
Indexed Fast Network Proximity Querying

Mustafa Coşkun
(1) Electrical Engineering

& Computer Science
Case Western Reserve

University,
Cleveland, OH 44106, USA.

(2) Qatar Computing
Research Institute, HBKU

Doha, Qatar.
mustafa.coskun@case.edu

Ananth Grama
Department of

Computer Science
Purdue University

West Lafayette, IN 47906,
USA.

ayg@cs.purdue.edu

Mehmet Koyutürk
(1) Electrical Engineering

& Computer Science
(2) Center for Proteomics &

Bioinformatics
Case Western Reserve

University
Cleveland, OH 44106, USA.

mehmet.koyuturk@case.edu

ABSTRACT
Node proximity queries are among the most common oper-
ations on network databases. A common measure of node
proximity is random walk based proximity, which has been
shown to be less susceptible to noise and missing data. Real-
time processing of random-walk based proximity queries poses
significant computational challenges for larger graphs with
over billions of nodes and edges, since it involves solution of
large linear systems of equations. Due to the importance of
this operation, significant effort has been devoted to devel-
oping efficient methods for random-walk based node prox-
imity computations. These methods either aim to speed up
iterative computations by exploiting numerical properties of
random walks, or rely on computation and storage of matrix
inverses to avoid computation during query processing. Al-
though both approaches have been well studied, the speed-
up achieved by iterative approaches does not translate to
real-time query processing, and the storage requirements of
inversion-based approaches prohibit their use on very large
graph databases.

We present a novel approach to significantly reducing the
computational cost of random walk based node proximity
queries with scalable indexing. Our approach combines do-
main graph-partitioning based indexing with fast iterative
computations during query processing using Chebyshev poly-
nomials over the complex elliptic plane. This approach com-
bines the query processing benefits of inversion techniques
with the memory and storage benefits of iterative approache.
Using real-world networks with billions of nodes and edges,
and top-k proximity queries as the benchmark problem, we
show that our algorithm, I-Chopper, significantly outper-
forms existing methods. Specifically, it drastically reduces
convergence time of the iterative procedure, while also re-
ducing storage requirements for indexing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 8
Copyright 2018 VLDB Endowment 2150-8097/18/4.
DOI: https://doi.org/10.14778/3204028.3204029.

PVLDB Reference Format:
Mustafa Coşkun, Ananth Grama, Mehmet Koyutürk. Indexed
Fast Network Proximity Querying. PVLDB, 11 (8): 840-852,
2018.
DOI: https://doi.org/10.14778/3204028.3204029.

1. INTRODUCTION
Computation of proximity measures for nodes in networks

is a common operation in diverse data analytic applications.
In link prediction or recommender systems, network prox-
imity quantifies node similarity in heterogeneous networks
[20, 34]. In information retrieval, nodes are ranked based
on their random walk proximity to other nodes [35, 43]. In
computational biology, genes are ranked according to their
network proximity to known disease implicated genes [28].

The general setup for network proximity queries is as fol-
lows: Given a query node, we are interested in computing
a score for all other nodes in the network, based on their
proximity to the query node with respect to some notion of
network distance. Common measures of network distance
include shortest path, which computes the minimum num-
ber of edges between two nodes, and random-walk-based
proximity, which simulates random walks starting from the
query node to compute stationary probabilities for the ran-
dom walker to end at each other node. In top-k proximity
queries, we are interested in returning the k nodes that are
closest to the query node. In many applications, random
walk based proximities are preferable to shortest path dis-
tance, since they capture the global structure of a network
and multi-faceted relationships of the nodes [19, 36]. Ran-
dom walk based proximity measures have been used in a
number of applications, including web search [30], cluster-
ing [2], and link prediction [11,25]. Some of the well known
random walk based proximity measures include SimRank
[15], network propagation [38], diffusion state distance [8],
and random walk with restarts (RWR) [37].

Owing to its widespread use, significant efforts have been
devoted to reducing computational costs associated random
walk proximity. These efforts typically speed-up computa-
tions by implementing one of the following approaches: (i)
exploiting numerical properties of iterative methods, along
with structural characteristics of the underlying networks to
speed up query processing; (ii) avoiding iterative computa-
tions during query processing by inverting the underlying
system of equations using QR/LU decompositions and stor-

840

ing the resulting decompositions as an index. For instance,
in the context of top-k proximity queries, many state-of-the-
art methods [10, 14, 39, 41] use breadth-first ordering of the
nodes in the network to bound element-wise increments of
proximity scores in the iterative computation. This bound-
ing process eliminates nodes whose proximity values cannot
exceed those of the nodes that are already among the top-k
most proximate to the query node. Likewise, using a QR
or LU decomposition of the underlying linear system, top-k
proximity computations can be computed efficiently [4, 14].
These techniques have been demonstrated to yield signif-
icant improvement in runtime, however, their application
to larger networks (tens of millions of nodes and billions
of edges) is limited. Specifically, for very large networks,
iterative methods [10,14,39,41] require a large number of it-
erations to converge. Among these, Chopper offers tightest
convergence upper bound and best performance, compared
to other methods. However, its applicability is limited to
undirected graphs. On the other hand, direct inversion tech-
niques [4,14] are not scalable to large matrices, since the in-
verse of a sparse matrix is usually dense, thus posing strong
memory (for the computation of the index) and storage (for
the storage of the index) constraints.

In this paper, we propose a hybrid approach that parti-
tions the network into disjoint sub-networks and inverts the
matrices corresponding to these subnetworks. The denser
matrix, composed of the nodes connecting these subnet-
works is handled through a suitably accelerated iterative
procedure. By inverting small sparse matrices, the hybrid
procedure overcomes the memory constraint of direct inver-
sion techniques. By performing the iterative procedure on
a smaller matrix and suitably accelerating this procedure,
it overcomes the computational cost considerations of iter-
ative methods. We first use graph partitioning [22] to par-
tition the matrix into a sparse block-diagonal matrix and a
dense, but much smaller matrix. We then index the inverse
of the sparse block diagonal matrix through a computation-
ally efficient procedure. We then use Chebyshev polyno-
mials, along with an incomplete LU decomposition based
preconditioner [5], to speed up the iterative process for the
dense matrix. At query time, we first solve the dense part
of the system using the proposed iterative solver, and use
the stored index (of the block diagonal matrix) to solve the
rest of the system.

We describe these processes in detail, and show that the
resulting the hybrid approach converges much faster than
power method based formulations and is much more scal-
able than direct inversion methods. Our hybrid approach
significantly accelerates the computation of random walk
based top-k proximity queries for very large graphs. We
provide a detailed theoretical analysis for our results and ex-
perimentally show the superior performance of our method
on a number of real-world networks. Specifically, we show
that: (i) our method yields significant improvement in stor-
age requirements for the index, about 50-fold for the tested
networks, over a state-of-the-art method, which can only
be applied to the smallest network in our experiments; and
(ii)our method yields over 25-fold improvement in the run-
time of online query processing over one of the very few
state-of-the-art methods that can scale to graphs with tens
of millions of nodes and billions of edges.

In summary, the two main contributions of the proposed
framework are the following:

• We introduce a hybrid approach to indexing-based ac-
celeration of network proximity queries, in which the
network is divided into two components, where the
larger and sparser part of the resulting system is solved
by indexing the inverse of the corresponding matrix,
and the smaller and denser part of the system is solved
during query processing using Chebyshev acceleration.

• We generalize the application of Chebyshev acceler-
ation to directed graphs, enabling fast processing of
proximity queries in a broader range of networks. The
application of Chebyshev acceleration to directed graphs
is not straightforward since the matrix underlying the
linear system that is associated with a directed graph
may have complex eigenvalues.

Taken together, these two contributions bring the field
closer to real-time processing of proximity queries on very
large networks.

The rest of the paper is organized as follows: in the next
section, we provide a review of the literature on efficient
processing of network proximity queries. In Section 3, we
define random walk proximity and top-k proximity queries,
and describe our method, along with its analysis. In Sec-
tion 4, we provide detailed experimental assessments of our
method on very large networks. We conclude our discussion
and summarize avenues for future research in Section 5.

2. RELATED WORK
Node proximity queries have received significant research

attention in recent years in the context of searching, rank-
ing, and analyzing network structured object (node) simi-
larity [14]. In particular, top-k proximity queries in graph
databases have been well studied, since the original PageR-
ank results [30]. One of the commonly used approaches
to computing random walk based proximity is the power
method [32]. An alternate approach to power iterations is
the use of offline computation, which directly inverts the un-
derlying linear system of equations, typically using LU de-
composition or eigen-decomposition [14,37,40]. These meth-
ods can compute network proximity rapidly, using a sin-
gle matrix vector multiplication, however, they involve ex-
pensive preprocessing, and their memory requirements con-
strain their use to smaller networks. Another LU based ap-
proach proposed by Shin et al. [33] by applies Schur Lemma
to build an index for RWR-based proximity queries. Namely,
they partition the matrix so that low degree nodes’ ma-
trix is block-diagonal (thus easily invertible) and use LU-
decomposition to reduce the space requirement for storing
Schur Matrix. However, Shin et al.’s method is aimed at
using an exact solution to the linear system for indexing.
Therefore, this method is limited by the space requirement
of the inverse of Schur Matrix. In contrast, we here pro-
pose to compute an approximate solution to linear system
of equations by approximating the inverse of Schur Matrix
using incomplete LU factorization, and use preconditioned
and accelerated iterations to compute the exact solution at
query time. In doing so, we significantly improve on both
memory and storage requirements for indexing.

There have also been several efforts aimed at scaling top-k
proximity queries to large sparse networks. These methods
take advantage of the numerical/ structural properties of the
network to bound the proximity of nodes in the iterative
computation, and to retrieve top-k most proximate nodes

841

with respect to a given query node [10, 17, 39, 41]. Other
methods utilize the topology of the network to perform a
local search around the query object, based on the premise
that nodes with high random-walk based proximity to the
query node are also close to the query node in terms of the
number of hops [3, 6, 27, 42]. However, these local search
based methods are approximate, in the sense that they do
not guarantee the precise set of k nodes that are most prox-
imate to the query node. Recently, two efficient methods,
FLoS [39] and Chopper [10] have been proposed for exact
computation of top-k proximity queries efficiently. However,
these methods are only applicable to undirected graphs.

In this paper, we focus on exact computation of network
proximity in very large networks using a novel, hybrid ap-
proach. Our method is fundamentally different from exist-
ing approaches in that it simultaneously targets scalability
and efficiency, in terms of memory requirements of prepro-
cessing, storage requirements of indexing, and the compu-
tational cost of query processing. Our method can be used
for efficiently computing random walk based proximity of
all nodes in a directed/undirected network, or to speed up
processing of top-k proximity queries.

3. METHODS
In this section, we first introduce random walk with restarts

(RWR) and the top-k network proximity querying problem
based on RWR. We then describe our graph-partitioning
based approach to partitioning the resulting linear system
and indexing the sparser part of the system. Subsequently,
we discuss how the iterative computation can be acceler-
ated using Chebyshev polynomials to refine the solution,
and solve the remaining part of the linear system. Finally,
we discuss how these two approaches can be used in combi-
nation to efficiently process top-k network proximity queries.
The workflow of the proposed framework is shown in Fig-
ure 1.

3.1 RWR-Based Proximity
Let G = (V, E) be a directed or undirected network,

where V denotes the set of nodes and E denotes the set
of edges. Given a node q ∈ V, random walk with restarts
based proximity to q is defined as follows:

xq = (1− α)Pxq + αsq. (1)

Here, P denotes the column-normalized stochastic ma-
trix derived from the adjacency matrix A of G by dividing
each entry by the corresponding column sum, sq denotes
the restart vector that contains a 1 at its qth entry and a
0 in all other entries (or we can apply queries that involve
proximity to a set of nodes by assigning probabilities to each
query node; this procedure is called personalized pagerank),
and 0 < α < 1 is the teleport probability, or damping fac-
tor that is used to adjust the localization of search (a larger
α results in a search that is more concentrated around the
neighborhood of the query node). Defined this way, xq(u)
represents the probability of being at node u at a random
step of a sufficiently long random walk that starts at q and
either moves to an adjacent node (with probability 1 − α)
or restarts at node q (with probability α) at each step.

In practice, xq is computed iteratively, by setting xq
(0) =

sq and computing:

xq
(t+1) = (1− α)Pxq

(t) + αsq (2)

in the tth iteration. This iterative procedure terminates
when ||xq(t+1) − xq

(t)||2 is below a prescribed threshold,
implying convergence. Since this power iteration method
uses repeated sparse matrix-vector multiplications with vir-
tually no extra storage, it is appealing for scalability. How-
ever, for large graphs and relatively small restart probabil-
ity, α, the number of iterations can be large, rendering the
computation expensive. This is particularly problematic for
real-time processing of proximity queries in very large graph
databases.

An alternate approach to computing RWR-based proxim-
ity is to rewrite Equation (1) as a linear system of equations:

Mxq = b, (3)

where M = (I − (1 − α)P),b = αsq, and I is the iden-
tity matrix. Since M does not depend on the query, it can
be inverted offline, and the inverse can be used as an in-
dex to compute xq = M−1b by performing a single matrix
vector multiplication during online query processing. Note
that this solution applies to all linear systems derived from
random walk computations, since 0 < α < 1, and therefore
the coefficient matrix is diagonally dominant and invertible.
In practice, however, inverting M and storing M−1 is not
feasible for very large graphs, since the inverse of a general
sparse matrix is dense.

3.2 Top-k Proximity Queries
Given a network G = (V, E), a query node q ∈ V, and

a positive number k, the top-k proximity query for RWR-
based proximity aims to identify k nodes in V that have
the largest values in xq [16]. The state-of-the-art in effi-
cient computation of top-k proximity queries is based on
two approaches. The first approach uses the error bound
in the iterative computation of xq to eliminate nodes whose
proximity values cannot exceed the proximity values of the
nodes that are already in the top-k [10, 16, 39, 41]. This
elimination process continues until all but the top-k nodes
are eliminated. Among these methods, Chopper , which is
based on Chebyshev Polynomials, offers the tightest error
bound [10]. Chopper yields asymptotically faster conver-
gence in theory, and significantly reduces convergence times
in practice.

The second approach to efficient processing of top-k prox-
imity queries is to use index based preprocessing [14] by
performing LU decomposition of the linear system (3). As
discussed before, this approach improves efficiency by re-
quiring a single matrix vector multiplication during query
processing. However, this approach is only applicable to
smaller graphs due to scalability issues (both memory and
computation) associated with the inversion of the complete
LU decomposition.

In this paper, we propose a hybrid method that effectively
combines the two approaches, to take advantage of indexing,
as well as accelerated convergence. Our method efficiently
approximates the inverse of the matrix, and uses this ap-
proximation to build an index with significantly less space
requirement than that of the actual inverse. At query time,
we use this index to compute part of the linear system in
Equation (3). We then use a Chebyshev polynomial based
method to further accelerate the iterative computation, to
enable processing of top-k proximity queries on large graphs
within a few iterations, for the remaining part of the lin-

842

Graph
Arnoldi

Decomposition
LU

L1, U1

Offline Preprocessing Online Querying

Network

derived from G = (V,E)

P : Stochastic matrix

.

M1
.

M21

M12

M22
reorder

Mp

0

0

M11

x1

x2

S

ILU(S)
(incomplete)

M21

L1
−1 U1

−1

M12

x1Index for

U,L

I-Chopper

Query node

x2

λmin, λmax

Merging

x1

q ∈ V

(p-partitions) reorder

M

Database

Indexing

M = (I − (1− α)P)
I : Identity matrix
α : Damping factor

Index for x2

Partitioning

Figure 1: Flowchart illustrating the proposed framework for indexed processing of proximity queries on large
networks. For a given directed network in the database, the proposed index is constructed as follows: We first construct M
and use PartGraphRecursive graph partitioning method in Metis to partition M in such a way that M11 is a sparse block
diagonal matrix, and M22 is dense but smaller. After partitioning the linear system, we compute the LU decomposition of
sparse block-diagonal matrix M11 and obtain L1

−1 and U1
−1. Then, we construct S = M22 −M21M

−1
11M12, and compute

its incomplete LU decomposition as [L,U] = ILU(S). Subsequently, we use Arnoldi’s method to find the maximum and
minimum eigenvalues of S, and store the resulting values and matrices in an index. Next, we use the indexed matrices and
extreme eigenvalues of S to compute x2, the lower part of solution of the linear system, using a preconditioned Chebyshev
acceleration. Finally, using x2 and the indexed matrices, we compute x1, the upper part of solution of the linear system. We
then merge the entries in x1 and x2, and return the nodes that correspond to the top-k entries in the resulting merged vector.

ear system (3). The flowchart of the proposed framework is
shown in Figure 1.

3.3 Graph Partitioning Based Indexing
Inverting M involves significant computation (depending

on the structure/ sparsity of the graph – cubic in the number
of nodes in the worst case) and memory that is quadratic
in number of nodes. Our key observation to addressing this
problem is that effective use of indexing does not require
computation of an exact solution to (3). Rather, if we can
solve a large part of the linear system in Equation (3) by
exploiting the sparsity of the network, we can use a fast it-
erative method to solve the remaining (and smaller) part
of the system quickly. In other words, we can use a ap-
proximate solution to the linear system for indexing, and
we can use a fast iterative solver during query processing to
compute the exact solution. The following lemma lays the
foundation for our method:

Lemma 1. Suppose a linear system Mxq = b can be par-

titioned as

[
M11 M12

M21 M22

] [
xq1

xq2

]
=

[
b1
b2

]
, such that M11 is

invertable. Then, letting S = M22 −M21M
−1

11M12 denote
the Schur complement of M11, the linear system can be solved
as:

xq =

[
xq1

xq2

]
=

[
M11

−1(b1 −M12xq2)
S−1(b2 −M21M11

−1b1)

]
.

The proof of this lemma is provided by Boyd et al. [7].
This lemma applies to the solution of linear systems derived
from random walk computations, since M is diagonally dom-
inant and invertible as discussed above.

Observe that, by the above lemma, the solution to a lin-
ear system involves inversion of M11 and S. Now if M11

is large and block-diagonal with a small bandwidth, then
it can be inverted easily and its inverse can be efficiently
stored since it will also be sparse. In this case, the matrix
S will be relatively small compared to the matrix M, and
the part of the system that involves inversion of S can be

solved iteratively during query processing. This approach is
well-suited to the processing of network proximity queries
on very large graphs, since the networks are usually very
sparse and contain many low-degree nodes. For this rea-
son, it is possible to partition these networks to obtain a
large and block-diagonal M11 (representing the loosely con-
nected nodes) and a dense but relatively small S (represent-
ing the hubs in the network). To obtain a block-diagonal
M11, we use graph partitioning, which is commonly used
in solving linear systems that arise from partial differential
equations [32].

Graph partitioning involves partitioning the vertices of a
given graph into two or more partitions, to optimize an ob-
jective function that can be equal to the number of edges or
vertices cut by the partition, or a function of these. Here,
an edge is said to be cut by the partition if its two incident
vertices are assigned to different parts, whereas a vertex
is said to be cut by the partition (or belongs to the ver-
tex separator) if it is adjacent to vertices in more than one
part. For example, in the paralellization of numerical meth-
ods that solve linear systems, the number of edges on the
cut represents the amount of communication between pro-
cesses, hence minimizing the number of edges in the cut is
desired [32]. On the other hand, in the context of our prob-
lem, a multi-way minimum-vertex-separator partitioning of
the network is desirable, since we are interested in minizing
the number of vertices (i.e., rows/columns of M) that are
on the cut, since the vertices on the cut correspond to the
rows and columns of M that are assigned to the denser part
of the matrix.

To explain the formulation of the reordering of M as a
graph partitioning problem, we first note that the matrices
M, P, and A have identical non-zero structures (except for
diagonal entries), which can be represented as a graph by
G itself. Therefore, a multi-way minimum-vertex-separator
partitioning of G will result in a large number of small parts
with most edges within the parts. Consequently, the matrix
M can be reordered to obtain a linear system in the form

843

given in Lemma 1 [9,21,22] as follows: (1) Small parts with
nodes heavily connected to each other with no edges be-
tween the parts, forming the diagonal blocks of M11; (2)Lo-
cal interfaces between these parts, i.e., the edges between the
vertices assigned to the parts and the vertices in the vertex
separator, that is M12 and M21; (3) The edges between the
nodes in the vertex separator, i.e., M22 [24]. In this formu-
lation, there is clearly a trade-off between the bandwidth
of the matrix M11 and the number of nodes in the vertex
separator (i.e., the size of matrix M22) [32]. The Part-
GraphRecursive package implemented in the MeTiS graph
partitioning tool [21] allows the user to put a constraint on
the size the vertex separator (as opposed to minimizing it),
thereby enabling the user to directly balance this trade-off.
This is desirable for our application since graph partitioning
is performed offline in our framework, thus this parameter
can be tuned for each network during preprocessing and in-
dexing. For this reason, we use the PartGraphRecursive
package in our implementation and provide a detailed anal-
ysis on the effect of this parameter on preprocessing time,
index size, and query processing time in the Experimental
Results.

In summary, the idea is to partition G in such a way
that all subnetworks (corresponding to disjoint graph par-
titions) of M can be ordered as a block diagonal matrix
to render M11

−1 to be sparse. Once M11 is computed, we
compute M11

−1, which is also sparse and can be stored as
an index. Note that inversion of M11 is feasible even for
billion-scale graphs since it is block diagonal with a small
bandwidth and many efficient algorithms exist for inverting
banded matrices. In our implementation, we use the Incom-
plete LU decomposition along with approximate minimum
algorithms [1, 12]. At query time, if we can compute an
exact solution to xq2, we can compute an exact solution to
xq1 = M11

−1(b1 −M12xq2) by performing a single matrix
vector multiplication.

In the next section, we discuss how to efficiently solve
the system Sxq2 = (b2 − M21M11

−1b1) using Chebyshev
polynomials. In order to use these polynomials, we need
to know the maximum and minimum eigenvalues of matrix
S. We compute these eigenvalues using the Arnoldi method
[13] in the “offline” preprocessing phase. We explain how
and why we compute the extreme eigenvalues of S in the
following section.

3.4 Query Processing
In the query phase, for a given query node, q, we first

construct sq, which denotes the restart vector and contains
a 1 at its qth entry and a 0 in all other entries. Next, we
reorder the entries of sq and divide sq into two parts, sq =[
sq1

sq2

]
, using the node ordering and graph partitioning based

indexing described in the previous section. Finally, we set
b1 = αsq1 and b2 = αsq2, where α is restart probability.
Then, we use the b2 solve for xq2 using the matrices stored
in the index, and an accelerated iterative procedure using
Chebyshev polynomials and incomplete LU-decomposition
based preconditioning. Once xq2 is computed, we compute
xq1 directly using the matrices stored in the index.

To solve for xq2, we rewrite Sxq2 = (b2 −M21M11
−1b1)

as:

Sxq2 = f (4)

Algorithm 1: The Preprocessing Phase

Method: PreProcess(G, α,t)
Input : G, α,t
Output : U1

−1, L1
−1, U, L, d, c,and σmin

1 Construct P by column normalizing G
2 Construct M← (I− (1− α)P)
3 Use minimum-vertex-seperator graph partitioning on

M to partition it into M11,M21,M12,M22 [21, 22]
4 Decompose M11 into L1 and U1 using LU

decomposition and invert L1 and U1

5 Construct and decompose S into L and U using
incomplete LU decomposition [13].

6 Create l(0) as normalized random vector

7 Compute [λmin, λmax] = Arnoldi(Sl(0), t, l(0))

8 Compute [σmin, σmax] = Lanczos(STSl(0), t, l(0)) [13]

9 Set c =
λmax + λmin

2
and d =

λmax − λmin
2

10 end Set µ =

(
a+
√
a2 − d2

c+
√
c2 − d2

)
and ζ ← 1

c

where f = (b2 −M21M11
−1b1).

Here, f can be computed efficiently, since we precompute
and index M21 and M11

−1 in the indexing phase. However,
since S is relatively dense, solving (4) potentially takes a
large number of iterations using standard iterative methods
[32]. For this reason, we solve (4) by accelerating an iterative
procedure using Chebyshev polynomials. To simplify the
notation, we drop the subscripts term (q) in the following
sections.

3.4.1 Accelerating Iterative Procedures
The idea behind Chebyshev acceleration is as follows: To

solve Sx2 = f , in the general power method, we start

with an initial guess x
(0)
2 and define the first residual as

r
(0)
2 = f − Sx

(0)
2 . This residual is used to construct x

(1)
2 =

x
(0)
2 + r

(0)
2 . For the tth iteration of this procedure, the tth

iterate is defined as x
(t)
2 = x

(t−1)
2 + r

(t−1)
2 . Notice that

all the precomputed residuals r
(0)
2 , ..., r

(t−2)
2 are discarded

in this procedure. In Chebyshev acceleration, instead, we
keep all the residuals computed till the tth iteration to com-
pute a better approximation to x2, a linear combination of
the residuals from previous iterations. For this purpose, for

a given series γt(m) for 0 ≤ m ≤ t− 1, we define vector y
(t)
2

as follows:

y
(t)
2 = y

(t−1)
2 +

t−1∑
m=0

γt(m)r
(m)
2 (5)

Our objective is to find a sequence γt such that the sequence

y
(t)
2 converges to x2 faster than x

(t)
2 . Note that, as we ex-

plain later in this section, we do not need to store all above

vectors to compute y
(t)
2 . We only need to consider three

vectors by exploiting the three-term recurrence of Cheby-

shev polynomial for computing y
(t)
2 . Observe that, if we use

y
(t)
2 to approximate x2, the error in the tth iteration can be

defined as:

e(t) = y
(t)
2 − x2. (6)

Thus, for each t, the chosen γt should minimize ||e(t)||2,

844

subject to the constraint:
∑t
m=0 γt(m) = 1. This constraint

ensures that y
(t)
2 converges to x2.

Lemma 2. The error at tth step is given by e(t) = pt(S)e(0),
where pt is a monic polynomial with pt(0) = 1.

Proof. By induction. Omitted.

This lemma suggests that we need to find a sequence of
polynomials pt such that ‖e(t)‖ ≤ ‖pt(S)‖‖e(0)‖ is as small
as possible. From Jordan form for any diagonally domi-
nant matrix S and polynomial pt, we can write Λ(pt(S)) =
pt(Λ(S)), where Λ(.) denotes the set of eigenvalues of the
matrix [31]. This suggests that we must choose a polyno-
mial pt that has smallest degree in the spectrum of S with
pt(0) = 1. This last observation implies that we need to
compute the spectrum of S to choose the smallest degree
polynomial in it (this can be thought of as solving a min-
max problem over the spectrum of given a matrix). Com-
puting all eigenvalues of S would defeat our purpose, since
this computation is more expensive than solving (4). In-
stead of computing the spectrum of S, the commonly used
strategy is to relax the min-max problem by considering the
extreme eigenvalues of S [13]. For this reason, we compute
the maximum and minimum eigenvalues of S matrix using
the Arnoldi method [13] in the indexing phase.

3.4.2 Chebyshev Polynomials
Based on a similar idea and knowledge of real eigenvalue

bound of the stochastic matrix of an undirected graph, Chop-
per [10] accelerates RWR-based proximity queries by solv-
ing the relaxed min-max problem:

min
pt∈Pt,pt(λ)=1

F (pt) (7)

where Pt denotes the family of all polynomials of order t and

F (pt) = max
λ∈[−1+α,1−α]

|pt(λ)|. (8)

Chopper [10] uses the eigenvalue bounds,
[−1 + α, 1− α] ⊆ R, of the stochastic matrix of an undi-
rected graph and the well known Chebyshev polynomial of
first kind, given by the following recurrence:
T0(z) = 1, T1(z) = z, Tt+1(z) = 2zTt(z) − Tt−1(z)to solve
min-max problem (8).

Notice, however, that in equation (8), eigenvalue bounds,
[−1 + α, 1− α] are real. This holds for only undirected
graphs. For directed graphs, we have a real valued gen-
eral matrix S, which may have complex eigenvalues. Hence,
we must define the eigenvalue bound in the complex elliptic
plane as illustrated in Figure 2, and replace the eigenvalue
bounds [−1 + α, 1− α] ⊆ R with an ellipse. That is, we
need to find an ellipse that encloses the spectrum of S.

To further elaborate, let E(c, d, a) denote the family of all
ellipses that are centered at c with foci d+ c and d− c with
semi-major axes a in a contiguous complex plane. We are
looking for an ellipse that encapsulates the spectral radius
of S to solve the min-max problem in complex plane, as in
[10]. Finding such an ellipse requires determination of values
of d and c first. Before we define these parameters, observe
that S is a real valued matrix, regardless of whether the un-
derlying graph is directed or undirected. This implies that S
has either real symmetric or conjugate complex eigenvalues,
i.e., if 5i is an eigenvalue of S, so is −5i. Therefore, we can
fix the center of the ellipse onto the real line. This suggests

cosh(R)

0

b

cosh(b)

cosh(a)

si
n
h

(b
)

si
n
h

(a
) 0−1 1

C − Plane

x = a cosh−1(C)

R− Plane

Figure 2: Illustration of Joukowski mapping to ob-
tain Chebyshev polynomial over complex plane. The
Chebyshev polynomial in complex plane is give by Tt(z) =
cosh(tcosh−1(z)). The line segments x = a and x = b are
mapped onto an ellipse by cosh map. Here, the ellipse has
semi-major axes |cosh(x)|, semi-minor axes |sinh(x)| at foci
−1 and 1. This mapping is also called Joukowski transfor-
mation, and can be used to define Chebyshev polynomials
in a complex plane.

that major axes of the ellipse must be real axes or parallel to
imaginary axes as shown in Figure 3. (Note that there are
cases in which S could have eigenvalues as xi+y and xi−y,
which causes major axes to be parallel to imaginary axes,
we omit these possibilities in Figure 3 to avoid confusion. In
such cases, all procedures presented here still apply, due to
real arithmetic operations [26]).

The best ellipse enclosing the spectrum of S is obtained by

the parameters c =
λmax + λmin

2
and d =

λmax − λmin
2

[31],

where λmin and λmax are extreme eigenvalues of S. More-
over, the scaled and shifted asymptotically optimal Cheby-
shev polynomial that solves the min-max problem over the
ellipse, is defined as follows [26]:

T̂t(z) =
Tt(

c− z
d

)

Tt(
c− ξ
d

)
(9)

Here, ξ is any value that lies outside of the ellipse. In our
case, for some small ε > 0, we can safely take ξ = 2− α+ ε
or 0 since P is column normalized and 0 < α < ‖(I − (1 −
α)P)‖ < 2−α+ε. This holds for S matrix because its norm
is always larger than 0. Since we know that the maximum is
attained over the end point of an ellipse, then, for z = c+a,
from Saad et al. [31], we have

max
z∈E(c,d,a)

T̂t(z) =
Tt(

a

d
)

|Tt(
c− ξ
d

)|
. (10)

In the light of the above discussions, we can state the
following theorem to describe the use of Chebyshev polyno-
mials for solving a linear system involving S general matrix
over the elliptic plane.

Theorem 1. Let λmin and λmax be the extreme eigenval-
ues of real-valued matrix S and E(c, d, a) be an ellipse ob-

tained by mapping c =
λmax + λmin

2
and d =

λmax − λmin
2

with cosh as shown above. Let ξ be 0 outside the ellipse.

845

Im

c c+ dc− d

c+ a

Re

Figure 3: Illustration of the ellipse that encloses the
eigenvalues of S perfectly in the complex plane. This
ellipse is obtained by mapping changed and shifted param-
eters, c and d, through the Joukowski transformation.

Algorithm 2: The Arnoldi Algorithm

Method: Arnoldi(S, t, l(0))

Input : S, t, and l(0)

Output : Qt+1 and Ht+1,t

1 q1 ←
l(0)

‖l(0)‖2
, j ← 1

2 while t > j do
3 z ← Sqj
4 for i = 1 to j do
5 hi,j ← qi

T z
6 z ← z − hi,jqi
7 end
8 hj+1,j ← ‖z‖2
9 if (hj+1,j == 0) then

10 break
11 end

12 qj+1 ←
z

hj+1,j

13 j ← j + 1

14 end

Then,

argmin
pt∈Pt,pt(0)=1

max
z∈E(c,d,a)

pt(Λ(S)) ≤
Tt(

a

d
)

|Tt(
c

d
)|

Proof. Detailed proof can be found in Gander et al. [18]

Notice that in order to define the perfect ellipse and Cheby-
shev polynomial over it, we must know the extreme eigen-
values of S, λmin, and λmax. In the following section, we ex-
plain how these eigenvalues can be efficiently computed us-
ing the well-known Arnoldi method [13]. Note that this com-
putation is performed during preprocessing, and the eigen-
values are indexed in the database.

3.4.3 Finding Extreme Eigenvalues Using the Arnoldi
Method

The Arnoldi method (Algorithm 2 [13]) approximates eigen-
pairs (eigenvalue and its corresponding eigenvector) from
the reduced Hessenberg form by enforcing Petrov-Galerkin
condition in which the eigenvectors must be in the Krylov
space. Formally, the algorithm takes the matrix vector prod-
uct for S, initial normalized random vector l(0), and Krylov

Algorithm 3: The I-Chopper Algorithm

Input : S,U1
−1, L1

−1, U, L,M21,M12, c, d, σmin, σmax,
q, k, α, and sq, ε

Output: a set R ⊆ V that contains the top-k most
proximate nodes to q

1 Partition vector q into b1 and b2
2 Set f ← (b2 −M21(U1

−1(L1
−1b1)))

3 R← nodes in S, t← 1,y
(0)
2 ,∆y

(0)
2 ← 0

4 r
(0)
2 ← f − Sy

(0)
2

5 while ||r(t)
2 ||2 ≤ ε do

6 z ← U\L\r(t)
2

7 β ← (
dζ

2
)
2

, ζ ← 1

c− β

ζ

,y
(t)
2 ← y

(t−1)
2 + ζ∆y

(t−1)
2

8 r
(t)
q ← f − Sy

(t)
2 , ∆y

(t)
2 = z + β∆y

(t−1)
2

9 if
σmax
σmin

µt < ε then

10 break;
11 end

12 end

13 Compute x1 ← U1
−1(L1

−1(b1 −M12y2)) and merge x1

and y2 as xq;
14 Sort and retrieve top-k from xq;

subspace dimension, t, and produces an n×(t+1) orthonor-
mal column matrix Qt+1 and (t+1)×t upper Hessenberg ma-

trix Ht,t such that Qt
TSQt = Ht,t holds. Here the columns

of Qt form an orthonormal basis for Krylov subspace:

Kt(S, l(0)) = span
{

l(0), ..., Stl(0)
}

(11)

The eigenvalues of Ht,t approximate the top eigenvalues of
S and corresponding top eigenvectors can be written as:

QtṼ ,

where Ht,t = Ṽ Λ̃Ṽ
T

.
The Arnoldi method uses the matrix vector product with-

out requiring computation of the S matrix [13]. This method
is particularly useful when it is used with a preconditioner,
since it does not require computation of matrix-matrix mul-
tiplications, and the entire computation can be carried out
using matrix-vector multiplications [13].

3.4.4 Implementation of Chebyshev Acceleration over
the Elliptic Plane

Having computed the extreme eigenvalues of S using the
Arnoldi method, we now present an efficient method for

computing y
(t)
2 = y

(t−1)
2 +

∑t−1
m=0 γt(m)r

(m)
2 . The defini-

tion of y
(t)
2 suggests that its computation requires storage of

t additional residual vectors in memory at the tth iteration,
throughout the power iteration. However, based on the ob-
servation that Chebyshev polynomials satisfy a three-term

recurrence, we can compute y
(t)
2 using only three vectors.

Let λ be an arbitrary eigenvalue of S inside or on the
boundary of the ellipse. Then, tth iteration, from Lemma
2 and definition of optimal Chebyshev polynomial, we have

T̂t(λ) =
Tt(

c− λ
d

)

Tt(
c

d
)

and e(t) = pt(S)e(0). Now, we have

846

∆y
(t)
2 = y

(t+1)
2 − y

(t)
2 = (T̂t(S)− T̂t+1(S))e(0) from last two

equations (note that λ and S can be used interchangeably,
since S is a diagonalizable matrix for α > 0).

Finally, for t > 0, we can use the above equation, three-

term recurrence of the Chebyshev polynomial, r
(t)
2 = Se(t),

and basic algebraic manipulations to obtain [32]:

∆y
(t)
2 =

2

d

 Tt(
c

d
)

Tt+1(
c

d
)

ST̂t(S)e(0)

+

Tt−1(
c

d
)

Tt+1(
c

d
)

 (T̂t−1(S)− T̂t(S))e(0)

=
2

d

 Tt(
c

d
)

Tt+1(
c

d
)

 r
(t)
2 +

Tt−1(
c

d
)

Tt+1(
c

d
)

∆y
(t−1)
2 .

(12)

In other words, we can compute y
(t+1)
2 by storing only

y
(t)
2 ,∆y

(t)
2 , and r

(t)
2 .

Based on the above derivations and the definition of Cheby-
shev polynomial over the complex elliptic plane, we can con-
struct I-Chopper as shown in Algorithm 3, and use the
following theorem to characterize the rate of convergence:

Theorem 2. Let σmin and σmax be minimum and max-
imum singular values of S. Then, in the t − th step, of
I-Chopper we have∥∥∥ f − Sy(t)

2

∥∥∥
2

‖f‖2
≤ σmax
σmin

(
a+
√
a2 − d2

c+
√
c2 − d2

)t
.

Proof. Let ZΛZ−1 be Jordan form of S, where Λ con-
tains the eigenvalues of S in its diagonal, and columns of Z
contain the corresponding eigenvectors. Then, from Lemma 2,
we have

min
x2∈Kt(S,f)

‖ f − Sy2‖ = min
pt∈Pt,pt(0)=1

∥∥ Zpt(Λ)Z−1f
∥∥

2

≤ min
pt(0)=1

max
Λ∈E(c,d,a)

∥∥ ZZ−1
∥∥ ‖ pt(Λ)‖ ‖f‖

≤ ‖ Z‖
∥∥ Z−1

∥∥ Tt(
a

d
)

|Tt(
c

d
)|
‖f‖

Now, from the definition of condition number, we know

that ‖ Z‖
∥∥ Z−1

∥∥
2

=
σmax
σmin

. From Gander et al. [18], and

the definition of shifted and scaled Chebyshev polynomial
for c > a > d we have:
Tt(

a

d
)

|Tt(
c

d
)|

=

(
a+
√
a2 − d2

c+
√
c2 − d2

)t
.

This completes the proof.

In practice, note that an incomplete LU preconditioner
is used at Line 6 of I-Chopper to elliminate the effect of
‖ Z‖2 for general S matrix, i.e., eigenvector deflation. In
this setting, the ILU preconditioner serves to minimize the
effect of eigenvectors being non-orthogonal.

3.4.5 Time Complexity Analysis
The runtime of the proposed indexing and querying tech-

niques can be highly variable, depending on the structural
properties of the network besides its size. Nevertheless, for
completeness, we provide worst-case runtime analyses for

these algorithms here. In the next section, we also report
results from comprehensive empirical studies, with a view
to characterizing the indexing and query processing times
of I-Chopper on a broad range of networks with variable
properties.

Theorem 3. Let |E| denote the number of non-zero en-
tries in M and p denote the user-defined parameter that
tunes the ratio of the number of nodes in the dense com-
ponent to the number of nodes in the network (the inputs to
PartGraphRecursive). Let b denote the number of blocks in
M11, n1 and n2 respectively denote number of rows of M11

and M22 (the outputs of PartGraphRecursive), |E12| and
|E21| denote the number of non-zero entriesin M12 and M21

(also outputs of textitPartGraphRecursive), and |ES | denote
the number of non-zero entries in S (constructed based on
the output of PartGraphRecursive). Then, the time required
for pre-processing and building the index in I-Chopper takes

O(p|E|log|E|+
b∑

k=1

n1k
3 + |E21|

b∑
k=1

n1k + (T1 + T2)|ES |

time, where T1 and T2 denote the number of iterations per-
formed by the Arnoldi and Lanczos Methods.

Proof. Partitioning M using the PartGraphRecursive graph
partitioning tool in Metis takesO(p|E|log|E|) time [22]. In-

verting the block diagonal matrices inM11 takesO(
∑b
k=1 n1k

3)
total time in the worst-case [13]. Constructing the matrix S

takes O(|E21|
∑b
k=1 n1k) time, since it involves multiplica-

tion of M21 with each of the blocks in M11. Once S is com-
puted, application of Arnoldi and Lanczos algorithms on S
respectively take O(T1|ES |) and O(T2|Es|) time [13].

Theorem 4. The worst-case runtime of processing a query
n I-Chopper is

O(

b∑
k=1

n1k
2 + |E12|+ |E21|+ T3|ES |)

where T3 denotes number of iterations performed by the Cheby-
shev acceleration.

Proof. Multiplying a vector with U1
−1 and L1

−1 takes
O(
∑p
k=1 n1k

2) for all block-diagonal matrices in the worst-
case. Matrix-vector products involving M12 and M21 re-
spestively takee O(|E12|) and O(|E21|) time. Finally, the
iterative phase of query processing takes O(T |Es|) [32].

Here, we remark that ILU serves the purpose of forc-
ing eigenvectors of S to be orthonormal, i.e sparsifying M22.
Moreover, Chebyshev polynomial over complex elliptic plane
determines the smallest possible T to span the Krylov space
for a Neumann Expansion Series formula of a matrix in-
verse [32]. As a result, the number of iterations performed
by I-Chopper during query processing is usually very low,
enabling I-Chopper to drastically outperform state-of-art
algorithms for top-k proximity querying.

3.5 Summary of the Methods
For a given network, we summarize the proposed methods

for indexing and query processing below. Visual illustration
of the methods is presented in Figure 1.

847

Table 1: Descriptive statistics of the network datasets used in the experiments and intermediary statistics of the data structures
obtained during preprocessing and indexing each network.

Network Email-EU Web-Stanford Web-Google Orkut Cit-Patent Live-Journal Twitter Friendster

Number of Nodes 266K 282K 876K 3M 3.8M 4.9M 41.7M 65.7M
Number of Edges 420K 2.4M 5.1M 117.2M 16.6M 69M 1.5B 2.6B

Average Node Degree 1.58 8.2 5.82 39.06 4.37 14.08 35.9 38.06
Fraction of Nodes with Degree ≤ 2 94% 24% 43% 21% 70% 41% 77% 68%
Average Degree of 10 Largest Hubs 4277 21342 5071 24904 705 13843 7453 4294

Number of Nodes in the Sparse Component (n1) 212K 226K 773K 1.8M 3.5M 2.9M 31.5M 49M
Number of Edges in Sparse Component 223K 912K 1.5M 26.7M 3.6M 18.7M 102M 217M
Number of Blocks in Sparse Component 208K 106K 512K 827K 2.79M 2.6M 16M 34M

Bandwidth(Largest Block Size) in Sparse Component 58 18643 7492 11390 1215 4723 14104 3461

Table 2: Runtimes of each operation in preprocessing and indexing each of the networks used in the experiments.

Network/Run time (sec) Graph Partitioning L1
−1&U1

−1 ILU(S) Arnoldi Lanczos

Email-EU 0.67 0.08 0.03 1.56 0.042
Web-Stanford 4.54 2.56 0.10 12.49 1.63
Web-Google 3.51 0.9 0.10 25.83 2.23
Cit-Patent 18.7 2.43 1.4 19.83 9.47

Orkut 97.2 6.46 7.43 38.34 18.21
Live-Journal 78.2 4.53 3.2 34.5 13.37

Twitter 5237.3 235.67 124.5 174.42 148.6
Friendster 4921.2 383.3 231.5 189.4 159.4

3.5.1 Indexing
We first construct M and use PartGraphRecursive in Metis

to partition M in such a way that M11 is a sparse block di-
agonal matrix, and M22 is dense but smaller [21, 22]. Next,
we reorder the entries of partitioned matrix M based on an
approximate minimum degree ordering (AMD) [1, 12]. Af-
ter reordering entries of M, we invert the LU decomposition
of sparse block-diagonal matrix M11 and obtain L1

−1 and
U1
−1. Then, we construct S = M22 −M21M

−1
11M12, and

perform incomplete LU decomposition as [L,U]=ILU(S). Sub-
sequently, we use Arnoldi’s method to find the maximum
and minimum eigenvalues of S, and store the resulting values
and matrices into an index to use them in query processing
phase of our algorithm, I-Chopper .

3.5.2 Online Querying
In the query phase, for a given query node, q. We first

construct restart vector sq and reorder the entries of sq using
the same ordering of M. Subsequently, we divide sq into

two parts, sq =

[
sq1

sq2

]
, based on the partition of M and

set b1 = αsq1 and b2 = αsq2. Next, we use the indexed
matrices and extreme eigenvalues of S to compute x2 in
equation (4), the lower part of solution of the linear system,
with ILU preconditioned Chebyshev acceleration. Here, the
ILU preconditioner serves to refine norms of eigenvectors of
S. Finally, using x2 and the indexed matrices, we compute
x1, the upper part of solution of the linear system. We
then merge the entries in x1 and x2 and return the nodes
that correspond to the top-k entries in the resulting merged
vector.

4. EXPERIMENTAL RESULTS
In this section, we systematically evaluate the runtime

performance and scalability of the proposed algorithm, I-
Chopper, in processing top-k proximity queries. As shown
in the previous section, I-Chopper is “exact” in the sense
that it is guaranteed to correctly identify the k nodes that
are most proximate to a given query node. For this rea-
son, we focus on computational cost (measured in terms of

Web-Stanford Partition Effect

10-4 10-1 0.5

p

0

5

10

15

20

25

30

35

40

45

50

P
ar

ti
ti

o
n

in
g

 T
im

e
(S

ec
)

10-4 10-1 0.5

p

0

50

100

150

200

250

300

350

400

450

500

S
to

ra
g

e
(M

B
)

10-4 10-1 0.5

p

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Q
u

er
y

T
im

e
(S

ec
)

Figure 4: The effect of the partition ratio in graph
partitioning on the trade-off between indexing and
query processing. For values of the parameter p (the ratio
of the number of nodes in the dense component to the num-
ber of nodes in the network) in graph partitioning ranging
from 10−4 to 0.5, the left, middle, and right panels respec-
tively show the pre-processing time, index size, and query
processing time for the Web-Stanford dataset.

number of iterations and runtime) in our experiments and
compare I-Chopper against other exact algorithms.

We start our discussion by describing the datasets and the
experimental setup. We then assess the performance of the
indexing phase, where we compute the index that is used in
the query processing phase. Subsequently, we compare the
performance of I-Chopper in processing top-k proximity
queries with two state-of-the-art algorithms, K-Dash and
Castanet [14, 15]. For two undirected networks ,namely,
Orkut and Friendster networks, we compare I-Chopper
against Chopper [10] to assess the contribution of indexing.

4.1 Datasets and Experimental Setup
We use eight real-world network datasets from the Stan-

ford Network Analysis Project [23]. Descriptive statistics of

848

101

102

103

104

105

In
d

ex
 S

iz
e(

M
B

)

Email Google
Stanford Patents Orkut Journal Twitter

Friendster

K-Dash
I-Chopper
Castanet/Chopper

Figure 5: Comparison of index size (in megabytes) for
K-Dash, I-Chopper, and Castanet. The plot shows total
size of matrices required in the indexing phase for each algo-
rithm. For K-Dash , the magenta bar shows the total stor-
age needed for the inverse of LU of reordered M. K-Dash
cannot be applied to large datasets due to the computational
cost of the indexing phase. Cyan bars show the index size
for I-Chopper – total space needed to store L1

−1, U1
−1,

ILU(S), S, M21, and M12 across all datasets. Red bars
show the index sizes for Castanet and Chopper, which is
simply the size of matrix M for each dataset.

these eight networks are provided in Table 1. The Email-EU

dataset represents email data from a large European re-
search institution. Web-Stanford and Web-Google datasets
represent web graphs, where nodes represent web pages and
edges represent hyperlinks between them. These datasets
were released in 2002 by Stanford University and Google,
respectively. The Cit-Patent network is derived from the
U.S patent dataset in which nodes represent patents and
edges represent citations between patents from 1963 to 1999.
Orkut is a free online social network in which undirected
edges represent friendships between users. LiveJournal is
an online blogging community where directed edges rep-
resent friendships between users. Friendster is an online
gaming network with undirected edges representing friend-
ship among the users. Twitter is the directed network
of following relationships between users in Twitter. These
datasets are chosen as representative samples for network
sizes in terms of the number of nodes and of edges. Further-
more, the network proximity querying problem is meaningful
on these datasets.

For K-Dash and Castanet algorithms, we use the Mat-
lab implementation downloaded from [29]. We implement
I-Chopper in Matlab. We assess the performance of the
algorithms for a fixed damping factor (restart probability
α = 0.1) and varying values of k for top-k proximity queries.
In practice, using small α is recommended to fully utilize the
information provided by the network [10]. For this reason,
we fix α to a small value, 0.1 . For all experiments, we
randomly select 1000 query nodes and report the average
of the performance figures for these 1000 queries. In all ex-
periments, sq is set to the identity vector for node q. All
of the experiments are performed on an Intel(R) Xeon(R)
CPU E5-46200 2.20 GHz server with 500 GB memory.

4.2 Indexing
The time required to perform each of the five preprocess-

ing steps is shown in Table 2 for all eight datasets. In all
experiments reported here, we use the PartGraphRecursive
graph partitioning method in Metis [21, 22] to identify the
sub-networks.

In Figure 4, we report the effect of partitioning ratio,

namely, p =
n2

n
on the Web-Stanford dataset. As it is ex-

pected, when this ratio is small, the query time goes down
drastically, however, the storage requirement for the index
and pre-processing time go up. This is because big portion
of inverse of M, U1

−1 and L1
−1 are obtained in preprocess-

ing phase, thereby reducing query processing time at the
cost of increasing the bandwidth of the sparse component
(M11), hence increasing the number of non-zeros in the in-
verse of this sparse matrix. Since there is a drastic jump
in both preprocessing time and storage size around p = 0.2,
while query time is relatively stable for values of p smaller
than this value, we choose p = 0.2 to use in our experi-
ments to obtain a reasonable balance between storage size
and query processing time. We note here that the choice
of this parameter is highly dependent on the characteristics
of the network as well as the constraints of the application
(e.g. available storage space, the need for real-time query
processing etc.), but the analysis presented in Figure 4 can
provide a useful starting point on setting this parameter for
a given network.

Before we perform ILU or LU decomposition, we reorder
the entries of M11 and M22 based on approximate minimum
degree algorithms [1,12]. For ILU decomposition, we set the
fill-in ratio to 1. Finally, for Arnoldi and Lanczos algo-
rithms, we set maximum Krylov space’s dimensions to 1000
and the restart parameter to 10. In our experiments, we
observe that enlarging these parameters does not provide
crucial “offline” performance change due to Gram-Schmidt
orthonormalization cost hence we use these as default pa-
rameters.

In Figure 5, we report total index sizes for all datasets.
I-Chopper’s index requires less than 100 GB space for all
datasets, including the largest dataset Friendster. Since
the K-Dash algorithm [14] has cubic computational com-
plexity, it cannot complete its preprocessing phase within
48 hours for very large datasets. Hence, in our experiments,
we are only able to perform preprocessing for K-Dash on
the Email-EU dataset and it requires 50 times storage than
I-Chopper. Castanet and Chopper do not store an in-
dex, but they still need to store the stochastic matrix M
to perform the proximity computation during query pro-
cessing. As seen in the figure, the additional space needed
to store the extra matrices for I-Chopper’s index increases
the total space needed by only a fraction of the size of this
stochastic matrix, for all datasets except the Web-Stanford

dataset. Furthermore, Chopper is only applicable to undi-
rected networks and Castanet cannot be applied to billion-
scale networks as we show in next section.

We also observe in Figure 5 that the index size required
by I-Chopper is larger for networks with fewer loosely-
connected nodes. For example, for Web-Stanford, the nodes
with degree at most 2 comprise 24% of the network, a num-
ber much lower than any other network other than Orkut.
This makes it difficult for the graph partitioning algorithm
to compute a sparse component (M11) with a small band-

849

26 28 210 212

k

10-2

10-1

100

101
R

u
n

n
in

g
 T

im
e

(S
ec

)

Castanet I-Chopper K-Dash

(a) Email-EU

26 28 210 212

k

10-1

100

101

R
u

n
n

in
g

 T
im

e
(S

ec
)

Castanet I-Chopper

(b) Web-Stanford

26 28 210 212

k

10-1

100

101

102

R
u

n
n

in
g

 T
im

e
(S

ec
)

Castanet I-Chopper

(c) Web-Google

26 28 210 212

k

100

101

102

103

R
u

n
n

in
g

 T
im

e
(S

ec
)

Castanet I-Chopper

(d) Cit-Patents

26 28 210 212

k

10-1

100

101

102

R
u

n
n

in
g

 T
im

e
(S

ec
)

Chopper I-Chopper

(e) Orkut

26 28 210 212

k

101

102

R
u

n
n

in
g

 T
im

e
(S

ec
)

I-Chopper

(f) Live-Journal

26 28 210 212

k

101

102

R
u

n
n

in
g

 T
im

e
(S

ec
)

I-Chopper

(g) Twitter

26 28 210 212

k

100

101

102

R
u

n
n

in
g

 T
im

e
(S

ec
)

Chopper I-Chopper

(h) Friendster

Figure 6: Runtime in seconds of I-Chopper K-Dash, and Castanet to process queries for top-k nodes that are
most proximate to a query node, as a function of k ranging from 64 to 4096. In these experiments, the damping
factor α is set to 0.1 and the reported numbers are the averages across 1000 randomly chosen query nodes. K-Dash is only
applied to smallest graph since the compute time of its indexing phase exceeded 48 hours for graphs larger than Email-EU.
Castanet cannot process single query for largest networks in 24 hours hence we eliminate it for very large networks. Chopper
can only be applied to undirected networks.

266K 288K 876K 3M 3.8M 4.9M 41.7M 65.7M

Number of Nodes

10-1

100

101

102

Q
u

er
y

T
im

e
(S

ec
)

I-Chopper

420K 2.4M 5.1M 16.6M 69M 117.2M 1.5B 2.6B

Number of Edges

10-1

100

101

102

Q
u

er
y

T
im

e
(S

ec
)

I-Chopper

Figure 7: Visualization of the effect of graph size on
runtime for I-Chopper. For the value of the parameter
k = 28 (the top-k value), runtime of I-Chopper is shown as
a function of the number of nodes (left panel) and number
of edges (right panel) in the network.

width, thereby increasing the number of non-zeros in the
inverse of this matrix. This results in a super-linear in-
crease in index size. Indeed, the bandwidth (largest block
size) of M11 for the Web-Stanford dataset is largest among
all networks considered in our experiments, although this
network is smaller than most of these networks. This effect
is less pronounced for the Orkut network since this network
is much denser than the Web-Stanford network, hence the
size of M11

−1 is much less as compared to the size of M.

4.3 Runtime Performance
The performance of I-Chopper in comparison to three

algorithms, K-Dash ,Castanet , and Chopper as a func-
tion of k is shown in Figure 6. In the querying phase, K-
Dash slightly outperforms I-Chopper for only the smallest
dataset. However, its indexing phase cannot be applied to
large datasets within 48 hours. Castanet is more scalable
than I-Chopper in terms of size of index. However, as seen
in the figure, I-Chopper outperforms Castanet achiev-
ing more than 25-fold speed-up for all directed networks
for which Castanet can be applied. Also, Castanet can-
not be applied to very large datasets since it processes a
query in more than a day for these networks. Hence, we
do not consider Castanet for very large networks. The fa-
vorable performance of I-Chopper compared to Castanet
and K-Dash is particularly notable for larger graphs, since
Castanet has a large query processing time despite being
scalable in terms of memory, and K-Dash cannot be applied
to very large graphs due to memory limitations.

For undirected networks, Orkut and Friendster, we com-
pare I-Chopper against Chopper [10] to assess the contri-
bution of indexing approach implemented in I-Chopper .
As seen in the figure, indexing in I-Chopper allows us to
process billion-scale networks in real time and achieves more
than 8-fold speed-up over Chopper for the undericted net-
works.

Finally, we assess the performance of I-Chopper as a
function of graph size (based on number of nodes and edges)
across all datasets in Figure 7. In this experiment, we fix
K = 28. We observe that bandwidth (largest block in the
sparse component) has an enormous effect on query pro-
cessing time. For instance, query time for I-Chopper for

850

Friendster dataset is similar to that of Orkut dataset al-
though Friendster is much larger than Orkut dataset. This
is because thee bandwidth for Orkut is larger than that for
Friendster.

5. CONCLUSION
In this paper, we present a novel hybrid approach to the

processing of node proximity queries. The proposed ap-
proach uses graph partitioning based indexing coupled with
a Chebyshev polynomial over complex elliptic plane for ac-
celerating the iterative computation. We show that our ap-
proach, I-Chopper, yields significantly better convergence
times than iterative methods, and much lower memory con-
sumption than direct inversion, both in theory and in prac-
tice on real-world problems. Using a number of large real-
world networks, and top-k proximity queries as the bench-
mark problem, we show that I-Chopper outperforms exist-
ing methods significantly in terms of scalability and runtime.

Future efforts in this direction include incorporation of
other preconditioning techniques into our framework, exten-
sions to other iterative proximity measures, and their appli-
cations. Since I-Chopper is an “exact” algorithm, our ex-
periments only compare against other exact methods. There
are other approximate methods that sacrifice accuracy for
improved runtime. Comparison of I-Chopper against such
approximate algorithms to precisely quantify accuracy-time
tradeoffs would be an interesting application-specific inves-
tigation.

It is also worth to note that I-Chopper does not use the
numerical properties of Chebyshev acceleration to achieve an
early stop when it becomes certain that no node that is not
in the top-k can go into the top-k anymore. This is because,
it is difficult to obtain a provable bound on the residual
due to the dependency between the proximity vectors that
correspond to the two different components of the system
(indexed vs. iteratively solved). Derivation of such a bound
remains an open problem and would help further improve
the performance of the proposed algorithms.

Acknowledgments
This work was supported in part by National Institutes
of Health Grant U01-CA198941 from the National Can-
cer Institute and National Science Foundation Grant CSR-
1422338.

6. REFERENCES
[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An

approximate minimum degree ordering algorithm.
S IAM Journal on Matrix Analysis and Applications,
17(4):886–905, 1996.

[2] R. Andersen, F. Chung, and K. Lang. Local graph
partitioning using pagerank vectors. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual
IEEE Symposium on, pages 475–486. IEEE, 2006.

[3] R. Andersen, F. Chung, and K. Lang. Using pagerank
to locally partition a graph. I nternet Math.,
4(1):35–64, 2007.

[4] B. Bahmani, A. Chowdhury, and A. Goel. Fast
incremental and personalized pagerank. PVLDB,
4(3):173–184, 2010.

[5] R. E. Bank and J. Xu. The hierarchical basis
multigrid method and incomplete lu decomposition.
C ontemporary Mathematics, 180:163–163, 1994.

[6] P. Bogdanov and A. Singh. Accurate and scalable
nearest neighbors in large networks based on effective
importance. In Proceedings of the 22nd ACM
international conference on Conference on information
& knowledge management, pages 1009–1018. ACM,
2013.

[7] S. Boyd and L. Vandenberghe. C onvex optimization.
Cambridge university press, 2004.

[8] M. Cao, H. Zhang, J. Park, N. M. Daniels, M. E.
Crovella, L. J. Cowen, and B. Hescott. Going the
distance for protein function prediction: a new
distance metric for protein interaction networks. 2013.

[9] U. V. Catalyurek and C. Aykanat.
Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. I EEE
Transactions on parallel and distributed systems,
10(7):673–693, 1999.

[10] M. Coskun, A. Grama, and M. Koyuturk. Efficient
processing of network proximity queries via chebyshev
acceleration. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages
1515–1524, New York, NY, USA, 2016. ACM.

[11] M. Coskun and M. Koyutürk. Link prediction in large
networks by comparing the global view of nodes in the
network. In Data Mining Workshop (ICDMW), 2015
IEEE International Conference on, pages 485–492.
IEEE, 2015.

[12] T. A. Davis, P. Amestoy, and I. S. Duff. An
approximate minimum degree ordering algorithm.
C omp. Inform. Sci. Dept. TR-94-039, University of
Florida, 1995.

[13] J. W. Demmel. Applied numerical linear algebra.
SIAM, 1997.

[14] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and
M. Kitsuregawa. Fast and exact top-k search for
random walk with restart. PVLDB, 5(5):442–453,
2012.

[15] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima,
and M. Onizuka. Efficient ad-hoc search for
personalized pagerank. In Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data, pages 445–456. ACM, 2013.

[16] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima,
and M. Onizuka. Efficient ad-hoc search for
personalized pagerank. In Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 445–456,
New York, NY, USA, 2013. ACM.

[17] Y. Fujiwara, M. Nakatsuji, T. Yamamuro,
H. Shiokawa, and M. Onizuka. Efficient personalized
pagerank with accuracy assurance. In Proceedings of
the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 15–23.
ACM, 2012.

[18] M. Gander, W. Gander, G. Golub, and D. Gruntz.
Scientific computing: An introduction using matlab,
2005.

[19] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang.

851

Manifold-ranking based image retrieval. In
Proceedings of the 12th annual ACM international
conference on Multimedia, pages 9–16. ACM, 2004.

[20] V. Hristidis, Y. Wu, and L. Raschid. Efficient ranking
on entity graphs with personalized relationships.
I EEE Transactions on knowledge and data
engineering, 26(4):850–863, 2014.

[21] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
S IAM Journal on scientific Computing, 20(1):359–392,
1998.

[22] G. Karypis and V. Kumar. A parallel algorithm for
multilevel graph partitioning and sparse matrix
ordering. Journal of Parallel and Distributed
Computing, 48(1):71–95, 1998.

[23] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
snap.stanford.edu/data.

[24] R. Li and Y. Saad. Low-rank correction methods for
algebraic domain decomposition preconditioners.
arXiv preprint arXiv:1505.04341, 2015.

[25] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. Journal of the American
society for information science and technology,
58(7):1019–1031, 2007.

[26] T. A. Manteuffel. The tchebychev iteration for
nonsymmetric linear systems. N umerische
Mathematik, 28(3):307–327, 1977.

[27] Q. Mei, D. Zhou, and K. Church. Query suggestion
using hitting time. In Proceedings of the 17th ACM
conference on Information and knowledge
management, pages 469–478. ACM, 2008.

[28] S. Navlakha and C. Kingsford. The power of protein
interaction networks for associating genes with
diseases. B ioinformatics, 26(8):1057–1063, 2010.

[29] J. Ni, H. Tong, W. Fan, and X. Zhang. Inside the
atoms: Ranking on a network of networks. In
Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 1356–1365, New York, NY, USA,
2014. ACM.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford University,
November 1999. Previous number =
SIDL-WP-1999-0120.

[31] Y. Saad. Chebyshev acceleration techniques for
solving nonsymmetric eigenvalue problems.
M athematics of Computation, 42(166):567–588, 1984.

[32] Y. Saad. I terative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition, 2003.

[33] K. Shin, J. Jung, S. Lee, and U. Kang. Bear: Block
elimination approach for random walk with restart on
large graphs. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, pages 1571–1585. ACM, 2015.

[34] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu.
Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. PVLDB,
4(11):992–1003, 2011.

[35] T. Tao and C. Zhai. An exploration of proximity
measures in information retrieval. In Proceedings of
the 30th annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 295–302. ACM, 2007.

[36] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 404–413.
ACM, 2006.

[37] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random
walk with restart and its applications. In Proceedings
of the Sixth International Conference on Data Mining,
ICDM ’06, pages 613–622, Washington, DC, USA,
2006. IEEE Computer Society.

[38] O. Vanunu, O. Magger, E. Ruppin, T. Shlomi, and
R. Sharan. Associating genes and protein complexes
with disease via network propagation. PLoS Comput.
Biol., 6(1):e1000641, Jan 2010.

[39] Y. Wu, R. Jin, and X. Zhang. Fast and unified local
search for random walk based k-nearest-neighbor
query in large graphs. In Proceedings of the 2014
ACM SIGMOD international conference on
Management of data, pages 1139–1150. ACM, 2014.

[40] W. Yu and X. Lin. Irwr: incremental random walk
with restart. In Proceedings of the 36th international
ACM SIGIR conference on Research and development
in information retrieval, pages 1017–1020. ACM, 2013.

[41] C. Zhang, S. Jiang, Y. Chen, Y. Sun, and J. Han. Fast
inbound top-k query for random walk with restart. In
M achine Learning and Knowledge Discovery in
Databases, pages 608–624. Springer, 2015.

[42] C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei.
Evaluating geo-social influence in location-based social
networks. In Proceedings of the 21st ACM
international conference on Information and
knowledge management, pages 1442–1451. ACM, 2012.

[43] J. Zhao and Y. Yun. A proximity language model for
information retrieval. In Proceedings of the 32nd
international ACM SIGIR conference on Research and
development in information retrieval, pages 291–298.
ACM, 2009.

852

