46,
29, 31]). Second, the incremental maintenance of random
walk samples needs to track some auxiliary data structures.
The Monte-Carlo approach on static graphs only needs to
maintain the number of visits made by random walks for
each vertex. However, the incremental approach should also
keep track of the traces of the random walk samples, i.e. the
vertices visited, and the inverted index that records the set
of random walks passing through each vertex. When new
edges arrive, we should update the traces of these samples
and the inverted index by regenerating random walks on the
new graph. This updating process requires frequent atomic
accesses to the shared memory. Thus, these auxiliary data
structures are large and the maintenance incurs a huge cost.
As shown in Figure 5, our specialized implementations

(GPU and CPU-MT) are better than the implementation in
the general graph processing system with vertex-centric ab-
straction (Ligra). This is because those systems lack ap-
plication knowledge to perform specific optimizations such
as eager propagation and local duplicate detection.

5.4 Effects of Parameters
In this subsection, we study how the parameter setups

a↵ect the performance of the parallel local update.
Varying ✏. The choice of ✏ determines the accuracy of
the solution and a smaller ✏ requires more computation. We
vary ✏ in the range from 10�4 to 10�10 and show the latency
of window slides in Figure 6. As ✏ decreases, the latency
for all approaches increases dramatically, because of more
computation. The speedups of the parallel approach over
the sequential approach become larger for smaller ✏. This
is because smaller ✏ creates larger frontier for the parallel
approach to be e↵ective. With the parallel speedups, our
approach can achieve fairly low latency with high accuracy.
Varying source vertex selection. The degree of the
source vertex can a↵ect the performance of the local push.
Starting from a source vertex s with low degrees, the vertices
that have high PageRank values w.r.t. s are mostly in the
local cluster of s. Hence, if the edge updates do not a↵ect
the structure of the local cluster of s, then the local push
only needs few operations for the incremental computation.
On the contrary, if s has high degree, a small number of
edge updates can severely change the current estimate and
the residual vector, since s has influence over a wide range
of vertices. In Figure 7, we choose source vertices with var-
ious degrees (top-10, top-1K and top-1M out-degree) and
validate that as the degrees increase, the latencies of all ap-
proaches become larger. We also find that the improvement
of our parallel approach is not significant when the source
vertex has a small degree. The phenomenon can be under-
stood as the parallel workload is reduced for small-degree
vertices compared with large-degree vertices. In practice,
one is often interested in PPR of large-degree source ver-
tices and our parallel approach is superior under such cases.
Varying batch sizes. To study the e↵ect of di↵erent batch
sizes, we vary it as di↵erent ratios of the sliding window
size, i.e., 1%, 0.1% and 0.01%. We show the latency of all
approaches in Figure 8. As the batch size of the window
slide decreases, the latencies of all approaches get smaller
for fewer updates are required. But the parallel approaches
GPU and CPU-MT still keep the speedups over CPU-Seq for
smaller batches, which shows that our parallelization is ef-
fective and robust to di↵erent batch sizes.
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Figure 6: E↵ect of ✏ for parallel push.

Figure 7: E↵ect of the source vertex. It is chosen from those vertices having top-10, top-1K and top-1M out-degree.

Table 4: Profiling metrics for resource consumption
Approach Metrics

GPU

Achieved warp occupancy (WO)
Global load e�ciency (GLD)

CPU-MT

L2 data cache miss rate (L2DCM)
L3 cache miss rate (L3CM)

ratio of cycles stalled on resource (STL)

5.5 Resource Consumption
We study the e↵ects of di↵erent optimizations and param-

eters on the resource consumption of the hardwares, includ-
ing the memory e�ciency and thread utilization. To profile
the execution of our approaches, we use nvprof in CUDA
toolkit [37] for GPU and PAPI [2] for CPU-MT. Table 4 lists
the profiling metrics used in the experiments. Note that for
GPU, WO is the ratio of the average warps per active cycle,
while GLD is the ratio of the requested global memory load
throughput to the maximum load throughput.

Figure 9 shows the profiling results with varying batch
size. For GPU, we can observe that the achieved warp oc-
cupancy gets larger as the batch size increases. This is be-
cause a large batch size provides more workloads for the
parallel push, and more warps can be utilized for the execu-
tion of GPU kernels. Meanwhile, the global store e�ciency
decreases with the increase of the batch size. As traversing
the graph structure leads to many random memory accesses,
when there are more workloads, the parallel push performs
more random memory accesses, which degenerate the global
memory throughput a bit. For the same reason, L2 data
cache miss rate and L3 cache miss rate of CPU-MT increase
a bit as the batch size gets large. For CPU-MT, we can also
see more CPU cycles are spent waiting for resource as the
batch size increases, since there are more memory accesses.
We also profile the execution with varying optimization tech-
niques, the error tolerance and the source vertex, the results
of which are presented in our extended version [1].

5.6 Scalability
We also evaluate the scalability of our parallel approach on

multi-core architectures. We vary the number of cores used
for parallelization and report the throughputs for CPU-MT.
The experiment is run for 5 minutes with a batch size of 105.
As shown in Figure 10, we can see that the performance
scales as the core number increases.

6. RELATED WORKS
Personalized PageRank. PPR is extensively explored

in the literature [49, 38, 10, 31, 6, 5, 9, 29, 11]. They can
be categorized into three lines of schemes.
The first scheme is the power iteration [39, 48, 32]. It is

slow [38] since it requires ⌦(m) for updating the PPR vector
once, where m is the number of edges in the graph.
The second scheme is based on Monte-Carlo [7, 10, 9,

27]. It simulates w random walk samples from each ver-
tex, and estimates the PPR value as the number of visits
to a vertex made by these samples. On the arrival of any
graph update, say u ! v, the samples that pass through
u are found, and then redo the random walks on the new
graph. The analysis in [10] shows that the expected number
of random walk samples to be updated is only O(w · log(k))
assuming k edges randomly arrive for an arbitrary directed

graph [10]. However, w is required to be at least
3log(2/p

f

)

✏

2
r

�

[46], where �, p
f

, ✏
r

are the result threshold, failure prob-
ability and relative error ratio respectively such that when
⇡
s

(x) > �, |P
s

(x)�⇡
s

(x)|  ✏
r

⇡
s

(x) with probability at least
1�p

f

. Since � and p
f

are set to 1/|V | normally [46, 31, 29],

w is O(nlog(n)
✏

2
r

), which implies the overheads for storage and

computation can be significant especially for large graphs.
The third scheme is the local update [6, 5, 11, 38, 49,

31, 29, 28, 30], which is the one we parallelize in this work.
Many previous works [6, 5, 11] propose variants of the lo-
cal update scheme for di↵erent applications such as graph
partitioning and web search, but the PPR is computed in
static graphs. Recent works [38, 49] propose incremental ap-
proaches for dynamic PPR computation, which can outper-
form the Monte-Carlo-based approaches. Amortized analy-
sis in [49] shows that dynamic maintenance of PPR vector is
e�cient. In a directed graph with random edge permutation
or undirected graph with arbitrary edge updates, the cost to
maintain a reverse PPR vector for a random target vertex
is only O(k + d/✏), where k is the number of edge updates
and d is the average degree; given an undirected graph with
arbitrary edge updates, the cost to maintain a forward PPR
vector for a random start vertex is O(k + 1/✏). These com-
plexities suggest that the maintenance cost is only O(1) for
each edge update plus the cost of computing the PPR vector
once for the static graph. The variants of the local update
scheme slightly di↵er in the local push, such as convergence
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Figure 8: E↵ect of batch size

Figure 9: Resource consumption with varying batch size.

Figure 10: Scalability on Multi-cores.

criteria[6, 49], the direction of graph traversal [6, 38, 49] and
the amount of residuals used for the local push [6, 5]. The
variant of the local update we parallelize in this work is from
[5, 49], but our parallel approach can be naturally extended
to other variants of the local update, since they share many
similarities. On the arrival of graph updates, they repair
the estimates and residuals of the a↵ected vertices to re-
store the invariant; the local push iteratively performs push
operations to maintain the estimate and residual vector until
the convergence condition is satisfied.

Recent works [27, 18, 46] rely on e↵ective indexing meth-
ods to accelerate the PPR computation. PowerWalk [27]
simulates the random walk samples based on the memory
budget during o✏ine index construction. For online queries,
it reuses these samples and further invokes more iterative
computation to meet the accuracy requirement. However,
this Monte-Carlo based approach can incur large overheads
to maintain the stored random walk samples on dynamic
graphs. Guo et al. [18] designs a distributed local update
approach that makes use of pre-computed PPR vectors of
the selected hub vertices. Wang et al. [46] develops an elas-
tic indexing approach that tradeo↵s accuracy, query time
and memory budget. It also exploits the pre-computed PPR
vectors of the hub vertices to aid for the local update. Our
approach is helpful for both these two works [18, 46] to main-
tain the indexed PPR vectors on dynamic graphs.

To the best of our knowledge, there are only two works on
parallelizing the local update for PPR computation. Shun et
al. [44] implements various local update algorithms for graph
clustering on multi-core architectures; Perozzi et al. [40]
studies PageRank-Nibble algorithm [6] in the distributed
setting. However, these two works only discuss the com-
putation on static graphs.

Parallel Graph Processing. There are many graph
processing systems [36, 23, 47, 42, 16] proposed to accel-

erate graph applications by utilizing GPUs and multi-core
CPUs. They provide the general vertex-centric abstraction
that can implement most graph algorithms, but lack the
abilities to support application-specific optimizations. For
example, eager propagation requires active vertices to ab-
sorb incoming messages so as to use the up-to-date residuals,
which cannot be supported in bulk synchronous processing
model; local duplicate detection exploits the monotonicity
to reduce synchronization overheads, but the graph systems
cannot leverage this knowledge for the frontier generation.
While most existing graph systems only support static

graphs, the recent frameworks [14, 41] can e�ciently handle
the dynamic scenario by the architecture-optimized graph
storage schemes. How to integrate our work with these
frameworks could be an interesting future work.

7. CONCLUSION
We propose the parallel local update approach for dy-

namic PPR computation over high-speed graph streams.
Our approach adopts a batch processing method for incre-
mental updates that can reduce synchronization costs within
a batch as well as to generate more workload for parallelism.
We propose optimization techniques to improve the runtime
performance of the parallel push: eager propagation can
practically reduce the number of push operations and lo-
cal duplicate detection avoids synchronization overheads to
merge duplicate vertices during frontier generation. The ex-
perimental evaluation shows that our parallel approach on
GPUs architectures and multicore CPUs achieves significant
speedups over the state-of-the-art sequential approach.
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