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ABSTRACT
Functional dependencies (FDs) play an important role in
maintaining data quality. They can be used to enforce data
consistency and to guide repairs over a database. In this
work, we investigate the problem of missing values and its
impact on FD discovery. When using existing FD discov-
ery algorithms, some genuine FDs could not be detected
precisely due to missing values or some non-genuine FDs
can be discovered even though they are caused by miss-
ing values with a certain NULL semantics. We define a
notion of genuineness and propose algorithms to compute
the genuineness score of a discovered FD. This can be used
to identify the genuine FDs among the set of all valid de-
pendencies that hold on the data. We evaluate the quality
of our method over various real-world and semi-synthetic
datasets with extensive experiments. The results show that
our method performs well for relatively large FD sets and is
able to accurately capture genuine FDs.
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1. INTRODUCTION
Functional dependencies (FDs) are one of the most impor-

tant types of integrity constraints and have been extensively
studied by the research community [7,27]. FDs have a num-
ber of applications, such as maintaining data quality [15],
capturing schema semantics [16], schema normalization [31],
data integration [34], repairing of data inconsistencies, and
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data cleaning [4, 6]. An FD X → A states that the tuples
of attribute set X uniquely determine the value of attribute
(set) A. Traditional FDs are typically defined for correct
and complete data and there are many efficient algorithms
to discover FDs from a given clean dataset [30].

However, many real-world datasets are neither correct nor
complete. Traditional FDs often have trouble with incom-
plete data, such as NULL values, that routinely exist in
massive datasets. A common, implicit assumption is that
the proportion of incomplete data is assumed to be rela-
tively low and with no significant impact on the set of dis-
covered dependencies. However, it is well-known that data
error rates may vary from 20% up to 80% in many real-world
datasets [12,18] with dramatic consequences and significant
costs [11,19]. Not surprisingly, the database community has
come up with a number of workarounds to handle this issue.
We provide a representative list of approaches and briefly
mention why they are not satisfactory. The experimental
results are based on Glass dataset, a benchmark dataset
with 10 attributes and only 214 tuples, that we used in our
experiments (see Section 6).

Strategy 1: Skipping tuples with NULLs. The sim-
plest strategy is to ignore the set of tuples with
NULLs and use the remaining subset of the relation
to discover FDs. This approach suffers from two
problems. First, as mentioned above, large parts of
the dataset can contain NULL values. Second, this
approach also discovers a number of spurious FDs
that do not hold on the entire relation. We illustrate
this issue in Figure 1 (bars on left). There are 11,263
FDs on the correct and complete version of Glass
dataset. However, when we injected missing values
randomly into 5% of the tuples and skipped those
incomplete tuples, the number of discovered FDs
jumped to 12,736 (on average over 10 runs).

Strategy 2: NULL Semantics. An alternative approach
is to propose definitions of FDs over relations with
NULLs. The two commonly used NULL semantics are
NULL-EQ or NULL-NOT-EQ that treat all missing values
as identical or distinct, respectively. For example, if
two tuples ti and tj have NULL for an attribute Ak,
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Figure 1: Number of FDs discovered from the clean
version of Glass dataset and a polluted version.

then NULL-EQ assumes that both tuples have the same
indeterminate value. NULL-NOT-EQ assumes that ti and
tj have different but still indeterminate value. How-
ever, as we shall show in Section 3.1, this approach also
does not control the discovery of spurious FDs. This
can also be seen in Figure 1 where there are 11,263 FDs
on the clean dataset but almost 12,329 and 12,173 FDs
for NULL-NOT-EQ and NULL-EQ respectively.

Strategy 3: Approximate FDs. Another strategy is to
relax the requirement that the FD holds on all the tu-
ples. Instead, one can aim to discover approximate
(a.k.a. partial) FDs that are violated by at most a
small fraction of the tuples. This approach also suf-
fers from multiple issues whereby identifying a correct
threshold is not straightforward and it does not pre-
vent from discovering a large number of spurious FDs.
This is illustrated in Figure 1 where the number of ap-
proximate FDs discovered over the complete dataset
and the incomplete dataset are different for various ap-
proximation degrees (the number of tuples that must
be removed from the dataset so that the FD holds).
For example, there are 1,156 FDs that are violated by
exactly 1 tuple (approximation degree 1). However,
there are 379, 1328, and 1404 FDs that violate ex-
actly 1 tuple when we skip incomplete tuples or apply
NULL-EQ, NULL-NOT-EQ semantics, respectively.

Strategy 4: Data Imputation. Data imputation refers
to the process of replacing missing data with substi-
tuted values [13]. One can use probabilistic or other
statistical imputation techniques to fill the missing
data, such as [17,32], and run FD discovery on the im-
puted data. However, the FDs discovered are tightly
tethered to the imputation strategy. Further, in the
case of probabilistic imputation, it can happen that
the FDs discovered are valid only in a small fraction
of all possible imputed worlds.

Taxonomy of FDs discovered over NULLs. We in-
vestigate the effect of incomplete data on the discovery of
functional dependencies and compare the FDs that are dis-
covered from the dirty dataset and its corresponding clean

version. It is clear that the FD discovery result from the
incomplete data includes spurious FDs that do not hold on
the clean dataset and also misses some FDs that do.

In order to systematically study this phenomenon, we de-
fine three types of FDs: genuine, ghost, and fake FDs. A
genuine FD is an FD that would be valid if the dataset con-
tained no missing values and no other errors. When the data
is incomplete, a traditional FD discovery could discover false
positive (fake) FDs that do not hold on the complete ver-
sion of data, or miss discovering some true FDs (ghost) that
actually hold on the complete data. In other words, most
current FD discovery techniques do not provide any guaran-
tee regarding the genuineness of the discovered dependen-
cies. Further, these methods neither detect nor remove the
false dependencies that are supported by incomplete data
and they do not consider the true dependencies that have
actually disappeared due to missing values. Note that we do
not address the quite different problem of judging whether a
valid FD is in fact semantically correct. This latter decision
can, in principle, be made only by a human expert.

Impact of Fake and Ghost FDs. As mentioned ear-
lier, functional dependencies have been used in a number of
applications, such as data cleaning and query optimization.
Use of non-genuine FDs for such scenarios could have a dele-
terious effect. For example, FDs that were not identified due
to incomplete data could be considered as missed opportu-
nities for schema normalization and data cleaning. On the
other hand, false positive FDs could cause issues when they
are used in query optimization. Finally, false positive FDs,
when used as data integrity constraints, prevent the inser-
tion of valid tuples. In this paper, we define the notion of
genuineness of FDs and develop algorithms to estimate it.

Our contributions. Despite its importance, no previous
work has focused on these critical aspects of FD discovery
over incomplete data. We make the following contributions.

• We formally and experimentally show the phenomenon
caused by missing values over FD discovery;

• We formalize the definitions of genuine, ghost, and fake
FDs and study their impact under various NULL se-
mantics and imputation strategies;

• Given a dataset with missing values, we propose a
probabilistic approach for estimating the genuineness
score of FDs and provide an efficient method for enu-
merating and pruning irrelevant possible worlds;

• We propose two efficient algorithms to approximate
the genuineness score of discovered FDs;

• We perform an extensive set of experiments of our
methods on real-world and semi-synthetic datasets
that show the effectiveness and efficiency of our ap-
proach.

The rest of the paper is organized as follows. In Section 2,
we introduce key definitions and notations. In Section 3, we
provide an illustrative example to motivate the need for this
study and then formally define the notions of fake, ghost,
and genuine FDs. In Sections 4 and 5, we propose a series
of algorithms to quantify the genuineness of an FD. In Sec-
tion 6, we present our experimental evaluation. Section 7
presents related work, and finally, Section 8 concludes our
paper and suggests future work.
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2. PRELIMINARIES
Let R be a relation with schema {A1, . . . , Am} with n

tuples and m attributes. The domain of an attribute Ai is
denoted as dom(Ai). Let X ⊆ R be a subset of attributes.
The projection of a tuple t to a set of attributes X is denoted
as t[X].

Functional dependency (FD). An FD X → Y over a
set of attributes X,Y ⊆ R states that X functionally deter-
mines Y . X is the determinant (LHS) and Y is the depen-
dent (RHS). The FD is said to hold on R when ∀ti, tj ∈ R,
if ti[X] = tj [X] then ti[Y ] = tj [Y ]. The FD is violated
when there exists at least one pair of tuples (ti, tj) such
that ti[X] = tj [X] but ti[Y ] 6= tj [Y ]. An FD X → Y is
said to be minimal if no subset of X determines Y . In other
words, removing any attribute from X renders the FD in-
valid. An FD is said to be non-trivial if X ∩ Y = ∅. An FD
is said to be normalized if the RHS is a single attribute. In
this paper, we consider only the set of minimal, non-trivial,
and normalized FDs as they can be used to infer all other
FDs that hold on R using Armstrong’s axioms.

Approximate functional dependency (AFD). An ap-
proximate (or partial) functional dependency holds on most
of the tuples and is violated by a small number of tuples.
We can quantify the approximation through the notion of
satisfaction error [21, 27]. Given an AFD X → A, the G3

metric measures the number of violating tuples that must
be deleted from R such that the AFD holds exactly (no vi-
olation). We use G3 as the approximation degree measure
for the rest of the paper. We represent an AFD with an
approximation degree of α as X ⇁α A. Note that X ⇁0 A
is the same as X → A.

NULL semantics. In the real-world, data is often incom-
plete, possibly due to the integration of multiple relations.
The missing values are represented as NULL values, which
we denote with ⊥. As mentioned earlier, when dealing with
NULL values, two semantics have been traditionally pro-
posed: the first interpretation, NULL-EQ, denoted (⊥ = ⊥)
considers that all missing values are identical. The second
semantics, NULL-NOT-EQ, denoted (⊥ 6= ⊥) considers that
every missing value is distinct. The two semantics have di-
verse motivations and lead to the discovery of different sets
of functional dependencies.

We would like to note that from the perspective of FD dis-
covery, the impact of NULL values and the impact of other
erroneous values, such as typos and outliers, are very sim-
ilar. For example, one could use an orthogonal mechanism
to identify typos or outliers and simply set those erroneous
cells to NULL that have to be fixed later. However, in the
rest of the paper, we consider only the case of missing values
in FD discovery. Regardless, our method can be naturally
extended to handle outliers and typos.

3. GENUINE FD DISCOVERY
In this section, we first provide an illustrative example of

the impact of missing values on the discovery of FDs. Next,
we formalize the definition of genuine, fake, and ghost FDs
in the case of exact and approximate FDs.

3.1 Illustrative example
Let us consider the relation R0 with schema R0(A,B,C)

in Figure 2. As we show in Section 6.4 with a Sensor dataset,

A, B and C could represent attributes such as sensorId,
temperature, and humidity, collected by sensors monitor-
ing room-conditions in a lab. FDs reflect the relationships
between certain sensors and certain environmental condi-
tions and missing values are frequent due to dysfunctional
sensors. In this example, we compute the set of exact and
approximate FDs from R0. Table F0 (below R0) gives a
sample of the FDs discovered, with their corresponding ap-
proximation degree. For non-zero approximation degree, we
also list the identifiers of the tuples that need to be changed
or removed, using “|” as OR operator and “,” as AND op-
erator on the same line of the approximate FD. For in-
stance, in the last line of table F0, the notation of the AFD
C ⇁2 A {(t1|t2), (t3|t4)} means that two tuples (t1 or t2)
and (t3 or t4) have to be removed or updated so that C → A
becomes valid.

Now, suppose we randomly inject missing values (denoted
by ⊥) in the original dataset R0 to create three polluted
versions of the dataset, denoted R1, R2, and R3 contain-
ing one, two, and three missing values, respectively. We
recompute the set of exact and approximate FDs for each
dataset version, noted F1, F2 (in Figure 2), and for F3 (in
Figure 3) with the two NULL semantics. In R1 and R2,
both NULL-EQ or NULL-NOT-EQ are identical as there is only
one missing value per attribute in Figure 2. Then, we com-
pare the original set of FDs reported in F0 with the sets of
FDs discovered from each polluted version. We can observe
some interesting differences in the discovered FD sets. For
example, when we compare F0 to F1, and F1 to F2, the more
the number of missing values increases, the more FDs are
lost for a fixed approximation degree (e.g., the exact FDs
A→ C and B → C disappear from F1 to F2), and new FDs
appear (e.g., B → A appears from F0 to F1).

Actually, the original FDs do not completely disappear,
they lose one approximation degree and “fade out”. For
example, A→ C and B → C in F0 and F1 become A ⇁1 C
and B ⇁1 C in F2 respectively; another example is C ⇁1 B
in F0, which becomes C ⇁2 B in F2.

In this example we deliberately injected missing values,
but an integration scenario with data from multiple, het-
erogeneous sources may well introduce such missing values,
which similarly affects FD discovery. As seen in Figures 2
and 3, missing value injection produces some FDs that were
not discovered in R0. Another interesting phenomenon is
illustrated in Figure 3, where three missing values were in-
jected in R0. In the case where NULL values have the
NULL-EQ semantics (F=

3 ), exact FDs are no longer discov-
ered but some FDs appear (e.g., C ⇁1 A), even though
they were not present in the original FD set F0 with the
same approximation degree.

Interestingly, the two FD sets, F=
3 and F 6=3 obtained using

the two NULL-EQ and NULL-NOT-EQ semantics are very dif-
ferent for the first two approximation degrees. Which one
should be selected? Which FD set is the closest to F0, the
set obtained from the original, clean dataset? What if the
three missing values were injected differently? Obviously,
removing all tuples with missing values would also lead to
another quite different FD set, even further apart from the
one obtained from the original dataset.

This phenomenon has neither been identified nor studied
by previous work: Either FDs are computed from a sup-
posedly complete and error-free dataset, where records with
missing values do not exist or are excluded from the FD
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R0 A B C
t1 0 1 1
t2 0 1 1
t3 1 1 1
t4 1 0 1

R1 A B C
t1 0 1 1
t2 0 1 1
t3 1 ⊥ 1
t4 1 0 1

R2 A B C
t1 0 1 1
t2 0 1 ⊥
t3 1 ⊥ 1
t4 1 0 1

F0 Deg. FDs discovered from R0

0 A→ C
B → C

1 A ⇁1 B {(t3|t4)}
B ⇁1 A {t3}
C ⇁1 B {t4}

2 C ⇁2 A {(t1, t2)|(t3, t4)}

F1 Deg. FDs discovered from R1

0 A→ C
B → C
B → A (fake)

1 A ⇁1 B {(t3|t4)}
2 C ⇁2 A {(t1, t2)|(t3, t4)}

C ⇁2 B {(t3, t4)} (ghost)

F2 Deg. FDs discovered from R2

0 B → A (fake)
1 A ⇁1 B {(t3|t4)}

C ⇁1 A {t1} (fake)
B ⇁1 C {(t1|t2)} (ghost)
A ⇁1 C {(t1|t2)} (ghost)

2 C ⇁2 B {(t1, t3)|(t1, t4)|(t3, t4)}
(ghost)

Figure 2: R0 is a relation of binary values for attributes A, B, and C; R1 is the same relation but with
one missing value (⊥) randomly injected; similarly, R2 has two missing values randomly injected. Exact
and approximate FDs are computed from R0, R1, and R2 and reported in tables F0, F1, and F2 below their
respective relations.

R3 A B C
t1 0 1 1
t2 0 ⊥ ⊥
t3 1 ⊥ 1
t4 1 0 1

F=
3 Deg. FDs discovered from R3

0 ∅
1 B ⇁1 A {(t2|t3)}

A ⇁1 C {(t1|t2)} (ghost)

B ⇁1 C {(t2|t3)} (ghost)

C ⇁1 A {t1} (fake)

2 A ⇁2 B {(t1|t2), (t3|t4)} (ghost)

C ⇁2 B {(t1, t3)|(t1, t4)|(t3, t4)}(ghost)

F 6=3 Deg. FDs discovered from R3

0 B → A (fake)

B → C
1 A ⇁1 C {(t1|t2)} (ghost)

C ⇁1 A {t1} (fake)

2 A ⇁2 B {(t1|t2), (t3|t4)}(ghost)
C ⇁2 B {(t1, t3)|(t1, t4)|(t3, t4)}

(ghost)

Figure 3: R3 is the original relation R0 with three missing values. Exact and approximate FDs are computed
from R3 and reported for the two cases of NULL semantics: NULL-EQ and NULL-NOT-EQ, noted F=

3 and F 6=3
respectively. Fake FDs are labeled and represented in red, ghost FDs in green.

discovery process, or the methods assume that one of the
two default semantics for handling NULL values is system-
ically applied. As illustrated in the example, both working
assumptions suffer from the discovery of spurious FDs. Un-
derstanding the various ways in which spurious FDs appear
is extremely important, as FDs have a number of applica-
tions in data management. We investigate precisely this
phenomenon by first formally defining them and then devel-
oping a series of algorithms to quantify the genuineness of
an FD.

3.2 Genuine, ghost, and fake exact FDs
For ease of exposition, we first define the notion of gen-

uine, ghost and fake for exact FDs. Consider two versions of
the relation R: Rclean that is clean/complete and Rdirty that
is a noisy version of Rclean with missing values. Let Fclean be
the set of FDs discovered over Rclean while Fdirty be the set
of FDs discovered over Rdirty under a suitable NULL seman-
tics (such as skiptuple, NULL-NOT-EQ, or NULL-EQ). We can
see that the set of FDs will not be identical. We partition
the set of FDs in Fclean ∪ Fdirty into the following groups.

Same FDs: These are exact FDs that are present in both
FD sets, i.e., Fsame = Fclean ∩ Fdirty;

Fake FDs: These are exact FDs that are discovered from
Rdirty but not from Rclean, i.e., Ffake = Fdirty \ Fclean.
We consider them as false positive FDs – FDs that
could be considered valid but are not;

Ghost FDs: These are exact FDs that are discovered in
Fclean but “disappeared” in Fdirty, i.e., Fghost = Fclean\

Fdirty. These are false negative FDs – candidate FDs
that are considered non-FDs but are indeed valid FDs
from Fclean;

Genuine FDs: Using the notations above, we can see that
genuine exact FDs can be reconstructed as Fgenuine =
Fsame ∪ Fghost.

3.3 Genuine, ghost, and fake approximate
FDs

Let us now extend these definitions for approximate FDs.
Recall that approximate FDs are associated with an approx-
imation degree that measures how many tuples need to be
removed such that an AFD can become an exact FD. A
simplistic approach would be to consider all AFDs with an
approximation degree less than a certain threshold as equiv-
alent to exact FDs and reuse the prior definition of genuine-
ness for exact FDs. However, finding an appropriate thresh-
old is very challenging. We provide a generic definition that
takes into account both the degree of cleanliness of data and
the degree of approximation.

Given a dataset with x% of missing values, we denote
with Fx,y the set of valid FDs with approximation degree of
exactly y. For example, F0,0 denotes the set of exact FDs
discovered from the clean dataset, and F10,3 denotes the
set of approximate FDs with degree 3 discovered from the
dataset containing 10% missing values. Let Fx′,y be the set
of valid FDs discovered from a version of the dataset (x′ >
x) with more missing values with the same approximation
degree y. For notational convenience, we denote both the
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degree of dirtiness and the corresponding dataset with that
degree of dirtiness using x.

Definition 1. Same FD set. Given a fixed approxi-
mation degree y, SAMEx0x,y is the set of FDs discovered from
a dirty dataset x (with x > 0) that also appear in the clean
version x0 of the dataset:

SAMEx0x,y = SAME(Fx0,y, Fx0,y) = Fx0,y ∩ Fx,y (1)

Definition 2. Fake FD set. Given a maximum ap-
proximation degree y, FAKEx0x,y is the set of FDs discovered
from a dirty dataset (x > 0) that were not valid in the clean
dataset x0:

FAKEx0x,y = FAKE(Fx0,y, Fx,y) = Fx,y \
⋃
∀y0≤y

Fx0,y0 (2)

Definition 3. Ghost FD set. GHOSTx0x,y is the set
of FDs discovered from a dirty dataset (x > 0) that are valid
in the clean dataset x0 with a certain approximation degree
y0 ≥ 0, but exist only with a higher approximation degree
y > y0 in the dirty dataset:

GHOSTx0x,y = GHOST(Fx0,y, Fx,y) = Fx,y ∩
⋃
∀y0<y

Fx0,y0

(3)

For generalization, we denote Fx,∗, the FD set discovered
from a dataset with x% of missing values for all approxima-
tion degrees. We denote F=

x,y and F 6=x,y, the FD sets discov-
ered with NULL-EQ and NULL-NOT-EQ semantics respectively.
Finally, in presence of the clean dataset (x0 = 0), we define
genuine FDs as follows.

Definition 4. Genuine FD set. Given two versions
of the same dataset, one containing x% incomplete values
(x > 0) and the clean version of the dataset (x0 < x),
GENUINEx0x,y can be computed as the union of FDs from
SAMEx0x,y and GHOSTx0x,y.

Intuitively, genuine FDs discovered from a dirty dataset x
are the FDs that hold in the clean version x0 of the dataset.
But generally, we do not have access to the clean dataset
but rather to a “less dirty” version of the dataset (where
0 < x0 < x). Our final goal is then to find the set of genuine
FDs, noted GENUINEx,∗ for all approximation degrees dis-
covered from the dirty dataset x using x′0, one of the possible
“cleaner” versions of the dataset (0 < x′0 < x).

4. ESTIMATING FD GENUINENESS
In this section, we introduce a generic notion to quantify

the genuineness of an FD and propose an efficient algorithm
to compute it.

4.1 Identifying genuine FDs
As we described previously, the set of FDs that are dis-

covered from an incomplete relation can be genuine, ghost,
or fake. Naively using all of the discovered FDs, irrespective
of whether they are genuine or not, might be sub-optimal in
applications, such as query optimization and data cleaning.
A data analyst would prefer to utilize only the FDs that are
either genuine or very likely to be genuine. Our objective
is to identify a measure that can be used to quantify the
“genuineness” of a given FD. Informally, we would expect

for a genuine FD to have a higher genuineness score than
non-genuine FDs. Assuming the availability of such a mea-
sure, the analyst can use the following procedure to identify
the set of FDs that are likely to be genuine:

1. Run some exact FD discovery algorithm on the “clean”
subset of R that does not have any NULL values; The
set of discovered FDs will be a superset of all genuine
FDs and can contain both ghost and fake FDs;

2. Compute the genuineness score for each of the discov-
ered FDs;

3. Prune the list of discovered FDs based on some top-k
or a domain-specific threshold whereby all FDs with
genuineness score above that threshold are considered
genuine.

4.2 Genuineness for probabilistic imputation
We now describe an approach to compute genuineness of

an FD that subsumes many of the strategies used for han-
dling datasets with incomplete tuples as described in Sec-
tion 1. A common strategy for handling missing values is
imputation. Imputation refers to the statistical process that
replaces missing data with substituted values. There has
been extensive work in statistics to perform imputation in a
robust way [33]. Often, imputation strategies seek to replace
missing data for a given attribute with an estimated value
based on the values of other attributes/tuples. For example,
a simple imputation strategy for numeric data is to replace
missing data with the median value of all the values of that
attribute. Alternatively, one can use a regression-based ap-
proach to estimate the value of an attribute given the values
of other attributes. This approach also subsumes various
NULL semantics, such as NULL-EQ and NULL-NOT-EQ. To see
why, one can simulate NULL-EQ by imputing with NULL val-
ues for a given attribute to the same value. Alternatively,
one can simulate NULL-EQ by imputing all NULL values for
a given attribute to a different value.

We now consider a general probabilistic imputation ap-
proach that, for each missing data, gives a probability dis-
tribution over the various values that can be taken. This
approach generalizes most of the main imputation strate-
gies and allows us to exploit connection to well-studied area
of probabilistic databases. Intuitively, in a probabilistic
database, each tuple (or an attribute) is associated with a
probability distribution such that it can take different val-
ues with different probabilities. A possible world is a specific
instantiation of the probabilistic database where each tuple
takes a value based on the probability distribution associ-
ated with the tuple. As an example, consider a probabilistic
database with two tuples t1 and t2 that can take two and
three values respectively. Then there are totally six possible
worlds (by Cartesian product). In this paper, we consider
the scenario where the probability distribution is defined
over the entire tuple. Note that this approach is more gen-
eral than the one where the probability distribution is de-
fined over attributes as the former can handle correlated at-
tributes. Table 1 shows a probabilistic imputation based on
relation R3 from Figure 3, where the probabilities are chosen
arbitrarily for expository purposes. For example, the third
line of the table can be interpreted as: B and C values of tu-
ple t3 will be imputed as t3[B] = 0 and t3[C] = 1 with prob-
ability 0.2 and t3[B] = 1 and t3[C] = 1 with probability 0.8.
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Intuitively, the probabilistic imputation associates with each
incomplete tuple a set of possible imputed/complete tuple
values it can take with the corresponding probability. This is
equivalent to an uncertain tuple in a probabilistic database
that is associated with a probability distribution.

Table 1: Tuple-level probability distribution for im-
putation over relation R3 of the illustrative example.

A (B , C)
t1 0 (1,1)
t2 0 {(0, 0) : 0.12; (0, 1) : 0.18; (1, 0) : 0.28; (1, 1) : 0.42}
t3 1 {(0, 1) : 0.2; (1, 1) : 0.8}
t4 1 (0,1)

We also make the tuple independence assumption whereby
individual tuples are imputed independently. This is a stan-
dard assumption in both probabilistic imputation and prob-
abilistic databases.

Given the setup above, we can now define the genuineness
score of an FD as the sum of probabilities of all the possible
worlds in which the FD holds. Note that there are 8 possible
worlds in the example of Table 1 (four for t2 and 2 for t3).
Given an FD X → A, one can compute its genuineness by
enumerating all possible worlds, evaluating if the FD holds
in that world and then simply summing up the probabilities
of all worlds where it does. We can see that this definition of
genuineness generalizes both the strong and weak FDs [25].
A strong FD is one that holds in all possible worlds while
weak FD holds in at least one possible world. Based on
our genuineness score definition, we can see that strong FDs
have a genuineness of 1 while weak FDs have a genuineness
score > 0. Naturally, our proposed approach provides a
granular way to identify the set of genuine FDs. For exam-
ple, the analyst might use a custom threshold (say .9) and
consider only the FDs with a genuineness score above this
threshold.

4.3 Estimating probabilistic genuineness
Let us consider how to compute the genuineness score of

an FD in a probabilistic imputation setting.

Complete enumeration. The simplest approach basically
enumerates all possible worlds. We then sum up the prob-
ability of all the worlds where it holds and return it as the
genuineness score of the FD. Note that this approach is ex-
act and returns the accurate genuineness score. However,
this is a very expensive algorithm as there might be an ex-
ponential number of possible worlds in a real-world dataset.

Note that one can generate the possible worlds in a
straightforward manner. The deterministic tuples that have
no NULL values exist in all the possible worlds while the
tuples with NULL exist with appropriate imputation prob-
ability. As an example, there are 8 possible worlds for the
example in Table 1. Tuples t1 and t4 exist in each of them.
Tuples t2 and t3 take values from the Cartesian product
of all possible imputed values. So in possible world w1,
t2[B] = 0, t2[C] = 0 and t3[B] = 0, t3[C] = 1. Since this
is a tuple-independent probabilistic database, this occurs
with probability 0.12× 0.2. The last possible world w8 has
t2[B] = 1, t2[C] = 1 and t3[B] = 1, t3[C] = 1 with probabil-
ity 0.42×0.8. One can enumerate other possible worlds and
compute its probability in a systematic manner.

Efficient enumeration. One can leverage prior work on ef-
ficient inference over probabilistic databases [9,10,22] to pro-
pose a more efficient algorithm that can compute the exact
genuineness score by avoiding the enumeration of irrelevant
worlds where the FD does not hold. Consider an FD X → A
and an arbitrary tuple ti. Intuitively, we perform two major
pruning steps. First, we can notice that when consider-
ing the possible worlds where we imputed ti[X] = VX and
ti[A] = VA for some VX ∈ Dom(X), VA ∈ Dom(A), we no
longer need to consider all possible worlds where tj [X] = VX
and tj [A] 6= VA where j > i. In other words, the entire set of
possible worlds where ti[X] = tj [X] = VX , ti[A] = VA and
tj [A] 6= VA will have a contribution of 0 to the genuineness
score computation and can be readily pruned. Second, if all
the values in a given tuple comply with the FD, then the
genuineness score computation does not change whether the
tuple is picked or not as its contribution is 1.

Algorithm 1 shows the pseudo-code. Given an FD X →
A, we use the term constraints loosely to denote the set
of (X,A) pairs that are valid in the given partial probable
world. For example, consider a tuple ti with ti[X] = VX
and ti[A] = VA where VX ∈ Dom(X), VA ∈ Dom(A). Then
the pair (VX , VA) acts as a constraint (denoted by C in Al-
gorithm 1) whereby all possible worlds where another tuple
tj is imputed with same value for X but different value for
A is invalid. Please refer to [10] for additional details.

Algorithm 1 Estimate Genuineness Score

1: Input: Imputed database D, FD f , Set of constraints
C

2: Output: Genuineness score P of f
3: P = 0
4: t = Next tuple to process from D
5: if t does not violate f and C then
6: return Estimate Genuineness Score(D \ t, f , C)
7: end if
8: for each distinct possible (t[LHS], t[ RHS]) combination

in imputed t do
9: if Possible tuple (t[LHS], t[RHS]) does not violate C

then
10: Add constraint (t[LHS], t[RHS]) to C
11: result = Estimate Genuineness Score(D \ t, f , C)
12: P = P + Prob( t[LHS], t[RHS] ) × result
13: Remove t[LHS], t[RHS] from C
14: end if
15: end for
16: return P

Example 1. Consider Table 1 and try to estimate the
genuineness score of candidate FD A → B. We can see
that tuples t1 and t4 are deterministic and impose the “con-
straints” {(A = 0, B = 1), (A = 1, B = 0)}. Hence,
we need to consider only the set of possible worlds where
this set of constraints hold. Let us now consider tuple t2.
Since t2[A] = 0, t2[B] has to be 1 (otherwise it violates the
constraints and has a probability of 0). We can see that
t2[B] = 1 occurs with probability 0.7 (0.28 + 0.42). Sim-
ilarly, t3[B] can take only the value of 0 that occurs with
probability 0.2. The assignment for t2 and t3 happens in-
dependently with probability 0.7 × 0.2 = 0.14. Hence the
genuineness score of A→ B is 0.14.

885



Example 2. Let us compute the genuineness score of the
FD AB → C. Once again, t1 and t4 are deterministic and
impose the “constraints” {(A = 0, B = 1, C = 1), (A =
1, B = 0, C = 1)}. Let us process t3 next. We can see
that both the possible options (A = 1, B = 0, C = 1) and
(A = 1, B = 1, C = 1) do not violate any constraints. Hence
the entire tuple does not violate any of the current set of
constraints. For each option, we add the assignment to the
set of constraints and recursively process tuple t2. Based on
the constraints above, we can see that t2 can take only three
of the possible options without violating the constraint. By
adding up the respective probabilities, we get the genuineness
score of AB → C = 0.12 + 0.18 + 0.42 = 0.72.

Complexity Analysis. The efficiency of Algorithm 1
stems from the fact that it avoids enumerating possible
worlds where a given FD does not hold. Note that the com-
plete enumeration based approach requires to consider all
possible worlds which is exponential in the number of tuples
in the worst case. In contrast, Algorithm 1 is only exponen-
tial in the cardinality of the domain of the attributes. When
the number of attributes involved in the FD is small or when
they have low domain cardinality, such as Gender, this ap-
proach is orders of magnitude faster than complete enumer-
ation. Nevertheless, in the worst case, both approaches have
exponential complexity.

5. EFFICIENTLY APPROXIMATING FD
GENUINENESS

In this section, we propose two distinctive approaches
based on sampling and likelihood computation to speed up
computation of FD genuineness.

5.1 Sampling-based genuineness computation
In a number of real-world applications, the user does not

necessarily need to compute the genuineness of an FD ex-
actly and an approximate value suffices for decision making
purposes. Under this circumstance, the user can quickly ap-
proximate the genuineness score by sampling the possible
worlds.

Monte Carlo sampling of possible worlds. In this ap-
proach, one can adapt the Karp-Luby algorithm for approx-
imate model counting that is used for inference over prob-
abilistic databases [9, 22]. Intuitively, we generate different
possible worlds in proportion to their likelihood. We then
compute the genuineness score as the weighted ratio of the
likelihood of all the generated worlds where the FD held to
the likelihood of all the generated worlds. In contrast to the
complete enumeration approach, we do not enumerate all
possible worlds. Instead we generate a sample of possible
worlds and compute the genuineness score for each FD from
the sample.

When the size of the sampled possible worlds is large
enough, the ratio converges to the correct genuineness score
with high probability. Specifically, [9, 22] showed that if
we run the experiment for N ≥ 4n

ε2
ln 2

δ
, we can guaran-

tee that the probability that the generated estimate being
off by more than ε is less than δ. For example, if there are
n = 100 tuples and we want the genuineness estimate to be
within 0.1 of the true value at least 95% of the times, then
we need to generate at least 29,778 possible worlds.

Furthermore, one can generate a confidence interval dur-
ing the execution of the algorithm and can terminate it when
the confidence is satisfactory. After sampling N possible
worlds with 0 ≤ δ < 1, we can guarantee [9,22] that the esti-
mated genuineness score p̃ relates with accurate genuineness
score p as follows:

P (p̃ ≤ (1− δ)p) ≤ exp

(
−N × p× δ2

2

)
. (4)

One can see that the runtime complexity of the algorithm
is parameterized by the number of sampled possible worlds
N . Since one can evaluate whether a given FD holds in
O(n2), the overall time complexity is O(N · n2).

5.2 Likelihood as genuineness
An alternate approach to speed up genuineness compu-

tation is to limit the expressiveness of the imputation. A
number of commonly used imputation and repair strategies
are often frequency-based (the more frequent a value occurs,
more likely it is to be correct). If one adopts such an im-
putation strategy, one can design a linear time algorithm to
efficiently compute the genuineness score.

Given a candidate FD X → A, we can define its genuine-
ness as the “likelihood” that it is correct. FDs that are more
likely would have a higher genuineness score. Note that if
the FD X → A is indeed genuine, we would like its genuine-
ness score (and hence its likelihood) to be 1. However, due
to incomplete data, there might be some tuples that have
different values of A. Hence, a natural way to define the like-
lihood of a FD is to compute the fraction of tuples for each
distinct value of X where the FD holds. In the following,
we present two approaches adapted from [34] to compute
efficiently genuineness scores per value and per tuple.

PerValue approach. Given a FD X → A and a NULL
semantics, we begin by computing the likelihood that the
FD holds for each distinct value of X. Consider an arbitrary
value VX ∈ Dom(X). For all the tuples that have t[X] =
VX , we identify the value VA that occurs in the maximum
number of times. The likelihood that FD X → A holds for
the value VX can be computed as

Lik(X → A, VX) =
|VX , VA|
|VX |

(5)

where |VX , VA|, |VX | are the number of tuples that have
t[X] = VX , t[A] = VA, and t[X] = VX , respectively.

Note that Lik(X → A, VX) is for a specific value VX . We
can compute the likelihood for a FD as the average of the
likelihood values for each distinct value VX . Formally, the
genuineness score is computed as

GenuinenessPV (X → A) =

∑
VX∈Distinct(X) Lik(X → A, VX)

|Distinct(X)|
(6)

where Distinct(X) returns all distinct values of X that
occur in the relation R.

PerTuple approach. The PerValue approach, while intu-
itive, has a subtle issue. Consider two groups of tuples for
arbitrary values VX and VY . Let |VX | = 1, 000 and |VY | = 10
and assume that |VX , VA| = 800 and |VY , VA| = 8. Using
Equation 5, the likelihood for both VX and VY are 0.8. In-
tuitively, we might want to give higher weight to VX than
VY . This can be achieved by weighting the likelihood by
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the frequency of each distinct value VX . This results in a
PerTuple definition of genuineness score computed as

GenuinenessPT (X → A) =

∑
VX∈Distinct(X) |VX , VA|∑
VX∈Distinct(X) |VX |

(7)

6. EXPERIMENTS
In this section, we report on our experimental results.

First, we expose the phenomenon of fake and ghost FDs
when missing values are injected in a clean dataset and
we show how missing values can distort the FD discovery
result (Section 6.2). Second, we apply our algorithms for
computing the genuineness score of FDs from various real-
world datasets that we have artificially polluted with miss-
ing values, and we report the quality performance evalu-
ation of our approach given the true labels of FD discov-
ered from the clean version of the datasets (Section 6.3).
In particular, we observed: (1) Increasing the percentage
of missing values in LHS attributes of FDs generates fake
FDs both for NULL-NOT-EQ semantics and skiptuple (Sec-
tion 6.2.B); (2) Increasing the percentage of missing values
in RHS attributes of FDs generates fake FDs with NULL-EQ se-
mantics or skiptuple but ghost FDs for NULL-NOT-EQ (Sec-
tion 6.2.C); (3) PerValue (PV) and PerTuple (PT) approx-
imations of the genuineness score have the highest quality
performance to discover genuine FDs with NULL-EQ seman-
tics. skiptuple is not a good strategy to discover genuine
FDs (Section 6.3.A). We show that our approach is robust
and can perform well even under a worst case imputation
(Section 6.3.B). Experiments on a real-world Sensor dataset
show that our FD-scoring methods can find 100% of genuine
FDs that would have been obtained by multiple imputation
strategies in very reasonable time, which offers a significant
gain over pre- and post-processsing efforts for FD discovery
(Section 6.4). Due to space limitations we did not include
experiments on runtime performance. However, the results
directly follow the complexity analysis of various algorithms
proposed in Sections 4 and 5.

6.1 Experimental setup
Parameters of the study: In each experiment, we vary
(1) the dataset and the characteristics of the discovered FDs
in terms of number, set of attributes in LHS and RHS, and
approximation degree; (2) the number and distribution of
missing values; and (3) the considered NULL semantics:
NULL-NOT-EQ, NULL-EQ, or skiptuple, and (4) the threshold
to select the top-k genuine FDs (k = 10, 20, 30 and 100% of
the total number of FDs discovered).
Datasets. We used five real-world datasets: four are se-
lected from the UCI machine learning repository [26] and
one Sensor dataset from Intel Berkeley Research lab1. The
first four datasets (used in Section 6.2) are originally com-
plete, i.e., without any missing values. The Sensor dataset
(used in Section 6.4) includes missing values. As shown in
Table 2, they vary in the number of columns, rows, and dis-
covered FDs, and cover a wide variety of topics, and they are
representative in terms of distributional characteristics and
distinctness of attribute sets. We injected a varying percent-
age of missing value from 5% to 40% in the dataset attributes
using one of the three modes: UNIFORM, PARETO, and

1http://db.csail.mit.edu/labdata/labdata.html

TARGET. For UNIFORM mode, we distribute the ran-
dom injection of missing values uniformly over the set of
attributes. For PARETO mode, we inject randomly 20% of
the missing values in 80% of the attributes and 80% in the
remaining 20% of the attributes. Using PARETO mode, we
study the impact of a realistically unbalanced distribution
of missing values across the attributes and how it can affect
the FD discovery (e.g., causing more ghost and fake FDs).
Using TARGET mode, we select a subset of attributes in-
volved either in LHS or RHS for a set of targeted FDs. For
each originally complete dataset (×4), each missing value
percentage (×6), and each distribution mode (×3), we gen-
erate 10 polluted versions to finally obtain 4×6×3×10 = 720
datasets.
FD discovery: The exact and approximate FDs were dis-
covered from all datasets using the original implementation
of FUN algorithm [29]. Once missing values have been in-
jected, we re-ran FD discovery for each NULL semantics and
for Skiptuple, the case where the tuples containing missing
values are skipped in the FD discovery process. We finally
analyze 3 × 720 = 2, 160 FD sets for the experiments of
Sections 6.2 and 6.3 and 18 datasets for Section 6.4.
Quality performance evaluation: For the first sets of
experiments in Sections 6.2 and 6.3, we used the ground
truth obtained by discovering FDs from the originally clean
datasets. We compared the set of FDs discovered before
and after injection of missing values. We used the true la-
bels of FDs to compute the traditional measures of pre-
cision (P), recall (R), and F1-measure for k percent of
the discovered FD size defined as: P = |true Genuine
FDs|/|Top-k FDs|, R = |true Genuine FDs|/|AllFDs|, and
F1k = 2PR/(P + R). For the case study in Section 6.4,
since we do not have access to the ground truth, we used
the set of FDs discovered from datasets obtained from three
most commonly used imputation strategies as a baseline and
report the Jaccard coefficient.
Data Storage and system setup: We store all discov-
ered FDs with their approximation degrees as well as the
attribute sets’ distinctness in a MySQL database and per-
form SQL queries to extract the information we report here-
after. We perform all experiments on a Dell XPS machine
with an Intel Core i7-7500U quad-core, 2.8 GHz, 16 GB
RAM, Windows 10 64-bit with g++ (GNU).

6.2 Ghost and fake FDs phenomenon
A. Impact of NULLs uniformly distributed in LHS
and RHS. In this experiment, our goal is to show that
ghost and fake FDs exist and have considerable impact on
the validity of FD discovery results. First, we randomly
injected increasing percentages of missing values uniformly
in the attribute list for each clean version of the real-world
datasets described in Table 2. We discover the sets of FDs
for the full range of approximation degrees in the original,
clean version of the dataset as well as from each polluted
version in the two NULL semantics and the Skiptuple cases.

Figure 4 shows, when increasing the percentage of missing
values (X-axis) in the Abalone dataset, two Jaccard coeffi-
cients (in Y-axis) averaged over the 10 polluted versions:
The first Jaccard coefficient (same approxdeg as dashed
line) is computed as the fraction of the number of common
FDs discovered both in the clean dataset and each polluted
dataset version for exactly the same approximation degree
over the total number of FDs discovered in both datasets.
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Table 2: Clean versions of real-world datasets with the number of (A)FDs discovered (with approximation
degree α)

Datasets [#]Att. [#]Rows [#]Distinct [#]Missing [#]FDs
(min;max) α = 0 α = 1 α = 2 α = 3 α = 4 α ≥ 5 [#]Total

Iris 5 150 (3;43) 10%-40% 5 2 1 1 7 59 80
Abalone 9 4,177 (3;2,429) 10%-40% 783 219 122 57 56 1,067 2,313
Computer hardware 9 209 (15;209) 10%-40% 3,046 193 199 168 92 1,422 5,129
Glass identification 10 214 (6;214 10%-40% 8,624 1,156 536 166 84 687 11,263
Sensor 8 2,313,681 (137;10,283) 96,733 Skiptuple
Sensor 10 Bins → 10 397 29 10 14 11 563 1,024
Sensor 100 Bins → 100 432 40 10 0 3 539 1,024
Sensor 1000 Bins → 1000 427 44 7 0 3 543 1,024

Figure 4: Jaccard coefficients with increasing percentage of missing values for Abalone dataset. It mea-
sures the similarity between the FD sets discovered from the original, dirty datasets for the same or higher
approximation degrees in the 3 cases of NULL semantics: NULL-NOT-EQ, NULL-EQ, and skiptuple.

It represents the same FDs as defined in Equation (1). The
second Jaccard coefficient (higher approxdeg as solid line)
represents the fraction of common FDs that have an ap-
proximation degree in each dirty version that is higher than
in the clean dataset over the total number of FDs discov-
ered in both datasets. In this figure, we can see that non
exact FDs are the most impacted by the ghost and fake phe-
nomenon. The more missing values are introduced, the more
dissimilar sets of FDs with same approximation degree are
obtained. Skipping tuples with missing values for FD dis-
covery is clearly not a good option to preserve genuine FDs
as the Jaccard coefficients tend to 0 when increasing the per-
centage of NULL values. We made the same observations of
the phenomenon on the other datasets.
B. Impact of NULLs in LHS. To better understand the
phenomenon at the attribute set level, we injected missing
values with the PARETO mode. We obtained very similar
figures to Figure 4 in the two cases of NULL semantics (not
shown due to space limitation). To grasp the phenomenon at
a finer grain, we used the TARGET mode over the least and
most distinct attributes of the datasets. Figure 5 (Right)
shows the approximation degree variation (Y-axis) with re-
spect to the percentage of missing values (X-axis) injected in
attribute A10 (the least distinct attribute) of Glass dataset
for each FD having A10 in its LHS for each NULL semantics
cases (similarly Figure 5 (Right) for RHS). In Figure 5(Left),
an increasing percentage of missing values in LHS causes a
dramatic drop of the approximation degree of all FDs both
for NULL-NOT-EQ and Skiptuple (thus generating fake FDs),
whereas for NULL-EQ semantics, targeted injection in LHS

leaves the FDs’ approximation degree intact irrespectively
of the number of missing values injected.

C. Impact of NULLs in RHS. In Figure 5 (Right),
150 FDs (not listed due to space limitation) having A10
in the RHS are plotted for each NULL semantics. We ob-
serve clearly that the increase of their approximation de-
gree is proportional to the increasing of the percentage of
missing values for NULL-NOT-EQ, whereas it decreases signif-
icantly in the two other cases with a much steeper slope
when the tuples are skipped than for NULL-EQ. In this case
when more missing value are injected in RHS, depending
on the NULL semantics, we can see either the generation
of fake FDs (with approximation degrees getting lower for
NULL-EQ and Skiptuple) or the disappearance of FDs (be-
coming ghost with approximation degrees getting higher for
NULL-NOT-EQ).
Conclusions. We observe the same phenomenon in all pol-
luted versions of all datasets. This corroborates our conclu-
sions: (1) increasing the distinctness of LHS attribute set or
adding more distinct missing values decreases the approxi-
mation degree of the corresponding FDs and more fake FDs
will appear for NULL-NOT-EQ and Skiptuple; (2) increasing
the distinctness of RHS attribute set makes the correspond-
ing FDs become more and more approximate: more genuine
FDs will disappear and become ghost FDs for NULL-NOT-EQ;
(3) decreasing the distinctness of RHS or adding missing val-
ues with NULL-NOT-EQ and Skiptuple makes the correspond-
ing FDs become less and less approximate and more fake
FDs will appear.

6.3 Quality evaluation
In this set of experiments, we compute the genuineness

scores proposed in Sections 4 and 5 and report quality per-
formance as accuracy, recall, precision, and F1-measure.
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Figure 5: Variation of FD approximation degree w.r.t. the NULL semantics when missing values are injected
in the least distinct attribute in LHS of the FDs (Left) and in RHS of FDs (Right) for the Glass dataset.

Figure 6: Average F1-measures of genuineness scores per value (PV) and per tuple (PT) over 10 runs for
Skiptuple, NULL-EQ, and NULL-NOT-EQ semantics and 3 thresholds k = 10, 20, 30% of the number of FDs discovered
from dirty dataset.

A. PerValue (PV) and PerTuple (PT) genuineness
scores. For each polluted version of each dataset, precision,
recall, and F1-measure are computed as follows: we select
as genuine FDs, the ones having PV and PT scores greater
than a predefined top-k threshold and we compare them
with the true genuine FDs discovered from the clean version
of each dataset. This procedure is repeated ten times for
averaging the quality metrics. In Figure 6, we report av-
eraged F1-measure of PV and PT scores for top-k genuine
FDs discovered from the dirty datasets with k = 10, 20, and
30%. Precision and recall averages are presented in Figure 7.
Overall, we observe that Skiptuple is the worst performer
across all the datasets. All PV and PT scores obtained with
the two NULL semantics outperform the scores obtained
from Skiptuple to a significant extent across all datasets.
PV and PT genuineness scores have very close F1-measures
except for Iris where PV score reaches 1 despite the increas-
ing percentage of missing values. We observe that NULL-EQ

is consistently the best performer, regardless of the missing
values percentage. With high percentages of missing values,
the difference between scores obtained from NULL-NOT-EQ

and NULL-EQ is greater by more than 10 to 20%. In con-
clusion, our PV score combined with NULL-EQ semantics
can approximate correctly the genuineness of FDs across
all datasets. We note that for all datasets, the computation
time of PV and PT per FD is negligible (linearly with the
dataset size: around 1 second for 100,000 tuples).
B. Sampling-based probabilistic genuineness score.
The qualitative performance of sampling based approach is
guaranteed to be identical to the PerTuple approach when
frequency based probabilistic imputation is used. Instead,
we highlight the robustness of the sampling based approach
by performing a worst-case uniform imputation and show
that it still achieves meaningful results. In uniform impu-

Table 3: Averaged precision, recall, F1-measure of
GS@10% for Glass dataset over 10 runs with 10,000
to 70,000 possible worlds.

Missing (%) Nb Worlds Precision Recall F1
10000 0.758 0.082 0.149

5 20000 0.783 0.085 0.154
70000 0.866 0.094 0.170
10000 0.642 0.078 0.139

10 20000 0.642 0.078 0.139
70000 0.556 0.068 0.122
10000 0.580 0.033 0.062

20 20000 0.559 0.032 0.060
70000 0.152 0.009 0.017

tation, each value in the domain of an attribute is equally
likely to be imputed. For example, if the attribute has a
domain cardinality of 100, then each of the possible values
have 1% probability of being imputed. We now study, how
our approach fares under this imputation for Glass dataset.
Applying Eq. (4) with δ = .95 and ε = .2 and ε = .1 re-
quires sampling at least 15,931 and 63,724 possible worlds
respectively. In Table 3, we report the quality metrics of
top-10% FDs based on the probabilistic genuineness score
(GS) computed using 10,000 to 70,000 worlds from exact
minimal FDs from Skiptuple Glass dataset. As expected,
both precision and recall decreases with increasing missing
values. However, our approach has high precision but low
recall - whereby we return few FDs but most of the returned
FDs are genuine. Given the preponderance of database ap-
plications of FDs, returning FDs that are very likely to be
genuine is indeed desirable. Once again, we caution that
this result is for the absolute worst case of uniform impu-
tation. If the imputation is reasonably accurate, then the
precision/recall will comparable to the PerValue and PerTu-
ple approaches.
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Figure 7: Average recall and precision of genuineness scores per value (PV) and per tuple (PT) over 10
runs for Skiptuple, NULL-EQ, and NULL-NOT-EQ semantics and 3 thresholds k = 10, 20, 30% of the number of FDs
discovered from dirty dataset.

6.4 Case study on a real-world Sensor dataset
In this set of experiments, we use real-world data collected

from 54 sensors deployed including 2,313,681 records iden-
tified by a timestamp and five relevant numerical attributes
describing the conditions of the monitored rooms such
as (date, hour, epoch, sensorId, voltage, temperature,

humidity, light). The dataset includes 96,733 missing val-
ues with the distribution given in Table 4. A “1” in the table
indicates a non-missing value and a “0” indicates a missing
value. There are 2,219,802 observations with non-missing
values, and for example, 3 observations with non-missing
values except for the variables humidity and light (line 5
of the table). The original number of distinct values per
attribute is given in parenthesis. We do not consider the
spatio-temporal dimension of the dataset and focus on FD
discovery in presence of missing values.

To study the effect of attribute cardinality on FD dis-
covery, we transformed the dataset into three binned ver-
sions with 10, 100, and 1000 bins, respectively, for the
five numerical attributes. We discovered FDs from each
binned versions. Table 2 (three last lines) reports the
numbers of FDs discovered from Skiptuple binned ver-
sion. We can observe the overlaps of common FDs across
various NULL semantics in the Venn diagram for 10 bins
in Figure 8 (Left). Similar overlaps are observed for 100
and 1000 bins. Moreover, our intuition about the phe-
nomenon of fake and ghost FDs is confirmed as we ob-
served exact FDs that are present in Skiptuple but “dis-
appear” with another NULL semantics, such as the FD
epoch, sensorId,temperature,humidity → voltage ex-
act in Skiptuple and NULL-NOT-EQ versions but with ap-
proximation degree 18 in NULL-EQ.

Next, we computed PV, PT, and GS scores and selected
the top-k FDs with k = 10, 20, 30, and 100%. As in many
similar application scenarios, we do not have access to the
ground truth related to missing values, but a common tech-
nique is to apply statistical imputation methods. Therefore,
we applied three imputation strategies to the original Sen-
sor dataset, namely PMM, RI, and QUAD. PMM calculates

imputations by predictive mean matching [33]. RI (Ran-
dom Indicator) estimates an offset between the distribution
of the observed and missing data using an algorithm that
iterates over the response and imputation models. QUAD
is a multivariate imputation technique based on estimating
the squared terms [33]. We also applied the same binning
strategies to the imputed datasets and discovered three FD
sets respectively. In the absence of ground truth, we can
reasonably take the assumption that common FDs across
all imputed datasets can be considered as genuine FDs for
our comparison purposes. Figure 8 (right) represents the
overlaps and the set of 486 genuine FDs for imputed Bin
10 Sensor dataset (similar figures for Bin 100 and 1000 are
observed). Finally, Figure 9 reports the Jaccard coefficient
between FDs discovered using our top-k scoring-based meth-
ods for various NULL semantics and the set of genuine FDs
as FPMM ∩ FRI ∩ FQUAD. Our results show that, with only
top-30% of PT- and PV-scoring results obtained from the
FD set size of any NULL semantics, around 60% of the set
of imputed-genuine FDs can be discovered.

PV and PT scores are computed simultaneously for the
full Sensor dataset in approximately 21 seconds for 10 Bins,
20 seconds for 100 Bins, and 20 seconds for 1000 Bins for the
three cases of NULL semantics and Skiptuple. GS score
computation times are: 11 min and 35s, 3 hours 32 min,
and 3 hours 26 min, respectively. As a conclusion, the user
may choose many different ways to impute missing values
and then discover FDs from imputed datasets. However,
using our method and in particular PV score regardless of
the NULL semantics, the user can obtain, with reasonable
execution time, the set of genuine FDs instead of carefully
selecting the imputation strategies, spending time for im-
putation and screening the FDs discovered from multiple
imputed datasets.

7. RELATED WORK
Functional dependency is one of the most important type

of integrity constraints and has been extensively studied by
the research community. It has a number of applications,
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Figure 8: Venn diagrams representing the FD sets
and their intersections in Sensor 10 Bins dataset
between Skiptuple, NULL-EQ and NULL-NOT-EQ versions
(Left) and imputation strategies (Right).

Table 4: Missing values distribution in Sensor data.
SensorId voltage temp. hum. light

[#]Records (61) (137) (10,283) (1,990) (143)
2,219,802 1 1 1 1 1

1 1 1 0 1 1
92,975 1 1 1 1 0

1 1 1 0 1 0
3 1 1 1 0 0

373 1 1 0 0 0
526 0 0 0 0 0

2,313,681 526 526 901 902 93,878

such as maintaining data quality [14], schema normaliza-
tion [31], repair data inconsistencies [4, 6], etc. There has
been extensive work on discovering exact FDs from com-
plete/correct data [27,30]. There has been a number of dif-
ferent formalisms to extend FDs to handle erroneous data
inherent in real-world applications. Common approaches
include approximate FDs [5] and conditional FDs [20, 21]
whereby a FD holds on a subset of data instead of the en-
tire dataset (please refer to [7] for a detail survey of relaxed
definitions of FDs). There has been some work on proba-
bilistic FDs that might hold on the data with some probabil-
ity [10, 34]. Recently, there has been some proposals to ex-
tend the semantics of FDs under NULL markers [1,2]. How-
ever, none of the FD mining algorithms questions whether
the discovered FDs are genuine FDs or not. The usual
working assumption is that FD discovery operates from a
clean dataset. As an unfortunate consequence, existing FD
discovery-based frameworks for data cleaning rely on the
correctness of the discovered dependencies; cleaning rules
based on matching dependencies [3] and constant or vari-
able CFDs [15] may actually be erroneous (fake) and skip
relevant dependencies (ghost).

There has been some research considering the effect of
NULL values on constraints, namely on FDs [25] and on
keys [23]. As in our work, the authors first acknowledge the
presence of NULL values in typical datasets and explain
their detrimental effects on enforcing constraints. They
then introduce the notions of possible and certain FDs/keys
(weak and strong FDs in [25]). A possible FD/key is one
for which a possible world exists (i.e., some instantiation
of all NULL values with any non-NULL values). A certain
FD/key is one that holds for all possible worlds. Both works
then construct sound and complete axiom systems for such
dependencies and the authors of [23] suggest an algorithm
for the discovery of certain keys. In [24] the authors go a

Figure 9: Jaccard coefficient between top-k FD sets
based on GS, PV, and PT scores and the set of com-
mon FDs discovered from imputed datasets using
PMM, RI, and QUAD imputation techniques for
Sensor dataset with 10 and 100 Bins.

step further, by proposing an algorithm to discover approxi-
mate certain keys, i.e., keys with NULL values that are still
sufficient to identify tuples (certain), but may have some vi-
olating values (approximate). In a similar vein, certain FDs
(with some violations) might be good candidates for gen-
uine FDs. In contrast, we are interested in the behavior of
FDs under changing cleanliness to then determine genuine
FDs. Finally, some attempts have been made to solve the
problem of inconsistency between data and their respect set
of FDs. In [8], the authors developed an algorithm for FD
repair and maintenance without overfitting the potentially
erroneous data. But they did not consider NULL seman-
tics within their cost model for both data and constraint
repairs. Another method to maintain FD set was proposed
in [28]. This method adds one or more attributes to an FD
to repair it instead of changing the data. It estimates to
what extent an FD is violated by the data using measures
of confidence and goodness of an FD. However, the authors
excluded attributes with NULL values from being involved
in FDs.

8. CONCLUSION AND FUTURE WORK
In this work, we studied how missing values may impair

the final FD discovery results by causing the generation of
spurious FDs and the omission of valid FDs in the same
time. We formalized the notions of ghost, fake, and genuine
functional dependencies. We proposed a probabilistic ap-
proach to quantify the genuineness of FDs and provide an
efficient sampling-based computation of genuineness score
with accuracy guarantee. We also proposed two algorithms
to approximate the genuineness score of FDs based on per
value and per tuple granularity levels that could be used
by analysts to identify most promising FDs. Experimental
results on real-world and semi-synthetic data show high ac-
curacy and efficiency of our scoring model. For future work,
we plan to extend and apply our technique to the particular
case of “disguised” missing values when incorrect default val-
ues are misused in replacement of missing values and hardly
detectable, which adds complexity into the detection of gen-
uine FDs and anomaly semantics interpretation.
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