
UlTraMan: A Unified Platform for Big Trajectory Data
Management and Analytics

Xin Ding∗,† Lu Chen‡ Yunjun Gao∗,† Christian S. Jensen‡ Hujun Bao∗,†
∗State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, China
†College of Computer Science, Zhejiang University, Hangzhou, China

‡Department of Computer Science, Aalborg University, Aalborg, Denmark
{dingxin@, gaoyj@, bao@cad.}zju.edu.cn {luchen, csj}@cs.aau.dk

ABSTRACT
Massive trajectory data is being generated by GPS-equipped
devices, such as cars and mobile phones, which is used in-
creasingly in transportation, location-based services, and
urban computing. As a result, a variety of methods have
been proposed for trajectory data management and ana-
lytics. However, traditional systems and methods are usu-
ally designed for very specific data management or analyt-
ics needs, which forces users to stitch together heteroge-
neous systems to analyze trajectory data in an inefficient
manner. Targeting the overall data pipeline of big trajec-
tory data management and analytics, we present a unified
platform, termed as UlTraMan. In order to achieve scala-
bility, efficiency, persistence, and flexibility, (i) we extend
Apache Spark with respect to both data storage and com-
puting by seamlessly integrating a key-value store, and (ii)
we enhance the MapReduce paradigm to allow flexible op-
timizations based on random data access. We study the
resulting system’s flexibility using case studies on data re-
trieval, aggregation analyses, and pattern mining. Exten-
sive experiments on real and synthetic trajectory data are
reported to offer insight into the scalability and performance
of UlTraMan.

PVLDB Reference Format:
Xin Ding, Lu Chen, Yunjun Gao, Christian S. Jensen, and Hujun
Bao. UlTraMan: A Unified Platform for Big Trajectory Data
Management and Analytics. PVLDB, 11(7): 787-799, 2018.
DOI: https://doi.org/10.14778/3192965.3192970

1. INTRODUCTION
With the proliferation of GPS-equipped devices, increas-

ingly massive volumes of trajectory data that captures the
movements of humans, vehicles, and animals has been col-
lected. This data is used widely in transportation [36],
location-based services [43], animal behavior studies [28],
and urban computing [42], to name but a few application
areas. Systems that are used to manage and analyze trajec-
tory data are important not only in scientific studies, but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 7
Copyright 2018 VLDB Endowment 2150-8097/18/03... $ 10.00.
DOI: https://doi.org/10.14778/3192965.3192970

also in real-world applications. As an example, DiDi, the
largest ride-sharing company in China, utilizes trajectory
data to provide services such as travel time prediction, de-
mand forecasting, and carpool scheduling [6]. The explosive
increase in data volumes and the rapid proliferation of new
data analysis methods expose three shortcomings of tradi-
tional trajectory data management platforms.

First, in real-life applications, trajectory data is collected
at a rapid pace. For instance, the Daisy Lab at Aalborg
University currently receives some 100 million points per
day from about 40,000 vehicles in Denmark. Consequently,
traditional centralized systems [13, 23, 35] are or will be
inefficient at or incapable of managing and processing real-
world trajectory data. In recent years, various systems [17,
37] based on MapReduce [14] have also been proposed for
spatial data analytics, which have been shown to be scal-
able in cloud environments and to be more efficient than
centralized systems. However, those systems are designed
for generic spatial data and cannot fully exploit techniques
for spatio-temporal trajectory data. Further, they intrin-
sically target data analysis and hence are suboptimal for
data management tasks. Therefore, it remains a challenge
to develop a scalable and efficient platform architecture for
managing and processing big trajectory data.

Raw Data ETL Storage Processing Analysis Result

(a) Conventional

Raw Data UlTraMan (preprocessing, storage & analysis) Result

(b) UlTraMan

Figure 1: Trajectory data analysis pipelines.

Second, existing solutions for trajectory data analytics are
composed of heterogeneous systems for data storage, data
processing, and data analysis. For example, as depicted in
Fig 1(a), a user may need one system to extract, transform,
and load (ETL) the raw dataset [40], and may need other
systems for data storage [9, 38], data processing [25, 39],
and data analysis [19]. Thus, several systems are needed
to accomplish even a simple trajectory analytics task. The
resulting heterogeneous workflows are suboptimal: (i) the
dataset has to be transferred across multiple system bound-
aries, involving expensive network traffic as well as costs of
serialization and format transformation; (ii) additional ex-
pertise is needed to maintain and operate different systems
with disparate data models, APIs, and internal implementa-
tions; and (iii) many potential optimization techniques can-

787

not be applied across multiple storage systems and analysis
systems. Consequently, a holistic solution, as illustrated in
Fig. 1(b), that supports the full pipeline of data manage-
ment, processing, and analysis is an important step towards
applications that involve massive trajectory data. Again, a
new system architecture is called for.

Last but not least, in real analysis scenarios involving
trajectory data, multiple data formats (e.g., points [12],
segments [25]), index structures (e.g., TB-tree [31], TPR-
tree [33]) and processing techniques (e.g., segmentation [25],
map-matching [39]) are needed in different applications. The
diversity of techniques calls for an underlying system that
is flexible in two main respects: (i) pluggable system com-
ponents, meaning that the system should be extensible to
the adoption of new components such as index structures
and analysis algorithms; and (ii) customizable processing
pipelines, meaning that the system should make it possi-
ble for its users to design particular data preprocessing and
analysis pipelines. The needs for flexibility challenge the
system design in terms of both architecture modules and
APIs.

Aiming to achieve an efficient and holistic solution that
meets the needs just described, we present UlTraMan, a
unified platform for big trajectory data management and
analytics. UlTraMan achieves its design goals by (i) adopt-
ing a unified storage and computing engine and by (ii) pro-
posing an enhanced distributed computing paradigm based
on MapReduce with flexible application interfaces.

UlTraMan’s unified engine is built on Apache Spark [40],
a popular distributed computing framework. Spark enables
high performance distributed computing, but is, however,
in itself suboptimal for big trajectory data management due
to (i) a lack of indexing mechanisms, (ii) limited and in-
efficient runtime data persistence, and (iii) its significant
pressure on the JVM garbage collector. Hence, UlTraMan
integrates Chronicle Map [7], an embedded key-value store,
into the internal block manager of Spark. This way, Ul-
TraMan provides efficient data processing and reliable data
management.

Based on the unified storage and computing engine, the
overall process of trajectory analytics can be pipelined in
UlTraMan without unnecessary data copying and serializa-
tion. The system enables optimizations across storage, pro-
cessing, and analysis. For instance, the data organization
and index structures can be changed according to analysis
requirements, and computing tasks can be scheduled accord-
ing to the data distribution.

Moreover, with the help of the unified engine, we enhance
MapReduce to become a more powerful and flexible dis-
tributed computing paradigm. MapReduce [14] and Spark’s
Resilient Distributed Datasets (RDD) [40] adopt the func-
tional programming concept, which facilitates sequential op-
erations on the data. In contrast, many important tech-
niques and optimizations are realized based on random data
access, such as hash-maps and indexes. Motivated by this,
we improve MapReduce and integrate an abstraction called
TrajDataset into UlTraMan. This abstraction enables ran-
dom access at both local and global levels. At the local
level, data in each partition can be accessed randomly with
the help of new programming interfaces provided by the uni-
fied engine; at the global level, data partitions are explicitly
managed by two types of data generalization: (i) global in-
dexes maintained in a driver node to organize small parti-

tion features, and (ii) meta tables distributed in executors to
manage large features. As a result, we provide a computing
paradigm in UlTraMan that is compatible with MapReduce
while providing possibilities for optimization techniques.

Based on the unified engine and the TrajDataset abstrac-
tion, UlTraMan is able to serve as an efficient and flexible
platform for an open-ended range of trajectory data man-
agement and analytics techniques. The contributions of Ul-
TraMan are summarized as follows:

• UlTraMan offers an innovative and holistic solution for
big trajectory data management and analytics, based
on a novel unified engine.

• UlTraMan adopts an enhanced MapReduce paradigm
that enables efficient and flexible management and anal-
ysis of massive trajectory data .

• UlTraMan provides flexible application interfaces to
support customizable data organization, preprocess-
ing, and analysis pipelines. Typical analytics cases,
including data retrieval, aggregation analysis, and pat-
tern mining, are studied and implemented to demon-
strate the flexibility of UlTraMan.

• Extensive experiments on real and synthetic massive
trajectory data are covered to offer insight into the
efficiency and scalability of UlTraMan, in comparison
to existing state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
introduces necessary background. Section 3 provides a sys-
tematic overview of UlTraMan. Section 4 then elaborates
on the design and implementation of UlTraMan’s unified
engine. Section 5 describes the TrajDataset API and the
operations it provides. Case studies are presented in Sec-
tion 6, and experimental results are reported in Section 7.
Section 8 reviews related work, and Section 9 concludes the
paper and offers research directions.

2. BACKGROUND
The design of UlTraMan represents a cross-domain study

covering distributed systems, data management, and trajec-
tory data analytics. Consequently, we cover the background
of the design of UlTraMan in these three domains.

2.1 Apache Spark
Spark [40] is a general purpose distributed computing

framework for tackling big data problems, which has at-
tracted substantial interests in both academia and indus-
try. In Spark, distributed computing tasks are submitted
through an abstraction called Resilient Distributed Datasets
(RDD) and are physically conducted by executors. A Spark
executor is a JVM process running on a worker node, which
internally uses a block manager to manage its cached data
splits. If a task fails and a split is lost, Spark traces back the
task lineage until cached data or the data source is found,
and then it schedules recomputation tasks to recover the
data.

Taking advantage of in-memory caching and recomputa-
tion-based fault tolerance, Spark enables high performance
distributed computing. However, Spark’s design trade-offs
also introduce shortcomings in relation to big data manage-
ment. First, massive on-heap caching may produce signifi-
cant pressure on the garbage collector (GC), thus resulting

788

in unexpected overhead. Second, recomputation is expen-
sive for some data management tasks, such as repartition
and index construction.

Spark SQL [8] is a potential interface for big data man-
agement in Spark. It manages structured data through a
new DataFrame API, which enables off-heap storage to save
in-memory space and to relieve GC pressure at the same
time. However, non-trivial internal modifications are needed
to support indexing in Spark SQL [37], due to the limited
functionalities for data management. In addition, the struc-
tured storage scheme cannot provide the flexibility needed
for supporting different trajectory data formats (e.g., sub-
trajectories). Therefore, Spark SQL is limited to serve as
a unified platform for big trajectory data management and
analytics.

2.2 Chronicle Map
Chronicle Map [7] is an in-memory, embedded key-value

store designed for low-latency and multiple-process access,
which is popular in the area of high frequency trading (HFT).

Chronicle Map is chosen among many storage techniques,
as it enables meeting the design goal of the proposed system,
namely, efficiency, flexibility, and persistence , as explained
next. (i) Efficiency: to achieve high performance data ac-
cess that is comparable to Spark’s built-in cache, we need
an in-memory storage that has a Java-compatible implemen-
tation so that cross-language transformation is avoided; we
also need the store to be embedded in Spark executors to
avoid both network transfer and inter-process communica-
tion. (ii) Flexibility: To support different trajectory data
formats, flexible storage structures and random access are
needed. (iii) Persistence: Data should be persisted at run-
time to support efficient failure recovery. Distributed stores
(e.g., Apache Ignite [4]), stand-alone stores (e.g., Redis [2]),
or conventional database engines (e.g., H2 [1]) do not sat-
isfy the needs stated above. Thus, they are not adopted in
UlTraMan.

To the best of our knowledge, this is the first study of
integrating Chronicle Map with Spark, and Chronicle Map
is the only existing technique that meets our requirements.
Specifically, the key-value store instance is embedded in the
block manager to provide efficient data access. Furthermore,
data is stored in off-heap memory to relieve GC pressure,
and the data is persisted at runtime through the support of
simultaneous access from multiple processes. By seamlessly
integrating Chronicle Map and Spark in the underlying en-
gine, UlTraMan is convenient, efficient, and reliable, for both
users and developers.

2.3 Trajectory Data
Trajectory data is generated by sampling spatio-temporal

locations of moving objects. In real applications, trajec-
tories can be represented in a variety of formats, such as
points [12], segments [25], and sub-trajectories [32]. For
convenience, we use a generalized notation called element
to represent trajectory data according to the context.

A broad range of methods for querying and analyzing tra-
jectories have been proposed over the past decades, and new
ones are being proposed. For example, multiple trajectory
queries, including range queries [31] and k nearest neighbor
(kNN) queries [20], are supported by different indexing and
query processing methods; and a range of trajectory data
mining techniques are also explored [41].

Application

Loader Preprocessing Retrieval Aggregation MiningOperation

Global Index

p0 p1 p2 p3

TrajDataset

Meta Table

Pid Tid …

…
…

…Computation

RandomAccessRDD

Partition: 1 Partition: 2 Partition: 3 !

Storage

On

Heap

MEMORY_ONLY

HDFS

KV

Partition: 0

File

Block Manager

ON_KV

On

Heap

KV

File

Block Manager

…

Spark Shell

(CLI)

Program

(With Extension)

RESTful

(HTTP)

!

Figure 2: The architecture of UlTraMan.

Further, a wide variety of index structures and preprocess-
ing techniques have been proposed to improve the efficiency
of trajectory data analytics. Specific index structures con-
tain TB-tree [31], TPR-tree [33], TrajTree [32], etc. Typical
preprocessing techniques encompass segmentation [25], syn-
chronization [19], compression [15], and map-matching [39].
These techniques can only be conducted through the use of
specific systems, and there is a lack of a single holistic and
flexible solution.

Along with the specific techniques, some systems have
also been designed and built. COMPRESS [23], Elite [38],
SharkDB [35], and TrajStore [13] are developed to manage
trajectory data using innovative storage scheme. Implemen-
tations of specific tasks such as clustering [25] and pattern
mining [19] are also reported in the literature.

Since existing indexing, preprocessing, querying, and min-
ing techniques are designed for specific scenarios, they also
rely on different data models, procedures, and optimization
methods. Existing systems fail to provide a holistic solution
for the full pipeline of trajectory data management and ana-
lytics, thereby leading to inefficient heterogeneous solutions.
Based on this state of affairs, we develop UlTraMan, aim-
ing to offer the flexibility needed to accommodate a variety
of techniques and to support a broad range of pipelines on
trajectory data management and analysis pipelines.

3. SYSTEM OVERVIEW
In this section, we provide an overview of the system ar-

chitecture and data pipeline of UlTraMan.

3.1 System Architecture
Physically, UlTraMan adopts the master-slave architec-

ture, which consists of one driver node and multiple worker
nodes. The driver node is responsible for task scheduling,
while data storage and computing are distributed across
worker nodes. Conceptually, as illustrated in Fig. 2, the sys-
tem architecture contains four layers, namely storage, com-
putation, operation, and application. Among these layers,

789

RDD[Element]

FileFormat

DataFormat

Raw Dataset

TrajDataset

Global Index

Meta Table

RandomAccess

RDD

preprocessing

indexing

segmentation

…

Iteration

Storage

Extract

TrajDataset

Global Index

Meta Table

RDD[features]

Collect

&Build

GI

MT
toDF

Strings

TrajDataset

Global Index

Meta Table

Analyze
RDD

Analyze

Stage 1 Loading Stage 2 Preprocessing Stage 3 Extraction Stage 4 Analysis

Persist Load

TrajDataset

Global Index

Meta Table

RandomAccess

RDD

RandomAccess

RDD

Persist Load

Figure 3: The data pipeline in UlTraMan.

the storage and computation layers form UlTraMan’s un-
derlying unified engine, the operation layer realizes reusable
components to the developers, and the application layer pro-
vides interfaces to end users. We proceed to describe each
layer in detail.

Storage Layer. All data as well as indexes are man-
aged in the storage layer via the extended block manager.
When an RDD is cached, the block manager on each execu-
tor stores its data partitions in on-heap arrays or off-heap
Chronicle Map instances, according to the storage level as-
signed by users. Based on this storage engine, both on-heap
and off-heap data can be accessed randomly, enabling opti-
mizations on the upper layers.

Computation Layer. The computation layer supports
the distributed computing paradigm by using the abstrac-
tion of TrajDataset. Being compatible with MapReduce
and RDDs, the TrajDataset implementation is composed
of an extended RDD type called RandomAccessRDD and two
global structures: global index and meta table. Locally,
the RandomAccessRDD takes advantage of the storage layer
to enable random data access on cached data. Globally, all
data partitions are generalized to specific features in global
indexes and meta tables, so that distributed tasks can be
scheduled at specific partitions.

Operation Layer. UlTraMan offers programming inter-
faces in the operation layer. Trajectory data is managed
and processed through operations on TrajDatasets, includ-
ing loading, filtering, mapping, repartition, etc. Advanced
data processing and analysis techniques can be supported
based on the interfaces. To verify the system flexibility, we
have implemented several modules in UlTraMan, including a
csv file loader, segmentation, range querying and clustering.

Application Layer. To serve as a platform, UlTraMan
supports multiple methods of interaction as its Application
Layer. Most simply and interactively, users can run data
management and analysis tasks through the Spark shell.
Advanced developers and users are also able to submit jobs
via programs along with customized modules. Finally, Ul-
TraMan is packed with an HTTP server to answer web re-
quests and to support frontend visualization.

In summary, the architecture of UlTraMan offers three
main innovations: (i) it equips the computing engine with a
reliable storage capability to support unified data processing
and management; (ii) it enables a new computing model to
support scalable global-local random access; and (iii) it sup-
ports complex trajectory data analytics by extensible and
reusable modules and techniques.

3.2 Data Pipeline
With the help of its flexible system architecture, UlTra-

Man is customizable in terms of both system modules and
processing pipelines. The data pipeline for a typical analysis
task in UlTraMan includes four stages, as depicted in Fig. 3.

Stage 1: loading. In the first stage, UlTraMan loads
a raw trajectory dataset and extracts trajectory elements
to the storage layer. The raw dataset is usually stored in
HDFS, so that it can be loaded in parallel. A customizable
data loader is provided to support different file formats (e.g.,
csv or xml) and data formats (e.g., points or segments).

Stage 2: preprocessing. The second stage includes
flexible procedures that are applied before storing and an-
alyzing the trajectory data, such as format transformation
and segmentation. In addition, some data management tasks
(such as index construction) are also carried out at this
stage. Having been properly processed, a dataset is per-
sisted in UlTraMan, in order to support efficient analysis
and fast failure recovery.

Stage 3: extraction. Extraction is a special stage that
serves to facilitate analysis of a TrajDataset. Since Traj-
Dataset enables global scheduling based on global indexes
and meta tables, we need to extract and build the global
information before analysis. For instance, to build a global
R-tree, we need to extract and collect the features of pid and
mbr from each partition, where pid is the partition ID and
mbr is the bounding box of the partition. Then, a global
R-tree is built on the collected features.

Stage 4: analysis. Since an open-ended range of analy-
sis scenarios exist for trajectory data, UlTraMan is designed
to serve as a platform that can support most (if not all)
of them. To accomplish a complex task, the stages may
need to be applied iteratively. As an example, in order to
perform co-movement pattern mining (to be discussed in
Section 6.5), the preprocessing and analysis stages are both
conducted twice.

4. THE UNIFIED ENGINE
We proceed to offer details on the design and implemen-

tation of UlTraMan’s unified storage and computing engine.
The engine is realized based on Spark, which is designed for
high performance distributed computing. Our goal is to en-
hance Spark’s data management capabilities while retaining
its computing performance. We introduce the enhancement
in terms of random access support, customizable serializa-
tion, indexing support, and runtime persistence.

790

RandomAccessRDD

Partition

Partition

Partition

Partition

Partition

MEMORY_ONLY

ON_KV

Persisted Partition Data Map

…

Array of items

Chronicle

Map

instance

e0 e1 e2 e3

Persisted Index Map

e0 e1 e2 !

In memory

structure

…

key value

0

1

e0

e1

Chronicle

Map

instance

…

key value
0 root(1,3)
1
2

node(2,4)
leaf(0"#)

Figure 4: Data management in UlTraMan.

4.1 Random Access
The support for random access is fundamental to a func-

tional data management engine, as without random access,
operations have to rely on brute force scans on the dataset,
resulting in many missed optimizations opportunities.

To support random access in Spark, we first investigate
its internal storage models. For RDDs that are not cached,
the data partitions are computed lazily for use, and are dis-
carded immediately after use and thus cannot be accessed
any more. For cached RDDs, several storage levels1 are sup-
ported by the block manager. However, since Spark serial-
izes data sequentially in an output stream without position
information, the serialized data can only be read and dese-
rialized sequentially, and hence, only the fully deserialized
level, called MEMORY ONLY, potentially supports random ac-
cess. In fact, in the MEMORY ONLY level, a data partition is
stored in an array, and individual items can thus be ran-
domly accessed through the array index.

Caching all data in an on-heap array is efficient for com-
putation, but it may incur unexpected GC overhead; and
more importantly, it suffers from data loss if a task crashes
the executor (e.g, through an out of memory exception). To
address this, we introduce a new storage level ON KV through
the modified block manager. ON KV can be used in the same
way as the original storage levels. When a data partition is
about to persist in this new level, the block manager creates
a Chronicle Map instance with integers as key and the data
items as values. The items are then put in the KV store
with an incremental counter as keys, as shown in Fig. 4.
Hence, random access is supported by using the mapped
key. Moreover, to support Spark’s original access approach,
data in Chronicle Map can be accessed sequentially through
iterations over the map entries. Taking advantage of Chron-
icle Map’s features, which are described in Section 2.2, the
data is stored in off-heap memory and is persisted outside
the executors. We detail our improvements on serialization
and persistence later in this section.

Finally, a derived API called RandomAccessRDD is pro-
vided by UlTraMan to support random access on the data
persisted at these two levels, namely MEMORY ONLY and ON KV.

4.2 Serialization
Data serialization is unavoidable for an off-heap and per-

sisted store. Chronicle Map executes serialization and dese-
rialization automatically when an item is put or retrieved.
Therefore, data can be viewed by users as always being de-
serialized. However, how to serialize data in Chronicle Map

1https://spark.apache.org/docs/latest/rdd-programming-
guide.html#rdd-persistence

is determined by the system designer. The serialization is
critical to both data retrieval performance and the persisted
data size. In our experiments, we find that properly opti-
mized serialization can yield 5x faster data access as well as
10x smaller persisted data sizes.

The original Chronicle Map uses the java serializer for
generic data types. In UlTraMan, to take advantage of
Spark’s optimizations, we adopt Spark’s serializer as the de-
fault implementation for data persisted at the ON KV level.

Nevertheless, there is space for further optimization. For
generic data types, the type is unknown until run time (as
abstract classes or interfaces can be used at compile time),
and thus a general serializer should write the full class name
along with the real data. When the data is deserialized, the
type instance is constructed according to the full class name,
which involves expensive reflection operations. Since UlTra-
Man is designed for trajectory data and the data format is
usually determined at compile time, we can bind each format
with a specific serializer, and the serializer can be detected
and used by Chronicle Map at run time in order to save
computation cost and persisted data size. This technique is
also available for user-defined trajectory formats.

4.3 Local Indexing
To take full advantage of the random access capabilities,

UlTraMan provides a flexible mechanism for indexing on
each executor. Three considerations underlie the design of
this mechanism: (i) the indexes are used to accelerate in-
memory data access and thus should be in-memory; (ii) the
index structures should be highly customizable to support
diverse indexing techniques; and (iii) since index construc-
tion is expensive, the indexes should be persisted by the
same way as the dataset. To realize the mechanism, we in-
troduce an index manager in Spark to work with the block
manager. It manages the process of index construction, in-
dex persistence, and index-based data access according to
the storage level of the dataset. Users are allowed to im-
plement specific index constructors and queriers to support
their index structures, to be discussed in Section 5.

If the dataset is persisted in MEMORY ONLY, an index con-
structor takes the cached item array as input and builds
an in-memory index on the array. Since the items can be
accessed directly through Java references without data copy-
ing, the constructed index can be used as a primary index.
Indexes on this kind are cached on-heap after construction
and can be fetched or released via the index manager.

To support indexing of a dataset persisted at level ON KV,
the index should be persisted and accessed through Chron-
icle Map as well, and thus the index structures should be
realized in a map-like fashion. Consider the R-tree [22] as
a typical example of a tree-structured index, as depicted in
Fig. 4. We use a map of (nid, node) pairs to represent an
R-tree, where nid is an ID for each tree node. The ID of the
root node is hard-coded to 0. Hence, if 0 is not found in the
map, the index is empty. In a non-leaf node, the children
are stored as an array of node IDs and minimum bounding
rectangles (MBRs, omitted in the figure). A leaf node stores
the keys of the items in the data map to enable access to
the data. As a result, the constructed indexes are managed
and used in the same way as the dataset.

The indexes in Chronicle Map are used as secondary in-
dexes because data is accessed indirectly through the keys
in a data map. With the help of customizable index struc-

791

tures and query algorithms, this can be further optimized.
For example, when each element is small (e.g. a point), it
is reasonable to store the data directly in the leaf nodes in
the index map, thus saving the cost of a get operation for
each data access.

4.4 Runtime Persistence & Fault Tolerance
Spark offers multiple levels of data persistence, such as

task, process, and node. If an RDD is not cached, it can
be taken as being persisted at the task level, meaning that
the data is lost if a task fails. A cached RDD, either in
memory or on disk, is persisted at the process level, since
the data can be recovered on task failures, but is lost if the
process crashes. To persist data at higher levels, users have
to manually save the dataset by using other services (e.g.,
HDFS), which is inconvenient and time consuming.

In UlTraMan, data persisted at level ON KV is saved trans-
parently through reliable services at runtime. Moreover, this
persistence does not sacrifice the performance expected of
in-memory data access. To realize this, a Chronicle Map
instance is created by default upon a file in shared memory
(e.g., /dev/shm in Linux). Data in this file survives task
failures, and can be accessed at in-memory speed. However,
for big datasets, the amount of shared memory may be in-
sufficient. To tackle this problem, UlTraMan estimates the
total data size and pre-allocates memory space before the
creation of any Chronicle Map instance. If the remaining
memory space is insufficient, a file on disk is used as the un-
derlying storage. Since data in Chronicle Map is serialized
internally, the corresponding performance on disk is better
than that on the original Spark.

Furthermore, to serve as a reliable distributed storage,
two techniques are applied to recover data from failures.
First, UlTraMan asynchronously backs up the files in shared
memory or on disk to a reliable file system (e.g., HDFS) so
that the data can survive task failures and node crashes.
After that, the lineage of the ON KV cached RDD is changed,
and the parent operator (i.e., a special loader) is able to load
the persisted files directly to Chronicle Map. As a result,
missing data can be reloaded automatically under Spark’s
recomputation mechanism.

5. THE TRAJDATASET
Here, we present the abstraction of TrajDataset that aims

to provide flexible operational interfaces based on distributed
random data access. TrajDataset explicitly manages data
by partitions, so that distributed computing can be sched-
uled and optimized at both local and global levels. Locally,
data partitions are self-managed with flexible local indexes.
Globally, the partitioning strategy is controlled by the user,
and two scales of data generalization are enabled, namely
the global index and the meta table.

5.1 Data Partition
A data partition is the basic operational unit. Opera-

tions on each data partition can be seen as running in a
non-distributed environment, and thus a multitude of op-
timization techniques are available. To take full advantage
of these, in addition to the original operations provided by
Spark, UlTraMan supports index-based random data access
on RandomAccessRDDs through two additional operations,
buildLocalIndex and query.

Partition

Partition

Partition

RDD

Features

Features

Features

RDD

map

F F F

collect

F

F F

build

Driver GlobalIndex

query

Scheduling

Pid Pid

(a) Building a global index

Pid …

…

…

…

…

toDF

DataFrame

DF/

SQL

Scheduling

Aggregation

F: Features

DF: DataFrame

Partition

Partition

Partition

RDD

Features

Features

Features

RDD

map
Pid Pid

sum avg

(b) Extracting a meta table

Figure 5: Data generalizations in UlTraMan.

A customizable index constructor is provided to support
the process of building an index. The builder reads the
partition data and outputs an index structure with an index
name. As described in Section 4, a constructed index is
consistent with the data on the persistence method. After
the construction, the index manager in UlTraMan maintains
the index along with its name.

In the query process, a customizable querier is adopted
to provide a query algorithm and the names of its necessary
indexes. At the beginning of the process, UlTraMan fetches
the necessary indexes through the index manager. If all
indexes are available and prepared, the query is conducted
using the indexes and the algorithm. If indexes are missing,
the query performs brute force scans.

5.2 Partitioning
Data partitioning is critical for efficient global schedul-

ing. For instance, if trajectories are partitioned according
to their spatial information, a spatial range query would
be accelerated, since the partitions to search can be largely
pruned with the range. In contrast, if trajectories are parti-
tioned according to their time information, a global schedule
may be useless for a range query because most partitions
are search candidates. TrajDataset provides a repartition

operation to support disparate partitioning strategies, and
several partitioners are implemented in UlTraMan, includ-
ing the STRPartitioner [37].

5.3 Global Index
To conduct global operations on the unified engine, a gen-

eralization of the dataset is often helpful. Building a global
index is the most straightforward method of data general-
ization and has been adopted in existing systems [17, 37,
38]. Those systems usually apply a specific index structure
(such as the R-tree) and a particular data partitioning strat-
egy. In contrast, UlTraMan enables flexible partitioning and
provides a buildGlobalIndex operation in TrajDataset that
enables user-defined global indexes.

As depicted in Fig. 5(a), the global index construction pro-
cess consists of three steps. First, a query is conducted on
every data partition to create features. The features could
be spatial bounding boxes, time spans, ID ranges, or some-
thing else that users have defined. Then, all the features
are collected at the UlTraMan driver, and a global index is

792

built with the features as keys and the corresponding parti-
tion IDs as values. Finally, the built global index is stored
in the TrajDataset for global scheduling. When a query is
conducted on the global index, an array of candidate parti-
tion IDs is returned, and other partitions are pruned using
an operation globalFilter.

5.4 Meta Table
Although the global index is effective for global schedul-

ing, it is only applicable when the generalized features are of
constant size. Otherwise, the collected features may become
too large as the data volume increases, resulting in limited
system scalability. For example, in the kNN query to be
described in Section 6.3, collecting all trajectory IDs to the
global index endangers system scalability.

To handle this problem, the meta table construction is
adopted. Instead of collecting features at the UlTraMan
driver, a meta table manages the features in distributed fash-
ion. As an important component in UlTraMan’s architec-
ture, the meta table construction is designed and integrated
for the following purposes:

• The meta table construction supports global random
access with reasonable system scalability, making meta
tables a natural replacement for global indexes in cer-
tain circumstances for scheduling and optimization.

• Meta table store pre-computed accounting information
for each element/partition, such as min, max, and av-
erage values, in order to improve the efficiency of tra-
jectory queries and mining tasks.

• In real applications, most analytical tasks are simple
statistical queries and are usually expressed in SQL. In
such cases, queries on a meta table are more efficient
and more convenient to optimize than are queries on
raw RDDs.

The meta table construction is realized with Spark SQL
APIs [8], to take advantage of Spark’s off-heap structured
data encoding and built-in query optimizations. Fig. 5(b)
illustrates how to build a meta table. TrajDataset provides
an operation extractMT that allows users to extract fea-
tures from data partitions and to transform the features to
a DataFrame. Extracted DataFrames are maintained in a
TrajDataset in the same way as the global indexes.

6. ANALYTICS CASE STUDIES
We demonstrate the system’s flexibility through several

trajectory data analytics case studies.

6.1 ID Query
The ID query is a simple trajectory data query. Three

types of identities exist in a trajectory dataset: the element
ID (e.g., a point ID), the trajectory ID (also called a trip
ID), and the moving object ID. Since a moving object may
produce multiple trajectories and a trajectory may contain
multiple elements, the queries on different ID types are usu-
ally different. Here, we focus on the trajectory ID query, due
to its utility in applications.

In Spark, the ID query can only be conducted with a
brute force filtering, i.e., each element is scanned to check
its trajectory ID. In UlTraMan, the local filtering on each
data partition can be accelerated easily by introducing a

hash map. Specifically, a hash map with trajectory IDs as
keys and arrays of elements corresponding to the IDs as
values can be built as a local index. Since Chronicle Map
itself is a hash map, the index can be realized easily at level
ON KV. As a result, the brute force scans of a ID query can
be improved to direct accesses with O(1) complexity.

6.2 Range Query
The range query finds trajectory data with respect to

a spatial or spatio-temporal range. UlTraMan maximizes
the benefits of multi-dimensional indexes (e.g., the R-tree)
through its support for partitioning and global-local index-
ing.

To achieve optimal partitioning, UlTraMan implements
an STRPartitioner [37]. It packs data to partitions in the
same way as building R-tree leaf nodes. By applying this
partitioning technique, a global R-tree can be constructed
that enables effective global filtering. In addition, local R-
trees can be constructed within each partition, so that local
range queries in the partitions resulting from the global fil-
tering are accelerated.

6.3 kNN Query
A k nearest neighbor (kNN) query on trajectory data finds

k nearest trajectories for a query spatial location. Here,
the distance between a trajectory and a spatial location is
computed as the distance from the location to the nearest
trajectory point [43], although other distance functions can
also be implemented in UlTraMan.

Existing algorithms [37] that find k nearestelements can-
not be used to compute the kNN query, as fewer than k tra-
jectories could be returned because some nearest elements
may belong to the same trajectory. Although the kNN tra-
jectory query is useful in real-life applications, it has not
been supported fully in a distributed environment. Tra-
ditional centralized kNN trajectory algorithms [20] simply
extend queries on elements with a buffer to record selected
trajectories. This extension is not useful in a distributed al-
gorithms [17, 37] because it is expensive to count trajectories
across multiple, distributed partitions.

In UlTraMan, we propose and implement an R-tree vari-
ant that enables efficient kNN queries. In this R-tree, each
tree node maintains a count of distinct trajectories in its
covering partitions. As a result, a kNN trajectory query in
UlTraMan is processed as follows.

Partitioning (optional). A global partitioning accord-
ing to the spatial distribution (e.g., STRPartitioner) can
improve the global pruning ability and the query efficiency.

Indexing and Extraction. First, local R-trees are built
on the data partitions. Then, we extract trajectory IDs and
partition IDs (tid, pid) to construct a meta table. Next,
the bounding boxes and the partition IDs are extracted as
features to construct a global R-tree. For each tree node of
the global R-tree, the partitions covered are found, and the
trajectory count is calculated using the following operation
on the meta table.

metaTable.filter("pid in <covering partitions>")
.agg(countDistinct("tid"))

1st Global Filtering. First, we find the nearest par-
tition P with respect to the query location in the global
R-tree. If P contains k or more trajectories, it forms the
candidate partition set C1. Otherwise, we find the leaf node
that contains P . If the leaf node contains k or more trajec-
tories, the candidate partitions in this leaf node are assigned

793

to C1; if the leaf node contains fewer than k trajectories, we
check its parent node, and this process is applied recursively
until a node that contains k or more trajectories is found.

2nd Global Filtering. First, we conduct local kNN tra-
jectory queries on the C1 partitions to get k nearest trajec-
tories. The k-th distance is a upper bound of the final result
trajectories, based on which a range query is conducted on
the global R-tree to find qualified partition candidates C2

that contain the final result trajectories.
Local kNN. Local kNN queries are conducted on the C2

partitions. The results are sorted globally by their distances,
and the top-k trajectories are returned.

The support for the kNN query showcases the ability of
UlTraMan to support existing as well as emerging indexes
and algorithms for trajectory data analytics.

6.4 Aggregation Analysis
UlTraMan supports efficient aggregation analyses (e.g.,

max, min, count, and avg) through the meta table construct.
As an example, to get the average trajectory length of a
dataset, we first extract the trajectory ID and the length
of each element (denoted as tid and length) to the meta
table and then submit the following query:

metaTable.groupBy("tid")
.agg(sum("length") as "tlength")
.agg(avg("tlength"))

With the optimizations provided by Spark SQL, aggre-
gation analysis on a meta table is more efficient than that
on the original dataset. Further, with the flexibility in the
extraction process, a meta table itself can be used as an op-
timization technique. For instance, in the above example,
we can merge the (tid, length) tuples in each partition dur-
ing extraction, so that the efficiency of the analysis over the
whole dataset is further improved.

6.5 Co-Movement Pattern Mining
Co-movement pattern mining constitutes advanced min-

ing functionalities for trajectory data and has been explored
in several studies [21, 24, 27, 26]. Recently, Fan et al. [19]
has proposed a distributed framework to mine general co-
movement patterns on massive trajectories. This frame-
work can also be easily realized in UlTraMan. Moreover,
necessary preprocessing tasks that are not covered by their
framework can be supported efficiently in UlTraMan, hence
avoiding unnecessary data transfer. We detail the process
of co-movement pattern mining in UlTraMan as follows.

Preprocessing: format transformation. The trajec-
tory data should be transformed to a required format, such
as meter-measured spatial coordinates (instead of latitude
and longitude).

Preprocessing: synchronization. After format trans-
formation, we synchronize the trajectories by a global times-
tamp sequence. During the process, the meta table is used
to obtain the overall time period, and a specific partitioner
is used to repartition the dataset via timestamp ranges.

Analysis: clustering. To find co-movements, we need
to cluster the data at every timestamp. In UlTraMan, the
clustering algorithm (e.g., DBSCAN [18]) can be accelerated
by an R-tree built in advance.

Mining: co-movement pattern. The existing dis-
tributed mining algorithm [19], including star partitioning
and apriori enumeration, can be implemented in UlTraMan
with the APIs provided by TrajDataset and RDD.

Table 1: Statistics of the dataset used.

Attributes Taxi Shopping Brinkhoff
points 276,753,114 607,086,634 3,508,915,737
trajectories 15,789 137,502 4,016,000
raw size 27.5GB 37.5GB 250.2GB
snapshots 1,996 3,593 100,000
ε of DBSCAN 16 5,000 3.0

The implementation of co-movement pattern mining again
showcases the advantage of UlTraMan’s unified, efficient,
and reliable data processing and analysis.

7. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the perfor-

mance and scalability of UlTraMan. We conduct exper-
iments on data processing, data retrieval, and trajectory
clustering. The results, when compared to results obtained
for baselines, generally demonstrate the effects of optimiza-
tions enabled by UlTraMan. We omit the results on the ag-
gregation analysis and the pattern mining because their per-
formance is determined by the underlying Spark and Spark
SQL in the UlTraMan engine.

Experimental Setup: All experiments were conducted
on a cluster consisting of 12 nodes. Each node is equipped
with two 12-core processors (Intel Xeon E5-2620 v3 2.4GHz),
64GB RAM, and the Gigabit Ethernet. Each cluster node is
equipped with a Ubuntu 14.04.3 LTS system with Hadoop
2.7.1, Spark 2.1.1, and Chronicle Map 3.14.0. In the clus-
ter, one node is chosen as the master node and the driver
node, and the remaining nodes are slave nodes. In each
slave node, we allocate 40GB main memory for UlTraMan,
of which 20GB is preserved for data storage and the other
20GB is used for temporary objects. All system modules
and algorithms were implemented in Scala.

Datasets: We employ real and synthetic trajectory data
sets to study the performance of UlTraMan. The two real
data sets used fit in memory, which is the common use case
targeted by UlTraMan. To evaluate the performance in ex-
treme cases, a synthetic data set is generated that large
enough that the allocated memory is insufficient to cache
the whole data set. Statistics of the datasets listed next are
stated in Table 1:

• Taxi2: This is a real trajectory dataset generated by
taxis in Hangzhou, China. Trajectories are not sepa-
rated by trips, and thus, each trajectory represents the
trace of a taxi during a whole month.

• Shopping3: This dataset contains real trajectories of
visitors in the ATC shopping center in Osaka. This is
a dataset of free-space trajectories, in which the visitor
locations are sampled every half second.

• Brinkhoff4: This dataset is generated on the real road
network of Las Vegas via the Brinkhoff generator [11].
The moving objects in this dataset are generated step
by step, i.e., in each step, an object moves along a
road with random but reasonable direction and speed.
Therefore, this dataset is naturally synchronized.

2This is a proprietary dataset.
3http://www.irc.atr.jp/crest2010 HRI/ATC dataset/
4https://iapg.jade-hs.de/personen/brinkhoff/generator/

794

OFF_HEAP ON_KV L_INDEX L_INDEX_KV MEM_ONLY

5.5 11.0 16.5 22.0 27.5
data size (GB)

1000

200

300
400

600

qu
er
y
la
te
nc

y
(m

s)

7.5 15.0 22.5 30.0 37.5
data size (GB)

1000

200
300
400
600

2000

qu
er
y
la
te
nc

y
(m

s)

50.0 100.1 150.1 200.2 250.2
data size (GB)

1000

10000

400
600

2000
3000
4000
6000

qu
er
y
la
te
nc

y
(m

s)

(a) Taxi (b) Shopping (c) Brinkhoff

Figure 6: The latency of ID queries on different data sizes.

Table 2: Preprocessing times(s).

Preprocessing Taxi Shopping Brinkhoff
Hash Partitioning 11.204 20.648 61.578
STR Partitioning 19.529 42.892 115.725
On KV Persistence 3.337 6.877 19.596
Meta Table Extract 1.474 3.097 8.533
Hash-map Loc-Index 3.068 7.619 24.219
R-tree Local Index 5.818 12.296 28.510
R-tree Global Index 0.388 0.398 0.416
R-tree (kNN) Glob. 16.622 20.988 50.539

When evaluating the scalability of UlTraMan, we parti-
tion the above datasets into smaller ones with different sizes,
namely, 20%, 40%, 60%, 80%, and 100% of the dataset. By
default, all of Taxi and Shopping and 40% of Brinkhoff are
used to evaluate the performance when the data fits in mem-
ory. The data in Taxi and Shopping is partitioned according
to time spans, and the Brinkhoff dataset is partitioned ac-
cording to moving objects.

Parameters: Every measurement we report is an average
of 100 queries, where 10 query cases are randomly generated
according to the data distribution and each case is conducted
10 times. The default capacity of an R-tree node is set to
64. For DBSCAN clustering, the number of snapshots after
synchronization and the applied ε for each dataset are shown
in Table 1, and the minimum number of 15 moving objects is
used when generating clusters. All figures with experimental
results are shown with a logarithmic scale on the y-axis.

7.1 Preprocessing
We first evaluate the running times of different prepro-

cessing techniques in UlTraMan. The results are presented
in Table 2.

The first observation is that the running time for reparti-
tion is proportional to the dataset size. In particular, STR-
partitioning is slower than hash-based partitioning, because
an additional sampling procedure is needed to compute par-
tition boundaries. Further, data repartition is one of the
most time-consuming preprocessing tasks. This is because
the data shuffling process in Spark stores data on disk in-
ternally before real network transfer, thus incurring exten-
sive serialization, deserialization, and disk and network I/O
costs. Hence, co-located computing and data persistence is
important. The unified engine of UlTraMan is designed to
reduce the need of frequent data shuffling.

Second, the times for ON KV persistence and meta table ex-
traction are small and almost equal to the time for scanning
and copying the dataset in main memory. ON KV persistence
is about two times slower than the meta table extraction
since additional time is needed to serialize the data to be
stored in off-heap memory.

Third, the time for local index construction depends on
the specific index structure. In this set of experiments, we
construct local indexes on the ON KV persisted datasets. The
construction of a hash map is similar to the process of ON KV

persistence; thus, the time consumed is also similar to that
consumed by ON KV persistence. R-tree construction needs
more time to pack data according to the spatial informa-
tion. However, it is still fast due to in-memory data access,
considering the large sizes of the datasets.

Finally, the construction of a global R-tree is very fast
because the number of partitions is small compared to the
dataset volume and because the spatial information of each
partition has been computed during local index construc-
tion. Compared with the normal R-tree, the modified R-tree
for the kNN query has a much longer construction time. The
reason is that we have to conduct a query on the meta table
for each tree node to get the count of trajectories in the cov-
ered partitions. Nonetheless, this time is acceptable, as the
index saves substantial time during kNN querying, as to be
shown in Section 7.4. We can conclude that a well-designed
global index can help achieve better query performance with
low construction cost.

7.2 ID Query
Next, we conduct ID queries on the datasets, measuring

the query latencies. The results are shown in Fig. 6.
Fig. 6(a) shows the ID query performance on the Taxi

dataset, where the lines labeled MEM ONLY and OFF HEAP show
results for baselines that conduct a brute force filtering on
the on-heap and off-heap persisted RDDs, respectively.

The first observation is that the filtering on the persisted
RDDs scales linearly with respect to the data size. This is
because the computation cost is linear to data size. How-
ever, the latency of queries on the off-heap persisted RDDs
increases faster than those on the on-heap RDDs. The rea-
son is that for a simple filtering process as in an ID query,
the deserialization cost of off-heap data exceeds the compu-
tation cost.

The second observation is that the data persisted on ON KV,
which is provided by UlTraMan, can be queried faster than
that persisted on OFF HEAP, due to the optimized serializa-

795

tion mechanism based on Chronicle Map and trajectory data
(as described in Section 4.2).

Finally, the performance of the ID queries using local
indexes (L INDEX and L INDEX KV) is better than that of
the brute force methods. Also their latency increases only
slightly as the data size increases. The reason is that a
query on the hash map has an amortized O(1) computa-
tion cost, which is much less than the O(N) complexity of
the baseline methods. It is reasonable to believe that the
performance improvement brought by the indexes would be
more significant for larger data volumes. The results confirm
the importance of being able to support index structures in
UlTraMan. Further, the results show that in spite of the
additional cost of deserialization, the performance of the
KV-persisted indexes is comparable to that of the on-heap
indexes.

Fig. 6(b) shows the ID query performance on the Shopping
datasets. The results are similar as those on Taxi, the rea-
son being that the ID query is a light-weight data retrieval
procedure that is affected little by the differences among
datasets. However, the performance when using on-heap in-
dexes deteriorates as the data volume grows. The cause of
the large latency could be unexpected GC overheads in some
queries. For the same query input, the best query case on
L INDEX returns results as fast as those on L INDEX KV, but
other cases may be much slower due to GC processes, thus
incurring a larger average latency. This is unavoidable when
the data volume becomes large and the main memory is in-
sufficient. Compared with L INDEX, the KV-based indexes in
UlTraMan have smaller in-memory footprints and generate
little (or even no) garbage during ID queries, resulting in a
stable and reliable performance.

Fig. 6(c) plots the ID query performance on the Brinkhoff
datasets. Since the datasets become too large to fit in mem-
ory, the persistence tasks of all-in-memory levels, namely,
OFF HEAP and L INDEX, fail and produce no results. Next,
L INDEX has poor performance in extreme cases, due to in-
creasingly frequent GC procedures. Due to the fault toler-
ance techniques, data in the MEM ONLY and ON KV levels can
work under memory overflow. However, the query perfor-
mance deteriorates dramatically because some data is per-
sisted on disk. As observed, the query latency of ON KV

increases slower than that of MEM ONLY. This is because the
KV store has better data retrieval and deserialization per-
formance, due to its usage of the optimizations applied in
UlTraMan. Finally, L INDEX KV provides very stable per-
formance even when data does not fit in memory because
the O(1) algorithm saves I/O cost as well. As a conclusion,
UlTraMan excels for large datasets.

7.3 Range Query
Next, we investigate the performance of range queries.

Fig. 7 depicts two sets of range query experiments on each
dataset, in order to study the impact of the query area and
the data size on the performance. For range queries with
respect to different data sizes, a 0.02% query area is used by
default.

The first observation is that the latency of brute force
methods (MEM ONLY, OFF HEAP, and ON KV) stays stable when
the query area is varied. These methods scan the whole
dataset, so the cost remains the same. In contrast, the
index-based methods gain speedups of up to a factor of 100
when the query area is small, because I/O and computing

OFF_HEAP
ON_KV

L_INDEX
L_INDEX_KV

GL_INDEX
GL_INDEX_KV

MEM_ONLY

0.02 0.04 0.08 0.16 0.32
query area (%)

30
60

100
200
300
600

1000
2000

qu
er
y
la
te
nc

y
(m

s)

5.5 11.0 16.5 22.0 27.5
data size (GB)

30
60

100
200
300
600

1000
2000

qu
er
y
la
te
nc

y
(m

s)

(a) Taxi (b) Taxi

0.02 0.04 0.08 0.16 0.32
query area (%)

30
60

100
200
300
600

1000
2000
3000

qu
er
y
la
te
nc

y
(m

s)

7.5 15.0 22.5 30.0 37.5
data size (GB)

30
60

100
200
300
600

1000
2000
3000

qu
er
y
la
te
nc

y
(m

s)

(c) Shopping (d) Shopping

0.02 0.04 0.08 0.16 0.32
query area (%)

30
60

100

300
600

1000

3000
6000

10000

qu
er
y
la
te
nc

y
(m

s)
50.0 100.1 150.1 200.2 250.2

data size (GB)

30
60

100

300
600

1000

3000
6000

10000

qu
er
y
la
te
nc

y
(m

s)

(e) Brinkhoff (f) Brinkhoff

Figure 7: Performance of range queries.

costs are effectively saved. The query time of index-based
methods increases when the query area is large. This is be-
cause the main cost of a range query with a large query
area is the cost of I/O and GC for the output, in which the
improvement caused by indexing is limited. In real-life sce-
narios, a range query usually has a small area with respect
to the whole data space. Hence, the index-based methods
can achieve high query efficiency in real life applications.

The ON KV persisted method performs better than Spark’s
built-in OFF HEAP RDDs, which is because the deserializa-
tion cost is optimized. L INDEX shows better performance in
most cases (except for too large query areas) than brute force
methods, and L INDEX KV performs better and is more stable
than L INDEX because it avoids garbage collection. In partic-
ular, GL INDEX, which applies STR-partitioning and a global
R-tree, shows a small speedup comparing with L INDEX on
all three datasets. This speedup is the result of global filter-
ing using the global indexes and the partitioning. However,
the partitioning also distributes the data to natural clusters
in partitions, and thus, the local query time in the remain-
ing partitions increases. We can conclude that GL INDEX KV

performs the best for range queries. It achieves stable per-
formance speedup by using the off-heap local indexes and
global pruning.

As shown in Fig. 7(f), the scalability of each of OFF HEAP,
L INDEX, and GL INDEX is limited by the memory capacity of
the cluster. In contrast, MEM ONLY, ON KV, L INDEX KV, and
GL INDEX KV are capable of handling larger datasets by using
disk space. Because of an increased I/O cost on disk-stored
data, the query times of all these methods grows accordingly.
However, the techniques of optimized partitioning, indexing,

796

OFF_HEAP
ON_KV

L_INDEX
L_INDEX_KV

GL_INDEX
GL_INDEX_KV

MEM_ONLY

1 2 4 6 8
k

102

103

104

qu
er
y
la
te
nc

y
(m

s)

5.5 11.0 16.5 22.0 27.5
data size (GB)

102

103

104

qu
er
y
la
te
nc

y
(m

s)

(a) Taxi (b) Taxi

1 2 4 6 8
k

102

103

104

qu
er
y
la
te
nc

y
(m

s)

7.5 15.0 22.5 30.0 37.5
data size (GB)

102

103

104

qu
er
y
la
te
nc

y
(m

s)

(c) Shopping (d) Shopping

1 2 4 6 8
k

102

103

104

qu
er
y
la
te
nc

y
(m

s)

50.0 100.1 150.1 200.2 250.2
data size (GB)

102

103

104

qu
er
y
la
te
nc

y
(m

s)

(e) Brinkhoff (f) Brinkhoff

Figure 8: Performance of kNN queries.

and serialization remain effective, which makes UlTraMan
more powerful when handling very large datasets.

7.4 KNN Query
As shown in Fig. 8, we conduct two sets of kNN query

experiments on each dataset in order to study the impact of
the number k and the data size on the latency. For experi-
ments with varying data sizes, k is set to 2 by default.

Unlike the two previous query types, the kNN query is
both computation intensive and I/O intensive. The brute
force method of computing a kNN query takes advantage of
the RDD’s takeOrdered API, which involves expensive dis-
tributed sorting. Hence, the queries without using indexes
are slow. Relatively, OFF HEAP is the worst due to expensive
general deserialization. Next, ON KV saves some deserializa-
tion time, and MEM ONLY is the best among the three brute
force approaches. The performance of the brute force meth-
ods decrease as the data size grows, due to the larger search
space.

The use of local indexes yields better performance than
the baseline methods by an order of magnitude, which shows
the efficiency of indexes for complex data retrieval and anal-
ysis. However, the performance of L INDEX is not stable,
especially for the Shopping dataset. This is because the av-
erage trajectory length is shorter in the Shopping dataset.
Hence, more temporary objects are produced during kNN
queries, and the performance is affected by occasional pro-
cess of garbage collection. In contrast, L INDEX KV shows
stable performance across different k values and data sizes,
which illustrates an important benefit of UlTraMan.

The global-local index based methods (i.e., GL INDEX and
GL INDEX KV) adopt specialized data partitioning and global

OFF_HEAP ON_KV L_INDEX L_INDEX_KV MEM_ONLY

Taxi Shopping Brinkhoff102

103

104

105

106

clu
st

er
in

g
tim

e
(m

s)

Figure 9: Performance of DBSCAN.

indexes. This way, they are able to achieve lower latency
than the methods that only use local indexes, and they are
able to achieve a latency below 100ms, which is very fast
considering the scheduling and setup costs for distributed
tasks. More specifically, there are two reasons behind this
speedup: (i) most data partitions and distributed tasks are
pruned by our kNN query algorithm; and (ii), more impor-
tantly, from a system perspective, the support for random
access on both data partitions and local indexes enables al-
gorithmic optimizations. For the two methods using global-
local indexes, GL INDEX performs slightly better. This is be-
cause the rate of garbage collection is very small for only a
few local kNN queries due to the strong global pruning abil-
ity, while GL INDEX KV has additional deserialization costs in
local queries.

Fig. 8(f) shows the query time for each method when data
size exceeds the memory capacity. When the dataset be-
comes too large, OFF HEAP, L INDEX, and GL INDEX fail to
provide results, while MEM ONLY and OFF HEAP remain func-
tional, but with an increased query time. In comparison,
L INDEX KV and GL INDEX KV reduce the computation and
I/O cost effectively even for the large datasets, thus provid-
ing relatively stable performance. The results again demon-
strate the benefits of UlTraMan for big trajectory data an-
alytics.

7.5 Clustering: DBSCAN
Finally, the efficiency of clustering in UlTraMan is re-

ported in Fig. 9. Since the trajectory data has been synchro-
nized to snapshots and the clustering is conducted within
each snapshot (cf. Section 6.5), global indexes have no effect
in this process and hence are not used in the experiments.

For the Shopping dataset, the number of customers in a
snapshot is small, and clustering in snapshots is very fast:
DBSCAN can finish in less than 400ms with or without the
use of indexes. In particular, OFF HEAP is slower than other
methods, since the deserialization cost is substantial for the
intensive data access made by DBSCAN. Nonetheless, ON KV

shows to be as efficient as the other methods, which is at-
tributed to its optimized serialization.

For the Taxi dataset, a snapshot size is usually large (near
the number of taxis) because most taxis are traveling all the
time. This is also true for the Brinkhoff dataset, because
locations of the moving objects are generated snapshot by
snapshot. As a result, the clustering time is large on Taxi

and Brinkhoff. All three brute force methods have similar
performance, and they consume tens of seconds to answer
the query. With the help of pre-constructed local indexes,
the processing time can be reduced by up to 4/5.

It is interesting that L INDEX KV is slower than L INDEX

on Taxi but faster than L INDEX on Brinkhoff. On Taxi,

797

L INDEX KV is slower than L INDEX because (i) the data size
and the number of snapshots is smaller in Taxi, resulting
in less pressure of garbage collection on L INDEX, while (ii)
the cost of deserialization on L INDEX KV is substantial. In
contrast, the pressure on main memory space and garbage
collection are large for Brinkhoff, which hurts the perfor-
mance of L INDEX.

8. RELATED WORK
We proceed to survey the related system architectures and

clarify the difference between them and UlTraMan.
Several systems for trajectory data management and anal-

ysis exist. PIST [10], BerlinMOD [16] and TrajStore [13]
propose specific storage structure and indexes targeting tra-
ditional database engines. SharkDB [35] adopts a columnar
data schema to provide better query and analysis perfor-
mance. However, these systems are designed for centralized
architectures, and thus they are inefficient for, or incapable
of, handling massive volumes of trajectory data. In addition,
as the storage structures are constrained by the underlying
database engine, the system flexibility is limited.

SpatialHadoop [17] and Simba [37] enable distributed spa-
tial analytics based on the MapReduce paradigm. Nonethe-
less, they are unable to exploit the characterizes of tra-
jectory data for efficient data management and analytics.
CloST [34], PARADASE [29], Elite [38], and a cloud-based
system [9] provide distributed solutions for big trajectory
data. They utilize specific partitioning strategies in dis-
tributed environments to support data retrieval. In contrast,
UlTraMan adopts a flexible framework that supports cus-
tomizable data formats, partitioning strategies, index struc-
tures, processing methods, and analysis techniques, which
offers better support to realize optimizations and complex
analytics.

Other systems that offer distributed storage and comput-
ing also exist. SnappyData [30] integrates Apache Spark and
Apache GemFire [3] to support efficient streaming, trans-
actions, and interactive analytics. Apache Ignite [4] also
integrates Apache Spark with its key-value store to enable
data sharing across RDDs. The IndexedRDD project [5]
maintains an index within each partition. Although these
systems provide solutions that enhance Spark and eliminate
inefficiencies of heterogenous systems, they do not provide
flexible operations and optimizations for trajectory data an-
alytics. In contrast, UlTraMan adopts a unified engine ac-
companied with a TrajDataset abstraction that support ef-
ficient trajectory data management and analytics.

9. CONCLUSIONS
In this paper, we present UlTraMan, a flexible and scal-

able distributed platform for trajectory data management
and analytics. We demonstrate that UlTraMan is able to
outperform state-of-the-art systems, which is achieved by
(i) providing a unified engine for both efficient data man-
agement and distributed computing, and by (ii) offering an
enhanced computing paradigm in a highly modular archi-
tecture to enable both pipeline customization and module
extension. Several case studies with efficient algorithms are
implemented in UlTraMan. Experimental studies on large-
scale real and synthetic data sets that include comparisons
with the state-of-the-art methods offer insight into the ef-
ficiency and scalability of UlTraMan. In the future, one

promising direction of improving UlTraMan is to integrate
the meta table construction into global indexes in order to
provide more efficient and convenient global scheduling. It
is also of interest to design and integrate additional indexes
and analytical algorithms into UlTraMan, in order to fur-
ther support trajectory analysis use cases from real-world
applications.

10. ACKNOWLEDGMENTS
Yunjun Gao is the corresponding author of this work. The

work was supported in part by the 973 Program Grants
No. 2015CB352502 and 2015CB352503, NSFC Grant No.
61522208, NSFC-Zhejiang Joint Fund No. U1609217, the
DiCyPS project, and a grant from the Obel Family Founda-
tion. Also, the authors of the work would like to thank Rui
Chen, Guanhua Mai, Yi Ren, Renfei Huang, and Zhengyi
Yang for their help on the system implementation and eval-
uation.

11. REFERENCES
[1] H2 database engine. http://www.h2database.com,

2006.

[2] Redis. https://redis.io, 2010.

[3] Apache geode. https://geode.apache.org, 2015.

[4] Apache ignite. https://ignite.apache.org, 2015.

[5] Indexedrdd.
https://github.com/amplab/spark-indexedrdd,
2015.

[6] The DiDi Research.
http://research.xiaojukeji.com/index.html, 2016.

[7] Chronicle map.
https://github.com/OpenHFT/Chronicle-Map, 2017.

[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: relational
data processing in spark. In SIGMOD, pages
1383–1394, 2015.

[9] J. Bao, R. Li, X. Yi, and Y. Zheng. Managing massive
trajectories on the cloud. In SIGSPATIAL, pages
41:1–41:10, 2016.

[10] V. Botea, D. Mallett, M. A. Nascimento, and
J. Sander. PIST: an efficient and practical indexing
technique for historical spatio-temporal point data.
GeoInformatica, 12(2):143–168, 2008.

[11] T. Brinkhoff. A framework for generating
network-based moving objects. GeoInformatica,
6(2):153–180, 2002.

[12] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie.
Searching trajectories by locations: an efficiency
study. In SIGMOD, pages 255–266, 2010.

[13] P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore:
An adaptive storage system for very large trajectory
data sets. In ICDE, pages 109–120, 2010.

[14] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[15] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to
represent a digitized line or its caricature.
Cartographica, 10(2):112–122, 1973.

798

[16] C. Düntgen, T. Behr, and R. H. Güting. Berlinmod: a
benchmark for moving object databases. VLDB J.,
18(6):1335–1368, 2009.

[17] A. Eldawy and M. F. Mokbel. Spatialhadoop: A
mapreduce framework for spatial data. In ICDE,
pages 1352–1363, 2015.

[18] M. Ester, H. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD, pages
226–231, 1996.

[19] Q. Fan, D. Zhang, H. Wu, and K. Tan. A general and
parallel platform for mining co-movement patterns
over large-scale trajectories. PVLDB, 10(4):313–324,
2016.

[20] E. Frentzos, K. Gratsias, N. Pelekis, and
Y. Theodoridis. Algorithms for nearest neighbor
search on moving object trajectories. GeoInformatica,
11(2):159–193, 2007.

[21] J. Gudmundsson and M. J. van Kreveld. Computing
longest duration flocks in trajectory data. In GIS,
pages 35–42, 2006.

[22] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[23] Y. Han, W. Sun, and B. Zheng. COMPRESS: A
comprehensive framework of trajectory compression in
road networks. ACM Trans. Database Syst.,
42(2):11:1–11:49, 2017.

[24] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T.
Shen. Discovery of convoys in trajectory databases.
PVLDB, 1(1):1068–1080, 2008.

[25] J. Lee, J. Han, and K. Whang. Trajectory clustering:
a partition-and-group framework. In SIGMOD, pages
593–604, 2007.

[26] X. Li, V. Ceikute, C. S. Jensen, and K. Tan. Effective
online group discovery in trajectory databases. IEEE
Trans. Knowl. Data Eng., 25(12):2752–2766, 2013.

[27] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining
relaxed temporal moving object clusters. PVLDB,
3(1):723–734, 2010.

[28] Z. Li, J. Han, M. Ji, L. A. Tang, Y. Yu, B. Ding,
J. Lee, and R. Kays. Movemine: Mining moving
object data for discovery of animal movement
patterns. ACM TIST, 2(4):37, 2011.

[29] Q. Ma, B. Yang, W. Qian, and A. Zhou. Query
processing of massive trajectory data based on

mapreduce. In CloudDB, pages 9–16, 2009.

[30] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan,
S. Chakraborty, H. Bhanawat, and K. Bachhav.
Snappydata: A unified cluster for streaming,
transactions and interactice analytics. In CIDR, 2017.

[31] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel
approaches to the indexing of moving object
trajectories. In VLDB, pages 395–406, 2000.

[32] S. Ranu, D. P, A. D. Telang, P. Deshpande, and
S. Raghavan. Indexing and matching trajectories
under inconsistent sampling rates. In ICDE, pages
999–1010, 2015.

[33] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and
M. A. López. Indexing the positions of continuously
moving objects. In SIGMOD, pages 331–342, 2000.

[34] H. Tan, W. Luo, and L. M. Ni. Clost: a Hadoop-based
storage system for big spatio-temporal data analytics.
In CIKM, pages 2139–2143, 2012.

[35] H. Wang, K. Zheng, J. Xu, B. Zheng, X. Zhou, and
S. W. Sadiq. Sharkdb: An in-memory column-oriented
trajectory storage. In CIKM, pages 1409–1418, 2014.

[36] Y. Wang, Y. Zheng, and Y. Xue. Travel time
estimation of a path using sparse trajectories. In
KDD, pages 25–34, 2014.

[37] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo.
Simba: Efficient in-memory spatial analytics. In
SIGMOD, pages 1071–1085, 2016.

[38] X. Xie, B. Mei, J. Chen, X. Du, and C. S. Jensen.
Elite: an elastic infrastructure for big spatiotemporal
trajectories. VLDB J., 25(4):473–493, 2016.

[39] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun. An
interactive-voting based map matching algorithm. In
MDM, pages 43–52, 2010.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
NSDI, pages 15–28, 2012.

[41] Y. Zheng. Trajectory data mining: An overview. ACM
TIST, 6(3):29, 2015.

[42] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban
computing: Concepts, methodologies, and
applications. ACM TIST, 5(3):38:1–38:55, 2014.

[43] Y. Zheng and X. Zhou, editors. Computing with
Spatial Trajectories. Springer, 2011.

799

