
Selecting Subexpressions to Materialize at
Datacenter Scale

Alekh Jindal Konstantinos Karanasos Sriram Rao Hiren Patel
Microsoft

{aljindal,kokarana,sriramra,hirenp}@microsoft.com

ABSTRACT
We observe significant overlaps in the computations performed by
user jobs in modern shared analytics clusters. Naı̈vely computing
the same subexpressions multiple times results in wasting cluster
resources and longer execution times. Given that these shared clus-
ter workloads consist of tens of thousands of jobs, identifying over-
lapping computations across jobs is of great interest to both clus-
ter operators and users. Nevertheless, existing approaches support
orders of magnitude smaller workloads or employ heuristics with
limited effectiveness.

In this paper, we focus on the problem of subexpression selec-
tion for large workloads, i.e., selecting common parts of job plans
and materializing them to speed-up the evaluation of subsequent
jobs. We provide an ILP-based formulation of our problem and
map it to a bipartite graph labeling problem. Then, we introduce
BIGSUBS, a vertex-centric graph algorithm to iteratively choose
in parallel which subexpressions to materialize and which subex-
pressions to use for evaluating each job. We provide a distributed
implementation of our approach using our internal SQL-like execu-
tion framework, SCOPE, and assess its effectiveness over produc-
tion workloads. BIGSUBS supports workloads with tens of thou-
sands of jobs, yielding savings of up to 40% in machine-hours. We
are currently integrating our techniques with the SCOPE runtime
in our production clusters.
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1. INTRODUCTION
Shared analytics clusters have become the de facto way for large

organizations to analyze and gain insights over their data. At Mi-
crosoft, we operate multiple such shared datacenter-scale clusters,
in a setting that is similar to other Fortune-500 companies [48, 5,
45, 3]. Each cluster is comprised of tens of thousands of machines,
storing exabytes of data, and supports thousands of users, collec-
tively running hundreds of thousands of daily batch jobs [41]. Fig-
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Figure 1: Approaches for computation reuse.

ures 2(a) and 2(b) summarize the number of jobs and users, re-
spectively, on a typical day at a few analytics clusters at Microsoft.
Such clusters run business critical workloads and are expensive to
run and operate. Therefore, operators and users alike are consis-
tently exploring new opportunities to speed-up job performance.

The shared nature of these clusters and the lack of coordination
between users that often belong to different parts of the organiza-
tion, lead to unnecessary overlaps across user computations, which
in turn cost companies millions of dollars. An analysis of our clus-
ter workloads reveals that over 45% of the daily jobs submitted by
approximately 65% of the users have commonalities, resulting in
millions of subexpression overlaps, as reported in Fig. 2(c). There-
fore, our target is to identify and reuse such subexpressions. As
we show, this can lead to saving up to 40% machine-hours in our
clusters (see §5, Table 1).

The computation reuse problem has been extensively studied by
the database community under different formulations, such as view
selection [35, 46, 20, 19], multi-query optimization [43, 42, 38,
49], and subexpression reuse [53, 12, 8, 32, 39]. These approaches
have a similar high-level goal: given a set of queries, find common-
alities across them in order to minimize a cost function (e.g., query
evaluation, storage, and subexpression maintenance costs), under a
set of constraints (e.g., space budget). Unfortunately, they have all
targeted workloads with tens [46, 53, 12, 8, 42] or few hundreds
of queries [4, 16]. As explained above, this is three orders of mag-
nitude smaller than the size of the daily workloads in our clusters,
making such techniques non-applicable in our setting.

To overcome the scalability issue, more recent approaches tai-
lored towards large-scale clusters (e.g., Nectar [18]), have consid-
ered computation reuse from an online caching perspective, rather
than considering the whole workload upfront. Such systems ob-
serve the queries as they arrive in the system and choose which
subexpressions to materialize for future reuse, based on some
heuristics. While these approaches are not constrained by the work-
load size, they rely on local optimization decisions. Consequently,
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Figure 2: Workload summary from a typical day in some of Microsoft’s analytics clusters.

the resulting gains can be far from an optimal configuration. In fact,
we show that such approaches can achieve three orders of magni-
tude less savings than global optimizations (see §5, Fig. 10).

The need for global optimization decisions is further motivated
by the observation that business-critical jobs in analytics clusters
are typically recurrent. Instances of the same job are issued peri-
odically over new batches of data, e.g., hourly, daily, or weekly [7,
14, 28]. In fact, over 60% of the jobs in our clusters are recurrent,
with the majority of them being submitted daily [28].

To deal with the unprecedented scale of our setting, we ex-
plore a novel, highly scalable approach to the well-studied problem
of computation reuse. Fig. 1 positions our algorithm, BIGSUBS,
within the broader literature on computation reuse. We focus on
subexpression selection, a specialization of the view selection prob-
lem that considers subtrees of logical query plans as view candi-
dates. We follow a holistic approach that periodically considers
the entire workload with tens of thousands of queries, and selects
the most promising subexpressions to materialize for improving the
evaluation of subsequent queries.

In particular, we map subexpression selection to a bipartite graph
labeling problem. The graph’s vertices represent the queries and
the candidate subexpressions, while the edges connect each query
with its subexpressions. Then we split the graph labeling into two
sub-problems: (i) labeling the subexpression vertices, which dic-
tates the subexpressions that will be materialized, and (ii) label-
ing the edges, which determines the materialized subexpressions
that will be used to evaluate each query. To scale to the aforemen-
tioned workload sizes, we follow a vertex-centric graph processing
model [34] that iteratively performs the above labeling steps in par-
allel until they converge. For the vertex labeling part, we follow
a probabilistic approach, while for the edge labeling part we solve
local per-query ILPs.
Contributions. In summary, we make the following contributions:
• We provide an ILP-based formulation of our subexpression se-

lection problem. Our formulation is easily extensible to capture
several variations of the subexpression selection problem (§2).
• We map subexpression selection to a bipartite graph labeling

problem, and present our BIGSUBS algorithm that performs the
labeling in parallel using an iterative approach. To the best of
our knowledge, this is the first parallel subexpression selection
algorithm (§3).
• We express BIGSUBS using vertex-centric programming and

provide an implementation in SCOPE [52], our internal SQL-
like distributed execution engine with support for iterations (§3).
• We describe a set of optimizations to reduce the space of possible

solutions that are explored by BIGSUBS, without compromising
the quality of the returned solution (§4).
• The results of our experimental evaluation on production work-

loads show that BIGSUBS: (i) supports workloads with tens of
thousands of jobs, (ii) outperforms heuristics-based approaches
by up to three orders of magnitude, and (iii) can save 10–40%
machine-hours on our clusters (§5).

BIGSUBS sits at the core of our CLOUDVIEWS system [26], which
we are deploying in our SCOPE clusters to perform the end-to-end
process of subexpression selection, materialization, and reuse.

2. PROBLEM FORMULATION
In this section, we define (§2.1) and formulate (§2.2) the problem

of subexpression selection, i.e., selecting common subexpressions
to materialize and reuse across queries.

Fig. 3 illustrates the key considerations in our problem with four
queries (Q1–Q4) and two candidate subexpressions (S1 and S2).
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Figure 3: Illustrating the subexpression selection problem.

S1 appears in more queries than S2, but might be less useful as it
captures smaller computation than S2. On the other hand, S2 might
be much larger than S1 in terms of byte size and thus consume more
storage budget. Finally, if S2 is materialized, then S1 becomes
redundant for evaluating Q3 and Q4,1 as it is a subtree of S2.

As also mentioned in §1, we consider workloads with recurring
queries of fixed periodicity (mostly daily or weekly [28]) and hav-
ing computation overlap across queries. Moreover, we consider an
append-only storage system with queries operating on new batches
of data arriving between each recurring instance. Given that a sig-
nificant part of our query workload is relatively static, our goal
is to periodically (offline) select the subexpressions to materialize.
Each time one of these subexpressions references new data, it gets
(re-)materialized using fresh data and is used across all queries that
use the same subexpression over the same data.

2.1 Problem Statement
Let Q = {q1, q2, . . . , qn} be a set of queries over a set of data

sources D, and CD(qi) be the cost of evaluating query qi over D.
Let S = {s1, s2, . . . , sm} be a set of materialized (stored) subex-
pressions and CS(qi) be the cost of evaluating qi over D ∪ S.
The cost CS(Q) of evaluating the whole query set over D ∪ S
is equal to the sum of evaluation costs of every query in Q, i.e.,
CS(Q)=

∑n
i=1 CS(qi).2

Subexpression selection. Our goal is to select the subexpression
set S from the set S of all possible candidate subexpressions for Q
that minimizes the cost of evaluating Q under a constraint set C:

argmin
S⊆S

CS(Q), under C (1)

Below, we first provide the definition of a candidate subexpres-
sion, and then discuss the candidate enumeration and selection.
1S1 may still be materialized and used for evaluating Q1, Q2.
2Typically, each query qi is associated with a weight wi that denotes its
relative importance to the rest of the queries, such as the frequency with
which it gets executed [20, 18]. To keep the formulation simple, and without
loss of generality, we assume that wi = 1 for all queries.
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DEFINITION 1 (CANDIDATE SUBEXPRESSION). Let q be a
query and t be the tree corresponding to a logical plan of q. Any
subtree t′ of t is a candidate subexpression for q.

Candidate subexpression enumeration. The candidate enumera-
tion method determines the set of candidate subexpressions S, out
of the set of all possible subexpressions of the queries in Q that will
be considered for selection. A complete subexpression enumera-
tion strategy considers all possible subexpressions in Q. In our ap-
proach, for each query we use the logical plan that is output by our
optimizer [52] and restrict our enumeration to the plan’s subexpres-
sions. Although this choice compromises optimality, it was made
purposefully to: (i) be less intrusive to the optimizer (less changes
in this complex system component mean easier adoption of our ap-
proach both in our production setting and by external systems);
(ii) reduce the search space, given our workload sizes; (iii) reuse
existing plan signatures [4, 53] to efficiently decide subexpression
equivalence; and (iv) use precise statistics from previous query runs
instead of solely relying on the optimizer’s estimates.

Utility of subexpressions. The utility of a subexpression s over
a query q is the reduction in the evaluation cost of q by using s.
This is equivalent to the difference between the cost CD(sj) of
evaluating sj over the base data and the cost Cacc(sj) of accessing
sj after it has been materialized. We make the assumption that
Cacc(sj) is equal to scanning sj . More sophisticated cost models
that take into account pipelining of operators or physical attributes
(e.g., ordering, partitioning) could be used instead.

DEFINITION 2 (UTILITY OF SUBEXPRESSION). Let qi be a
query and sj one of its candidate subexpressions. We define the
utility uij of sj for qi to be:

uij = CD(sj)− Cacc(sj) (2)

For a given set of subexpressions S, there might be multiple
rewritings Rk of q using different subsets of S. We define the util-
ity of S for q to be the maximum evaluation cost reduction that can
be achieved by one of the rewritings. Thus, we will also need to
consider different rewritings in order to select the subexpressions
to materialize.

DEFINITION 3 (UTILITY OF SUBEXPRESSION SET). Let qi be
a query and S be a set of candidate subexpressions. Let Rmax

i be
the rewriting that leads to the highest cost reduction for qi. We
define the utility US(qi) of S for qi to be:

US(qi) =
∑

sj∈Rmax
i

uij (3)

The utility US(Q) of S for the query set Q is the sum of utilities
of S for each query in Q, i.e., US(Q) =

∑n
i=1 US(qi).

Subexpression interactions. To avoid using redundant subexpres-
sions for evaluating a query (e.g., S1 and S2 for Q3 in Fig. 3), we
introduce the notion of interacting subexpressions.

DEFINITION 4 (INTERACTING SUBEXPRESSIONS). Two can-
didate subexpressions s1, s2 for query q are interacting, if the tree
corresponding to the logical plan of one is a subtree of the other.

To capture such interactions between candidate subexpressions,
we define the interaction matrix X to be a symmetric m×m ma-
trix, where m is the number of all possible candidate subexpres-
sions for the query set. Element xjk has value 1 if the jth subex-
pression interacts with the kth one, otherwise it is 0.3

3A subexpression sc might appear multiple times in a query. In that case,
we mark it as interacting with another subexpression s′c, if at least one of
the occurrences of sc interacts with s′c in a query.

Subexpression cost and constraints. The cost of a subexpression
is a linear combination of several components, such as the storage
footprint required for its materialization and its maintenance cost.
As described in the beginning of the section, we discard updates in
our append-only system and therefore consider storage footprint as
the only cost component. However, our cost model can easily be
extended to consider other components. For a subexpression set S,
we define bS = [b1, b2, . . . , bm] as the column vector representing
the cost of each of the subexpressions in S. We define the combined
cost BS of S as the sum of the costs of its subexpressions. Then,
our constraint set C includes a budget Bmax that BS has to respect.

Utility-based subexpression selection. Having defined the utility
and cost of a subexpression set, we can rewrite our problem formu-
lation of Eq. 1 to an equivalent one that selects the subexpression
set S with the maximum utility for the query set:

argmax
S⊆S

n∑
i=1

US(qi), with BS ≤ Bmax (4)

Query rewriting using subexpressions. Once we have selected
and materialized our subexpressions, we provide our optimizer
with the set of subexpressions that should be used for each query
qi. The query optimizer performs the actual rewriting of the query,
adding additional operations, such as data ordering or partitioning,
if needed [52].

2.2 Subexpression Selection as an ILP
We now describe the ILP formulation of our problem. Let zj be

a 0−1 variable indicating whether the jth subexpression is selected
or not. Considering a budget Bmax for the total cost of the selected
subexpressions and taking into account Eq. 3, we can rewrite our
problem of Eq. 4 as follows:

maximize
n∑

i=1

∑
sj∈Rmax

i

uij · zj

s.t.
m∑

j=1

bj · zj ≤ Bmax

Note that Rmax
i is computed based on: (i) the subexpression util-

ities uij , (ii) the subexpression selection variables zj , as a subex-
pression that is not selected cannot be used for rewriting, and
(iii) the subexpression interactions xjk, as the selected subexpres-
sions should not be redundant. This makes the above formulation
non-linear. To solve this problem, we introduce the binary variables
yij to denote whether the subexpression sj is selected by query qi
for rewriting. This reduces the above formulation to the following
linear one:

maximize
n∑

i=1

m∑
j=1

uij · yij

s.t.
m∑

j=1

bj · zj ≤ Bmax

yik +
1

m

m∑
j=1
j 6=k

yij · xjk ≤ 1 ∀i ∈ [1, n], k ∈ [1,m]

yij ≤ zj ∀i ∈ [1, n], j ∈ [1,m]

The second constraint above uses the interaction matrix X (see
§2) to ensure that we do not use subexpressions that are covered
by others in the same query. The left-hand side of this constraint
ensures that if the kth view is selected (yik = 1), none of its inter-
acting views is selected (

∑m
j=1
j 6=k

yij ·xjk = 0). Otherwise, if the kth
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Figure 4: Illustrating first two iterations of subexpression selection via bipartite graph labeling. We assume each subexpression has
storage footprint bj=1 and the total budget is Bmax=3. Subexpression labels are shown next to the vertices. For the edges, we use
solid lines when label is 1 and dashed ones otherwise. At each iteration, we mark with red the labels whose value changed.

view is not selected (yik = 0), then one or more of the interacting
views could be selected.4 We apply this constraint to every view,
i.e., k ∈ [1,m]. The last constraint ensures that a subexpression is
used for query rewriting only when it is materialized.

The above ILP becomes intractable for very large workloads,
where m and n are in the order of a million. The large number
of integer variables is a problem even for state-of-the-art solvers,
as we show in §5. Therefore, below we present an approximation
scheme to scale subexpression selection to larger workloads.

3. SCALING SUBEXPRESSION SELECTION
In this section, we present our solution to the subexpression se-

lection problem that scales to tens of thousands of queries. We map
our problem to a bipartite graph labeling problem with constraints
(§3.1), describe our approximate BIGSUBS algorithm for solving it
efficiently (§3.2), and discuss how we leverage existing distributed
execution platforms to execute BIGSUBS in parallel (§3.3).

3.1 Bipartite Graph Labeling Problem
Our ILP problem formulation (§2.2) can be split into multiple

smaller ILPs by mapping it to a labeling problem over a bipartite
graph. Let Q be a set of n queries and S be the set of m candidate
subexpressions for the queries in Q. Consider a bipartite graph
G = (VQ, VS, E), where each vertex vqi ∈ VQ corresponds to
query qi ∈ Q, and each vertex vsj ∈ S corresponds to subexpres-
sion sj ∈ S. There is an edge eij ∈ E between vqi and vsj , if
sj is a subexpression of qi. Each edge eij is also associated with
uij representing the utility of sj for qi. As in §2.1, we use xjk to
capture subexpression interactions, as well as bj and Bmax for the
storage footprint of sj and the total storage capacity, respectively.

Our subexpression selection problem can now be expressed as
the following graph labeling problem:
(i) Assign a 0−1 label zj to each vertex vsj ∈ VS, subject to the
following constraint:

m∑
j=1

bj · zj ≤ Bmax (5)

(ii) assign a 0−1 label yij to each edge eij ∈ E, subject to the
following optimization:

4We normalize
∑m

j=1
j 6=k

yij ·xjk by m to make sure that the resulting quan-

tity is between 0 and 1.

maximize
m∑

j=1

uij · yij (6)

s.t. yik +
1

m

m∑
j=1
j 6=k

yij · xjk ≤ 1 ∀k ∈ [1,m] (7)

yij ≤ zj ∀j ∈ [1,m] (8)

As in our ILP formulation, the zj labels denote whether a subex-
pression sj will be materialized, and the yij labels denote whether
sj will be used when evaluating qi. Eq. 5 guarantees that the cho-
sen zj values will respect the storage capacity, while Eq. 6–8 find
the rewritings with the highest utility for each query given some zj
values. The zj values that maximize the total utility for all queries
is equivalent to the solution of the global ILP of §2.2.

For example, consider the leftmost bipartite graph in Fig. 4. The
vertices represent n queries and m subexpressions, and edges con-
nect queries with their subexpressions, e.g., s1 and s3 are subex-
pressions of q1. For simplicity, we assume that each subexpression
has a storage footprint of 1, and the budget for materialization is 3.
The rightmost graph in Fig. 4 represents a solution to the graph
labeling problem. The subexpression label is shown next to the
respective vertex. For the edge labels, we use solid lines to de-
note 1-labeled edges and dashed lines for 0-labeled ones. In this
instance, subexpressions s1, s2, sm are chosen to be materialized.
Query q1 will be evaluated using s1, q2 using s2 and s3, etc.

In contrast to our ILP formulation, by using the above graph la-
beling formulation, we can isolate the problems of finding which
subexpressions to materialize (zj) and which subexpressions to use
when evaluating each query (yij). This approach has two major
benefits: (i) instead of solving a single giant ILP, we solve a num-
ber of much smaller ILPs, which makes them computationally fea-
sible, and (ii) by splitting the problem to several sub-problems that
can be executed independently, we can easily parallelize them.

3.2 The BIGSUBS Algorithm
We now present an approximate algorithm, BIGSUBS, to solve

the bipartite graph labeling problem efficiently. BIGSUBS prob-
abilistically sets subexpression vertex labels, attempting to fulfill
the global capacity constraint (Eq. 5), and solves the smaller ILPs
(Eq. 6–8) given a set of subexpression labels.

3.2.1 Overview
Our BIGSUBS algorithm follows an iterative approach. Each it-

eration includes two steps: (i) assign labels to the subexpression
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Algorithm 1: BIGSUBS
Input : G=(VQ, VS, E), subexpression utilities uij , interactions

xjk , storage footprints bj , storage budget Bmax, iterations k
Output: subexpressions to materialize zj ,

subexpressions to use when evaluating each query yij

1 Initialize(zj) // initialize VS labels
2 yij = 0, ∀eij ∈ E // initialize E labels
3 Bcur =

∑
j bj · zj // current budget used

4 Umax =
∑

i,j uij // upper bound for total utility

5 Uj
max =

∑
i uij // upper bound for utility of sj

6 iter = 0
7 updated = 0
8 while updated or iter < k do

// Subexpression vertex labeling
9 foreach vj ∈ VS do

10 pflip = FlipP(bj ,Bcur ,Ucur ,Uj
cur)

11 znew
j = DoFlip(pflip)

12 if znew
j != zj then

13 updated = 1
14 if znew

j == 0 then
15 Bcur −= bj
16 else
17 Bcur += bj

18 zj = znew
j

// Edge labeling
19 Ucur = 0 // current total utility

20 Uj
cur = 0 // current utility of each sj

21 foreach vi ∈ VQ do
22 Mi = {j : eij ∈ E & j : uij > 0}
23 M ′i = {j : eij ∈ E & zj > 0}
24 yij = LocalILP(uij ,xjk) // solve local ILP
25 Ucur +=

∑
j∈Mi∩M′

i
uij · yij

26 foreach j : eij ∈ E do
27 Uj

cur += uij · yij

28 iter++

29 return zj , yij

vertices, and (ii) given the subexpression vertices determined at the
first step, assign labels to the edges. This two-step process is re-
peated until there is no change to the vertex and edge labels or until
we reach a predefined number of iterations.

BIGSUBS is outlined in Algorithm 1. It takes as input the bipar-
tite graph G encoding the n queries and their m candidate subex-
pressions, along with the subexpression utilities uij , interactions
xjk and storage footprints bj , and the maximum allowed num-
ber of iterations k. It outputs the subexpressions to be material-
ized (zj) and the subexpressions to be used when evaluating each
query (yij). Here we present the basic version of the algorithm. We
discuss various optimizations in §4.

We first randomly assign labels to the subexpression vertices and
0-labels to the edges (lines 1–2). We also initialize various auxiliary
variables (lines 3–7), which we discuss later. Then the iterative
part of the algorithm is performed. For the subexpression vertex
labeling part, we use a probabilistic approach, which allows us to
perform decisions without central coordination (lines 9–18). Based
on the current utility and used budget, we calculate the probability
of changing the label of a vertex. Similar probabilistic techniques
have been used in other graph labeling problems [36]. The edge
labeling part is done by solving local ILP problems (lines 21–27).

Fig. 4 illustrates the first two iterations of the BIGSUBS. Upon
label initialization (Step 1), in the first iteration, given we are be-
low the capacity budget Bmax=3, we flip the labels of s2,s3,s4,
and sm (Step 2). Given the new labels, we choose rewritings for

each of the queries to maximize each query’s utility (Step 3), while
respecting subexpression interactions (e.g., s1 with s3 for q1). In
the second iteration, given we are above budget, we choose to not
materialize s1 (Step 4). Accordingly, we change the labels of the
edges adjacent to q1 to use s3 instead of s1 (Step 5).

Below we provide details on the vertex (§3.2.2) and edge label-
ing (§3.2.3) steps, and present an analysis of BIGSUBS (§3.2.4).

3.2.2 Labeling Subexpression Vertices
Our goal is to assign 1-labels to the subexpressions that will

lead to the highest utility, while abiding by the budget constraint
of Eq. 5. To perform distributed decisions in the presence of this
global aggregation constraint, we assign labels probabilistically.
We iterate over all subexpressions, and for each subexpression sj
we calculate the probability pjflip of changing the current sj label
(lines 10–11 in Algorithm 1), taking into account both the budget
Bcur used by the currently selected subexpressions and the contri-
bution U j

cur of sj to the current total utility Ucur of the selected
subexpressions. In particular, we use the following formulas for
the probabilities:

pjcapacity =

{
1−Bcur/Bmax if Bcur < Bmax

1−Bmax/Bcur otherwise

pjutility =


1− Uj

cur/Ucur if zj = 1
Uj

max/bj
Umax/Bmax

if iter ≤ p or Bcur ≤ Bmax − bj

0 otherwise

pjflip = pjcapacity · p
j
utility

The intuition in computing pjflip is twofold: (i) the further we are
from the storage budget, the higher the probability of flipping labels
should be, as captured by the pcapacity component; (ii) the higher
the current utility of an 1-labeled subexpression (i.e., a subex-
pression that is currently selected for materialization), the lower
the chances it will be unselected (first case of putility)5, while
the higher the potential benefit of a 0-labeled one, the higher the
chances it will be selected (second case of putility). We define
the potential benefit U j

max of a 0-labeled subexpression as the total
utility if it were to be used by all possible queries. Similarly, Umax

is the sum of U j
max over all subexpressions.

Note that with pjflip we want to strike a balance between avoid-
ing local optima and converging to a solution reasonably fast. To
improve convergence speed, after p% of the maximum allowed
number of iterations k, we only turn a label of a subexpression
from 0 to 1 if the maximum budget is respected even after we add
the budget of this subexpression.6 We call these stricter iterations.

After performing the label flipping, we also update the counter
for the currently used capacity Bcur (lines 12–17).

3.2.3 Labeling Edges
Given the subexpressions chosen in the vertex-labeling step, we

then determine which subexpressions will be used to evaluate each
query by labeling the edges that are adjacent to that query, follow-
ing the optimization goal in Eq. 6 and respecting the constraints
in Eq. 7–8. To simplify this optimization, we make the observa-
tion that a subexpression sj cannot be used to evaluate a query qi
(i.e., yij = 0) when it has no utility for qi (uij = 0) or when
it is not materialized (zj = 0). Accordingly, we define the sets
Mi = {j : uij > 0} and M ′i = {j : zj > 0}. Using these sets,
we can significantly reduce the dimensions of yij and the number
of constraints we need to consider in our optimization, as follows:
5Note that we can apply logarithmic or exponential normalization to make
the distribution more uniform in the [0,1] interval.
6In practice, we got good results by setting p = 80%, but lower values can
be used if convergence speed is more important than solution quality.

804



maximize
∑

j∈Mi∩M′
i

uij · yij (9)

s.t. yik +
1

m

∑
j∈Mi∩M′

i
j 6=k

yij · xjk ≤ 1 ∀k ∈Mi ∩M ′i (10)

Mi is known statically for each query vertex in the graph, while
M ′i is determined by the subexpressions that were selected in the
subexpression vertex-labeling step of this iteration. We let each
query vertex vqi to keep track of uij and xjk for j ∈ Mi ∩M ′i .
Note that in this case uij is a 1×|Mi∩M ′i | vector and xjk is a |Mi∩
M ′i | × |Mi ∩M ′i | matrix, both significantly smaller than before.
As a result, the above ILP problem can be computed locally at each
query vertex in the graph to determine the labels of its adjacent
edges (line 24 in Algorithm 1).

3.2.4 Analysis
We now focus on the complexity, correctness, and convergence

of BIGSUBS.

Complexity. Instead of solving a single global ILP, with BIGSUBS
we are solving n ILPs, where the size of each problem is the effec-
tive degree di of query vertices, i.e., di = |Mi ∩M ′i |, ∀i ∈ n. Ad-
ditionally, we label each of the m subexpression vertices. Thus, the
worst case complexity of BIGSUBS is given as k·(m+n·2max(di)),
where k is the number of iterations. Note that di is bounded by
either the largest query size or the maximum number of subexpres-
sions allowed to be used in a given query. In that case, the algo-
rithm scales linearly with the sum of the number of queries and the
number of subexpressions, i.e., (m+ n).

Correctness. Recall that our ILP formulation in §2.2 has three
constraints for exact optimal solution. The first constraint limits
the total cost to Bmax. Since BIGSUBS is an approximate algo-
rithm with each subexpression vertex making independent deci-
sions on whether to flip their labels, this constraint is not strictly
observed. Hence, we need to study whether the final cost comes
close to Bmax. Since the first p% iterations are designed to ex-
plore all interesting subexpressions, we consider the remaining
(1 − p

100
) · k stricter iterations. For these iterations, a flip from

0 to 1 is only possible if the total cost is within Bmax (the sec-
ond case of pjutility). So we focus on the case when the cost
is overshooting the budget and a flip from 1 to 0 is supposed
to happen. The corresponding probability is given as: pjflip =

(1 − Uj
cur

Ucur
)(1 − Bmax

Bcur
). Thus, the total cost in iteration t + 1 is

given as: Bt+1
cur = Bt

cur −
∑m

j=1 p
j
flip · bj . Assuming that there is

a set of very low utility subexpressions, i.e., Uj
cur

Ucur
≈ 0, that should

be flipping their labels from 1 to 0, we can approximate the cost in
iteration t + 1 as: Bt+1

cur = Bt
cur − (1 − Bmax

Bt
cur

) · Btotal, where

Btotal is the total cost of those low utility expressions.7 Figure 5
shows that the cost error, i.e., (Bcur−Bmax)

Bmax
· 100, approaches 0 as

the number of iterations increases. We set Btotal = B0
cur−Bmax,

i.e., the total weight of low utility subexpressions is equal to the
cost overshoot.

The second constraint in our ILP formulation of Section 2.2
applies restrictions to subexpression interaction for each query,
thereby making it readily partitionable across query vertices (as
done in Equation 10 of our local ILP). The final constraint in our

7Expecting low utility subexpressions to flip is the stricter case; otherwise,
Btotal is simply a fraction of the total cost of all subexpressions and our
proof still holds.

Table 1

Iterations Overshoot = 10% Overshoot = 30% Overshoot = 50% Overshoot = 70%

1 10.0 30.0 50.0 70.0

2 9.09090909090909023.0769230769231033.33333333333330 41.2

3 8.25757575757576017.4519230769231020.83333333333330020.759803921568600

4 7.49480458892636012.99428902043520012.212643678160908.7261120198028600

5 6.7975797679140909.5443034150338706.7709023209266103.10807022617239000

6 6.1610878377892506.9304833118908303.60014035594153000.998003425825644

7 5.5807350961893104.9860939019010901.86262323310153000.306304209621814

8 5.052159964456723.56130694681346000.9483412452721320 0.1

9 4.5712407747736102.52965514988053000.47862513425255300 0.0

10 4.1340994784759901.78948242243422000.24045252111565700 0.0

11 3.73710180920335001.26207554899879000.12051465418264200 0.0

12 3.37685443926267000.88817183169207700.06032985858959710 0.0

13 3.0501996520204500.62406599582448100.030183116781501000 0.0

14 2.75420802247288000.43800732596798800.015096112118982300 0.0

15 2.4861695571410700.307178169467562000.007549195350506470 0.0

16 2.24358369722610.215306927028081000.0037748826054979600 0.0

17 2.02414853894076000.150853621351473000.0018875125487483000 0.0

18 1.82574957478100000.105665702557943000.0009437740875597460 0.0

19 1.64644821118631000.073999452156513700.00047189149728410500 0.0

20 1.48447027293454000.051816032118864500.0002359468620483090 0.0

21 1.3381946635785300.03627927301529610.00011797370937927100 0.0

22 1.20614231470641000.0253994382356666000.0000589869242730856 0.0

23 1.08696552492661000.0177815416679010000.000029493479530629 0.0

24 0.97943776214511000.0124480275485723000.000014746744113836 0.0

25 0.88244397966316500.0087140840863071400.00000737337315115383 0.0

26 0.79497147752582000.0061000866463558600.00000368668683847773 0.0

27 0.71610132499017700.0042701722788081000.00000184334348318771 0.0

28 0.64500034753281500.00298917529593723000.000000921671755804709 0.0

29 0.58091367205905400.00209244951186349000.000000460835877902355 0.0

30 0.5231578165144270.00146472779306350000.000000230417938951177 0.0
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Figure 5: The cost budget error over last (1− p
100

) ·k iterations.

global ILP, i.e., yij ≤ zj , is enforced by construction of M ′ since
each of the smaller ILPs have all zj as ones.

Convergence. As above, we focus on the last (1 − p
100

) · k
stricter iterations. Observe that for a given set of subexpression
vertex labels, the local ILPs will always find a fixed solution, and
hence Ucur will converge. Even when the subexpression vertex
labels flip from 0 to 1, the flipping stops once the cost budget
is reached (the second case of pjutility), and so Ucur will again
converge. Thus, we consider the remaining case of subexpres-
sion vertex labels flipping from 1 to 0, the probability of which

is given as: pjflip = (1 − Uj
cur

Ucur
)(1 − Bratio), where Bratio

is either Bcur
Bmax

or Bmax
Bcur

depending on whether Bcur < Bmax.
Assuming that every subexpression thats flips its label to 0 was
used in at least one of the queries (otherwise, it does not impact
Ucur anyway), the new total utility in iteration t + 1 is given as:
U t+1

cur = U t
cur −

∑m
j=1 p

j
flip · U

j
cur . Expanding the terms gives

us: U t+1
cur = Bratio ·U t

cur +
1−Bratio

Ut
cur

·
∑m

j=1 U
j
cur ·U j

cur . Using

Cauchy-Schwarz inequality, we get: (Bratio+
1−Bratio

m
) ·U t

cur ≤
U t+1

cur ≤ U t
cur . We saw in the correctness discussion above that

Bcur converges to Bmax, i.e., Bratio converges to 1, and as a re-
sult U t+1

cur converges as well.
Note that our probabilistic graph labeling algorithm does not

guarantee halting at the optimal solution, and might instead end
up in a local optimum. This is similar to iterative hill-climbing
algorithms, as also noted in [36].

3.3 Distributed Execution
In this section, we describe how we scale-out the execution of

BIGSUBS by using a distributed execution framework. As de-
scribed in Algorithm 1, in each iteration of our BIGSUBS algo-
rithm, we first examine each subexpression vertex to determine its
label, and then examine each query vertex to determine the labels
of its adjacent edges. Given that all label assignments are per-
formed locally to the graph’s vertices, our algorithm fits well with
the vertex-centric graph processing model as popularized by sys-
tems such as Giraph [1] or GraphLab [17]. Following this model,
each vertex assigns a label to itself or to its adjacent edges, based
on whether it is a subexpression or a query vertex, respectively, and
then sends messages containing the newly assigned labels to all
its neighbors. Thus, any off-the-shelf vertex-centric graph system
could run our algorithm in a distributed fashion.

Similarly, instead of using a dedicated graph engine, we can ex-
ecute BIGSUBS using a standard SQL engine, as shown in Vertex-
ica [24, 25, 27] or Grail [13]. This is particularly useful in our
setting, since big part of the preprocessing, i.e., extracting queries
and generating subexpressions, is already done via SCOPE, which
is a SQL-like processing engine. Therefore, to avoid stitching to-
gether multiple engines and moving data across them, we opted for
executing BIGSUBS on SCOPE.

The implementation of BIGSUBS using the SCOPE query lan-
guage [52] is shown in Listing 1. Note that we generate and store
all candidate subexpressions upfront. Then, we start by creating the
three tables VQ(vi, ui, xi, yi), VS(vj , bj , zj), and E(vi, vj), and
also set the values of Umax and Bmax (lines 1–11). Thereafter, in
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1 Vq=REDUCE (SSTREAM @repeatedSubexpressions)
2 ON JobGUID
3 USING InitJobVertices();
4 Vs=SELECT HashTag AS vj, Size AS bj, InitZj() AS zj
5 FROM (SSTREAM @repeatedSubexpresssions)
6 GROUP BY HashTag,Size;
7 E=SELECT JobGUID AS vi, HashTag AS vj
8 FROM (SSTREAM @repeatedSubexpressions);
9 Umax=SELECT SUM(InclusiveTime) AS umax

10 FROM (SSTREAM @repeatedSubexpressions);
11 Bmax=SELECT SUM(vj) AS bmax FROM Vs;
12

13 LOOP(i,@maxIter)
14 {
15 Vs=REDUCE(
16 SELECT * FROM Vq
17 INNER JOIN E ON Vq.vi==E.vi
18 INNER JOIN Vs ON E.vj==Vs.vj
19 CROSS JOIN Cu
20 CROSS JOIN Cb
21 CROSS JOIN Umax
22 CROSS JOIN Bmax)
23 ON vj
24 USING ProbabilisticLabels(@B,@i,@maxIter);
25

26 U_cur=SELECT SUM(Product(uij,yij)) AS u_cur FROM Vq;
27 B_cur=SELECT SUM(bj*zj) AS b_cur FROM Vs;
28

29 Vq_update=REDUCE(
30 SELECT vi,uij,xij,vj FROM Vq
31 INNER JOIN E ON Vq.vi==E.vi
32 INNER JOIN Vs ON E.vj==Vs.vj
33 WHERE zj>0)
34 ON vi
35 USING SolveLocalILP();
36

37 Vq=SELECT Vq.vi, Vq.uij, Vq.xij,
38 (Vq_update.uij==null?Vq.yij:Vq_update.yij) AS yi
39 FROM Vq LEFT JOIN Vq_update
40 ON Vq.vi==Vq_update.vi;
41 }
42 Vs_selected = SELECT * FROM Vs WHERE zj>0;
43 OUTPUT Vs_selected TO @selectedSubexpressions

Listing 1: Distributed graph labeling using SCOPE.

each iteration we join the three tables (VQ, VS, E) and aggregate
alternatively on VS.vj and VQ.vi, respectively, to assign the vertex
and edge labels (lines 13–41). We update the subexpression ver-
tices with new labels (lines 15–24) and use the new VS to assign
the edge labels. We left-join VQ with the updated query vertices
(VQ update) in order to get the new VQ, which will be used in the
next iteration (lines 29–40). Finally, we return all VS elements with
zj > 0, i.e., those that are chosen for materialization (lines 42–43).

4. OPTIMIZATIONS
In this section, we describe a number of optimizations to improve

the performance of the local per-query ILP problems that we need
to solve at each iteration of our graph labeling algorithm. We focus
on optimizing the local ILPs, since labeling subexpression vertices
is done in constant time, while the local ILPs could be arbitrarily
large due to possible skew in the size of the queries in the workload,
thereby causing an entire iteration to block.

4.1 Branch-and-bound
To solve the local ILPs discussed in §3.2.3 (line 24 of Algo-

rithm 1), a naı̈ve approach would be to consider all combinations
(i.e., the power set) of candidate subexpressions and pick the one
with the maximum utility (objective function of Eq. 9) that does
not have interacting subexpressions (constraint of Eq. 10). Another
approach would be to use a generic ILP solver, which is not tai-
lored towards our specific use case either (see also §5.2). Instead,
we solve the local ILPs using a branch-and-bound technique.

The idea is that once we find interacting subexpressions, we no
longer need to consider any superset of these subexpressions, as
those will also violate the interaction constraints. Fig. 6 illustrates
our technique through a toy example including three subexpres-
sions s1, s2, s3, with s1 interacting with s2. When we visit the set
{s1, s2}, we prune the search space below it, and thus {s1, s2, s3}
is never explored. This can lead to significant pruning, especially
in the presence of many interacting subexpressions.

{s1,s2}

{s1}

{s1,s3} {s2,s3}

{s2} {s3}

{ }

bound!

{s3}

{s1,s3} {s2,s3}

{s1,s2,s3}
bound!

{s3}

{s1,s3} {s2,s3,s4,s5}

{s1,s2,s3}
bound!

{s1,s3} {s2,s3}

{s1,s2,s3}

{s1,s2}

{s1} {s2}

Figure 6: Illustrating branch-and-bound for three subexpres-
sions {s1, s2, s3}, with {s1, s2} interacting.

Algorithm 2 shows the pseudocode for solving the ILP using
our branch-and-bound technique. It takes as input the vector with
the utility uij of each candidate subexpression sj for query qi and
the interaction matrix xjk between subexpressions. Note that at
this point the number of subexpressions is at most m; in practice
it is much smaller after the dimensionality reduction we discussed
in §3.2.3, since here we consider only subexpressions that have al-
ready been selected for materialization. We recursively explore dif-
ferent evaluation vectors (i.e., vectors that denote whether a subex-
pression will be used in evaluating qi), and return the one that yields
the maximum utility. During exploration, we first check whether
the current vector has interacting subexpressions and bound the ex-
ploration if this is the case (lines 6–7 in Algorithm 2). Each time
we reach a complete evaluation vector (i.e., one in which we have
given values to all subexpression elements), we check its utility us-
ing Eq. 6 and update the best vector found so far if we exceeded
its utility (lines 8–11). Otherwise, the algorithm branches with and
without setting the jth subexpression element to 1 (lines 12–15).

4.2 Exploration Strategies
We now consider different exploration strategies to achieve bet-

ter pruning. The branch-and-bound algorithm discussed so far (Al-
gorithm 2) explores the subexpression space in a bottom-up fash-
ion, i.e., it incrementally adds more subexpressions until an interac-
tion is found. We could alternatively explore the search space in a
top-down fashion, i.e., select all subexpressions and incrementally
drop one-by-one until we reach a non-interacting set. Fig. 7 shows
a top-down exploration for our running example. Here we start
with all three subexpressions selected, and by removing s1 or s2
we reach non-interacting subexpression sets. When there are few
interactions between the subexpressions, this technique can lead to
solutions faster. Moreover, given that our utility function is mono-
tonically decreasing when we remove subexpressions, we can fur-
ther bound the exploration when we find a set whose utility is below
the best utility so far.

{s1,s2}

{s1}

{s1,s3} {s2,s3}

{s2} {s3}

{ }

bound!

{s3}

{s1,s3} {s2,s3}

{s1,s2,s3}
bound!

{s3}

{s1,s3} {s2,s3,s4,s5}

{s1,s2,s3}
bound!

{s1,s3} {s2,s3}

{s1,s2,s3}

{s1,s2}

{s1} {s2}

Figure 7: Top-down exploration for our running example.

As already discussed, bottom-up exploration tends to be bene-
ficial in case of highly interactive candidate subexpressions, while
top-down exploration is more beneficial in the presence of few in-
teractions. To this end, we could dynamically pick the exploration
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Algorithm 2: LocalILP
Input : uij : 1×m vector of utilities for query qi

xjk: m×m subexpression interaction matrix
Output: yij : subexpressions to use for evaluating qi (eval. vector)

// Initialize to 0s
1 ycurij = AllZeros() // current eval. vector

2 ybestij = AllZeros() // best eval. vector

3 BranchAndBound(ycurij , 0)
4 return ybestij

5 Function BranchAndBound(ycuri , js)
6 if IsInteracting(ycurij , xjk) then
7 return // bound if interaction found

8 if js == m then
9 if Utility(ycurij ) > Utility(ybestij ) then

10 ybestij = ycurij // update best

11 return
12 ycurij [js] = 1 // attempt to use js-th subexpr.

13 BranchAndBound(ycurij , js+1)
14 ycurij [js] = 0 // backtrack

15 BranchAndBound(ycuri , js+1)

direction based on the frequency of non-zero elements in the inter-
action matrix X . Specifically, for an m × m interaction matrix,
we define the interaction fraction as NonZeros(X)/(m(m − 1)).
When the interaction fraction is greater than a threshold, we pick
the top-down exploration, otherwise we follow the bottom-up one.

Taking the dynamic exploration a step further, we observe that at
each branching step of our branch-and-bound, the interaction frac-
tion for the remaining subexpressions varies. Therefore, instead of
choosing upfront, we can adaptively decide to use a bottom-up or a
top-down approach at each step of the algorithm.

4.3 Skipping Trivial States
Finally, we present some additional techniques to avoid trivial

states of the exploration and thus reach a high-utility solution faster.
Notice that subexpressions that do not interact with others will

definitely be part of the best solution since our utility increases
monotonically as more subexpressions are added. Selecting such
subexpressions upfront, instead of starting with the all-zero yij vec-
tor, can significantly reduce our search space. Fig. 8 shows that this
technique reduces the search space by 3 for our running example.
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Figure 8: Better initialization given that s3 does not interact
with any other subexpression.

Similar to the better initialization, while exploring the solution
search space, we could find subexpressions that do not interact with
any of the remaining elements. Thus, in each iteration, we check
whether there exist such remaining subexpressions, and if so, we
directly set the corresponding yij elements to 1. In our running
example, consider two new elements, s4 and s5, which interact
only with s1. As shown in Fig. 9, we can immediately include the
new elements to the {s2, s3} set, as this will lead to no interactions.

Finally, we can also skip altogether the ILPs for queries whose
subexpressions’ labels have not changed since the last vertex label-
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{s2} {s3}
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Figure 9: Dynamically adding new subexpressions s4 and s5
(which interact only with s1) to the {s2, s3} set.

ing iteration of Algorithm 1. This would require keeping track of
the previous subexpression vertex labels.

5. EVALUATION
In this section, we present an evaluation of our subexpres-

sion selection algorithm over both production and synthetic work-
loads. The production workloads used in this paper are derived
from SCOPE [52] jobs that are predominantly run in our clusters.
Briefly, SCOPE exposes a SQL-like query language in which users
write scripts that are then compiled to Dryad DAGs [51] and sub-
sequently executed on the shared cluster.

We split our evaluation in two main parts. First, we assess the
benefit of BIGSUBS on production workloads at Microsoft’s ana-
lytics clusters, both in terms of supported workload sizes and im-
provement over heuristic-based approaches (§5.1). Second, we per-
form a detailed analysis of our algorithm, including comparison
with optimal ILP solutions, scalability on single machine, conver-
gence, and pruning effectiveness of our optimizations (§5.2).

The main takeaways from our evaluation are the following:
• BIGSUBS handles large production workloads comprising tens

of thousands of jobs, significantly outperforms heuristics-based
approaches by up to three orders of magnitude, and can poten-
tially save 10–40% machine-hours8 (Table 1 and Fig. 10).
• In contrast to an implementation of our global ILP formulation

of §2.2 using a state-of-the-art commercial optimizer, which can-
not support more than 2K subexpressions on a desktop machine
(Fig. 11), our approach scales up to 50K subexpressions on the
same single machine (Fig. 12).
• It converges to a solution that respects the space budget (Fig. 13),

while our pruning optimizations can effectively reduce the search
space by more than 90% in most cases (Fig. 14).

5.1 Impact on Production Workloads
To study the impact of our approach on real use cases, we use

BIGSUBS to select subexpressions to materialize in one of our pro-
duction clusters. Our goal is to be able to (i) perform subexpression
selection over our large production workloads (§5.1.2), and (ii) se-
lect subexpressions with higher utility than existing subexpression
selection heuristics (§5.1.3). Below we first describe our workloads
and the tuning of our algorithm, and then present our results.

5.1.1 Setup
Workloads. In our analytics clusters, we maintain a job repository
that stores various metadata and statistics about all SCOPE jobs
that get executed. This metadata is collected at different levels of
granularity, including cluster, business unit9, job, operator, and task
levels. For the purposes of our experiments, we used the job repos-
itory to extract the following sets of workloads for one day’s worth
of SCOPE jobs (Table 1 shows the detailed description):
8Each job consists of tasks that get executed in the cluster in parallel. We
define as machine-hours of a job, the sum of execution times of all its tasks.
9Our clusters are split in business units to be shared across different parts
of the company for administrative purposes.
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Table 1: Distributed execution over large production work-
loads. Workload details are in the upper half of the table; re-
sults of our algorithm’s execution in the lower half.

Production
SCOPE
Workloads

Workload Workload1 Workload2
Overlapping Users 9 748
Overlapping Jobs 4,315 42,182
Total Subexpr. 293,467 1,812,854
Unique Subexpr. 63,315 446,954
Unique Subexpr. Size 19.6PB 26.7PB

Subexpression
Selection
Algorithm

Compute Nodes 500 500
Iterations 10 10
Storage Cap 1PB 1PB
Runtime ~1 hr. ~3 hrs.
Selected Subexpr. 62% 44%
Impacted Jobs 90% 79%
Impacted Users 100% 94%
Machine-time Savings 10.4% 42.3%

• Workload1 includes all jobs of a business unit for that day. It con-
tains 4.3K overlapping jobs and 63K unique subexpressions.

• Workload2 includes all jobs in one of our clusters for the same
day. It contains 42K overlapping jobs (more than hundreds of
thousands of total jobs) and 447K unique subexpressions.

Candidate subexpression enumeration. For each job, we tra-
verse its logical query tree, as it is output by the SCOPE optimizer,
and emit all its subtrees as candidate subexpressions. We filter out
subexpressions that appear only once, since they do not present any
computation reuse opportunity.
Subexpression utility. The utility of a subexpression is computed
based on Eq. 2. Instead of relying on the optimizer’s cost estimates,
which can be significantly inaccurate (due to missing or inaccurate
statistics, UDFs, error propagation, etc.), we rely on the observed
machine-hours that are stored in our job repository during the previ-
ous execution of the job. Whenever such statistics are not available,
we fall back to the optimizer’s estimates.
Subexpression interactions. Two subexpressions are interacting
if the logical tree of the one is a subtree of the other (see Def. 4).
Interactions are detected during subexpression enumeration and are
stored in the interaction matrix X .
Subexpression costs. Similar to subexpression utility, we use the
statistics stored in the job repository to collect accurate values for
the cost (i.e., the storage footprint) of a subexpression.

Evaluation methodology. In evaluating our algorithm, note that
it is not feasible to run our production workloads multiple times
over the same data. Therefore, to quantify the machine-hour sav-
ings when a set of subexpressions is used to evaluate a query, we
sum the utilities of these subexpressions for the given query, using
information from the job repository and Eq. 2, as described above.

5.1.2 Support for Large Production Workloads
Table 1 shows the results of running the distributed SCOPE im-

plementation of our subexpression selection algorithm (Listing 1)
over the two production workloads. For materializing subexpres-
sions, we budgeted a maximum storage capacity of 1PB while the
total data processed by the jobs is in the orders of EB (exabytes).
Despite using only a fraction of total capacity, we are able to ma-
terialize 62% and 44% of the subexpressions for Workload1 and
Workload2, respectively. These subexpressions are in turn able to
impact 79–90% of the jobs and 90–100% of the users. The algo-
rithm runs in less than an hour for Workload1 and close to three
hours for Workload2. These execution times are reasonable given
that our subexpression selection is an offline process that is exe-
cuted every few days or even weeks.

Table 1

Budget Size unique-views total-views unique-jobs unique-users BigView Topk-freq Topk-utility Topk-
totalUtility

Topk-
normTotalU
tility

10GB 16.16 132.00 1272.00 366.00 3.00 51415.87 19146.17 39620.66 15200.04 11627.91 2.69 1.30 3.38 4.42

100GB 60.00 99.00 1214.00 313.00 4.00 56557.15 19146.17 39620.66 15200.04 11627.91 2.95 1.43 3.72 4.86

1TB 1019.63 304.00 2064.00 472.00 123488.89 29292.75 38664.64 16413.06 11352.73 4.22 3.19 7.52 10.88

10TB 12476.13 810.00 4001.00 929.00 5.00 250210.29 72039.19 38741.72 16352.47 11660.34 3.47 6.46 15.30 21.46

100TB 99874.95 8401.00 35913.00 2560.00 8.00 2704039.16 91452.59 44531.21 24921.68 12207.52 29.57 60.72 108.50 221.51

1PB 998475.65 39226.00 168052.00 3858.00 9.00 11465834.67 101539.08 55136.51 79412.90 12205.10 112.92 207.95 144.38 939.43
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Figure 10: Total utility (machine-hour savings) on production
Workload1 using different selection methods and cost budgets.
Since the graph shows utility (i.e., savings), higher is better. The
table shows the improvement factor of BIGSUBS when com-
pared to the other schemes (higher factor is better).

Most importantly, our subexpression selection algorithm yields
machine-hour savings of 10.4% and 42.3% for the two workloads,
respectively. Such improvements translate to millions of dollars
worth of operational costs being saved in Microsoft production
clusters. Interestingly, the improvement when considering the jobs
of the whole cluster is significantly higher compared to consider-
ing only a single business unit. This validates our observation at
§1 that the shared nature of production clusters leads to significant
redundant computations across users, who have no way of identify-
ing such overlaps. It also highlights the importance of an algorithm
that can support workloads that span the whole cluster’s load, com-
prising several tens of thousands of jobs, compared to the 10s or
100s supported by traditional subexpression selection methods.

5.1.3 Comparison with Heuristics-based Approaches
A number of heuristics have been proposed in prior works for

identifying interesting subexpressions. Nectar [18], for instance,
selects subexpressions by looking at their total runtime to size ra-
tio. To examine the quality of our BIGSUBS algorithm compared
to such approaches in terms of total utility (measured in machine-
hours) achieved, we consider the following top-k heuristics:
(1) Topk-freq. Rank subexpressions by the number of times they
appear in different queries.

(2) Topk-utility. Compute the utility of each subexpression for
each query, and rank subexpressions by their maximum utility for
a single query.

(3) Topk-totalUtility. Similar to Topk-utility, but we compute for
each subexpression the sum of utilities it achieves for all queries.

(4) Topk-normTotalUtility. Rank subexpressions by their total
utility divided by their storage footprint in bytes. This is similar to
the approach followed by Nectar [18].

For each of these heuristics, we select subexpressions in their
ranked order until we exceed the storage budget. Fig. 10 shows the
total utility (machine-hours) of BIGSUBS compared to the heuris-
tics on Workload1 with varying storage budget, i.e., for different
cost-benefit trade-offs. In general, by taking a global view of the
workload and the subexpression interactions, BIGSUBS performs
uniformly better across the range of storage budgets. In particu-
lar, it results in 30% to 400% better utility for a 10GB budget.
The improvement increases to more than two orders of magnitude
for larger storage budgets, with a maximum of 940× over Topk-
normTotalUtility for a 1PB budget.
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Figure 11: Comparison of BIGSUBS with variants of the OPTIMAL algorithm (using the Gurobi optimizer) on a single machine.

Table 2: Parameters of our workload generator.
Parameter Meaning Default
NumberOfSubexpr Number of candidate subexpr. 25
SubexprToJobRatio Average number of candidate subexpr. per job 0.6
SubexprToCapRatio Cost constraint as a proportion of #subexpr. 0.8
RelevantPerJob Number of possible subexpr. rewrites per job 10
InteractionProb Chance of interaction between two subexpr. 0.2
Iterations #iterations in bipartite graph labeling 20
InitZjProb Probability to initialize subexpr. vertices to 1 0
AdaptiveThreshold Switch point between bottom-up and top-down 0.2
StricterFlipping % of iterations before stricter flipping (§3.2.2) 80%

None of the heuristics manages to successfully capture the con-
straints of subexpression selection. By comparing Topk-freq with
Topk-utility, we observe a trade-off between subexpression fre-
quency and utility: leaf-level subexpressions are the most frequent
but have smaller utility; larger subexpressions have higher utility
but smaller frequency. For smaller budgets, it pays off to select
complex subexpressions of higher utility (Topk-utility) that are of-
ten smaller in size. With sufficiently large budgets though, ranking
based on frequency (Topk-freq) gives better results. On the other
hand, Topk-totalUtility and Topk-normTotalUtility combine subex-
pression utility and frequency across queries, but, interestingly,
they perform worse than the two simpler heuristics. By select-
ing high-utility subexpressions that appear in multiple queries, but
without taking into account interactions, they also select closely-
related subexpressions appearing in the same queries, which are
redundant and thus do not contribute to the total utility. Therefore,
attempting to make decisions across multiple queries without ac-
counting for interactions can be detrimental to the solution quality.

5.2 Detailed Analysis
To better understand the behavior of BIGSUBS and to fairly com-

pare it with the ILP formulation of §2.2 (termed OPTIMAL here-
after) that is not parallelizable, we implemented a version of BIG-
SUBS in C# that runs the same iterative Algorithm 1 on a single
machine. We use this version to drive a set of micro-experiments
and compare BIGSUBS with OPTIMAL (§5.2.1), study BIGSUBS’
scalability (§5.2.2) and convergence (§5.2.3), and assess the effec-
tiveness of our pruning optimizations (§5.2.4).

For the purpose of these experiments, we built a synthetic work-
load generator, whose parameters and their default values are
summarized in Table 2. Given the desired number of subexpres-
sions (NumberOfSubexpr), the generator determines the number of
queries using the SubexprToJobRatio. It randomly sets the cost of
each subexpression to a value from 1 to 10. Then it generates the
utility matrix U (see §2.1) by setting each element uij to a ran-
dom value from 1 to 10 with probability RelevantPerJob/#jobs;
otherwise the entry is 0. Moreover, it generates the subexpression
interaction matrix X by setting each element xij to 1 with proba-
bility InteractionProb.10

10Note that our generator purposely does not specify the direction of interac-
tion between two subexpressions (i.e., containment), as this is not required
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Figure 12: Scalability of BIGSUBS on a single machine.

We use a desktop machine running Windows 10 Enterprise Edi-
tion, having 32 GB of memory and two 2.4 GHz processors with a
total of 12 cores and 24 hardware threads. Unless otherwise speci-
fied, we report the average over three runs in our experiments.

5.2.1 Comparison with Optimal
To compare with the OPTIMAL, we implemented the global ILP

formulation of §2.2 using Gurobi (version 7.5.2), one of the most
widely-used commercial optimizers [2]. Fig. 11 reports our find-
ings for workloads of up to 2000 subexpressions. Beyond that size,
Gurobi ran out of memory on our desktop with 32 GB of memory.

Fig. 11(a) illustrates the number of possible solutions (states)
considered by BIGSUBS and Gurobi, as well as the states that
an exhaustive approach would consider (computed by the formula
2mn). Gurobi performs a presolve phase that prunes a large num-
ber of states, when compared to exhaustive. However, given that
it solves a global ILP problem, it considers up to three orders of
magnitude more states than BIGSUBS. On the other hand, BIG-
SUBS, by solving smaller ILP problems and applying domain-
specific optimizations, avoids blowing up the search space. Sim-
ilarly, Fig. 11(b) shows that the actual runtime of Gurobi is two or-
ders of magnitude longer than that of BIGSUBS. For example, for
2000 subexpressions, Gurobi takes 14 minutes, while BIGSUBS
takes just 4.7 seconds. We also experimented with Gurobi’s util-
ity that automatically tunes the parameter values for a given input
(“Gurobi+autotune”), but the resulting end-to-end time of parame-
ter tuning and optimization ended up being even longer. Note, how-
ever, that the utility of Gurobi’s output (Fig. 11(c)) is, as expected,
higher than BIGSUBS’ (by up to 2×), so for small input sizes (up to
2000 subexpressions, which is not practical in our setting), Gurobi
could be used instead.

Finally, we tried to relax Gurobi’s optimality by increasing the
optimality “gap tolerance” from 0% (optimal) to 50%, which al-
lows the solver to terminate before it reaches the optimal solution.
As Fig. 11(d) shows, this did not significantly improve Gurobi’s

in our formulation of §2.2. For interacting subexpressions s1 and s2, the
workload is valid both when the utility of s1 is higher than that of s2 (s1
contains s2) and when it is lower (s1 is contained in s2).
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Table 1

Iteration Benefit Weight Optimal_benefit Optimal_weight

1 265 18 479 20

2 472 37 479 20

3 359 69 479 20

4 363 52 479 20

5 602 72 479 20

6 363 39 479 20

7 456 50 479 20

8 555 61 479 20

9 671 74 479 20

10 566 63 479 20

11 466 68 479 20

12 483 48 479 20

13 684 81 479 20

14 387 43 479 20

15 573 65 479 20

16 332 49 479 20

17 358 25 479 20

18 240 20 479 20

19 258 20 479 20

20 258 20 479 20

21 258 20 479 20

22 258 20 479 20

23 258 20 479 20

24 258 20 479 20

25 258 20 479 20

26 258 20 479 20

27 258 20 479 20

28 258 20 479 20

29 258 20 479 20

30 258 20 479 20
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Table 2

Iter FlipIters FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight Optimal Capacity

1 23 1 82 22 2 44 23 3 45 39 4 150 19 5 75 24 416 20

2 23 1 186 34 2 361 23 3 195 31 4 195 19 5 207 22 416 20

3 23 1 248 45 2 269 63 3 273 30 4 195 19 5 233 22 416 20

4 23 1 610 57 2 129 24 3 263 20 4 235 20 5 233 22 416 20

5 23 1 338 60 2 490 59 3 308 20 4 227 20 5 185 18 416 20

6 23 1 448 78 2 161 32 3 308 20 4 227 20 5 333 55 416 20

7 23 1 395 48 2 555 61 3 308 20 4 227 20 5 232 37 416 20

8 23 1 422 66 2 245 34 3 308 20 4 227 20 5 199 35 416 20

9 23 1 475 57 2 505 84 3 308 20 4 227 20 5 195 29 416 20

10 23 1 365 58 2 264 45 3 308 20 4 227 20 5 162 27 416 20

11 23 1 361 50 2 446 69 3 308 20 4 227 20 5 341 42 416 20

12 23 1 406 74 2 191 25 3 308 20 4 227 20 5 177 28 416 20

13 23 1 411 44 2 462 59 3 308 20 4 227 20 5 185 24 416 20

14 23 1 422 46 2 228 29 3 308 20 4 227 20 5 175 22 416 20

15 23 1 295 66 2 423 63 3 308 20 4 227 20 5 175 22 416 20

16 23 1 429 37 2 292 43 3 308 20 4 227 20 5 353 37 416 20

17 23 1 398 60 2 432 44 3 308 20 4 227 20 5 270 25 416 20

18 23 1 275 43 2 170 19 3 308 20 4 227 20 5 193 17 416 20

19 23 1 359 49 2 399 44 3 308 20 4 227 20 5 222 11 416 20

20 23 1 573 74 2 247 29 3 308 20 4 227 20 5 201 16 416 20

21 23 1 338 48 2 459 66 3 308 20 4 227 20 5 335 22 416 20

22 23 1 333 52 2 176 22 3 308 20 4 227 20 5 282 22 416 20

23 23 1 411 47 2 464 70 3 308 20 4 227 20 5 282 22 416 20

24 23 1 412 53 2 213 35 3 308 20 4 227 20 5 270 21 416 20

25 23 1 126 24 2 164 22 3 308 20 4 227 20 5 273 21 416 20

26 23 1 228 24 2 168 22 3 308 20 4 227 20 5 273 21 416 20

27 23 1 228 24 2 168 22 3 308 20 4 227 20 5 273 21 416 20

28 23 1 152 20 2 158 20 3 308 20 4 227 20 5 255 17 416 20

29 23 1 184 20 2 186 20 3 308 20 4 227 20 5 278 18 416 20

30 23 1 184 20 2 186 20 3 308 20 4 227 20 5 263 17 416 20
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Table 3

Iter FlipIters FlipFreq Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight 50%Flipping 
Iterations

80% Flipping 
Iterations

Ideal 50% Flipping 
Iterations

50% Flipping 
Iterations

80%Flipping 
Iterations

1 15 5 144 21 18 230 23 21 56 26 23 75 24 29 167 20 6.85714285714286 3.125 20.8 0.791208791208791 1.05 0.2851711026615971.41176470588235

2 15 5 305 21 18 315 23 21 120 15 23 207 22 29 285 20 14.52380952380959.40909090909091 20.8 1.67582417582418 1.05 0.7870722433460081.29411764705882

3 15 5 305 21 18 315 23 21 160 19 23 233 22 29 285 20 14.523809523809510.5909090909091 20.8 1.67582417582418 1.05 0.8859315589353611.29411764705882

4 15 5 305 21 18 315 22 21 180 20 23 233 22 29 285 20 14.523809523809510.5909090909091 20.8 1.67582417582418 1.05 0.8859315589353611.29411764705882

5 15 5 305 21 18 303 19 21 177 20 23 185 18 29 285 20 14.523809523809510.2777777777778 20.8 1.67582417582418 1.05 0.7034220532319391.05882352941176

6 15 5 231 58 18 318 20 21 177 20 23 333 55 29 285 20 3.982758620689666.05454545454545 20.8 1.26923076923077 2.9 1.266159695817493.23529411764706

7 15 5 197 32 18 333 20 21 177 20 23 232 37 29 285 20 6.15625 6.27027027027027 20.8 1.08241758241758 1.6 0.882129277566542.17647058823529

8 15 5 166 20 18 333 20 21 177 20 23 199 35 29 285 20 8.3 5.68571428571429 20.8 0.912087912087912 1 0.7566539923954372.05882352941176

9 15 5 182 20 18 333 20 21 177 20 23 195 29 29 285 20 9.1 6.72413793103448 20.8 1 1 0.7414448669201521.70588235294118

10 15 5 182 20 18 333 20 21 177 20 23 162 27 29 285 20 9.1 6 20.8 1 1 0.6159695817490491.58823529411765

11 15 5 182 20 18 333 20 21 177 20 23 341 42 29 285 20 9.1 8.11904761904762 20.8 1 1 1.296577946768062.47058823529412

12 15 5 182 20 18 333 20 21 177 20 23 177 28 29 285 20 9.1 6.32142857142857 20.8 1 1 0.6730038022813691.64705882352941

13 15 5 182 20 18 333 20 21 177 20 23 185 24 29 285 20 9.1 7.70833333333333 20.8 1 1 0.7034220532319391.41176470588235

14 15 5 182 20 18 333 20 21 177 20 23 175 22 29 285 20 9.1 7.95454545454545 20.8 1 1 0.6653992395437261.29411764705882

15 15 5 182 20 18 333 20 21 177 20 23 175 22 29 285 20 9.1 7.95454545454545 20.8 1 1 0.6653992395437261.29411764705882

16 15 5 182 20 18 333 20 21 177 20 23 353 37 29 285 20 9.1 9.54054054054054 20.8 1 1 1.342205323193922.17647058823529

17 15 5 182 20 18 333 20 21 177 20 23 270 25 29 285 20 9.1 10.8 20.8 1 1 1.026615969581751.47058823529412

18 15 5 182 20 18 333 20 21 177 20 23 193 17 29 285 20 9.1 11.3529411764706 20.8 1 1 0.733840304182509 1

19 15 5 182 20 18 333 20 21 177 20 23 222 11 29 285 20 9.1 20.1818181818182 20.8 1 1 0.8441064638783270.647058823529412

20 15 5 182 20 18 333 20 21 177 20 23 201 16 29 285 20 9.1 12.5625 20.8 1 1 0.764258555133080.941176470588235

21 15 5 182 20 18 333 20 21 177 20 23 335 22 29 285 20 9.1 15.2272727272727 20.8 1 1 1.273764258555131.29411764705882

22 15 5 182 20 18 333 20 21 177 20 23 282 22 29 285 20 9.1 12.8181818181818 20.8 1 1 1.07224334600761.29411764705882

23 15 5 182 20 18 333 20 21 177 20 23 282 22 29 285 20 9.1 12.8181818181818 20.8 1 1 1.07224334600761.29411764705882

24 15 5 182 20 18 333 20 21 177 20 23 270 21 29 285 20 9.1 12.8571428571429 20.8 1 1 1.026615969581751.23529411764706

25 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

26 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

27 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

28 15 5 182 20 18 333 20 21 177 20 23 255 17 29 285 20 9.1 15 20.8 1 1 0.96958174904943 1

29 15 5 182 20 18 333 20 21 177 20 23 278 18 29 285 20 9.1 15.4444444444444 20.8 1 1 1.057034220532321.05882352941176

30 15 5 182 20 18 333 20 21 177 20 23 263 17 29 285 20 9.1 15.4705882352941 20.8 1 1 1 1
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Iter FlipFreq FlipIters FlipIters FlipIters Benefit Benefit Benefit Weight Weight WeightIter

�1

(a) Flipping frequency=1.

Table 1

Iteration Benefit Weight Optimal_benefit Optimal_weight

1 265 18 479 20

2 472 37 479 20

3 359 69 479 20

4 363 52 479 20

5 602 72 479 20

6 363 39 479 20

7 456 50 479 20

8 555 61 479 20

9 671 74 479 20

10 566 63 479 20

11 466 68 479 20

12 483 48 479 20

13 684 81 479 20

14 387 43 479 20

15 573 65 479 20

16 332 49 479 20

17 358 25 479 20

18 240 20 479 20

19 258 20 479 20

20 258 20 479 20

21 258 20 479 20

22 258 20 479 20

23 258 20 479 20

24 258 20 479 20

25 258 20 479 20

26 258 20 479 20

27 258 20 479 20

28 258 20 479 20

29 258 20 479 20

30 258 20 479 20
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Table 2

Iter FlipIters FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight Optimal Capacity

1 23 1 82 22 2 44 23 3 45 39 4 150 19 5 75 24 416 20

2 23 1 186 34 2 361 23 3 195 31 4 195 19 5 207 22 416 20

3 23 1 248 45 2 269 63 3 273 30 4 195 19 5 233 22 416 20

4 23 1 610 57 2 129 24 3 263 20 4 235 20 5 233 22 416 20

5 23 1 338 60 2 490 59 3 308 20 4 227 20 5 185 18 416 20

6 23 1 448 78 2 161 32 3 308 20 4 227 20 5 333 55 416 20

7 23 1 395 48 2 555 61 3 308 20 4 227 20 5 232 37 416 20

8 23 1 422 66 2 245 34 3 308 20 4 227 20 5 199 35 416 20

9 23 1 475 57 2 505 84 3 308 20 4 227 20 5 195 29 416 20

10 23 1 365 58 2 264 45 3 308 20 4 227 20 5 162 27 416 20

11 23 1 361 50 2 446 69 3 308 20 4 227 20 5 341 42 416 20

12 23 1 406 74 2 191 25 3 308 20 4 227 20 5 177 28 416 20

13 23 1 411 44 2 462 59 3 308 20 4 227 20 5 185 24 416 20

14 23 1 422 46 2 228 29 3 308 20 4 227 20 5 175 22 416 20

15 23 1 295 66 2 423 63 3 308 20 4 227 20 5 175 22 416 20

16 23 1 429 37 2 292 43 3 308 20 4 227 20 5 353 37 416 20

17 23 1 398 60 2 432 44 3 308 20 4 227 20 5 270 25 416 20

18 23 1 275 43 2 170 19 3 308 20 4 227 20 5 193 17 416 20

19 23 1 359 49 2 399 44 3 308 20 4 227 20 5 222 11 416 20

20 23 1 573 74 2 247 29 3 308 20 4 227 20 5 201 16 416 20

21 23 1 338 48 2 459 66 3 308 20 4 227 20 5 335 22 416 20

22 23 1 333 52 2 176 22 3 308 20 4 227 20 5 282 22 416 20

23 23 1 411 47 2 464 70 3 308 20 4 227 20 5 282 22 416 20

24 23 1 412 53 2 213 35 3 308 20 4 227 20 5 270 21 416 20

25 23 1 126 24 2 164 22 3 308 20 4 227 20 5 273 21 416 20

26 23 1 228 24 2 168 22 3 308 20 4 227 20 5 273 21 416 20

27 23 1 228 24 2 168 22 3 308 20 4 227 20 5 273 21 416 20

28 23 1 152 20 2 158 20 3 308 20 4 227 20 5 255 17 416 20

29 23 1 184 20 2 186 20 3 308 20 4 227 20 5 278 18 416 20

30 23 1 184 20 2 186 20 3 308 20 4 227 20 5 263 17 416 20
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Table 3

Iter FlipIters FlipFreq Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight 50%Flipping 
Iterations

80% Flipping 
Iterations

Ideal 50% Flipping 
Iterations

50% Flipping 
Iterations

80%Flipping 
Iterations

1 15 5 144 21 18 230 23 21 56 26 23 75 24 29 167 20 6.85714285714286 3.125 20.8 0.791208791208791 1.05 0.2851711026615971.41176470588235

2 15 5 305 21 18 315 23 21 120 15 23 207 22 29 285 20 14.52380952380959.40909090909091 20.8 1.67582417582418 1.05 0.7870722433460081.29411764705882

3 15 5 305 21 18 315 23 21 160 19 23 233 22 29 285 20 14.523809523809510.5909090909091 20.8 1.67582417582418 1.05 0.8859315589353611.29411764705882

4 15 5 305 21 18 315 22 21 180 20 23 233 22 29 285 20 14.523809523809510.5909090909091 20.8 1.67582417582418 1.05 0.8859315589353611.29411764705882

5 15 5 305 21 18 303 19 21 177 20 23 185 18 29 285 20 14.523809523809510.2777777777778 20.8 1.67582417582418 1.05 0.7034220532319391.05882352941176

6 15 5 231 58 18 318 20 21 177 20 23 333 55 29 285 20 3.982758620689666.05454545454545 20.8 1.26923076923077 2.9 1.266159695817493.23529411764706

7 15 5 197 32 18 333 20 21 177 20 23 232 37 29 285 20 6.15625 6.27027027027027 20.8 1.08241758241758 1.6 0.882129277566542.17647058823529

8 15 5 166 20 18 333 20 21 177 20 23 199 35 29 285 20 8.3 5.68571428571429 20.8 0.912087912087912 1 0.7566539923954372.05882352941176

9 15 5 182 20 18 333 20 21 177 20 23 195 29 29 285 20 9.1 6.72413793103448 20.8 1 1 0.7414448669201521.70588235294118

10 15 5 182 20 18 333 20 21 177 20 23 162 27 29 285 20 9.1 6 20.8 1 1 0.6159695817490491.58823529411765

11 15 5 182 20 18 333 20 21 177 20 23 341 42 29 285 20 9.1 8.11904761904762 20.8 1 1 1.296577946768062.47058823529412

12 15 5 182 20 18 333 20 21 177 20 23 177 28 29 285 20 9.1 6.32142857142857 20.8 1 1 0.6730038022813691.64705882352941

13 15 5 182 20 18 333 20 21 177 20 23 185 24 29 285 20 9.1 7.70833333333333 20.8 1 1 0.7034220532319391.41176470588235

14 15 5 182 20 18 333 20 21 177 20 23 175 22 29 285 20 9.1 7.95454545454545 20.8 1 1 0.6653992395437261.29411764705882

15 15 5 182 20 18 333 20 21 177 20 23 175 22 29 285 20 9.1 7.95454545454545 20.8 1 1 0.6653992395437261.29411764705882

16 15 5 182 20 18 333 20 21 177 20 23 353 37 29 285 20 9.1 9.54054054054054 20.8 1 1 1.342205323193922.17647058823529

17 15 5 182 20 18 333 20 21 177 20 23 270 25 29 285 20 9.1 10.8 20.8 1 1 1.026615969581751.47058823529412

18 15 5 182 20 18 333 20 21 177 20 23 193 17 29 285 20 9.1 11.3529411764706 20.8 1 1 0.733840304182509 1

19 15 5 182 20 18 333 20 21 177 20 23 222 11 29 285 20 9.1 20.1818181818182 20.8 1 1 0.8441064638783270.647058823529412

20 15 5 182 20 18 333 20 21 177 20 23 201 16 29 285 20 9.1 12.5625 20.8 1 1 0.764258555133080.941176470588235

21 15 5 182 20 18 333 20 21 177 20 23 335 22 29 285 20 9.1 15.2272727272727 20.8 1 1 1.273764258555131.29411764705882

22 15 5 182 20 18 333 20 21 177 20 23 282 22 29 285 20 9.1 12.8181818181818 20.8 1 1 1.07224334600761.29411764705882

23 15 5 182 20 18 333 20 21 177 20 23 282 22 29 285 20 9.1 12.8181818181818 20.8 1 1 1.07224334600761.29411764705882

24 15 5 182 20 18 333 20 21 177 20 23 270 21 29 285 20 9.1 12.8571428571429 20.8 1 1 1.026615969581751.23529411764706

25 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

26 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

27 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

28 15 5 182 20 18 333 20 21 177 20 23 255 17 29 285 20 9.1 15 20.8 1 1 0.96958174904943 1

29 15 5 182 20 18 333 20 21 177 20 23 278 18 29 285 20 9.1 15.4444444444444 20.8 1 1 1.057034220532321.05882352941176

30 15 5 182 20 18 333 20 21 177 20 23 263 17 29 285 20 9.1 15.4705882352941 20.8 1 1 1 1
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Table 4

Iter FlipFreq FlipIters FlipIters FlipIters Benefit Benefit Benefit Weight Weight WeightIter

�1

(b) Flipping frequency=5.

Table 1

Iteration Benefit Weight Optimal_benefit Optimal_weight

1 265 18 479 20

2 472 37 479 20

3 359 69 479 20

4 363 52 479 20

5 602 72 479 20

6 363 39 479 20

7 456 50 479 20

8 555 61 479 20

9 671 74 479 20

10 566 63 479 20

11 466 68 479 20

12 483 48 479 20

13 684 81 479 20

14 387 43 479 20

15 573 65 479 20

16 332 49 479 20

17 358 25 479 20

18 240 20 479 20

19 258 20 479 20

20 258 20 479 20

21 258 20 479 20

22 258 20 479 20

23 258 20 479 20

24 258 20 479 20

25 258 20 479 20

26 258 20 479 20

27 258 20 479 20

28 258 20 479 20

29 258 20 479 20

30 258 20 479 20
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Table 2

Iter FlipIters FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight FlipFreq Benefit Weight Optimal Capacity

1 23 1 82 22 2 44 23 3 45 39 4 150 19 5 75 24 416 20

2 23 1 186 34 2 361 23 3 195 31 4 195 19 5 207 22 416 20

3 23 1 248 45 2 269 63 3 273 30 4 195 19 5 233 22 416 20

4 23 1 610 57 2 129 24 3 263 20 4 235 20 5 233 22 416 20

5 23 1 338 60 2 490 59 3 308 20 4 227 20 5 185 18 416 20

6 23 1 448 78 2 161 32 3 308 20 4 227 20 5 333 55 416 20

7 23 1 395 48 2 555 61 3 308 20 4 227 20 5 232 37 416 20

8 23 1 422 66 2 245 34 3 308 20 4 227 20 5 199 35 416 20

9 23 1 475 57 2 505 84 3 308 20 4 227 20 5 195 29 416 20

10 23 1 365 58 2 264 45 3 308 20 4 227 20 5 162 27 416 20

11 23 1 361 50 2 446 69 3 308 20 4 227 20 5 341 42 416 20

12 23 1 406 74 2 191 25 3 308 20 4 227 20 5 177 28 416 20

13 23 1 411 44 2 462 59 3 308 20 4 227 20 5 185 24 416 20

14 23 1 422 46 2 228 29 3 308 20 4 227 20 5 175 22 416 20

15 23 1 295 66 2 423 63 3 308 20 4 227 20 5 175 22 416 20

16 23 1 429 37 2 292 43 3 308 20 4 227 20 5 353 37 416 20

17 23 1 398 60 2 432 44 3 308 20 4 227 20 5 270 25 416 20

18 23 1 275 43 2 170 19 3 308 20 4 227 20 5 193 17 416 20

19 23 1 359 49 2 399 44 3 308 20 4 227 20 5 222 11 416 20

20 23 1 573 74 2 247 29 3 308 20 4 227 20 5 201 16 416 20

21 23 1 338 48 2 459 66 3 308 20 4 227 20 5 335 22 416 20

22 23 1 333 52 2 176 22 3 308 20 4 227 20 5 282 22 416 20

23 23 1 411 47 2 464 70 3 308 20 4 227 20 5 282 22 416 20

24 23 1 412 53 2 213 35 3 308 20 4 227 20 5 270 21 416 20

25 23 1 126 24 2 164 22 3 308 20 4 227 20 5 273 21 416 20

26 23 1 228 24 2 168 22 3 308 20 4 227 20 5 273 21 416 20

27 23 1 228 24 2 168 22 3 308 20 4 227 20 5 273 21 416 20

28 23 1 152 20 2 158 20 3 308 20 4 227 20 5 255 17 416 20

29 23 1 184 20 2 186 20 3 308 20 4 227 20 5 278 18 416 20

30 23 1 184 20 2 186 20 3 308 20 4 227 20 5 263 17 416 20
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Table 3

Iter FlipIters FlipFreq Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight FlipIters Benefit Weight 50%Flipping 
Iterations

80% Flipping 
Iterations

Ideal 50% Flipping 
Iterations

50% Flipping 
Iterations

80%Flipping 
Iterations

1 15 5 144 21 18 230 23 21 56 26 23 75 24 29 167 20 6.85714285714286 3.125 20.8 0.791208791208791 1.05 0.2851711026615971.41176470588235

2 15 5 305 21 18 315 23 21 120 15 23 207 22 29 285 20 14.52380952380959.40909090909091 20.8 1.67582417582418 1.05 0.7870722433460081.29411764705882

3 15 5 305 21 18 315 23 21 160 19 23 233 22 29 285 20 14.523809523809510.5909090909091 20.8 1.67582417582418 1.05 0.8859315589353611.29411764705882

4 15 5 305 21 18 315 22 21 180 20 23 233 22 29 285 20 14.523809523809510.5909090909091 20.8 1.67582417582418 1.05 0.8859315589353611.29411764705882

5 15 5 305 21 18 303 19 21 177 20 23 185 18 29 285 20 14.523809523809510.2777777777778 20.8 1.67582417582418 1.05 0.7034220532319391.05882352941176

6 15 5 231 58 18 318 20 21 177 20 23 333 55 29 285 20 3.982758620689666.05454545454545 20.8 1.26923076923077 2.9 1.266159695817493.23529411764706

7 15 5 197 32 18 333 20 21 177 20 23 232 37 29 285 20 6.15625 6.27027027027027 20.8 1.08241758241758 1.6 0.882129277566542.17647058823529

8 15 5 166 20 18 333 20 21 177 20 23 199 35 29 285 20 8.3 5.68571428571429 20.8 0.912087912087912 1 0.7566539923954372.05882352941176

9 15 5 182 20 18 333 20 21 177 20 23 195 29 29 285 20 9.1 6.72413793103448 20.8 1 1 0.7414448669201521.70588235294118

10 15 5 182 20 18 333 20 21 177 20 23 162 27 29 285 20 9.1 6 20.8 1 1 0.6159695817490491.58823529411765

11 15 5 182 20 18 333 20 21 177 20 23 341 42 29 285 20 9.1 8.11904761904762 20.8 1 1 1.296577946768062.47058823529412

12 15 5 182 20 18 333 20 21 177 20 23 177 28 29 285 20 9.1 6.32142857142857 20.8 1 1 0.6730038022813691.64705882352941

13 15 5 182 20 18 333 20 21 177 20 23 185 24 29 285 20 9.1 7.70833333333333 20.8 1 1 0.7034220532319391.41176470588235

14 15 5 182 20 18 333 20 21 177 20 23 175 22 29 285 20 9.1 7.95454545454545 20.8 1 1 0.6653992395437261.29411764705882

15 15 5 182 20 18 333 20 21 177 20 23 175 22 29 285 20 9.1 7.95454545454545 20.8 1 1 0.6653992395437261.29411764705882

16 15 5 182 20 18 333 20 21 177 20 23 353 37 29 285 20 9.1 9.54054054054054 20.8 1 1 1.342205323193922.17647058823529

17 15 5 182 20 18 333 20 21 177 20 23 270 25 29 285 20 9.1 10.8 20.8 1 1 1.026615969581751.47058823529412

18 15 5 182 20 18 333 20 21 177 20 23 193 17 29 285 20 9.1 11.3529411764706 20.8 1 1 0.733840304182509 1

19 15 5 182 20 18 333 20 21 177 20 23 222 11 29 285 20 9.1 20.1818181818182 20.8 1 1 0.8441064638783270.647058823529412

20 15 5 182 20 18 333 20 21 177 20 23 201 16 29 285 20 9.1 12.5625 20.8 1 1 0.764258555133080.941176470588235

21 15 5 182 20 18 333 20 21 177 20 23 335 22 29 285 20 9.1 15.2272727272727 20.8 1 1 1.273764258555131.29411764705882

22 15 5 182 20 18 333 20 21 177 20 23 282 22 29 285 20 9.1 12.8181818181818 20.8 1 1 1.07224334600761.29411764705882

23 15 5 182 20 18 333 20 21 177 20 23 282 22 29 285 20 9.1 12.8181818181818 20.8 1 1 1.07224334600761.29411764705882

24 15 5 182 20 18 333 20 21 177 20 23 270 21 29 285 20 9.1 12.8571428571429 20.8 1 1 1.026615969581751.23529411764706

25 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

26 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

27 15 5 182 20 18 333 20 21 177 20 23 273 21 29 285 20 9.1 13 20.8 1 1 1.038022813688211.23529411764706

28 15 5 182 20 18 333 20 21 177 20 23 255 17 29 285 20 9.1 15 20.8 1 1 0.96958174904943 1

29 15 5 182 20 18 333 20 21 177 20 23 278 18 29 285 20 9.1 15.4444444444444 20.8 1 1 1.057034220532321.05882352941176

30 15 5 182 20 18 333 20 21 177 20 23 263 17 29 285 20 9.1 15.4705882352941 20.8 1 1 1 1

To
ta

l B
en

efi
t

0

140

280

420

560

Iterations
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

50% Flipping Iterations
80% Flipping Iterations
Optimal

To
ta

l C
os

t

0

15

30

45

60

Iterations
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

50% Flipping Iterations
80% Flipping Iterations
Capacity

Ut
ilit

y 
/ C

os
t

0

4

8

12

16

20

24

28

Iterations
1 4 7 10 13 16 19 22 25 28 30

BigSubs Optimal

Table 4

Iter FlipFreq FlipIters FlipIters FlipIters Benefit Benefit Benefit Weight Weight WeightIter

�1

(c) Utility/cost ratio.

Figure 13: Convergence of BIGSUBS.

0.5 35762 53199 35762 30279 0 15.3319165594765

0.6 361455 2440425 361455 386143 0 -6.83017249726798

0.7 303217 1762779 303217 336729 0 -11.0521507699107

0.8 8786 7746 8786 6663 0 24.1634418392898

0.9 362000 2465064 362000 437011 0 -20.721270718232

1 311655 2692036 311655 430899 0 -38.2615392020022

BnbBottomUpT_it
er

BnbTopDownT_ite
r

BnbTDynamic_iter BnbTAdaptive_iter BnbTDynamic_iter BnbTAdaptive_iterViewsPerJob

Pruning with adaptive enumeration (interaction prob. = 0.1)

ViewsPerJob BnbBottomUpT_it
er

BnbTopDownT_ite
r

BnbTDynamic_iter BnbTAdaptive_iter BnbTDynamic_iter BnbTAdaptive_iter

0.0 18728 14094 18728 18728 0 0

0.1 773323 2199456 773323 759749 0 1.75528207488979

0.2 11191 7653 11191 8976 0 19.7926905549102

0.3 11191 7653 11191 8486 0 24.171209007238

0.4 12407 11191 12407 11248 0 9.34150076569678

0.5 1081686 3470541 1081686 1023952 0 5.33740845310007

0.6 688414 2310519 688414 644839 0 6.32976668109598

0.7 763075 2489216 763075 731009 0 4.20220817088753

0.8 1186947 3768059 1186947 1102202 0 7.1397459195735

0.9 50366 51635 50366 40091 0 20.4006671167057

1 39463 46911 39463 35929 0 8.95522388059702

Pruning with adaptive enumeration (interaction prob. = 0.05)

ViewsPerJob BnbBottomUpT_it
er

BnbTopDownT_ite
r

BnbTDynamic_iter BnbTAdaptive_iter BnbTDynamic_iter BnbTAdaptive_iter

0.0 10352 8779 10352 10352 0 0

0.1 1170456 2680573 1170456 1094874 0 6.45748323730238

0.2 905532 1824902 905532 832891 0 8.02191418966972

0.3 4269 2509 4269 3295 0 22.8156476926681

0.4 4269 2509 4269 3184 0 25.4157882408058

0.5 14630 8835 14630 8379 0 42.7272727272727

0.6 1459365 3406954 1459365 1161321 0 20.4228551459025

0.7 15827 11476 15827 12388 0 21.7286914765906

0.8 1242148 2503146 1242148 939110 0 24.3962877209479

0.9 7733 4332 7733 3971 0 48.6486486486486

1 7733 4332 7733 3971 0 48.6486486486486

Table 1

M N Capacity PViewRel PViewInt Exhaustive_iter BnbBottomUp_iter BnbBottomUpT_iter BnbTopDown_iter BnbTopDownT_iter BnbTDynamic_iter BnbTAdaptive_iter

10 6 8 1.67 0.20 159.84 0.91 0.01 0.18 0.01 0.16 0.21

15 9 12 1.11 0.20 87.04 2.03 1.19 0.67 0.50 1.08 1.49

20 12 16 0.83 0.20 96.84 5.55 5.27 1.82 1.62 4.99 5.00

25 15 20 0.67 0.20 140.46 6.62 6.05 1.02 0.96 5.99 4.17

30 18 24 0.56 0.20 148.08 10.17 9.79 4.26 4.24 9.47 9.31

35 21 28 0.48 0.20 194.37 8.30 7.82 3.70 3.64 7.97 7.63

40 24 32 0.42 0.20 215.35 13.29 12.66 5.80 5.67 12.54 12.32

45 27 36 0.37 0.20 211.02 6.41 6.38 2.65 2.58 6.19 5.33

50 30 40 0.33 0.20 221.11 17.96 16.87 7.55 7.54 16.31 15.19

55 33 44 0.30 0.20 241.31 5.63 5.03 1.60 1.56 5.26 5.01

60 36 48 0.28 0.20 240.67 6.61 6.28 2.02 1.97 5.94 5.50

65 39 52 0.26 0.20 298.19 8.67 7.69 3.08 2.99 7.49 7.35

70 42 56 0.24 0.20 297.42 10.80 10.18 3.02 2.83 9.96 7.53

75 45 60 0.22 0.20 339.37 9.78 8.94 3.03 2.75 8.69 8.21

80 48 64 0.21 0.20 347.94 14.04 13.26 5.28 5.14 13.04 12.08

85 51 68 0.20 0.20 351.72 7.59 6.91 2.80 2.71 7.57 7.11

90 54 72 0.19 0.20 473.63 12.97 12.07 5.35 5.24 11.89 11.88

95 57 76 0.18 0.20 380.19 8.14 7.78 2.66 2.49 7.77 6.45

100 60 80 0.17 0.20 433.55 22.75 20.54 8.59 8.43 20.54 19.92

Table 2

M Branch And 
Bound

Better 
Initialization

Dynamic 
Enumeration

10 99.43 98.39 -1004.08

15 97.67 41.31 8.92

20 94.27 5.01 5.44

25 95.29 8.56 0.97

30 93.13 3.70 3.31

35 95.73 5.71 -1.88

40 93.83 4.75 0.95

45 96.96 0.60 2.93

50 91.88 6.07 3.32

55 97.67 10.74 -4.64

60 97.25 5.07 5.36

65 97.09 11.32 2.63

70 96.37 5.80 2.14

75 97.12 8.56 2.77

80 95.96 5.56 1.65

85 97.84 8.99 -9.51

90 97.26 6.95 1.53

95 97.86 4.45 0.09

100 94.75 9.71 0.00
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Table 3

1 2 3 4 5 6 7 8 9 10 Mean STdDev Standard Error

10 50 50.390625 12.5 0 12.5 2.7027027027027 53.3783783783784 18.75 25.9375 37.655601659751 26.3814807740832 20.250394872336 6.40373713143763

15 100 100 0 100 100 100 100 100 100 100 90 31.6227766016838 10

20 67.1576476440686 65.1197302826845 73.2472038612883 69.5349240006718 69.3201942499793 17.9487179487179 73.3846352384052 62.746843638718 67.207120537006 22.2222222222222 58.7889239623762 20.683199639194 6.54060201598257

25 33.3333333333333 81.8537588295765 39.5522388059701 86.5181147464697 37.962962962963 33.3333333333333 86.4554673757083 38.6503067484663 30.5970149253731 33.3333333333333 50.1589864394527 24.1974600722957 7.6519087419437

30 23.1132075471698 78.6359425660028 89.8441769325651 84.5032947284345 90.9379807736422 86.3867357616848 88.0803464961881 41.5726109857035 93.1364445099459 82.7725367711504 75.8983277072487 23.7336079402024 7.50522581844968
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(c) Adaptive enumeration in BIGSUBS.

Figure 14: Pruning effectiveness of BIGSUBS.

runtimes for our problem, although we observed that it did com-
promise the achieved total utility.

5.2.2 Scalability
To assess BIGSUBS’ scalability, in Fig. 12 we report our algo-

rithm’s runtime for workloads with an increasing number of subex-
pressions. For the largest workload that we tried (with 50,000
subexpressions), our algorithm is tractable with 128 minutes of run-
time on a single desktop machine.

As an alternative approach, we tried using Gurobi to solve the lo-
cal ILP problems at each of the job vertices, instead of our branch-
and-bound algorithm. Interestingly, as Fig. 12 shows, this variant
(“BIGSUBS+Gurobi”) comes quite close to standard BIGSUBS for
large workloads. However, it is still 75% slower than standard BIG-
SUBS for 50,000 subexpressions, which shows the importance of
our local optimizations, as we further discuss in §5.2.4. Observe
that this variant returns solutions of the same total utility as BIG-
SUBS, as they both find the optimal solution to each local ILP.

5.2.3 Convergence
Recall that we expect BIGSUBS to converge to a solution within

the cost (capacity) bound. To evaluate its convergence, we use
a workload with 25 subexpressions and the default parameters of
Table 2. As described in §3.2.2, we apply stricter flipping in the last
20% of the iterations, which was empirically chosen as the default
setting. Fig. 13(a) shows that the total cost converges to the cost
budget and correspondingly the total utility reaches a fixed value.
The “Optimal” line in the figure is computed by solving the global
ILP with Gurobi. To further observe the impact of stricter flipping,
we consider a variant of our algorithm that always applies stricter

flipping with the exception of one in every five iterations (we use a
frequency of five, as this gave us best results in practice). Fig. 13(b)
shows the utility and cost achieved. Thanks to the stricter flipping,
this variant avoids changing vertex labels too often, the total cost
remains closer to the cost budget, and the achieved total utility is
higher. For this variant with stricter flipping, Fig. 13(c) depicts the
ratio of utility with cost, indicating that our algorithm finds a better
utility per cost unit as the number of iterations increases. Note that
higher frequencies do not lead to better utility, since the exploration
tends to get stuck to local optima.

5.2.4 Pruning Effectiveness
Finally, we assess the effectiveness of our pruning optimizations

(discussed in §4) over the non-optimized version of BIGSUBS.
Fig. 14(a) shows the reduction in states achieved by the branch-

and-bound enumeration (see §4.1) compared to the non-optimized
version by detecting interactions between subexpressions fast. Al-
though the achieved reduction varies depending on the exact work-
load that was generated each time, the reduction in states is always
significant, ranging from 26% to 90% of the states.11

Fig. 14(b) shows the actual improvement in runtime by suc-
cessively enabling the pruning techniques of §4. Branch-and-
bound reduces the runtime by over 90%, better initialization fur-
ther reduces the runtime by up to 15%, and dynamic enumera-
tion achieves an additional reduction of up to 10%. Observe that
dynamic enumeration’s improvement might be slightly negative,

11For each workload we report the average and standard error (error bars)
over five runs. Some variation across runs for the same workload is to be
expected given the probabilistic nature of our approach.

810



when it mistakenly picks top-down enumeration, although the de-
fault bottom-up was the better choice. In practice, we observed
only a few such cases. We ran more experiments (not shown here)
and observed similar pruning effectiveness while varying other pa-
rameters in our workload generator, e.g., subexpressions per job,
subexpression interaction, cost budget, initialization probability.

Fig. 14(c) shows the additional pruning yielded by adaptive enu-
meration (see §4.2), i.e., by dynamically picking the enumeration
direction at each branching point of Algorithm 2, based on a thresh-
old. Fig. 14(c) shows results for varying adaptivity thresholds and
subexpression interaction probabilities. Adaptive enumeration is
more effective for less interacting workloads, with a state reduction
of up to 32%. In these cases, higher thresholds that avoid chang-
ing direction too often tend to work better. For more interacting
workloads, as discussed in §4.2, the default bottom-up enumera-
tion is expected to work better, and thus adaptive enumeration is
less effective and should be avoided or used after careful tuning.

6. RELATED WORK
View selection. View selection is closely related with the problem
of subexpression selection that we consider in this work in that it
picks a set of views to materialize for a given set of queries, in or-
der to minimize a cost function (e.g., query evaluation, view main-
tenance) under some constraints (e.g., space budget) [35]. Several
early techniques were proposed in the context of data warehouses,
including AND/OR graphs [20, 19], modeling the problem as a
state optimization [46], and lattices to represent data cube opera-
tions [22]. Kodiak [33] recently used materialized views to im-
prove query latency in analytics clusters. All these efforts target
workloads with only a few tens of queries.
Subexpression selection. Views are more generic than subexpres-
sions, as they can consider computation that does not appear in the
logical query plan. This increases the space of possible solutions,
and complicates query containment and answering queries using
views [21]. Since scalability is a major concern in our setting,
in the current version of BIGSUBS, we focus only on subexpres-
sions. Subexpression selection has also been considered in SQL
Server [53]. Other related works have looked at common subex-
pressions within the same job script [44]. However, none of these
approaches has considered workloads of size similar to ours.
Multi-query optimization (MQO). MQO [43] is similar to view
selection with the difference that views are typically only tran-
siently materialized for the execution of a given query set. Heuris-
tic approaches have incorporated MQO in a Volcano-style opti-
mizer, using AND/OR DAGs, but without considering a space bud-
get [42]. A recent work devised an approximation algorithm that
runs in time quadratic to the number of common subexpressions
and provides theoretical guarantees on the quality of the solution
obtained [30]. Other approximate solutions have used genetic al-
gorithms by treating a vector of query plans as chromosomes [6].
Such approximation schemes could potentially be leveraged by
BIGSUBS, but necessary modifications have to be made to ensure
scalability and support for our problem’s constraints. However, un-
like our approach, these schemes are not easily parallelizable.

Multi-query optimization has also been studied in the context
of map-reduce [38, 49]. These works consider sharing opportu-
nities only for map and reduce operators, thus their applicability
is limited. PigReuse [8] addresses MQO for Pig scripts, using
an AND/OR graph representation and an ILP-based solution. All
these works consider workloads with a few tens of queries.
Reusing intermediate results. Researchers have further looked
at recycling intermediate results that already get materialized [23,

37]. This problem has received particular attention in big data plat-
forms, since (i) there is a lot of recurring computation, (ii) op-
timization time is relatively short compared to the job execution
time, (iii) performance and resource benefits can be significant. Re-
Store [12] considers the caching of map-reduce job outputs, given
a space budget. Others have studied history-aware query optimiza-
tion with materialized intermediate views [39] and fair cache al-
location among multiple cloud tenants [31]. Nectar [18] caches
all sub-computations (intermediate results) based on a cache inser-
tion policy that incorporates cache lookup frequency and previous
runtimes for computing an intermediate result. In contrast to subex-
pressions, intermediate results are typically the output from the end
of a pipelined stage, which consists of multiple operators.
Shared workload optimization. Many works have considered
building a common query plan for a set of queries to share op-
erators [54, 40] A global optimization approach to find the best
overall shared plan is presented in [15]. Shared optimization has
been suggested in the context of publish/subscribe systems too [10,
9, 11]. Although these systems also deal with a large number of
queries, the considered queries tend to be simple and belong to a
few unique templates (e.g., queries that differ only in their con-
stants). Delta [29] deals with more complex queries, but focuses
on creating a network of views used to evaluate other views. Fi-
nally, scan sharing has been explored in big data systems, such as
MapReduce [38], Hive [47] and Pig [50]. Unlike such approaches,
we opted to keep each job separate: operator sharing in pay-as-
you-go job services makes billing and accounting tedious, while
it introduces artificial dependencies between jobs, which become
even worse in the case of failures.
Large-scale graph analytics. The vertex-centric programming
model has become popular for performing analytics over large
graphs in parallel [34, 1, 17]. Although the implementation of our
graph labeling algorithm is based on our internal SQL-like SCOPE
engine, our ideas are applicable to any of the above systems. We
expect the runtime of our algorithm to be even better on these sys-
tems, given their native support for iterative graph computations.

Finally, our approach draws ideas from existing graph algo-
rithms, and in particular from Spinner [36] for the probabilistic
flipping part of our algorithm.

7. CONCLUSION
Large organizations depend on shared analytics clusters to pro-

cess and analyze vast amounts of data every day. The shared nature
of these clusters leads to substantial computation overlaps across
users and their jobs, which in turn wastes computational resources.
Existing methods for identifying common computations either do
not scale to the massive workloads that are typical in these clus-
ters or make local optimization decisions that lead to limited sav-
ings. In this paper, we introduced a novel algorithm, called BIG-
SUBS, to select subexpressions to materialize over very large work-
loads. Our key idea is to split the overall problem into two sub-
problems, which we solve separately in an iterative manner. We
further showed several optimizations to significantly prune the so-
lution space we explore. We then described a distributed imple-
mentation of BIGSUBS using SCOPE. Our evaluation results on
production workloads show that BIGSUBS: (i) supports workloads
with tens of thousands of jobs, (ii) identifies subexpression that can
result in potential machine-hour savings of up to 40% in our clus-
ters, and (iii) outperforms heuristics-based approaches by three or-
ders of magnitude. BIGSUBS is part of our CLOUDVIEWS system
for subexpression reuse, which we are currently integrating with
the SCOPE runtime in our production clusters.
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