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ABSTRACT
This paper presents LA3, a scalable distributed system for
graph analytics. LA3 couples a vertex-based programming
model with a highly optimized linear algebra-based engine.
It translates any vertex-centric program into an iteratively
executed sparse matrix-vector multiplication (SpMV). To
reduce communication and enhance scalability, the adja-
cency matrix representing an input graph is partitioned into
locality-aware 2D tiles distributed across multiple processes.
Alongside, three major optimizations are incorporated to
preclude redundant computations and minimize communi-
cation. First, the link-based structure of the input graph
is exploited to classify vertices into different types. After-
wards, vertices of special types are factored out of the main
loop of the graph application to avoid superfluous compu-
tations. We refer to this novel optimization as computation
filtering. Second, a communication filtering mechanism is
involved to optimize for the high sparsity of the input ma-
trix due to power-law distributions, common in real-world
graphs. This optimization ensures that each process receives
only the messages that pertain to non-zero entries in its tiles,
substantially reducing communication traffic since most tiles
are highly sparse. Lastly, a pseudo-asynchronous computa-
tion and communication optimization is proposed, whereby
processes progress and communicate asynchronously, con-
sume messages as soon as they become available, and block
otherwise. We implemented and extensively tested LA3 on
private and public clouds. Results show that LA3 outper-
forms six related state-of-the-art and popular distributed
graph analytics systems by an average of 10×.
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1. INTRODUCTION
Modern-day networks, such as the Web, online social net-
works, and wireless sensor networks, continue to grow and
generate a wealth of valuable information. The link-based
structures of these networks are usually modeled as graphs,
enabling domain experts to mine them using a variety of
graph analytics algorithms, including PageRank, Connected
Components, and Shortest Paths, to name a few. To ef-
fectively implement and execute these algorithms, modern
graph analytics platforms like Giraph [1], PowerGraph [19],
Gemini [42], and GraphPad [11], among others, are typically
utilized. These platforms can be classified into three ma-
jor categories, namely, vertex-centric, linear-algebra-centric,
and hybrid, depending on the adopted programming abstrac-
tion and the underlying execution model.

Most graph analytics platforms (e.g., Giraph and Power-
Graph) lie under the vertex-centric category, wherein they
provide a vertex-based programming abstraction on top of
an iterative graph-based processing engine. In particular,
the application programmer writes sequential code that is
executed concurrently over all vertices, and the resulting
interactions between connected vertices are translated into
messages. Iterative execution continues until the states of
the vertices converge or a pre-defined number of iterations is
reached. This vertex-centric category has become very pop-
ular due to its simple, yet flexible programming abstraction
and highly parallelizable execution model [15, 3].

Aside from vertex-centric systems, much work has been
done by the high-performance scientific computing (HPC)
community to develop linear-algebra-centric graph analytics
platforms. In these platforms, a formalized linear algebra-
based programming abstraction is provided over of a linear
algebra-based processing engine [22, 12]. The application
programmer writes iterative code assuming an underlying
adjacency matrix, which represents the input graph. The
code calls specialized linear algebra primitives that corre-
spond to well-defined graph algorithms. For instance, edge
traversals from a set of vertices can be translated into sparse
matrix-vector multiplication (SpMV) calls on the graph ad-
jacency matrix (or its transpose) [38]. In fact, most graph
analytics algorithms can be implemented via overloading a
generalized version of SpMV [23]. For example, the Single-
Source Shortest Paths algorithm can be implemented via
replacing the multiply and add operations of SpMV with
add and min operations, respectively [23, 38, 22].
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Recently, a third breed of platforms has emerged with
systems like GraphMat [38] and GraphPad [11], where a
vertex-based abstraction is layered on top of a linear algebra-
based engine. Specifically, the application is still written
using a vertex-based programming interface, but gets au-
tomatically translated into iterative calls to linear algebra
routines. Clearly, these hybrid platforms aim at reaping
the benefits of both the vertex- and linear-algebra-centric
paradigms, namely, the wide familiarity and flexibility of the
vertex-based programming abstraction, alongside the scal-
able parallelism and low-level optimizations of the linear
algebra-based execution model. In this paper, we present
LA3, a scalable distributed system for graph analytics that
falls under this new category of hybrid platforms.

Akin to some existing hybrid systems, LA3 partitions the
adjacency matrix, which represents the input graph, into
equal-sized tiles via a two-dimension (2D) partitioning algo-
rithm. However, in contrast to these systems, LA3 employs
a unique 2D-Staggered tile placement strategy, which ex-
ploits locality upon distributing tiles across processes and
thereby reduces communication and expedites computation.
Furthermore, LA3 adopts three other major optimizations:
computation filtering, communication filtering, and pseudo-
asynchronous computation and communication.

Computation filtering capitalizes on the observation that
graph vertices are of four different types: (1) source vertices
with only outgoing edges, (2) sink vertices with only incom-
ing edges, (3) isolated vertices with no incoming or outgoing
edges, and (4) regular vertices with incoming and outgoing
edges. We show that non-regular (i.e., source, sink, and
isolated) vertices can generally be safely factored out from
the main execution loop of a graph program. Consequently,
we suggest a vertex classification mechanism that classifies
vertices into these four types. Afterwards, computation fil-
tering factors out non-regular vertices from the main loop,
saving thereby many redundant computations. We show
that an adjacency matrix representation of a graph greatly
facilitates both the vertex classification pre-processing step
and the computation filtering optimization.

Besides, communication filtering optimizes for the high
degree of sparsity in the input matrix due to the power-law
distributions observed in real-world graphs [19]. In partic-
ular, applying a 2D partitioning algorithm over the input
matrix results in most tiles becoming hyper-sparse [23]. As
a way to leverage this hyper-sparsity, LA3 employs a point-
to-point communication layer with a special communication
filter per process. This filtering ensures that each process
receives only messages corresponding to the non-zero entries
(edges) in its tiles. Since most tiles are extremely sparse, our
communication filtering optimization substantially reduces
inter-process communication. Moreover, applying it in con-
junction with computation filtering, which reduces the num-
ber of non-zero entries in tiles by factoring out non-regular
vertices, further boosts its advantage and differentiates LA3
from other linear-algebra-centric and hybrid systems.

Finally, pseudo-asynchronous computation and commu-
nication interleaves computation with communication, both
within each iteration and across successive iterations. Specif-
ically, during normal execution each process still receives
and sends messages asynchronously. In other words, a pro-
cess consumes and processes received messages in any order,
assuming computations can be pursued incrementally, which
is naturally afforded by SpMV operations. Additionally, it
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Figure 1: LA3’s speedup versus other systems
averaged over various standard applications and
datasets. Mean speedup is 10× over all systems.

dispatches messages as soon as they are produced. To this
end, a process only blocks when it does not have more work
to do, yet still expects to receive more messages. However,
if a process is fully done with its work under the current
iteration, it can immediately start with the subsequent one,
making our computational model effectively asynchronous.
Unlike LA3, other linear-algebra-centric and hybrid systems
employ asynchrony for communication but not computation.

In short, this paper makes the following contributions:

• We present LA3, a scalable distributed system for graph
analytics that provides a familiar vertex-based pro-
gramming interface on top of a highly optimized linear
algebra-based execution engine. To encourage repro-
ducibility and extensibility, we make LA3 open source1.

• We demonstrate the value of computation filtering for
factoring out redundant computations and communi-
cation (when augmented with communication filter-
ing) for iterative graph processing.

• We promote pseudo-asynchronous computation and com-
munication, in which processes communicate asynchro-
nously, consume messages as soon as they become avail-
able, and only block otherwise.

• We suggest a locality-aware 2D-Staggered tile place-
ment strategy, which enables this pseudo-asynchronous
optimization, both within each iteration and across
successive iterations.

• We provide a comprehensive performance evaluation
of LA3, comparing it against the state-of-the-art graph
analytics systems. Results show that LA3 offers sig-
nificant performance and scalability advantages over
those systems (see Figure 1).

The rest of the paper is organized as follows. We provide a
background on graph analytics in Section 2. Details of LA3
are presented in Section 3. In Section 4, we discuss our ex-
perimentation results. Lastly, related work and conclusions
are given in Sections 5 and 6, respectively.

2. BACKGROUND
Graph analytics systems with a graph-based processing en-
gine typically represent (directed) graphs using either an
adjacency list or an edge list. The adjacency list maintains
a list of entries, each with a unique vertex alongside its set
of neighboring vertices (via outgoing edges). In contrast,
the edge list maintains a list of records, each representing
an edge with its two end vertices. On the other hand, graph

1 https://github.com/cmuq-ccl/LA3
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analytics systems with a linear algebra-based processing en-
gine represent (directed) graphs using an adjacency matrix,
wherein each non-zero entry (i, j) represents an (outgoing)
edge between vertices i and j. Irrespective of the format,
careful consideration is needed to design data structures for
big graphs (i.e., graphs with billions of edges and vertices),
which can scale effectively in terms of capacity and access
requirements. For instance, a highly sparse adjacency ma-
trix is usually stored compactly in the popular Compressed
Sparse Row (CSR) data structure (or a variant of it), which
trades access time for reduced memory footprint [23].

Graph analytics systems typically split big graphs into
multiple partitions for exploiting higher parallelism and/or
aggregating storage mediums (e.g., memories and/or disks
across machines). Two classical partitioning strategies are
commonly used to partition big graphs represented as either
adjacency or edge lists. First, edge-cut partitioning is uti-
lized to split an adjacency list, resulting in pairs of connected
vertices potentially mapped to different partitions. In con-
trast, vertex-cut partitioning splits an edge list such that a
vertex with multiple incident edges may appear at multiple
partitions. In principle, when processing a big graph in a
distributed setting, minimizing the cut size (or the number
of edges/vertices across partitions) serves in reducing com-
munication traffic, which is vital for scalability.

Likewise, an adjacency matrix may be partitioned along
one (1D) or two (2D) dimensions. Clearly, 1D and 2D par-
titioning are conceptually analogous to edge-cut and vertex-
cut partitioning, respectively. Although 2D partitioning ne-
cessitates additional metadata for communication and co-
ordination purposes, pursuing SpMV on 2D slices (or tiles)
requires asymptotically less communication traffic than on
1D slices (or records or partitions), especially when the num-
ber of processes/machines is scaled out [23] (more on this in
Section 3.2). As such, most modern linear-algebra-centric
systems optimize SpMV assuming 2D partitioning [12, 11].

In the context of graph analytics, SpMV translates into
a single pass (or iteration) over an input graph, such that
each vertex gathers the messages produced by its incom-
ing neighbors and applies to them a user-defined function.
Afterwards, the vertex may use the result of the function
to update its private state and generate a new message to
be scattered along its outgoing edges, yet in the subsequent
iteration. More formally, SpMV multiplies the transposed
adjacency matrix AT of an input graph with an input mes-
sage vector x, given a pair of additive and multiplicative
semiring operators (⊕.⊗) [23], and outputs a result vector
y = AT ⊕.⊗ x. For a given vertex, each incoming message is
processed by the multiplicative operator (⊗), and the result
is aggregated by the additive operator (⊕). Accordingly, var-
ious iterative graph applications can be implemented using
SpMV with an appropriately defined semiring.

3. LA3 SYSTEM
This section presents in detail the LA3 system. First, we
introduce our simple, yet flexible vertex-centric abstraction
(Section 3.1). Second, we describe how LA3 loads and parti-
tions an input graph across multiple processes (Section 3.2).
Third, we discuss LA3’s pre-processing phase, which col-
lects information about the link structure of the input graph,
needed for various optimizations within LA3’s engine (Sec-
tion 3.3). Finally, we elaborate on LA3’s execution engine
(Section 3.4). Figure 2 shows a high-level overview of LA3.

� �
class V : Vertex<E,M,A> {
bool init(){. . .}
Acc gather(E, M){. . .}
void combine(A, &A){. . .}
bool apply(A){. . .}
Msg scatter(){. . .}

};

Graph G("input_file");
G.load();
VProgram<V> vp(G, n);
vp.execute();� �
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Figure 2: (a) A vertex-centric program V. (b) An in-
put graph G is loaded from a shared filesystem, par-
titioned, distributed, and pre-processed over pro-
cesses P1 ... Pp, which then all execute V.� �
using Edge = Empty, Msg = double, Acc = double;

class VPR : Vertex<Edge, Msg, Acc> {

const bool STATIONARY = true; // Default = false
const bool OPTIMIZABLE = true; // Default = true
const double tolerance = 1e-5, alpha = 0.15;

int degree; double rank; // State

bool init(VD d) { degree = d.value; rank = alpha; }

Msg scatter() { return rank / degree; }

Acc gather(Edge e, Msg m) { return m; }
void combine(Acc g, Acc& a) { a += g; }

bool apply(Acc a) {
double r = rank;
rank = alpha + (1 - alpha) * a;
return fabs(rank - r) > tolerance; }

};� �
Figure 3: PageRank implemented in C++ using
LA3’s vertex-centric programming model. Each ver-
tex is initialized with its out-degree (calculated by
a separate vertex program, VD).

3.1 Programming & Computational Models
Akin to some closely related vertex-centric systems [38, 11],
LA3 provides a programming model composed of five func-
tions, namely, init, gather, combine, apply, and scatter (see
Figure 2(a)). As shown in Figure 3, a user can define a
vertex program via implementing these functions2. To exe-
cute this vertex program, the LA3 engine begins processing
each active vertex in an iterative fashion, until the states
of all vertices converge or a specified number of iterations
is reached (see Algorithm 1). More precisely, each vertex is
computed as follows:

Initialize. At first, each vertex state is initialized by init,
which returns true or false to indicate whether the vertex
should be activated (Algorithm 1, lines 5-7). Vertex activ-
ity is mainly relevant to non-stationary applications (e.g.,
Breadth First Search (BFS)), where not all vertices are nec-
essarily activated at the outset and not all of them remain
active over all iterations [24]. This contrasts with stationary
applications (e.g., PageRank), wherein all vertices stay ac-
tive over all iterations until completion. In LA3, a user
can declare whether an application is stationary or non-
stationary via a flag as illustrated in Figure 3. We discuss
the performance implications of this in Section 3.4.

2 The code in Figure 3 is simplified for clarity and brevity.
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Algorithm 1 – Vertex-Centric Computational Model

1: Input: Vertex program V
2: Input: Partitioned graph G
3: Input: Number of iterations n
4:
5: for each v in G do . Initialize phase
6: activate← v.init()
7: if activate or V.isStationary() then V.activate(v)

8:
9: for i← 1 . . . n do . Iterative execution

10: msg[ ]← ∅ ; acc[ ]← ∅ . Messages & accumulators
11:
12: for each v in G do . Scatter phase
13: if V.isActive(v) then msg[v]← v.scatter()

14:
15: for each v in G do . Gather & combine phase
16: for each ein in v do . Process each in-edge
17: m← msg[src(ein)] . Check scattered message
18: if m is not ∅ then
19: g ← v.gather(ein, m) . Process message
20: v.combine(g, &acc[v]) . Accumulate result

21:
22: converged← true
23: if not V.isStationary() then V.deactivateAll()

24:
25: for each v in G do . Apply phase
26: if acc[v] is not ∅ then
27: updated← v.apply(acc[v])
28: if updated then
29: converged← false
30: if not V.isStationary() then V.activate(v)

31: if converged then break . Done

Scatter. After a vertex is activated, scatter generates
a new message based on its initial/updated state, which is
sent along its outgoing edge(s) in the current iteration (Al-
gorithm 1, lines 12-13).

Gather & Combine. Subsequently, each vertex that
receives messages along its incoming edges processes them
via gather, and combines the outcomes into an accumulator
(Algorithm 1, lines 15-20)3. In addition, gather may access
the vertex state, which has certain performance implications
as discussed in Section 3.4.

Apply. The accumulated result is then utilized by the
vertex to update its state using apply, which returns true if
the state changes and false otherwise. If false is returned,
the vertex is deactivated (Algorithm 1, lines 25-30). If all
the vertices are deactivated, the program stops and is said
to converge (Algorithm 1, line 31).

This programming model enables users to implement a
wide range of graph applications. However, we note that
certain implementations are more amenable to benefit from
some optimizations in LA3. In particular, LA3 is specially
optimized for implementations where: (1) the new state of
each vertex is computed only as a function of its accumulator
value and/or current state, and (2) its outgoing messages are
generated only as a function of its new state. We refer to
such implementations as LA3-optimizable.

Based on the above definition, most graph applications
can be implemented in an LA3-optimizable manner. For
instance, BFS computes the state of a vertex (i.e., the min-
imum number of hops needed to reach it from some root

3 The gather and combine functions translate into the multi-
plicative (⊗) and additive (⊕) operations of an SpMV semiring,
respectively (see Section 2).
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Figure 4: Partitioning and placement strategies for
distributed SpMV. Matrix partitions/tiles and vec-
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p are numbers of partitions (or tiles) and processes,
respectively. Shaded segments in (d) have same
owner as corresponding shaded tiles on diagonal.

vertex) upon receiving its first message from any of its neigh-
boring vertices, which simply indicates that it has been
reached. Consequently, BFS can be implemented via set-
ting the state of the vertex in the apply function to 1 plus
the first sender’s state (or message). Clearly, this imple-
mentation is LA3-optimizable since it computes the state of
the vertex based on its accumulator’s content. Alternatively,
BFS can be implemented by setting the vertex’s state to the
current iteration (or hop) number. Evidently, this is not an
LA3-optimizable implementation since it is not a function
of the vertex’s accumulator value and/or current state.

A vertex program that is not LA3-optimizable results in
LA3 disabling its computation filtering optimization (de-
tailed in Section 3.4.1). This is because computation fil-
tering factors non-regular vertices (i.e., source, sink, and
isolated vertices) out of the main computation loop, hence,
executing them only once rather than iteratively. As such,
a program that uses iteration-specific information (e.g., the
iteration number) to compute a vertex state will be incom-
patible with computation filtering because non-regular ver-
tices will have no access to this information. To this end,
users can declare whether their vertex programs are LA3-
optimizable via a flag (see Figure 3). Afterwards, LA3 en-
ables or disables computation filtering accordingly.

Finally, as depicted in Figure 2, LA3 assumes an edge list
format for input graphs. Specifically, it reads the edge list
as a directed graph with no self-loops or duplicate edges. In
addition, it loads (by default) the graph into a transposed
adjacency matrix since transposing the ith matrix row (i.e.,
the out-edges of vertex vi) into the ith column aligns it with
the ith entry of the message vector (i.e., the outgoing mes-
sage produced by vi) during SpMV computation. Lastly,
LA3 supports undirected graphs as well, which requires the
edge list to be in a bidirectional form (i.e., each edge must
have a corresponding reverse edge).

3.2 Partitioning & Locality-Aware Placement
The transposed adjacency matrix AT of an input graph may
be partitioned along one or two dimensions as depicted in
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Figure 4. Each partition is assigned to a process denoted
as its owner. Similarly, the vectors x and y may be split
into segments, each of which is also assigned to an owner
as shown in Figure 4(a). Since x is normally derived from
y after each iteration, corresponding segments of x and y
should ideally share the same owner to ensure locality.

With 1D partitioning (see Figure 4(a)), splitting the ma-
trix horizontally into N partitions is conceptually similar
to a näıve edge-cut partitioning of a graph. Moreover, a
näıve placement strategy might assign each partition to a
different process in a round-robin or random fashion. If the
number of partitions is a multiple of the number of pro-
cesses p (e.g., N = p in Figure 4(a)), each process can be
allocated an equal number of partitions. However, this may
not necessarily balance the computation, memory, and/or
communication load(s) of graph processing evenly across all
processes. This is especially true with real-world graphs,
which usually exhibit power-law distributions, resulting in a
small number of partitions containing the bulk of the edges.

Under 1D partitioning, the SpMV product may be cal-
culated by multiplying the ith matrix partition, where i =
1..N , with the entire x vector to produce the ith y-segment4.
Consequently, each process must gather the x-segments from
every other process. Hence, the total number of messages
communicated is O(p× (p− 1)) = O(p2).

With 2D partitioning (see Figure 4(b)), splitting the ma-
trix across two dimensions into N partitions (or tiles) is
similar to applying vertex-cut partitioning on a graph. This
is because the set of edges adjacent to any given vertex may
get distributed across multiple partitions, necessitating that
the vertex be accessible at each of these partitions. Note
that a partitioning that creates equal-sized square tiles (as
in our example in Figure 4(b)) implies that N is necessarily
a square number. Nonetheless, as with 1D partitioning, a
skew in the input graph may cause a small number of tiles
to encompass most of the edges.

Under 2D partitioning, the SpMV product may be calcu-
lated by multiplying each tile in the jth column and ith row,
where i, j = 1..N , with the jth x-segment, and accumulating
the resultant partial outcome into the ith y-segment5. Thus,
each x-segment is needed in at most

√
p other processes,

while calculating each y-segment requires the per-tile partial
result from at most

√
p other processes. Therefore, the total

number of messages communicated is O(p×2
√
p) = O(p

√
p),

which is a factor of
√
p less than 1D partitioning. As such,

2D scales better than 1D with increasing values of p.
A 2D partitioning of a matrix is commonly accompanied

by a 2D-Cyclic tile placement, where the tiles are assigned
to a set of processes cyclically (see Figure 4(c)) [23]. In the
simplest case, there are p tiles in each dimension, hence,
N = p2. While the total number of messages communicated
for calculating SpMV under 2D-Cyclic is the same as 2D,
Anderson et al. [11] showed that 2D-Cyclic outperforms 2D
due to increased parallelism, which results from more refined
distributions of tiles and segments. Clearly, this serves also
in mitigating the load imbalance caused by skewed graphs.

LA3 employs 2D partitioning since it provides greater
scalability as opposed to 1D. In particular, LA3 adopts a
distributed 2D partitioner (see Figure 2(b)), which reads an
input graph from a shared filesystem (e.g., NFS) and par-
titions it into a 2D grid of tiles. Optionally, the user may

4 More precisely, this is referred to as SpMV inner product.
5 More precisely, this is referred to as SpMV outer product.
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Figure 5: Transposed adjacency matrix AT of a di-
rected graph G with unit edge weights (shaded).
Overlaid on top, the 2D-Staggered grid G (from Fig-
ure 4(d)). Group leaders are in bold.

enable vertex hashing, which shuffles vertices around in the
matrix to alleviate the effects of skew in real-world graphs6.

In addition, LA3 suggests a locality-aware 2D-STAGGERED

tile placement in association with its 2D partitioning. Specif-
ically, 2D-Staggered extends 2D-Cyclic placement by en-
suring that each tile on the diagonal is assigned to a differ-
ent process. Furthermore, each vector segment is assigned
to the same owner as the corresponding tile on the diagonal
(see Figure 4(d)). Thus, every process can start immedi-
ately a new iteration of SpMV computation on at least one
of its tiles (i.e., the one on the diagonal) against its local
x-segment and accumulate directly into its local y-segment,
while it is receiving the remaining needed x-segments asyn-
chronously. In contrast, a näıve 2D-Cyclic placement does
not enable locality and asynchrony to be exploited in this
way. We discuss this further in Section 3.4.

To materialize the above strategy, LA3 generates firstly
a standard 2D-Cyclic p × p tile placement grid G. After-
wards, it converts G into a 2D-Staggered grid by reorder-
ing the rows of G such that each tile on the diagonal is owned
by a different process. For example, the 2D-Staggered grid
in Figure 4(d) is obtained via swapping the third and fourth
rows of the 2D-Cyclic grid in Figure 4(c).

3.3 Pre-processing
Real-life graphs demonstrate a number of notable charac-
teristics, which lend themselves to significant opportunities
for optimizing iterative execution. To begin with, vertex
popularities are highly skewed in various Web and social
graphs [19, 20]. In addition, we observe that 42% of users
in the Twitter dataset have no followers at all [20], so their
popularities (as measured by PageRank) are unaffected by
other users’ popularities. Alongside, there are no directed
paths that connect these users with other users. Hence,
any computation towards calculating their popularities (or

6 We observe that vertex hashing (implemented via a reversible
hash function [11]) generally results in better performance on
most graphs. However, a notable exception is the UK-2005 graph,
as noted also by Zhu et al. [42] (see Section 4).
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Table 1: Classification statistics for various datasets.

Dataset Vertices Reg. Source Sink Iso.
LiveJournal [5] 4,847,571 81% 8% 11% 0%
Wikipedia [10] 3,566,907 68% 29% 1% 1%
Weibo [9] 58,655,849 1% 99% 0% 0%
UK-2005 [8] 39,459,925 88% 0% 12% 0%
Twitter [7] 61,578,415 55% 10% 3% 32%
CC 2012 Host [2] 101,000,000 54% 16% 18% 12%
RMAT 23 [13] 8,388,608 28% 4% 22% 46%
RMAT 26 [13] 67,108,864 24% 4% 20% 52%
RMAT 29 [13] 536,870,912 21% 4% 18% 57%

shortest paths to them, as another example) is essentially
unnecessary beyond initialization. We also observe that 35%
of Twitter users follow no one, so they neither affect other
users’ popularities nor participate in any directed paths to
them. Subsequently, as long as their states depend solely
on the states of their followers, they can be safely computed
after all their followers’ states are finalized.

To formalize the above observations, we classify vertices
into four mutually exclusive types (in the context of directed
graphs): regular, source, sink, and isolated, as defined in
Section 1. Figure 5(a) shows a graph where vertices 1 and 5
are sources, 4 is sink, 7 is isolated, and the rest are regular.

Besides, Table 1 lists percentage-wise statistics for a va-
riety of real-world and synthetic graphs. The proportion
of non-regular vertices ranges from 12% (UK-2005) to 99%
(Weibo). As pointed out in Section 3.1, these vertices can be
factored out of iterative execution, yielding significant sav-
ings in computation and communication. To allow for these
savings, we propose a two-step pre-processing mechanism,
which firstly classifies graph vertices and subsequently packs
edges into a classification-aware compressed data structure.
We next elaborate on these two pre-processing steps.

Step 1: Vertex Classification. Given an adjacency
matrix partitioned along two dimensions, the set of edges
adjacent to a given vertex may be split across multiple tiles,
which can reside on different processes. As such, determin-
ing whether this vertex has any incoming or outgoing edges
may require these processes to communicate. For this sake,
we introduce the concept of row- and column-groups over a
2D-Staggered tile placement grid, say G. Specifically, we
define the ith row-group, RGi, as the set of processes that
own all the tiles on the ith row of G. To illustrate this, Fig-
ure 5(b) shows four row-groups (i.e., RG1 to RG4), whereby
RG3 (for example) encompasses processes P2 and P4 since
they own all the tiles on row 3 of G. Besides row-groups,
we define the ith column-group, CGi, as the set of processes
that own all the tiles on the jth column of G. For instance,
CG3 in Figure 5(b) consists of processes P1 and P2, which
own all the tiles on column 3 of G.

Furthermore, a process in each row-group, RGi, and a pro-
cess in each column-group, CGi, can be designated as the
leaders of the groups, which are responsible for classifying
all the vertices in RGi and CGi, respectively. To stream-
line the process, we select the leader of each group (whether
row- or column-group) to be the process that owns the tile
on the diagonal of the given 2D-Staggered tile placement
grid, G. As a result, RGi and CGi end up having the same
group leader, say GLi. To exemplify, P2 at RG3 in Fig-
ure 5(b) owns the tile on the diagonal of G, hence, becom-
ing the leader of RG3. Consequently, P2 will be responsible
for classifying vertices 5 and 6, which are referred to as the
domain of P2. Similarly, P2 at CG3 in Figure 5(b) owns

the tile on the diagonal of G, thus becoming the leader of
CG3. Therefore, P2 is rendered the sole group leader, GL3,
of both RG3 and CG3. More interestingly, its domain does
not expand since it remains responsible for classifying only
vertices 5 and 6, which are common between RG3 and CG3.

To fulfill the vertex classification procedure, GLi accu-
mulates from each process in its column-group the set of all
non-empty matrix columns (i.e., vertices with at least one
outgoing edge). Let us denote this set as Vout. In addition,
it accumulates from each process in its row-group the set of
all non-empty matrix rows (i.e., vertices with at least one
incoming edge). We refer to this set as Vin. Clearly, the in-
tersection of the resulting sets, Vout and Vin, is the set of reg-
ular vertices in GLi’s domain. Moreover, the set-differences
(Vout − Vin), (Vin − Vout), and (Vall − (Vout ∪ Vin)) are the
sets of source, sink, and isolated vertices, respectively, with
Vall being the set of all the vertices in GLi’s domain. When
GLi finishes classifying its domain, it broadcasts the out-
come (which we call GLi’s metadata) to all the processes in
its row- and column-groups.

Step 2: Edge Processing. The metadata generated by
our vertex classification procedure enables LA3 to exploit in-
teresting optimizations, namely, computation and communi-
cation filtering. We detail these optimizations in Section 3.4.
However, to lay the groundwork for this pre-processing step,
we note that these optimizations leverage the types of ver-
tices to selectively compute them and communicate their
messages. To expedite this selective process, LA3 splits each
tile into several sub-tiles. Each sub-tile contains a mutually
exclusive subset of the non-zero elements (or edges) in its
tile. These edges serve in dictating (or more precisely, filter-
ing) the messages that the sub-tile’s SpMV operation will
receive and compute.

For instance, assume a tile’s SpMV operation needs to
selectively process only the messages that originated from
regular vertices. Clearly, this selective (or filtered) process-
ing will involve only the subset of edges in the tile whose
sources are regular vertices. As such, we can extract this
subset of edges and compactly store them at a sub-tile. Af-
terwards, only the messages that correspond to these edges
will be received and processed at the sub-tile. Crucially,
this is more efficient than performing the filtered process-
ing at the original tile since only the needed edges will be
touched, increasing thereby cache/memory locality. Along-
side this, edges are also filtered based on their destination
vertices, shrinking further the subset of edges at a sub-tile
and making its computation even more efficient.

To this end, edge processing constructs for each tile Ti,j

on the ith row and jth column of a 2D-Staggered grid
the following four sub-tiles: (1) Tsrc,reg

i,j , (2) Treg,reg
i,j , (3)

Tsrc,snk
i,j , and (4) Treg,snk

i,j . These four sub-tiles serve in fil-
tering messages from: (1) source vertices to regular vertices,
(2) regular vertices to regular vertices, (3) source vertices
to sink vertices, and (4) regular vertices to sink vertices,
respectively. Finally, each sub-tile is stored in a Doubly
Compressed Sparse Column (DCSC) format [23].

3.4 Execution Engine
The core of LA3’s execution engine is a distributed SpMV
routine, which leverages our various partitioning, placement,
and storage mechanisms discussed in the previous sections,
alongside the optimizations detailed in this section. Figure 6
demonstrates a high-level overview of our engine’s design.
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Figure 6: 2D-Staggered SpMV at GL2, i.e., P4

(black). Shaded arrows denote point-to-point com-
munication of segments along row/column-groups.

Specifically, the transposed adjacency matrix AT of an in-
put graph is initially partitioned into p×p tiles using our 2D
distributed partitioner. Subsequently, the tiles are assigned
to p processes based on our 2D-Staggered placement grid
G (see Section 3.2). As Figure 6 shows, a state vector v,
message vector x, and accumulator vector y, are each de-
composed into p segments, such that the kth segment of each
vector is aligned with the kth row of G and owned by the
kth group leader, GLk.

Given a user-defined vertex program (see Section 3.1), the
SpMV routine is overloaded with gather (⊗) and combine
(⊕) (see Section 2). Our engine iteratively executes SpMV,
re-computing the result y = AT ⊕.⊗ x in every iteration.
Prior to triggering SpMV, x is computed from v via scatter.
After executing SpMV, v is computed from y via apply.

More precisely, LA3’s distributed SpMV divides the above
computation into p× p partial tile computations as follows:
each tile Ti,j is computed individually by its owner (say,
TOi,j) to produce the partial result ŷi ⊕= Ti,j ⊗ xj , which
is subsequently accumulated into the final result yi ⊕= ŷi at
GLi. To this end, our distributed SpMV requires that each
group leader GLk multicasts xk along the kth column-group
at the start of each iteration. Moreover, it necessitates that
each GLk finalizes yk by combining all partial results ŷk

along the kth row-group. Lastly, once yk is finalized, GLk

applies it to vk. To exemplify, computing tile T1,2 at P3

in Figure 6 requires receiving x2 from GL2 and sending the
partial result to GL1, which accumulates it into y1. After-
wards, GL1 applies the finalized y1 to v1.

Additionally, if the vertex program requires an access to
the vertex state within gather (see Section 3.1), computing
ŷi ⊕= Ti,j ⊗ xj at TOi,j requires vi. For such programs
(e.g., Triangle Counting), each vi must be replicated (mul-
ticast) by its owner, GLi, across the ith row-group at the
start of each iteration. Since this incurs additional commu-
nication and synchronization costs (especially if the vertex
state is large), and since most applications do not need this
feature, it is disabled by default. Nevertheless, it may be en-
abled via a flag or automatically when gather accesses the
vertex state7. We now discuss the three main optimizations
that LA3 incorporates within its distributed SpMV.

3.4.1 Computation Filtering
As pointed out in Section 3.3, the LA3 execution engine
processes vertices selectively based on their types so as to
preclude the redundant computations of source, sink, and

7 LA3 detects this at compile time from the user code.

Algorithm 2 – Execution Engine (At Process GLk)

1: Input: Vertex Program V
2: Input: 2D-Staggered Placement Grid G
3: Input: GLk’s Tiles, Tk, Vector Segments, vk, xk, yk, ŷk
4: Input: Number of iterations n
5: vk.init() . Pre-loop
6: xsrc

k ← vsrc
k .scatter() . Source vertices

7: xsrc
k .multicastasync(CGk) . To col-group

8: while n > 0 and V is not converged do . Main Loop
9: xreg

k ← vreg
k .scatter() . Regular vertices

10: xreg
k .multicastasync(CGk) . To col-group

11: for each xj in x∗ do (on recvasync)
12: for each Ti,j in Tk do . Regular sub-tiles
13: ŷreg

i
⊕= (Tsrc,reg

i,j
⊗ xsrc

j ) . xsrc
j is cached

14: ŷreg
i

⊕= (Treg,reg
i,j

⊗ xreg
j ) . Partial accumulator

15: ŷreg
i .sendasync(GLi) . To row-group leader

16: for each ŷreg
k in ŷ∗ do (on recvasync)

17: yreg
k

⊕= ŷreg
k . Final accumulator

18: vreg
k .apply(yreg

k ) . Regular vertices
19: n← n− 1
20: for each xj in x∗ do (on recvasync) . Post-loop
21: for each Ti,j in Tk do . Sink sub-tiles

22: ŷsnk
i ⊕= (Tsrc,snk

i,j
⊗ xsrc

j ) ⊕ (Treg,snk
i,j

⊗ xreg
j )

23: ŷsnk
i .sendasync(GLi)

24: for each ŷsnk
k in ŷ∗ do (on recvasync) ysnk

k
⊕= ŷsnk

k

25: vsnk
k .apply(ysnk

k ) . Sink vertices

isolated vertices during iterative execution. After the pre-
processing phase, which performs vertex classification (see
Section 3.3), each group leader GLk of row-group RGk and
column-group CGk executes the user-defined vertex pro-
gram in three stages: pre-loop, main-loop, and post-loop,
as outlined in Algorithm 28.

In the pre-loop stage (Algorithm 2: lines 5-7), all vertices
(i.e., all four types) are firstly initialized. Afterwards, each
source vertex generates a new message, which is multicast
by GLk to every other process in its column-group CGk.
Thereafter, the source vertices are deactivated, especially
because they will receive no incoming messages. In addition,
every receiving process in CGk caches the received messages
and processes them iteratively, as described below.

After the pre-loop stage, the execution enters the main-
loop stage (Algorithm 2: lines 8-19). First, each regular
vertex generates a new message, which is multicast by GLk

to every other process in its column-group CGk. Along-
side, since GLk is also a member of other column-groups,
it simultaneously receives messages from the group leaders
of these column-groups. As an example, GL2 (i.e., process
P4) in Figure 6 owns four tiles in two columns of G (i.e.,
T2,2 and T3,2 in column 2, and T2,4 and T3,4 in column
4). Therefore, GL2 is also a member of CG4, hence, it re-
ceives messages from the leader of CG4 (i.e., process P3).
Clearly, GL2 needs these messages to process its tiles (or
more precisely, its sub-tiles) in column 4.

While simultaneously receiving these messages, GLk be-
gins computing the SpMV product of each of its regular
sub-tiles (i.e., Tsrc,reg

i,j and Treg,reg
i,j defined in Section 3.3)

against their respective source and regular messages. These
SpMV computations are pursued in a column-wise fashion.
Specifically, GLk always starts with the kth column since
it already owns the messages needed to process its regular

8 We note that all processes in grid G are group leaders of some
row- and column-groups, so they all run Algorithm 2 in parallel.
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sub-tiles in column k. Afterwards, for each message segment
that it receives from another column-group, it processes its
regular sub-tiles in this group’s column. For instance, GL2

in Figure 6 starts immediately processing its regular sub-
tiles in column 2. Then, as soon as it receives the required
messages from CG4, it processes its regular sub-tiles in col-
umn 4. To expedite performance, LA3 uses OpenMP [6] to
parallelize sub-tile computations in any given column.

Furthermore, GLk sends the outcome of each regular sub-
tile it processes to the row-group leader of that sub-tile’s
row. Moreover, as a row-group leader itself, GLk receives
from the members (or processes) of its row-group the out-
comes of their sub-tiles. Lastly, it accumulates the received
outcomes with the outcomes of its own sub-tiles and uses
the result to update the states of its regular vertices. For
example, GL2 in Figure 6 sends the outcomes of T3,2 and
T3,4 to the leader of RG3. And, being the leader of RG2, it
receives the outcomes of T2,1 and T2,3 in row 2. Finally, it
accumulates the received outcomes with the outcomes of its
own sub-tiles in row 2, namely, T2,2 and T2,4.

When the main-loop stage is done, either due to conver-
gence or having reached a pre-defined number of iterations,
execution enters the post-loop stage (Algorithm 2: lines 20-
25). In this stage, GLk computes its sink vertices via gath-
ering and processing incoming messages from their neigh-
boring source and regular vertices.

Discussion. The computation filtering optimization is
most impactful with directed, stationary applications (e.g.,
PageRank over directed graphs), since all computations re-
lated to source and sink vertices, which remain active through-
out execution, are factored out of the main-loop stage. With
undirected applications, all vertices are either regular or
isolated since the input graph is bidirectional, hence, only
isolated vertices can be factored out. With directed, non-
stationary applications, source vertices get deactivated af-
ter sending their initial messages and never get re-activated
again, thus they are naturally factored out of the main loop.

Lastly, computation filtering does not apply to non-iterative
applications (e.g., Triangle Counting) since its benefits only
accrue over multiple iterations. In addition, it does not ap-
ply to non-LA3-optimizable applications (see Section 3.1),
which may require non-regular vertices to be computed us-
ing iteration-specific information (see the BFS example in
Section 3.1). As a result, LA3 disables computation filter-
ing for non-iterative and non-LA3-optimizable applications.

3.4.2 Communication Filtering
To minimize network traffic, LA3’s engine utilizes a point-to-
point communication layer, which applies a communication
filtering optimization that exploits sparsity patterns inher-
ent in many real-world graphs. In particular, since real-life
graphs are typically sparse, they have small average in- and
out-degrees. Moreover, since they tend to follow power-law
distributions, most of their vertices have in- and out-degrees
lower than the average in- and out-degrees. Consequently,
when the adjacency matrix of a real-world graph is parti-
tioned using a 2D partitioning algorithm, most of its tiles
are rendered hyper-sparse (i.e., most elements – or edges –
in these tiles are zeros – or non-existent).

LA3’s engine leverages hyper-sparsity in tiles via using
the metadata generated during the pre-processing phase (see
Section 3.3) to communicate only relevant messages between
processes. Specifically, a column-group leader prepares for

each process, Pi, in its group a separate outgoing x-segment,
which contains only the messages from its own x-segment
that match a non-empty column in one or more tiles of Pi.
As an outcome, Pi is sent only its needed subset of messages,
reducing thereby network traffic. Interestingly, when com-
munication filtering (which reduces traffic more with sparser
tiles) is utilized in conjunction with computation filtering
(which makes tiles even sparser by factoring out non-regular
vertices) its benefits are further magnified.

3.4.3 Pseudo-Asynchronous Computation and
Communication

LA3’s point-to-point communication layer allows processes
to exchange vector segments asynchronously during SpMV
execution. Clearly, this allows interleaving computation with
communication. However, while interactions between pro-
cesses are fully asynchronous, a process may still need to
block if it lacks necessary x- or partial y-segments to pro-
ceed further, which shall be sent to it under the current it-
eration. Consequently, we refer to this overall optimization
as pseudo-asynchronous computation and communication.

We note that our locality-aware 2D-Staggered tile place-
ment strategy ensures that each process has at least one
x-segment (i.e., its own) ready to be consumed at the be-
ginning of every iteration (see Section 3.2). Hence, each
process can proceed immediately with computation under a
new iteration. Furthermore, while the process is consum-
ing and processing its own x-segment, it will likely receive
other x-segment(s) asynchronously. Therefore, by means of
locality-aware tile placement and through potentially block-
ing only for some segments (if any), LA3 is able to circum-
vent the need for expensive global barriers across iterations.
This yields superior performance versus related systems as
demonstrated next.

4. PERFORMANCE EVALUATION
4.1 Methodology
We ran our performance experiments on a cluster of 36 vir-
tual machines (VMs) hosted on a private research cloud
(RC ) with 20 physical Dell PowerEdge R710 servers. Each
server has dual Intel Xeon 5690 processors (12 cores total),
144 GB of memory, and dual 10 Gbps Ethernet connections.
Each VM has 8 virtual cores, 30 GB of memory, and 1 Gbps
of network bandwidth. Our scalability experiments were
conducted on Amazon (EC2 ) with up to 128 m4.2xlarge in-
stances. Each instance has 8 virtual cores, 31 GB of memory,
and 1 Gbps of network bandwidth.

Systems. We compare LA3 against six systems listed
in Table 2 and discussed in Section 5. Among these sys-
tems, Gemini and GraphPad represent the state-of-the-art
distributed graph analytics systems, while the other four,
namely, PowerGraph, Giraph, GraphX, and CombBLAS,
are popular and widely used in academia and industry. Ta-
ble 2 also shows the values assigned to some configuration
parameters in the seven systems (including LA3). These val-
ues were empirically selected for each system to maximally
utilize the available resources on RC and EC2, respectively.

Applications. We benchmarked each system using five
popular graph analytics applications, namely, PageRank (PR),
Single-Source Shortest Path (SSSP), Breadth First Search
(BFS), Connected Components (CC), and Triangle Count-
ing (TC), in line with most related works (in particular [38,
11]). These applications run over a variety of graph types as
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Table 2: Systems evaluated on private cloud (RC)
and Amazon (EC2) with different multi-threading
and inter-process communication (IPC) modes. Pa-
rameters p, ppn, and tpp stand for total number of
processes, processes per node, and threads per process.

System Thread. IPC On p ppn tpp
LA3 OpenMP MPI RC 144 4 2

EC2 32-512 4 2
Gemini [42] OpenMP MPI RC 36 1 8

EC2 8-128 1 8
GraphPad [11]9 OpenMP MPI RC 144 4 1

EC2 8-128 1 8
PowerGraph [19] OpenMP MPI RC 36 1 8

EC2 8-128 1 8
Giraph [1] JVM Netty RC 36 1 8
GraphX [40] JVM Spark RC 36 1 8
CombBLAS [12]10 OpenMP MPI RC 289 8 1

Table 3: Benchmark graph applications.

App. Directed Weighted Stationary Input Edge List
PR Yes No Yes Pairs

SSSP Yes Yes No Triples
BFS No No No Bidirectional pairs
CC No No No Bidirectional pairs
TC No No No Upper-triangular pairs

shown in Table 3. We also indicate that not every system we
compared against provided implementations for all of these
applications, so we coded some implementations as needed.

Datasets. We ran each benchmark on a variety of real-
world and synthetic datasets representing a range of differ-
ent graph types and sizes (see Table 4). The evaluations on
RC included real-world datasets only. For the EC2 scala-
bility study, in order to evaluate the impact of scaling the
dataset size while keeping all other factors fixed, we utilized
synthetic datasets generated using the Graph 500 Kronecker
generator with its default parameter values [13, 4].

We prepared four versions of each dataset: directed pairs
(unweighted), directed triples (weighted randomly between
1 and 128), bidirectional pairs, and upper-triangular pairs.
All self-loops and duplicate edges were removed in the pro-
cess. Moreover, we prepared each version in both binary
(for LA3, Gemini, GraphPad, and PowerGraph) and text
(for Giraph, GraphX, and CombBLAS) formats.

To account for performance variations we ran each ex-
periment thrice and reported the average runtime over the
three runs11. Moreover, any experiment that ran longer than
1 hour was stopped and assumed to have failed silently. In
line with most related works, the reported runtimes do not
include the ingress (i.e., loading and pre-processing) time,
which is paid only once per loaded graph, and may be amor-
tized via running as many algorithms as possible and for as
many times as possible on the loaded graph12.

4.2 Performance on Private Cloud
Let us begin with the experiments on our private cloud.
Figures 7(a-e) compare LA3’s performance against the six
considered systems using PR, SSSP, BFS, CC (in terms of
LA3’s relative speedup), and TC (in terms of actual run-
times) on each of our six real-world datasets. Figure 7(f)
shows the overall speedup (i.e., the geometric mean over

9 GraphPad’s multithreading worked well on EC2 but not on RC.
10 CombBLAS requires a square number of processes.
11 Overall average standard deviation per experiment was 3.8%.
12 Although not shown, LA3’s ingress times were the fastest.

Table 4: Real-world and synthetic datasets.

Dataset |Vertices| |Edges| Type
LiveJournal (LJ) [5] 4,847,571 68,993,773 Social
Wikipedia (WI) [10] 3,566,907 45,030,389 Web
Weibo (WE) [9] 58,655,849 261,321,033 Social
UK-2005 (UK) [8] 39,459,925 936,364,282 Web
Twitter (TW) [7] 61,578,415 1,468,365,182 Social
CC 2012 Host (CH) [2] 101,000,000 2,043,000,000 Web
RMAT 23 (R23) 8,388,608 134,217,728 Synthetic
RMAT 24 (R24) 16,777,216 268,435,456 Synthetic
RMAT 25 (R25) 33,554,432 536,870,912 Synthetic
RMAT 26 (R26) 67,108,864 1,073,741,824 Synthetic
RMAT 27 (R27) 134,217,728 2,147,483,648 Synthetic
RMAT 28 (R28) 268,435,456 4,294,967,296 Synthetic
RMAT 29 (R29) 536,870,912 8,589,934,592 Synthetic

all datasets for a given application) versus each system and
across all systems. Lastly, Figure 8 plots LA3’s runtime for
each application on each dataset. Next, we discuss these
results and our main takeaways.

LA3 Performance. Figure 8 shows the runtime trends
of each benchmark on LA3. One noteworthy application
is SSSP on Weibo, which finishes very quickly. This is
due to the nature of Weibo’s link structure, which includes
99% source vertices and only 1% regular vertices (see Ta-
ble 1). As a consequence, the main loop converges extremely
quickly (using only 15 iterations), since it needs to compute
only 1% of the vertices, tapping mainly into LA3’s compu-
tation filtering optimization.

Another notable application is TC on UK-2005, which
takes a relatively long time to complete. This is mainly for
three reasons. First, the vast majority of the UK-2005’s ver-
tices are regular (i.e., 88%, which is the highest percentage
among all the datasets in Table 1). Since TC only counts tri-
angles at regular vertices, this yields a high number of com-
putations. Second, TC is a non-iterative program, thereby
missing out on many of LA3’s optimizations. In particu-
lar, LA3’s optimizations are geared largely towards iterative
applications since their benefits accrue over multiple itera-
tions. This applies especially to computation filtering, which
factors redundant computations out of the main loop. Like-
wise, communication filtering is applied on a per-iteration
basis. To a lesser extent, pseudo-asynchronous execution
allows successive iterations to overlap for efficiency. Conse-
quently, these benefits cannot be effectively reaped by non-
iterative applications like TC. Third, TC runs on an upper-
triangular version of UK-2005’s adjacency matrix, thus fail-
ing to exploit its inherent locality. More precisely, most of
the non-zeros (edges) in UK-2005’s original matrix are laid
out as clusters of highly related vertices. If these clusters
are somehow maintained during partitioning, locality will
be leveraged during execution, leading to less communica-
tion overhead and potentially enhanced performance. Un-
fortunately, this locality is lost when UK-2005’s matrix is
transformed into an upper-triangular one, as needed by TC.

On the other hand, PR, SSSP, BFS, and CC on UK-2005
perform better than TC on UK-2005 as demonstrated in
Figure 8. Clearly, this is because all these applications are
iterative, thus harnessing more LA3’s optimizations. Fur-
thermore, they preserve UK-2005’s inherent locality via run-
ning on its original adjacency matrix. To allow preserv-
ing this locality, we disabled vertex hashing, which shuffles
vertices around in any given graph’s adjacency matrix (see
Section 3.2). As discussed in Section 3.2, this can be done
simply via a flag (which is available in LA3’s API).
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Figure 7: Performance results on RC: LA3 versus other systems on PR, SSSP, BFS, CC (relative speedups),
and TC (actual runtimes) on six real-world datasets. Values <1× denote slowdown. All figures are log2-scale.
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Figures 7(a-d) show that LA3 outperforms all the tested
systems using PR, SSSP, BFS, and CC on all our datasets.
On the flip side, as depicted in Figure 7(e), LA3 using TC
performs comparably to GraphPad, especially since both are
tailored specifically for iterative applications. However, LA3
using TC is slower than PowerGraph (especially, on UK-
2005) for the main reasons discussed above. In addition,
PowerGraph attempts to conserve by design the natural lo-
cality in input graphs (e.g., UK-2005) [19]. Nonetheless, we
note that LA3 was the only system among all the tested
systems that was able to successfully run TC on all our
datasets. For instance, GraphPad failed on Twitter (TW)
and CC 2012 Host (CH), while PowerGraph failed on CH
(see Figure 7(e)) upon using TC.

Overall Speedups. Across all our benchmarks, LA3
achieved average speedups of 3.5×, 4.7×, 5.4×, 10× and
29× versus GraphPad, Gemini, PowerGraph, Giraph and
GraphX, respectively (see Figure 7(f)). While GraphPad is

a linear algebra-based system (akin to LA3), LA3 employs
more advanced placement, computation, and communica-
tion optimizations. We discuss the performance gains of
these optimizations shortly (see Table 5). Alongside, LA3
performs better than Gemini, especially at scale, as dis-
cussed in Section 4.3. As opposed to Gemini, LA3 uses
2D partitioning (which yields less communication overhead
compared to 1D – see Section 3.2) in combination with a
locality-aware placement strategy, let alone factoring out re-
dundant computation and communication (unique to LA3).

In contrast, PowerGraph, Giraph, and GraphX are all
non-linear algebra-based systems. Linear algebra opera-
tions are more amenable to low-level optimizations [23] (e.g.,
highly compressed data structures can be used to mitigate
memory pressure). Alongside, Giraph and GraphX are fully
synchronous and run on Java Virtual Machines (JVMs),
which add various overheads like extra instruction-level and
garbage collection overheads, among others. In fact, GraphX
is highly memory inefficient, especially with long jobs and
large-scale datasets (see Figure 7(a-d)), caused mainly by its
ill-optimized data structures and Java environment. Similar
observations were also reported in Kabiljo et al. [3].

Finally, LA3 achieved a 61× average speedup against Comb-
BLAS, which is essentially an HPC library designed to run
optimally on HPC platforms rather than cloud infrastruc-
tures. However, a major weakness of CombBLAS is its linear
algebra programming model, which does not provide an ob-
vious way to maintain and exploit vertex activity for non-
stationary applications. Hence, all vertices are treated as
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Table 5: Breakdown of optimization impacts aver-
aged over our real-world datasets. Speedups with
enabled optimizations relative to baseline (All-Off).

Application Filter-On Async-On All-On
PR 1.67× 1.37× 2.14×

SSSP 2.52× 1.26× 3.01×
BFS 1.69× 1.01× 1.83×
CC 2.01× 1.38× 2.56×

Average 1.95× 1.26× 2.35×

active throughout any program, resulting in a great deal of
unnecessary computations and communications (especially
for non-stationary applications, which are not supposed to
have all their vertices constantly active). In addition to be-
ing aware of the application type (i.e., whether stationary
or non-stationary), LA3 further attempts to exclude redun-
dant computations and communications via its respective
filtering optimizations.

Optimizations. In Table 5, we illustrate the perfor-
mance impacts of LA3’s major optimizations for PR, SSSP,
BFS, and CC, averaged across all of our real-world datasets13.
Specifically, we measured LA3’s performance in four differ-
ent modes: (1) all optimizations disabled (All-Off ); (2) only
computation and communication filtering enabled (Filter-
On); (3) only pseudo-asynchronous computation and com-
munication enabled (Async-On); and (4) all optimizations
enabled (All-On). We report the speedups under the latter
three modes relative to the baseline mode (i.e., All-Off). As
revealed in the table, the Filter-On and Async-On modes
yield notable individual speedups. Overall, enabling all op-
timizations via the All-On mode results in a 2.35× speedup
on average, demonstrating the value of LA3’s optimizations.

4.3 Scalability on Public Cloud
We conduct two sets of experiments on Amazon EC2 to
evaluate LA3’s data scalability (DS) (i.e., using different
synthetic dataset sizes) and cluster scalability (CS) (i.e.,
using different cluster sizes), respectively. We benchmark
LA3 under PR, CC, and TC, representing stationary, non-
stationary, and non-iterative applications, respectively. We
compare LA3’s scalability against the two related systems
that performed best under each application in our private
cloud, namely, GraphPad and Gemini for PR and CC, and
GraphPad and PowerGraph for TC.

Data Scalability. In this set of experiments, we fixed
the number of VMs to 32, while varying the dataset size.
We tested PR and CC on R25 to R29, and TC on R23
to R27, which are all RMAT datasets (see Table 4). We
selected smaller datasets for TC since it uses substantially
more CPU and memory than the other two programs under
any given dataset size. The runtimes of each experiment are
plotted in Figure 9(a-c). As the dataset size was increased,
LA3 outperformed increasingly GraphPad and Gemini un-
der PR. This is mainly due to LA3’s computation filtering,
which greatly benefits directed, stationary, and iterative ap-
plications such as PR. Moreover, LA3 performed increas-
ingly better than GraphPad (for the reasons discussed in the
previous section), but comparably to Gemini under CC (at
this cluster size of 32 VMs, but not at larger cluster sizes
as discussed next). Finally, LA3 was slightly slower than
GraphPad under TC but faster than PowerGraph, which

13 LA3’s optimizations do not benefit non-iterative applications
like TC, which by their very nature disable these optimizations.

failed to scale beyond R25. As discussed earlier, Power-
Graph is a non-linear algebra-based system that does not
employ highly compressed data structures. Consequently,
as the dataset size was increased, it started experiencing ex-
ponentially higher memory pressure to the extent that it ran
out-of-memory with R26 and R27.

Cluster Scalability. In this set of experiments, we fixed
the dataset size, while varying the number of VMs from 8
to 128. In particular, we tested PR and CC on R27, and
TC on R25. The runtimes of each experiment are depicted
in Figure 9(d-f). Once again, LA3 greatly outperformed
GraphPad and Gemini under PR. In fact, Gemini failed to
scale beyond 64 VMs due to its 1D partitioning strategy,
which does not scale as good as 2D partitioning approaches
(see Section 2). Moreover, LA3 surpassed GraphPad under
CC, which failed to fit R27 on eight VMs. However, Gemini
was faster than LA3 using CC over 8-16 VMs but failed to
scale beyond 64 VMs. This is because the loss from 2D
partitioning (mainly, complexity) does not get offset by its
gain (mainly, reduced communication traffic) at small-scale
cluster sizes, and vice versa. Finally, similar to the data
scalability results, LA3 was slightly slower than GraphPad
but faster than PowerGraph under TC.

5. RELATED WORK
We now provide a brief overview of related centralized and
distributed graph analytics systems. Table 6 classifies each
system based on its architecture, graph processing paradigm,
and partitioning approach.

Centralized. Most centralized graph analytics systems,
including GraphLab [27], GraphChi [26], Ligra [37], Map-
Graph [16], G-Store [25], Mosaic [29], and GraphMat [38]
offer a vertex-based abstraction. While GraphChi, G-Store,
and Mosaic support out-of-core execution for processing big
graphs on memory-constrained machines, GraphLab, Ligra,
GraphMat, and MapGraph are in-memory systems. In con-
trast to the above systems, X-Stream [34] provides an edge-
based abstraction with a streaming-oriented engine for out-
of-core graph processing. Lastly, Galois [32] is a general-
purpose, task-based system that performs competitively with
specialized graph analytics systems [35].

Among these centralized systems, GraphMat bears the
most similarity to LA3. In particular, its execution engine
translates vertex-centric code into parallelized SpMV. How-
ever, akin to all centralized systems, GraphMat cannot scale
beyond the resources available on a single machine, whereas
LA3 is demonstrably scalable14.

Distributed. Most distributed graph systems can be
classified as vertex-centric, linear-algebra-centric, or hybrid.

Vertex-Centric: Many distributed graph analytics sys-
tems adopt the vertex-centric paradigm, including Giraph [1],
GraphX [40], Distributed GraphLab [28], PowerGraph [19],
Gemini [42], PowerLyra [14], Mizan [24], and Chaos [33].
For instance, Giraph is an open-source implementation of
Pregel [30], which partitions vertices across processes via
an edge-cut strategy and implements the Bulk Synchronous
Parallel (BSP) [18] execution model. Mizan is another Pregel-
like system, with dynamic load balancing to alleviate com-
putation imbalance caused by a näıve edge-cut partitioning.

14 Although not included in the performance evaluation, our ex-
periments indicate that LA3 is 1.34× slower than GraphMat on
average for PR, SSSP, BFS, and CC on a single machine. This is
due to the overheads associated with LA3’s distributed engine.
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Figure 9: Data scalability (DS) and cluster scalability (CS) results for PR, CC, and TC on EC2.

Table 6: Related graph analytics systems.
Centralized Distributed

Vertex-Centric Hybrid Misc Vertex-Centric Linear-Algebra Hybrid Misc
In-Memory Out-of-Core In-Memory Out-of-Core Edge-Cut Vertex-Cut 1D 2D 2D
[27, 37, 16] [26, 25, 29] [38] [34, 32] [30, 1, 24, 42, 14] [19, 40, 33] [39] [12] [11] [36, 31, 21]
GraphLab GraphChi GraphMat X-Stream Pregel, Giraph PowerGraph Presto CombBLAS GraphPad SociaLite

Ligra G-Store Galois Mizan, Gemini GraphX LA3 Naiad
MapGraph Mosaic PowerLyra Chaos PEGASUS

GraphX is a graph processing library on top of Spark
[41], thus inheriting Spark’s interpreted runtime along with
its scalability and fault-tolerance characteristics. It uses a
sparsity-aware tabular data structure, which allows it to ex-
press various graph operations in terms of joins.

PowerGraph is an extension of Distributed GraphLab that
addresses skew in real-world graphs. It decomposes each it-
eration of a graph program into three phases: Gather, Ap-
ply, and Scatter (commonly referred to as the GAS model).
The GAS model can effectively emulate Pregel’s canonical
vertex-centric API. Gather collects information about the
edges and neighbors of a given vertex (say, v), Apply exe-
cutes a user-defined function on v to update its value, and
Scatter uses this new value to update the data on v’s edges.
LA3’s vertex-centric API is inspired by the GAS model.

Gemini extends Ligra’s hybrid push-pull computational
model [37] to a distributed setting. It dynamically switches
between push- and pull-based message passing based on the
graph program’s level of activity. In push mode, each active
vertex updates the states of its out-neighbors. In pull mode,
each vertex gathers messages from its in-neighbors to update
its state. Pushing is preferable when few vertices are active.

Linear-Algebra-Centric: CombBLAS [12] is a well-known
and scalable linear algebra (LA) library for distributed graph
analytics in the HPC domain. It adopts 2D partitioning and
requires the number of processes to be square. Presto [39]
is a distributed extension of R [17], an array-based language
for statistical analysis and LA.

Hybrid: To the best of our knowledge, aside from LA3,
GraphPad [11] is the only distributed graph analytics system
under the hybrid category. It is the distributed successor of
GraphMat, extending its centralized 1D SpMV-based execu-
tion engine to support distributed 2D SpMV, while retain-
ing its GAS-like vertex-based interface. GraphPad optimizes
mainly for communication. Vector segments are compressed
(only when sparse) and communicated using asynchronous

point-to-point MPI calls. LA3 always compresses segments,
communicating them together with their bitvectors in just
one message round (GraphPad uses two). Moreover, Graph-
Pad applies post-Scatter and pre-Apply global synchroniza-
tion barriers, thus losing the potential advantages of em-
ploying asynchrony, while LA3 exploits asynchrony heavily.

Finally, compared to all of the above distributed graph
analytics systems, LA3 employs the hybrid paradigm, but
uniquely differentiates itself via suggesting novel system op-
timizations informed by the link structures of big graphs
and the behaviors of graph applications. In particular, its
locality-aware 2D-Staggered tile placement in conjunction
with its pre-processing enable several impactful optimiza-
tions within its execution engine, as discussed in Section 3.

6. CONCLUSION
We presented LA3, a scalable distributed graph analytics
system, which offers a vertex-based programming interface
on top of a highly-optimized LA-based engine. In particu-
lar, LA3 involves three major optimizations, namely, com-
putation filtering for precluding redundant computations,
communication filtering for reducing network traffic, and
a pseudo-asynchronous paradigm for interleaving computa-
tion with communication and asynchronous message pass-
ing. Our results show that LA3 can outperform the six
state-of-the-art and most popular graph analytics systems
by an average of 10×. We plan to extend LA3 by includ-
ing various other LA operations (e.g., sparse matrix-matrix
multiplication) and exposing them via an LA-based API.
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