
RC-Index: Diversifying Answers to Range Queries

Yue Wang Alexandra Meliou Gerome Miklau
College of Information and Computer Sciences

University of Massachusetts Amherst
{yuewang,ameli,miklau}@cs.umass.edu

ABSTRACT
Query result diversification is widely used in data exploration, Web
search, and recommendation systems. The problem of returning
diversified query results consists of finding a small subset of valid
query answers that are representative and different from one an-
other, usually quantified by a diversity score. Most existing tech-
niques for query diversification first compute all valid query results
and then find a diverse subset. These techniques are inefficient
when the set of valid query results is large. Other work has pro-
posed efficient solutions for restricted application settings, where
results are shared across multiple queries. In this paper, our goal
is to support result diversification for general range queries over a
single relation. We propose the RC-Index, a novel index structure
that achieves efficiency by reducing the number of items that must
be retrieved by the database to form a diverse set of the desired size
(about 1 second for a dataset of 1 million items). Further, we prove
that an RC-Index offers strong approximation guarantees. To the
best of our knowledge, this is the first index-based diversification
method with a guaranteed approximation ratio for range queries.

PVLDB Reference Format:
Yue Wang, Alexandra Meliou, and Gerome Miklau. RC-Index: Diversify-
ing Answers to Range Queries. PVLDB, 11(7): 773-786, 2018.
DOI: https://doi.org/10.14778/3192965.3192969

1. INTRODUCTION
Query result diversification is an important aspect of user-facing

applications, such as data exploration, Web search, and recommen-
dation systems [42, 14, 11, 47]. The need for diversification arises
when the system has to limit the number of query results: since hu-
man users can visually process limited information, interfaces typi-
cally need to limit the data they display on the screen to a few points
on a map or a small number of items in a list. Diversification is one
common way to present representative results to users, and it is
employed by many real-world systems. For example, even though
there are thousands of ATMs in Manhattan, a search in Google
Maps typically reveals no more than 20 at any zoom level, and the
chosen locations are typically dispersed in the viewing area. Prod-
uct searches in online marketplaces, such as Amazon, also employ

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 7
Copyright 2018 VLDB Endowment 2150-8097/18/03... $ 10.00.
DOI: https://doi.org/10.14778/3192965.3192969

diversity: a search for laptops in a particular price range typically
yields diverse brands and models on the first page of results, rather
than similar laptops from different retailers.

Our goal is to provide an efficient and scalable solution to the
problem of selecting a diverse subset of the result of general range
queries1 over a single relation. Systems that employ query result
diversification typically try to optimize a specified diversity score
function. The diversity score is defined over a bivariate distance
function, which is domain- and application-specific, and measures
the distance between any two items of a dataset. When a user issues
a query, the system needs to retrieve a set S of k items such that:
(1) every item in S is in the result of the query; (2) the diversity
score of S is maximized. This is a challenging problem to solve
efficiently and in a scalable way, as it is practically infeasible to
compute the diversity score of every k-sized subset of the query
result. In fact, this problem is known to be NP-hard [16, 40, 38].
One can only develop approximation algorithms to solve it.

Existing approaches fail to solve this problem effectively. Many
existing diversification techniques follow a “process-first-diversify-
next” approach [23]: first, they execute the query normally to re-
trieve all results, and they subsequently employ appropriate algo-
rithms to identify a subset with high diversity score. The “process-
first-diversify-next” techniques have a big problem: efficiency. In
practical diversification scenarios, systems typically only need to
retrieve a relatively small subset of items, thus, computing the en-
tire query result is often computationally wasteful.

Some prior work on result diversification has achieved efficient
solutions at the expense of generality. For example, some work fo-
cuses on extracting diverse items from data streams through contin-
uous querying [33, 15, 12]. These techniques achieve efficiency by
reusing prior diversification results as new items arrive. Similarly,
in some data exploration scenarios, such as geolocation visualiza-
tion, subsequent queries are correlated, which again allows reuse of
overlapping items in query results [24, 25, 26]. These techniques
do not perform well in more general cases where query results do
not overlap significantly, even if the query predicates are over a
fixed set of attributes. For example, if a user issues subsequent
queries for laptops “under $1000”, “between $1000 and $1500”,
and “above $1500”, even though the queries are very similar, their
results do not overlap, and thus these techniques do not apply.

In this paper, we propose a general, index-based algorithm for
diversifying the results of multi-dimensional range queries over a
single relation. At a high level, our algorithm transforms each range
query into a set of subordinate searches, performs these searches
using a novel index structure, the RC-Index, and finally extracts
a diverse subset from the merged results of subordinate searches.

1A range query specifies upper and/or lower boundaries on attribute
values that all retrieved records should satisfy.

773

RC-Indexes achieve efficiency by retrieving a very small set of can-
didate items compared to “process-first-diversify-next” techniques.
Our algorithm extracts and merges candidates in a novel way that
guarantees provably high diversification quality. We further show
empirically that it finds better solutions than competing approaches,
and we develop efficient algorithms to maintain RC-Indexes.

Our work addresses four important challenges.

Efficiency. Existing techniques for addressing diversification in ad-
hoc queries require the retrieval of the entire query result before ap-
plying diversification algorithms to retrieve a diverse k-sized sub-
set. In contrast, RC-Indexes retrieve a much smaller set of can-
didate items (up to 99.4% reduction compared to state of the art),
which leads to order-of-magnitude faster response times.
Generality. One of our main goals in this paper is to support gen-
eral range queries over a relation. Prior work achieved efficiency
only by restricting generality, through the assumption that subse-
quent queries share a large portion of results. In contrast, RC-
Indexes do not make such assumptions. The RC-Index is a new
index-based access method to relations that allows for fast retrieval
of diverse subsets of results for range queries.
Effectiveness. RC-Indexes provide theoretical guarantees with re-
spect to diversification quality. The approximation ratio is based
on tunable parameters, and at the limit approaches 1

2 , which is the
optimal polynomial time ratio for our diversification problem [38].
Flexibility. RC-Indexes use existing indexing structures as sub-
modules to support range search. Our implementation is based on
range trees, but a system designer may opt for different index struc-
tures (e.g., k-d trees) if they are better-suited for a given application.

We organize our contributions as follows.
• Section 2 provides background and an overview of our solution.
• Section 3 introduces the core of our approach, a novel index
structure called RC-Index, which combines range selection indexes
(range trees) with diversity indexes (cover trees). We describe our
system, which uses the RC-Index to answer range queries with di-
versification requirements.
• Section 4 presents our theoretical analysis, showing that RC-
Indexes are effective and efficient at providing diverse results.
Specifically, the diversity score of sets returned by our system ap-
proximates the optimal diversity score by a factor of b−1−2b1−δ

2(b−1) ,
where b > 1 and δ ≥ 1 are parameters that control the ratio and
time/space complexity. When b or δ approaches infinity, the limit
of the ratio is 1

2 . This is the optimal polynomial approximation
for our diversification problem under pseudometric distance func-
tions [38]. We also show that the RC-Index has low time and space
complexity.
• Section 5 explains how to choose indexes to support a workload
of queries with respect to RC-Indexes.
• Section 6 presents the evaluation of our prototype system over
real-world and synthetic datasets, demonstrating that RC-Indexes
are both efficient and effective at range result diversification. Specif-
ically, we show that our approach achieves better diversity scores
than the state of the art and is substantially faster as well: we can
index 106 items in 330 seconds and answer a query in under a sec-
ond. Our approach is also more general, as it subsumes prior work,
handling both streaming and relational queries.
• Section 7 discusses related work.

2. OVERVIEW AND BACKGROUND
We begin this section with the definition of range query result di-

versification, an optimization problem over a diversity score func-
tion f (S,dist). We then discuss two popular diversity score func-

tions from prior work, and desirable properties for the domain-
specific distance measures used by the diversity score functions.
We continue to present an overview of our system solution in Sec-
tion 2.3. The core of our approach is a special index structure,
the RC-Index. The RC-Index is a novel combination of two types
of index structures: cover trees and range trees. We describe these
structures in Sections 2.4 and 2.5 before proceeding with the details
of our framework in Section 3.

2.1 Result Diversification
In this section, we define the problem of selecting a diverse sub-

set of the results of a range query. We use X to denote a database
with a single relation R(A) over the set of attributes A= {A1,A2, ...}.
Let n = |X | be the size of the relation. A range query q can apply
interval filters to a subset of attributes Aq ⊆A, where each attribute
in Aq is assumed to have an ordered domain. A bivariate function
dist(xi,x j) measures the distance between items xi,x j ∈ X . The
distance function is defined over a subset of attributes Adist ⊆ A,
which may or may not overlap with Aq. Given a database X and a
query q, we wish to find the subset of k items in the result q(X) that
maximizes a diversity score function defined over dist.

PROBLEM 1 (RANGE QUERY RESULT DIVERSIFICATION).
Given a set of items X = {x1,x2, ...}, a bivariate distance function
dist(·, ·) on X, a range query q with result set q(X), and a pos-
itive integer k ≤ |q(X)|, range query result diversification selects
S⊆ q(X) that maximizes a diversity score function f over dist:

max
S

f (S,dist)

s. t. S⊆ q(X)

|S|= k

The distance measure dist is application-specific. The diversity
score function f (S,dist) has two popular forms [13, 42, 11]:

fmin(S,dist) = min
xi,x j∈S ∧ xi 6=x j

{dist(xi,x j)}

fsum(S,dist) = ∑
xi,x j∈S ∧ xi 6=x j

dist(xi,x j)

The first form, fmin, computes the minimum distance of the items
in S; the corresponding diversification problem is called MAXMIN.
The second form, fsum, computes the sum of pairwise distances
of items in S; the corresponding diversification problem is called
MAXSUM. Even when the range query retrieves all items (q(X) =
X), Problem 1 under MAXMIN or MAXSUM is NP-hard [16, 40,
11]. Therefore, Problem 1 for general q(X) is also NP-hard.

In practice, the diversification score is used to select appropriate
top-k items. We demonstrate its application with an example:

EXAMPLE 1. A user queries a dataset of ATM information to
find those with a closing time after 8pm. The application displays
10 of the ATMs in the result with diverse locations based on their
Euclidean distance distE(·, ·), using the following query q:

SELECT *

FROM ATM_data

WHERE Close_time >= 20

LIMIT 10 DIVERSE(distE(Latitude, Longitude)) MAXMIN;

Query q applies a range filter to one attribute (Aq = {Close_time}).
The LIMIT clause specifies that the query will return 10 items. Nor-
mally, the LIMIT clause would return any 10 items, but in this
case, the clause is augmented with a diversification objective: We
want the set of 10 results that maximizes the MAXMIN diversity

774

0.0 0.5 1.0
Normalized Longitude

0.0

0.5

1.0
N

o
rm

a
li
ze

d
 L

a
ti

tu
d

e

(a) fmin = min{distE (xi,x j)}

0.0 0.5 1.0
Normalized Longitude

0.0

0.5

1.0

N
o
rm

a
li
ze

d
 L

a
ti

tu
d

e

(b) fsum = ∑distE (xi,x j)

Figure 1: Diversification on a sample of ATMs in New York City
under two diversity score functions. We select k = 10 ATMs (red
circles), out of a total of 30 (blue triangles) in each figure.

score defined over the Euclidean distance distE(·, ·) on attributes
Latitude and Longitude (Adist = {Latitude, Longitude}).

Figure 1a illustrates the result of the query of Example 1 over a
small sample of the ATM dataset. All ATMs locations that satisfy
the range predicate are denoted with blue triangles; the red circles
indicate 10 diverse locations that may be selected. Figure 1b shows
the result of the same query with the MAXSUM diversity score.

We note that fsum selects points on the outskirts of the dataset,
while fmin selects points closer to unselected points [14, 15]. Our
proposed methodology supports both variants of the problem. For
simplicity, we focus on fmin, i.e., MAXMIN, in the rest of this pa-
per. We extend it to MAXSUM in our technical report [43].

2.2 Distance Function
The distance function is an important component of diversifica-

tion, as the problem objective involves the maximization of pair-
wise distances of items in S. The distance function is domain- and
application-specific, and can involve any of the attributes.

Intuitively, one can cluster X according to the distance metric
dist(·, ·), and use this clustering to solve Problem 1. However,
the challenge is that the attributes over which the distance is de-
fined may or may not overlap with the attributes filtered by q: In
Example 1, the distance is defined over the latitude and longitude
attributes (Adist = {Latitude, Longitude}), while the range con-
dition is over the Close_time attribute (Aq = {Close_time}).

While there are no general restrictions on the distance metric
with respect to the definition of Problem 1, some properties of the
distance metric affect the problem complexity. Problem 1 under
MAXMIN for general distance functions has no polynomial time
algorithm that can provide a constant approximation ratio unless
P=NP [38]. However, when the distance function is symmetric and
satisfies the triangle inequality, a simple greedy heuristic provides
a 1/2-approximation; no polynomial algorithm can provide an ap-
proximation ratio better than 1/2 unless P=NP [40, 38]. Following
prior work in this area [40, 38, 15, 12], we also assume the distance
function in this paper satisfies the three properties below:

DEFINITION 1 (DISTANCE FUNCTION). The bivariate dis-
tance function dist : X×X →R≥0 in Problem 1 must be a pseudo-
metric satisfying the following properties:

dist(x,x) = 0
dist(x,y) = dist(y,x) (Symmetry)
dist(x,y)+dist(y,z)≥ dist(x,z) (Triangle Inequality)

Many common distance functions used in practice satisfy Defi-
nition 1. Here we list a few:
• The metrics induced by any Lp-norm with p≥ 1. These include
Manhattan distance (L1-norm) and Euclidean distance (L2-norm).

Diversification
Module

Input: Query

Candidates

Output:
Diverse Items

Diversity
Index

Range
Index

RC-Index
Query Module

Figure 2: Solution overview. Our prototype system involves two
modules: the Query Module and the Diversification Module.

Algorithm 1: Query Evaluation
Input: Range query q; Parameter k; RC-Index RC; Extra level δ .
Output: Set of diverse items S.

1 T ⇐ RangeQueryTreeExtraction(q,RC) // QM: Algo. 3

2 XC ⇐ CandidateExtraction(k,T,δ) // QM: Algo. 2

3 S⇐ GreedyDiversification(XC,k) // DM: Algo. 4

• A graph-based metric in which items are vertices in a graph with
non-negative edges and the distance between two vertices is the
length of the shortest path connecting them.
• The “diversity ordering”-based distance [41]. This distance func-
tion defines a total ordering of the attributes such as car make ≺
car model≺ color≺ year, which means car make has higher prior-
ity than car model does and so on. The distance between two items
is greater if the two items differ on a higher priority attribute.

2.3 Solution and System Overview
The core of our approach is a novel index: the RC-Index.2 Prior

work [15] used indexes to solve the diversification problem. How-
ever, in that setting, one needs to first index the entire query result
and then extract diverse items from the index. Rebuilding the in-
dex for each query result is too expensive. Instead, similar to a
conventional B+ tree, we build an RC-Index on a dataset once but
use it to answer various range queries. RC-Index combines two
types of indexes: a Range Index and a Diversity Index. The Range
Index is used to support range queries. It can be a B+ tree (for 1-
dimensional queries), interval tree, R-tree, VA-file, k-d tree, range
tree, etc. Each Diversity Index is a cover tree (described fully be-
low) which is built on a subset of items. It organizes the items
according to their pairwise distances. Items near the root are far
from each other and items near the bottom are close to each other.
It can help us limit the number of candidate items we extract, while
ensuring the diversity of candidates.

We construct a framework on top of our core RC-Index to solve
the diversification problem. Our framework has two modules as il-
lustrated in Figure 2: the Query Module (QM) and the Diversifica-
tion Module (DM). The QM builds an RC-Index offline to support
range queries. Then, when a query arrives, the QM uses the index
to extract a set of candidates and passes this set to the DM. Finally,
the DM finds k diverse items to present to the user. Algorithm 1
shows the pipeline of query evaluation at a high level. Line 1 and
Line 2 belong to QM. Line 3 is DM. We will elaborate in Section 3.
The key to the success of this framework is that we limit the number
of candidates extracted by the QM but also ensure their diversity.
We will prove this desired property in Section 4.1.

Note that an RC-Index is built on a given set of attributes. This is
a reasonable assumption because users’ queries usually apply filters
on a limited set of attributes in practice [1], and it is a standard
assumption in conventional indexes like R-trees, k-d trees, and B+

2The RC-Index takes its name from the two data structures we use
in our implementation: Range tree and Cover tree.

775

(a) `max = 0 (b) `=−1 (c) `=−2 (d) `=−3

Figure 3: The 4 highest levels of a cover tree of ATMs in New
York City with normalized coordinates. Items at each level ` are
highlighted in red. The tree satisfies Nesting, Covering, and Sepa-
ration.

trees. In Sections 3 and 4 we assume that the RC-Index is built on
the query attributes Aq; we relax this assumption in Section 5.

2.4 Cover Tree
A cover tree [5] is a data structure that naturally diversifies items.

It is similar to navigating nets [27], which were originally designed
for nearest neighbor search. Every level of a cover tree has a dis-
tance threshold. The distance between every pair of items at this
level must be greater than this threshold. The threshold decreases
from root to leaf. So, items at a higher level (i.e., closer to the root)
are farther away from each other. Intuitively, one can use a cover
tree over a dataset X to retrieve k diverse items from X by selecting
any k items from the highest level that contains k or more items.
Drosou and Pitoura [15] used cover trees for diversification. How-
ever, that work assumes queries over continuous data with sliding
windows, so a single cover tree can answer consecutive queries that
share results. In this paper, we are looking at a more general prob-
lem, as we wish to support range queries that may or may not share
results. Our RC-Index uses cover trees internally, but it is a more
complex structure, and our algorithms and approximation guaran-
tees differ from the ones in the prior work.

A cover tree embeds items into a tree with multiple levels. Every
level of the tree has an integer level number, `. The root is at the
highest level and we define this level as Level `max. Then each item
may have other items as children. One special feature of cover tree
is: as soon as an item x appears at Level `x as a child of another
item, x will always have itself as a child at the next level (`x− 1).
In addition, each level also has a distance threshold θ` = b`, where
b > 1 is a “base” distance parameter defined for each cover tree.
Let C` be the set of items at Level `. Formally, a cover tree must
obey the following three invariants:

1. Nesting: C` ⊆ C`−1. If an item appears at level `, it must
appear at all levels below `.

2. Covering: If xi ∈C` and x j is its direct child, dist(xi,x j) ≤
θ` = b`. This implies that an item at Level ` covers all its
direct children within a ball whose radius is θ`.

3. Separation: If xi,x j ∈C` and xi 6= x j, dist(xi,x j)> θ` = b`.
This indicates that the pairwise distances between all distinct
items at Level ` must be greater than θ`. In practice, items
with dist(xi,x j) = 0 should be aggregated as a list of ids at
all levels to satisfy the separation invariant.

The height of a cover tree depends on the data. The lowest level,
`min, is determined by the closest pair of items due to the Separation
invariant; formally, `min = argmax`{dist(xi,x j) > b` |xi,x j ∈ X}.
The highest level, `max, depends on which item is chosen to be the
root. It can be any integer in (−∞,+∞) as long as the root covers
all items. Although an item may appear in more than one level, we
only need O(n) space to store all items of a cover tree where n is
the number of distinct items. We will defer the discussion of cover
tree’s time and space complexity to Section 4.

[0, 8)×[0, 8)

[0, 4)×[0, 8)

[0, 2)×[0, 8) [2, 4)×[0, 8)

[4, 8)×[0, 8)

[6, 8)×[0, 8)

First dimension: [0, 8)×[6, 8)
[0, 8)×[4, 6)

[0, 8)×[0, 2)
[0, 8)×[2, 4)

Second
dimension:

Figure 4: An example 2-dimensional range tree. Every node in the
first dimension range tree points to another range tree in the second
dimension.

Figure 3 depicts the highest four levels of an example cover tree
on a set of ATMs in New York City (south of Central Park). The
ATMs’ latitude and longitude are normalized to [0,1). We highlight
items at each level as red points and display all other items as grey
points. We set the base distance of this cover tree as b = 2.0. Recall
`max is a data-dependent value. The root of the cover tree in this
example turns out to be at Level `max = 0.

2.5 Range Tree
A range tree [31, 3, 45, 29] is a nested tree structure. The left

hand side of Figure 5 shows an example of a simple, 1-dimensional
range tree. The root of the tree represents the entire range and ev-
ery descendant non-leaf node corresponds to a subrange. The leaf
nodes are the actual data items. Figure 4 illustrates a 2-dimensional
range tree. In this particular example, we assume the data space is
[0,8)× [0,8) and each inner range is evenly split into two subranges
to simplify the presentation. In practice, the actual space and sep-
arator depends on the data distribution. We also omit leaf items
for simplicity. The root of the whole range tree is [0,8)× [0,8) at
the left side. It splits on the first dimension to get the two chil-
dren [0,4)× [0,8) and [4,8)× [0,8). In the meantime, it points to
another range tree at the right hand side. This range tree splits on
the second dimension till the finest subrange like [0,8)× [0,2) and
[0,8)× [2,4). Similarly, every inner node in the first dimension
points to a range tree that splits on the second dimension. So when
we implement a range tree, each node can have at most three chil-
dren in two categories: le f t and right for the current dimension and
next for exactly the next dimension. A node at the finest subrange
does not have le f t and right. Each node has at most one next: the
nodes in the last dimension do not have next.

3. INDEX-BASED FRAMEWORK
In this section we focus on how the Query Module and the Di-

versification Module work. We prove their approximation ratio and
complexity in Section 4.

3.1 Query Module: Sketch
We start by explaining how we design the Query Module. First

of all, we need the Query Module’s Diversity Index (DI) to extract
diverse items from a large set of input items even before we con-
sider any queries. A cover tree, which organizes items according
to their distances, naturally satisfies our requirement. However, a
DI with only one single cover tree is not enough to answer various
user queries. For example, if we build only one cover tree CT[0,8)
for items in range [0,8), how can we answer a query on [2,8)? In
the best case, if one subtree of CT[0,8) coincidentally contains all
items in range [2,8) without any items outside [2,8), we can di-
rectly query this subtree to retrieve diverse items as we mentioned
in Section 2.4. However, in general, we cannot rely on this case.

776

[0, 8)

[0, 4)

[0,2) [2,4)

[4, 8)

[6,8)

Range Index (RI): Diversity
Index (DI):

Figure 5: RC-Index: maps every Range Index (RI) node to a Diver-
sity Index (DI) tree. It is the core of Query Module. This example
Range Index supports 1-dimensional range queries.

As we point out in Section 2.2, the attributes used to compute dis-
tance (e.g. Latitude and Longitude) can be different from the
attributes filtered by a range query (e.g. Close_time). So, a sub-
tree of the cover tree CT[0,8) is not a cover tree of a subrange. In
other words, we cannot assume a cover tree’s structure follows any
range pattern.

So, we build the DI with multiple cover trees on different range
partitions of X and extract diverse items from them with an approx-
imation ratio, which is one of our main contributions. We base our
approach on two important techniques. First, we show how we can
carefully extract items from multiple non-overlapping cover trees
to ensure the diversity score is no less than a factor times the op-
timal diversity score (Section 3.2). In other words, this approach
is a constant-factor approximation algorithm. Second, we answer
various queries while limiting the number of cover trees we build
(Section 3.3). This is because we transform all range queries to a
limited number of subordinate searches using the Range Index. For
example, we may change a 1-dimensional range query on [2,8) into
two subordinate searches on [2,4) and [4,8). So, we only need to
build cover trees for these subordinate searches. These two tech-
niques, used together, form an index to sustain our Query Module,
which we call an RC-Index.

EXAMPLE 2 (CONTINUING EXAMPLE 1). A user can create
an RC-Index as follows to support the query q in Example 1:

CREATE RC_Index ON ATM_data(Close_time)

DIVERSE(distE(Latitude, Longitude));

Our system can use this index to solve both MAXMIN and MAX-
SUM. We focus on MAXMIN in this paper. [43] shows how to solve
MAXSUM.

Figure 5 depicts the high level idea of RC-Index of our Query
Module. It consists of two indexes: Range Index (RI) and Diversity
Index (DI). The RI is to support the range query. It can be a B+ tree,
R-tree, k-d tree, range tree, and so on. On the left hand side in the
figure, we show an example RI for 1-dimensional range queries.
We display a range on each node to indicate its coverage. The root
covers the range [0,8). Then it splits the range into sub-ranges as
children. The ranges correspond to interior nodes, while the leaves
are actual items. Every RI node is mapped to a DI tree on the right
hand side. For instance, the RI node [0,4) is mapped to a DI tree
that covers all five items within this range. At the bottom, every
individual item is itself a DI tree, so we do not need to explicitly
map leaves of the RI to a DI, which saves some space.

Our Query Module has the following features.

• We allow the attributes used for distance calculation Adist to
be different from the attributes filtered by the range query
Aq, which makes our approach widely applicable.

Algorithm 2: Candidate Extraction
Input: Parameter k; Set of cover trees T = {CT1,CT2, ...}; Extra level

δ .
Output: Set of candidate items XC .

1 XC ⇐ /0
2 foreach CT ∈ T do
3 XC ⇐ XC ∪ExtractTree(CT,k,δ)

4 return XC

5 Function ExtractTree(CT,k,δ)
6 if |CT | ≤ k then
7 return All items in CT

8 `k ⇐ argmax
`
|C`| ≥ k

9 `⇐max{`k−δ , `min}
10 return C`

• An RC-Index supports not only any range query q on the
query attributes Aq but also various k. For instance, if a sys-
tem would like to return top 10 results to one user but top
20 results to another user, one index supports both queries.
This k does not need to be hard-wired in the index. It only
controls the number of candidates to extract from the index
during query evaluation.

• An RC-Index supports a dynamic scenario where a system
inserts and deletes items between queries. We explain index
maintenance in Section 4.2.

3.2 Query Module: Diversity Index
We introduce the Diversity Index first as it is the essential part

of our framework. Recall that we use the cover tree [5] which is
originally designed for nearest neighbor search. It organizes items
according to distance, which allows us to extract diverse items from
one or more cover trees with a performance guarantee. Note that
we extract more than k candidate items from the Diversity Index in
our Query Module. Later we choose exactly k diverse items from
these candidates in our Diversification Module (Section 3.5).

Algorithm 2 explains how we extract more than k candidate items
from multiple cover trees. We enumerate the cover trees and extract
a level of items from each tree in ExtractTree (Line 5 to Line 10).
This function finds the highest level with at least k items (Line 8)
and goes δ levels down (Line 9) to return all items at that level.

EXAMPLE 3. Consider applying Algorithm 2 to a single cover
tree in Figure 3 with k = 3 and δ = 1. Our function ExtractTree

firstly makes sure this tree has more than 3 items. Then it finds the
highest level with at least 3 items: Level `k = −1. Finally it goes
δ = 1 level down to Level −2 and returns all its 9 items.

The candidate items extracted by Algorithm 2 are diverse, which
allows us to later select k items with high diversity score from these
candidates. The δ parameter controls how many more items the
system extracts. Greater δ leads to more candidate items, which
means better approximation ratio but longer runtime. Formally,
if the optimal diversity score on X is f ∗, and the optimal diversity
score on extracted XC is fC, we have fC ≥ b−1−2b1−δ

b−1 · f ∗. We
prove this property and discuss the parameters in Section 4.1.

3.3 Query Module: Range Index
The previous Section 3.2 shows how to extract diverse candidates

from a set of cover trees, while this section shows how to get this
set of cover trees given a range query.

Given a range query, we transform it to several subordinate
searches, each of which corresponds to a cover tree. Specifically,

777

Algorithm 3: Range Query Tree Extraction
Input: Range query q; RC-Index RC.
Output: Set of cover trees T .

1 T ⇐ QueryRangeTree(q,RC.root)
2 return T
3 Function QueryRangeTree(q,node)
4 if node.range⊆ q.range then
5 return {node.CT}
6 if node.range∩q.range = /0 then
7 return /0

8 nowT ⇐ /0
9 foreach child ∈ {node.le f t,node.right,node.next} do

10 nowT ⇐ nowT ∪QueryRangeTree(q, child)

11 return nowT

we use Range Tree [31, 3, 45, 29] to transform any range query
to at most logd n subordinate searches, where n= |X | is the size of
the data and d = |Aq| is the dimensionality. Range tree is one of
the data structures that efficiently support range queries [4]. We
use range tree as our Range Index for two reasons: (1) It can help
us transform a range query to a reasonable number of subordinate
searches. (2) It can answer a range query efficiently. In a conven-
tional range query evaluation scenario, one can extract the entire
q(X) with time complexity O(logd n+ |q(X)|). So it is faster than
k-d tree [2] or quad tree [17] whose worst case query complexity is
O(d ·n1−1/d + |q(X)|) [28].

In the following example we transform a 2-dimensional query to
four subordinate searches in a range tree:

EXAMPLE 4. When receiving a 2-dimensional query [2,8)×
[2,6) on a range tree in Figure 4, we split the first dimension and
stop at [2,4)× [0,8) and [4,8)× [0,8). Then we split the sec-
ond dimension to reach four nodes [2,4)× [2,4), [2,4)× [4,6),
[4,8)× [2,4), and [4,8)× [4,6).

We briefly present the time and space complexity of a conven-
tional range tree. The query complexity is O(logd n), because the
range of each dimension is split to at most logn subranges. Its batch
construction time is O(n logd n). The amortized time complexity of
insertion and deletion is O(logd n) when we carefully maintain the
balance of the tree [45, 29, 32]. Its space complexity is O(n logd n).

3.4 Query Module: Candidate Extraction
In this section we put the Diversity Index and Range Index to-

gether to form a full RC-Index and show how our Query Module
(QM) works. QM works in two steps as depicted in Line 1 and
Line 2 of Algorithm 1. First, Algorithm 3 traverses the RC-Index
to collect a set of cover trees for a range query. Second, we pass the
cover trees to Algorithm 2 to get candidates. Here is an example:

EXAMPLE 5. (Continuing Example 4) Given the range query
[2,8)× [2,6), we traverse our index and stop at four nodes: [2,4)×
[2,4), [2,4)× [4,6), [4,8)× [2,4), and [4,8)× [4,6). We collect
their corresponding cover trees into a set T . Then we pass it to
Algorithm 2 to get candidate items XC.

This approach successfully reduces the number of scanned items
from |q(X)|, i.e. linear to n in the worst case, to polylogarithmic as
we prove in Section 4.1.

3.5 Diversification Module
This module takes a set of candidate items XC = {x1,x2, ...} as

input and outputs exactly k diverse items.

Algorithm 4: Greedy Diversification

Input: Candidate set XC = {x1,x2, ...}; Size of output k where
1≤ k ≤ |XC|.

Output: Set of diverse items S.
1 xrandom⇐ one random item in XC

2 S⇐{xrandom}
3 XC ⇐ XC−{xrandom}
4 foreach xi ∈ XC do
5 dist[xi]⇐ dist(xi,xrandom)

6 while |S|< k do
7 x f arthest ⇐ argmax

xi∈XC
dist[xi]

8 S⇐ S∪{x f arthest}
9 XC ⇐ XC−{x f arthest}

10 foreach xi ∈ XC do
11 dist[xi]⇐min{dist[xi],dist(xi,x f arthest)}

12 return S

Table 1: The RC-Index is efficient at both querying and indexing.

Query Approximation Ratio: b−1−2b1−δ

2(b−1)
Space Complexity: O(kγ4(δ+1) logd n)
Time Complexity: O(k2γ4(δ+1) logd n)

Index Batch Construction Time: O(γ6n logd+1 n)
Amortized Insert/Delete: O(γ6d logd+2 n)
Space Complexity: O(n logd n)

We deploy a simple O(k · |XC|) greedy algorithm [40, 38] for the
Diversification Module (DM). This greedy algorithm is expensive
as it has to at least scan all input items, but it works well as our DM
because the number of its input items is limited by the previous
Query Module. Algorithm 4 introduces the detail of this greedy
algorithm. Initially, it selects a random item from XC to put into
the output set S (Line 2). Then, it maintains an array to track the
distances between selected and unselected items (Line 5). It itera-
tively chooses the item with the greatest distance from the selected
items until it finds k items (Lines 6 to 11).

The complexity and approximation ratio of Algorithm 4 are as
follows: The time complexity is O(k · |XC|); The space complexity
is O(|XC|); It is a 1/2-approximation algorithm [40, 38].

To solve the MAXSUM version of this problem, instead of
MAXMIN, we modestly change Algorithm 4 as explained in [43].

4. PERFORMANCE ANALYSIS
We analyze the performance of query evaluation and index con-

struction in this section. Table 1 provides a summary. The dis-
cussion in this section assumes the RC-Index is built on the query
attributes Aq. We relax this assumption in Section 5.

4.1 Query Quality and Complexity
We prove the approximation ratio, time complexity, and space

complexity for our overall query answering algorithm (Algorithm 1).

Approximation ratio
Given a set of cover trees that covers items in query result q(X),
we prove that Algorithm 2 extracts a high-quality set of candidate
items XC:

THEOREM 1. Let the optimal diversity score on q(X) be f ∗ and
the optimal diversity score on extracted XC be fC. We have fC ≥
b−1−2b1−δ

b−1 · f ∗, where b is the base distance parameter of the cover
trees we build and δ is the extra level parameter of Algorithm 2.

778

In order to prove this theorem, we show there exists a subset Y =

{y1, ...,yk}⊆XC whose diversity score fY is at least b−1−2b1−δ

b−1 · f ∗.
Specifically, let the optimal set be S∗ = {x1, ...,xk} ⊆ q(X) which
leads to the optimal diversity score f ∗. These {x1, ...,xk}may come
from one or more cover trees. Now we define Y = {y1, ...,yk} based
on S∗. Each yi can be viewed as a “substitute” of xi on xi’s cover
tree CT:
• Case 1: If the tree CT has no more than k items, Algorithm 2

puts all items of this tree into XC. So we define yi = xi ∈ XC.
• Case 2: If the tree CT has more than k items, we define yi as

the ancestor of xi at Level (`k− δ)3, where `k is the highest level
of tree CT with at least k items (Line 8). This yi is also returned in
XC.

We would like to show xi and yi are close enough so that fY is
not much worse than f ∗. Formally, the distance between xi and yi
satisfies the following lemma:

LEMMA 1. dist(xi,yi)≤ b−δ

1−b−1 · f ∗.

PROOF. Similarly, dist(xi,yi) has two cases:
• Case 1: When the tree CT has no more than k items, since

yi = xi, dist(xi,yi) = 0≤ b−δ

1−b−1 · f ∗.
• Case 2: When the tree CT has more than k items, any k items

at Level `k also exist at Level (`k− δ) due to Nesting and should
be extracted. They have already formed a solution with diversity
score b`k because of Separation. In addition, as f ∗ is the optimal
diversity score of all items, b`k ≤ f ∗.

Since yi is the ancestor of xi and yi is at Level (`k−δ), according
to Covering:

dist(xi,yi)<
`k−δ

∑
`=−∞

b` =
b`k−δ

1−b−1

Thus: dist(xi,yi)<
b`k−δ

1−b−1 =
b−δ

1−b−1 ·b
`k ≤ b−δ

1−b−1 · f ∗

Now we can prove Theorem 1:
PROOF. According to triangle inequality and symmetry (Defi-

nition 1), for any xi and the corresponding yi:

dist(xi,x j)≤ dist(xi,yi)+dist(yi,y j)+dist(x j,y j)

Since f ∗ is the diversity score of {x1, ...,xk}, dist(xi,x j) ≥ f ∗.
So for any distinct yi and y j:

dist(yi,y j)≥ dist(xi,x j)−dist(xi,yi)−dist(x j,y j)

≥ f ∗− b−δ

1−b−1 · f ∗− b−δ

1−b−1 · f ∗

= (1− 2b−δ

1−b−1) · f ∗ =
b−1−2b1−δ

b−1
· f ∗

Since fC ≥ fY ≥ dist(yi,y j), fC ≥ b−1−2b1−δ

b−1 · f ∗.

Note that b−1−2b1−δ

b−1 must be greater than 0 to ensure a non-trivial
bound. For instance, when b = 2.0 and δ = 3, the bound is 1/2.
When b = 3.0 and δ = 2, the bound is 2/3.

We further show the bound in Theorem 1 is tight.

THEOREM 2. Given any ε > 0, there exists a worst case making
(b−1−2b1−δ

b−1 + ε) · f ∗ ≥ fC.

We provide the detailed proof in our technical report [43].
Now we can derive the overall result quality of Algorithm 1:

3The items at Level (`k − δ) are the same as those at Level `min
(i.e., C`k−δ =C`min) when `k−δ < `min.

THEOREM 3. The approximation ratio of Algorithm 1 is
b−1−2b1−δ

2(b−1) .

PROOF. Algorithm 1’s approximation ratio is the product of the
two modules’ approximation ratios. The Query Module’s ratio is
b−1−2b1−δ

b−1 as in Theorem 1. The Diversification Module’s ratio is
1
2 . So, the ratio of Algorithm 1 is b−1−2b1−δ

b−1 · 1
2 = b−1−2b1−δ

2(b−1) .

Note that the approximation ratio approaches 1/2 as b increases or
δ increases.

This bound is also tight because the approximation bounds of
both modules are tight.

Query time complexity
A cover tree’s complexity analysis requires a data-dependent ex-
pansion constant, γ . Given X , let the closed ball of radius r cen-
tered at x be B(x,r) = {x′ ∈ S|dist(x,x′) ≤ r}. So the expansion
constant is the smallest γ such that |B(x,b · r)| ≤ γ|B(x,r)| for ev-
ery x ∈ X and r > 0 [5].

Each item can have at most γ4 children [5]. Recall, the number
of items at Level (`k +1) is strictly less than k according to Algo-
rithm 2. Thus, the number of items at Level (`k − δ) is at most
kγ4(δ+1). Therefore we extract O(kγ4(δ+1)) items and the time
complexity is also O(kγ4(δ+1)) on one single cover tree.

We have the following conclusion on multiple cover trees:

LEMMA 2. The Query Module (Algorithms 2 and 3) returns a
candidate item set XC with O(kγ4(δ+1) logd n) items.

PROOF. A range query visits O(logd n) nodes in the range tree.
We map each node to a cover tree. For each cover tree, we ex-
tract O(kγ4(δ+1)) items. So, we extract O(kγ4(δ+1) logd n) candi-
date items totally.

COROLLARY 1 (OF LEMMA 2). The worst-case time complex-
ity of the Query Module (Algorithms 2 and 3) is O(kγ4(δ+1) logd n).

THEOREM 4. The worst-case time complexity of Algorithm 1 is
O(k2γ4(δ+1) logd n).

This complexity is due to the complexity of the Diversification
Module, O(k · |XC|). Please see [43] for the proof.

While the time complexity depends on k quadratically, k is small
in practice, in particular in the context of diversification. The expo-
nential term O(γ4(δ+1)) looks large. But one should notice that the
cover tree is designed for nearest neighbor search, and one search
query takes O(γ12 logn) time [5], whose exponent of γ is also large.
In practice, this exponential term turns out to be insignificant. We
demonstrate this by showing the wall-clock runtime in Section 6.

Query space complexity
During query evaluation, we need to store the candidates we ex-
tract. So the space complexity is O(kγ4(δ+1) logd n) as in Lemma 2.

Discussion of parameters b and δ

The parameters b and δ must satisfy several constraints: (1) the
cover tree requires b > 1 [5]; (2) δ is a non-negative integer corre-
sponding to extra levels in Algorithm 2; (3) the approximation ratio
b−1−2b1−δ

2(b−1) must be greater than 0.
Higher b means better (higher) approximation ratio but higher

worst-case time complexity. Moreover, recall that the expansion
constant is the smallest γ , such that |B(x,b · r)| ≤ γ|B(x,r)|; so,
greater b brings greater γ and higher worst-case time complexity.

779

Algorithm 5: RC-Index Insertion
Input: New item x; RC-Index RC.
Output: Updated RC-Index RC.

1 Insert(x,RC.root)
2 return RC
3 Function Insert(x,node)
4 Insert x into the cover tree node.CT
5 Update node.im based on x
6 if node.im /∈ [β ,1−β] then
7 Batch construct the tree rooted at node with x included
8 return
9 foreach child ∈ {node.le f t,node.right,node.next} do

10 if x ∈ child.range then
11 Insert (x, child)

This property is intuitive because greater b makes the threshold
θ` = b` of the cover tree change more quickly between levels, re-
sulting in a shallower tree. In this case, Algorithm 2 extracts more
candidates, which improves the approximation ratio but also in-
creases runtime in the worst case. Similarly, greater δ improves
the approximation ratio but increases worst-case time complexity.
This is because greater δ makes Algorithm 2 extract more candi-
dates from lower levels of the cover trees.

4.2 Index Complexity
We discuss the batch construction time complexity, inser-

tion/deletion time complexity, and space complexity of RC-Index.
We show that the RC-Index can be created and maintained effi-
ciently, proving formal bounds on the cost of key operations.

Batch construction
We batch construct the RC-Index recursively. Given a node, we
firstly build a cover tree for the node. Then we partition its range
to two subranges and construct its le f t and right children in the
same dimension. Finally we construct its next child in the next
dimension. Its pseudo code is in our technical report [43].

THEOREM 5. The batch construction of the RC-Index on n item
takes O(γ6n logd+1 n) time in the worst case.

Please see [43] for our proof through induction.

Insertion and deletion
Algorithm 5 lists the pseudocode for insertion. The deletion pro-
cess is similar. Our idea is to apply a balance bound as in [35,
32]. Specifically, we define a rank of each node in our range tree
as rank(node) = (1+# nodes in subtree rooted at node). A subtree
here only means the subtree in the same dimension, excluding the
nested subtrees in the next dimension. An empty tree has rank = 1
while a leaf node has rank = 2. Then we define the imbalance
factor for each node as im(node) = rank(node.le f t)/rank(node).
Intuitively, an im(node) closer to 1/2 means a more balanced sub-
tree rooted at node. A range tree after batch construction has im ∈
[1/3,2/3] for all nodes. In Algorithm 5, we insert a new item into
the range tree and rebalance by batch construction of a subtree if
its im falls out of [β ,1−β], where 0 < β < 1/3.

THEOREM 6. The amortized time complexity of insertion or dele-
tion of RC-Index is O(γ6d logd+2 n).

Our proof is similar to the proof in [32]. We define an imbalance
score of the tree. An insertion or deletion may increase the imbal-
ance score while a rebuild always decreases the imbalance score.
Please refer to [43] for the proof.

…

La
tit
ud
e

Longitude

x1
x2
x3

xn

Figure 6: When Aq ⊃ ARC, naı̈vely extending RC to answer q can
result in arbitrarily bad diversity score.

Index space complexity
The actual space complexity of a cover tree on n items is O(n),
although some items may appear in multiple levels. We store only
one record for each distinct item containing its id, highest level
number, parent id, and children ids. So even though an item appears
in many levels, we only store it once.

THEOREM 7. The RC-Index on n items takes O(n logd n) space.

We prove the theorem by induction in our technical report [43].

5. INDEX SELECTION
In this section, we discuss how to select indexes given a set of

queries that filter on various sets of attributes. Before this section,
we only consider building one specific RC-Index RC to answer a
query q filtering on one set of attributes. Formally, suppose a range
query q applies filters on an attribute set Aq and the Range Index
of RC is built on an attribute set ARC. We have only considered the
case where ARC = Aq. We consider next some interesting proper-
ties of RC-Index when ARC may not equal Aq. These properties
are useful when we discuss index selection.

THEOREM 8. The database can use RC to evaluate q with ap-
proximation ratio b−1−2b1−δ

2(b−1) if Aq ⊆ ARC.

This is simply due to the property of the range tree. The detailed
proof is in [43].

Then a natural question is: can we use RC when Aq ⊃ ARC?
Specifically, can we use RC to find a diverse set of items satisfy-
ing filters on ARC and then apply filters on (Aq−ARC)? Unfortu-
nately, the output diversity score of this approach can be arbitrarily
bad. For example, consider a special case where Aq = Adist =
{Latitude,Longitude}. The distance function is still Euclidean.
ARC = {Latitude} ⊂ Aq. Assume k = 2. As Figure 6 illustrates,
RC may mistakenly pick diverse items within {x2, ...,xn} because
their latitudes are different from each other. However, the best di-
verse set should be {x1,xn}. In this case, the diversity score is
arbitrarily bad because dist(x2,xn)/dist(x1,xn) can approach zero.

Following the proof of Theorem 8, we can easily derive the time
complexity of evaluating q. Assume d = |ARC| and dq = |Aq|. We
have:

THEOREM 9. The database can use RC to evaluate q with time
complexity O(k2γ4(δ+1) logdq n) if Aq ⊆ ARC and d = O(k2).

d = O(k2) means that the dimensionality of the RC-Index is not
greater than order of k2. This usually holds in practice. d is small
because a user is unlikely to apply filters on more than 10 dimen-
sions. But k could be easily greater than 5 (thus, k2 > 25). d =
O(k2) makes the complexity of extracting diverse items from cover
trees dominate the whole complexity. Our technical report [43]
contains the detailed proof.

Given the above two properties of RC-Index, now we discuss
how to select indexes given a set of queries Q = {q1,q2, ...}.

780

Table 2: We evaluate RC-Indexes on a variety of real-world
datasets, ranging from 6,000 to about 1 million records.

Dataset # Records (n) Description
City 5,922 Greek cities
Bank 45,211 Marketing data of a Portuguese bank
Census 48,842 Census income of US
Forest 581,012 Forest cover type in Colorado, US
Gas 928,991 Gas sensors

Table 3: We vary the parameters one at a time (with bold values
indicating the default of the parameter when it is not varied).

Parameter Values
records, n {103,5×103,104,5×104, ...,106}
diverse items to return, k {10,50,100,150,200}
query attributes {1,2,3,4,5,6}
Base-distance of cover tree [5], b {1.1,1.5,2.0,3.0,4.0}
Extra-level of Algorithm 2, δ {0,1,2,3,4,5}
Distance function {L1, L2}

Theorem 8 and 9 suggest that an RC-Index on ARC can answer
queries whose Aq ⊆ ARC with the same approximation ratio and
time complexity as those when Aq = ARC. So a naı̈ve plan is to
build a large index that covers all queryable attributes, i.e. ARC =
∪q∈QAq. The only problem of this plan is its large space com-
plexity, O(n log|ARC | n). We cannot build this large RC-Index when
the database has a small space limit. Then the index selection be-
comes an optimization problem that optimizes the runtime and the
approximation ratio of a workload while satisfying the space con-
straint. We defer the study of this problem in our future work.

6. EXPERIMENTAL EVALUATION
In this section, we present a thorough evaluation of RC-Indexes.

Our results demonstrate that our approach can extract high quality
diverse items efficiently, outperforming state-of-the-art techniques.

Data
We experiment with real-world and synthetic datasets. Table 2 lists
the real-world datasets. We use the City dataset containing 5,922
Greek cities and villages [14, 15]. Bank [34] and Census are two
popular datasets with ≥ 10,000 records from UCI Machine Learn-
ing Repository [30]. Forest [6] and Gas [20] are two larger datasets
from the same repository. We remove categorical attributes be-
cause their small domains over-simplify the diversification prob-
lem. Then we randomly pick the remaining numerical attributes as
Aq and Adist .

We also generate a synthetic dataset whose attributes follow a
uniform distribution. In our synthetic data experiments, we vary the
parameters one at a time as listed in Table 3. The query q applies
filters on a set of attributes. The distance function is on another two
attributes. By default, our algorithm is 1/4-approximate when b =
2.0 and δ = 3. Some (b,δ) combinations make the ratio less than
0, but they work well in practice as we will show in Section 6.2.

Configuration
We use a MacBook with 2GHz dual-core Intel Core i7 and SSD.
Our prototype system runs in PostgreSQL, utilizing 4GB memory.

We implement our prototype as user defined functions (UDFs)
using the C language at server side. The user can specify the at-
tributes that allow range queries and also a distance function on
certain attributes. Then we create two auxiliary tables as our in-
dexes: one for Range Index and the other for Diversity Index. The

Table 4: Theoretical bounds of RC-Indexes and state-of-the-art
baselines.

Algorithm Query Complexity Approx. Ratio Max Ratio

RC-Index O(k2γ4(δ+1) logd n) b−1−2b1−δ

2(b−1) < 1/2
Greedy O(kn) 1/2 1/2
Tree O(n2) (b−1)

2b2 ≤ 1/8

Tree++ O(γ6n logn) (b−1)
2b2 ≤ 1/8

user can conduct batch construction, insert items, or query diverse
items by invoking our UDFs.

Such a UDF-based implementation is flexible because it does
not force a user to modify the source code of PostgreSQL. A user
may not have the privilege to install a customized PostgreSQL if
s/he is not the admin. GiST [19] also has such flexibility but there
is no simple way to manipulate the inner nodes of an index tree
using GiST. We can adapt our UDFs to triggers in the future to
improve user experience. The UDF implementation offers good
performance as we will demonstrate below.

Comparison with baselines
We compare with three baseline approaches. They are the state of
the art to the best of our knowledge.
• Greedy. The Greedy algorithm selects a random item to ini-

tialize the diverse result set S. Then for every unselected item x,
it maintains an array of the minimum distance between x and any
item in S. It iteratively adds the item with the maximum minimum
distance into S and updates the distance array. Its pseudo code is
the same as Algorithm 4 but it takes all items in q(X) as input. So in
the worst case, its query time is O(kn). This is a 1/2-approximation
algorithm [40, 38].
• Tree. Drosou and Pitoura [15] have developed an approxima-

tion algorithm based on a single cover tree. They assume that items
arrive continuously so they perform insertion and deletion while
selecting diverse items from the cover tree. We adapt this approach
to support arbitrary range queries by updating the cover tree be-
tween queries. Their streaming data scenario is different from ours
so such an adaptation is slower than our approach. Its batch con-
struction time for building a cover tree is O(n2). In addition, its
maximum approximation upper bound is 1/8 when b = 2.0. But
our approach can achieve, for example, 1/4 approximation ratio
within very short query time.
• Tree++. This is the original cover tree algorithm [5], which

can be viewed as a variant of the above approach. Instead of finding
the farthest pair of items to construct a tree in Tree, we randomly
pick an item to start the tree construction in Tree++, which reduces
O(n2) complexity to O(γ6n logn).

Table 4 shows the worst-case query complexity and approxima-
tion ratio of all algorithms we compare. At a glance, all three base-
lines’ query complexity is Ω(n) because they have to scan the entire
q(X) when |q(X)|= O(n) in the worst case. The complexity of our
method has no O(n) term with the help of indexes. Our approxi-
mation ratio α = (b−1−2b1−δ)/2(b−1) is better than Tree and
Tree++’s. Moreover, α’s upper limit equals Greedy’s ratio 1/2,
which is the best possible approximation ratio of a polynomial al-
gorithm unless P=NP [38].

Since Greedy has the best approximation ratio while finding the
optimum solution takes exponential time, we compare the diversity
scores against Greedy’s. We compute the relative score for each
algorithm Algo as fAlgo/ fGreedy in the following experiments.

781

City
Bank

Censu
s

Forest
Gas

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
S

co
re

(a)

City
Bank

Censu
s

Forest
Gas

101

102

103

104

105

106

Q
ue

ry
Ti

m
e

(m
s)

(b)
RC-Index Greedy Tree Tree++

City
Bank

Censu
s

Forest
Gas

101

102

103

104

105

106

S
ca

nn
ed

Ite
m

s

(c)

City
Bank

Censu
s

Forest
Gas

101

102

103

104

105

In
de

x
C

re
at

io
n

(m
s) (d)

Figure 7: Real-world data: RC-Index is the fastest approach while ensuring a high quality result.

103 104 105 106

n

0.0

0.5

1.0

R
el

at
iv

e
S

co
re

(a)

103 104 105 106

n

101

102

103

104

105

Q
ue

ry
T

im
e

(m
s)

(b)

RC-Index Greedy Tree Tree++

103 104 105 106

n

101

102

103

104

105

106

#
S

ca
nn

ed
It

em
s

(c)

103 104 105 106

n

101

102

103

104

105

106

In
de

x
C

re
at

io
n

(m
s) (d)

Figure 8: Synthetic uniformly-distributed data with varying size n: RC-Index is nearly an order of magnitude faster than the state of the art
while ensuring a high quality result. The experiments on normally-distributed data show no discernible difference [43].

103 104 105 106

n

100

101

102

In
se

rt
Ti

m
e

(m
s)

Figure 9: Per item insertion time for 100 items increases as n
grows.

6.1 Quality and Scalability
Our first experiment evaluates the performance of RC-Indexes

on real-world data. Figure 7 shows that RC-Indexes outperform
the baselines. Tree takes too long to execute on Forest and Gas, so
its runtime is not depicted. (a) Figure 7a depicts the relative score
compared to Greedy’s. RC-Index’s score is as good as Greedy’s
and is better than Tree and Tree++. (b) Figure 7b shows our
query time is orders of magnitude less than the other three base-
lines. (c) Figure 7c tells us why RC-Index is efficient: it scans far
fewer candidate items (|XC|) than the other baselines do. (d) Fig-
ure 7d shows our indexing time is short: only 13.3 seconds for
48,842 items or 343.8 seconds for 928,991. It is a one-time cost
after loading the data.

Our experiments on synthetic data show similar behavior. Fig-
ure 8 compares the performance on uniformly-distrbuted synthetic
data where n varies within {103,5× 103,104, ...,106}. We do not
run Tree for n ≥ 105 because its query time is too long. (a) Fig-
ure 8a shows that the quality of our result is as good as Greedy’s,
and they are both better than Tree and Tree++ when n ≥ 104. In
some cases, RC-Index outperforms Greedy even though its theo-
retical approximation ratio is worse than Greedy’s. This is simply
because the synthetic data is not the worst case data for RC-Index.
(b) Figure 8b shows that RC-Index is an order of magnitude faster

than the state of the art, Greedy and Tree++. Our query time is
0.9 second when there are 106 items. (c) Figure 8c shows that
RC-Index scans far fewer candidate items than the other baselines
do. (d) Finally, Figure 8d shows the batch index creation time of
the synthetic data. RC-Index can index 105 items within only 28
seconds, or 106 items within 330 seconds. The indexing time in-
creases almost linearly with regard to n (both in log scale in the
figure), which is a desired property.

We repeat the same evaluation on synthetic data that follows a
normal distribution N (0,1). We find little discernible impact and
RC-Index still outperforms competitors. The result, which we in-
clude in our technical report [43], is virtually identical to Figure 8.

We also plot the insertion time as n grows. For each n in {103,5×
103,104, ...,106}, we insert 100 new items into RC-Index and com-
pute the average insertion time. As Figure 9 illustrates, the insertion
time grows slowly as n increases.

Next we fix n = 5× 104 and vary k in {10,50,100,150,200}.
As we can see in Figure 10a, the quality of the result is robust to
changes in k. Figure 10b shows very little increase in query time as
k increases.

Next, we vary d in {1,2,3,4,5,6} while fixing n = 5×104 and
k = 10. Figure 11a demonstrates that the quality is stable. Fig-
ure 11b shows the query time increases because the query time
complexity is proportional to logd n, but we are still faster than
competitors.

Finally, we change the distance function from Euclidean to Man-
hattan distance and compare all algorithms as n grows. Figure 12
depicts the relative score and query time. Similar to the perfor-
mance under Euclidean distance, RC-Index is nearly an order of
magnitude faster than the other algorithms and provides high di-
versity score.

6.2 Parameter Selection
In this section, we test the sensitivity of our approach on syn-

thetic data with 105. Two parameters, b and δ , impact our approx-

782

0 50 100 150 200

k

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
S

co
re

(a)

0 50 100 150 200

k

101

102

103

104

105

106

Q
ue

ry
Ti

m
e

(m
s)

(b)
RC-Index Greedy Tree Tree++

Figure 10: Varying k: RC-Index’s result quality stays the same
and its query time increases slightly as k increases.

1 2 3 4 5 6

d

0.0

0.5

1.0

R
el

at
iv

e
S

co
re

(a)

1 2 3 4 5 6

d

101

102

103

104

105

Q
ue

ry
T

im
e

(m
s)

(b)
RC-Index Greedy Tree Tree++

Figure 11: Varying d: RC-Index’s query time gets closer to
Greedy’s but the result quality is the same as d increases.

103 104 105 106

n

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
S

co
re

(a)

103 104 105 106

n

101

102

103

104

105

Q
ue

ry
Ti

m
e

(m
s)

(b)
RC-Index Greedy Tree Tree++

Figure 12: Comparison under Manhattan distance. The favorable
performance of RC-Index is not sensitive to the distance function,
as RC-Index outperforms all competitors.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

b

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
el

at
iv

e
S

co
re

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

b

101

102

103

Q
ue

ry
Ti

m
e

(m
s)

(b)
δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

Figure 13: Varying b: greater b increases query time without sig-
nificantly improving the result quality.

imation ratio b−1−2b1−δ

2(b−1) and query complexity O(k2γ4(δ+1) logd n)
(the expansion constant γ is determined by b given the data). We
vary them to see how performance changes. Note that some (b,δ)
combinations result in b−1−2b1−δ

2(b−1) ≤ 0, but they lead to good results
in practice. We retain these values in the following figures.

Figure 13 depicts the performance using different b. We vary b in
{1.1,1.5,2.0,3.0,4.0} for six different δ between 0 and 5. On the
one hand, greater b means greater approximation ratio in the worst
case. But we do not observe such trend in Figure 13a, because the
synthetic data following uniform distribution is not the worst-case
data. It is unusual to run into worst-case scenario in practice. On

0 1 2 3 4 5

δ

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
el

at
iv

e
S

co
re

(a)

0 1 2 3 4 5

δ

101

102

103

Q
ue

ry
Ti

m
e

(m
s)

(b)
b=1.1 b=1.5 b=2.0 b=3.0 b=4.0

Figure 14: Varying δ : greater δ means better result but longer
runtime.

Algorithm
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
S

co
re

(a)

Algorithm
10−1

100

101

102

103

Q
ue

ry
Ti

m
e

(m
s)

(b)
RC-Index Greedy Tree Tree++

Figure 15: Our algorithm works well on streaming data.

1 2 3 4 5 6

d

0.0

0.5

1.0
R

el
at

iv
e

S
co

re
(a)

1 2 3 4 5 6

d

0

25

50

75

100

Q
ue

ry
T

im
e

(m
s)

(b)

Figure 16: RC-Index supports partial range query well.

the other hand, greater b means greater expansion constant γ . So
the query time is longer as Figure 13b shows. When b and δ are
large enough, the query time converges because the algorithm has
extracted all items from q(X).

Figure 14 shows how performance changes along with δ . We
vary δ in {0,1,2,3,4,5} but fix b at different values this time. In-
tuitively, greater δ means our algorithm goes deeper in each cover
tree to extract more candidate items. So the diversity score gets
slightly better in general as Figure 14a depicts. The cost is that the
query time gets longer as in Figure 14b. Again, the query time con-
verges when b and δ are large, because the algorithm has extracted
the entire q(X).

6.3 Streaming Data
In this experiment, we examine the performance of RC-Index on

streaming data which is the focus of prior work [15]. We redesign
and reimplement the algorithms of Table 4 and apply them on a
data stream. We query this data stream through a sliding window.
The window covers 50,000 items. Every time we slide the window,
we remove 10 old items, add 10 new items, and query the diverse
items again.

Figure 15 shows the average relative score and query time of the
four algorithms on 10 queries. Tree and Tree++ have an advan-
tage in this experiment as they were designed for streaming data.
Nevertheless, the diversity score of RC-Index is close to the best
score and better than both Tree and Tree++. In terms of query
time, Tree [15] is the fastest, but RC-Index is only slightly slower.

783

6.4 Index Selection
In this experiment we demonstrate Theorem 8 and 9. Given a

range query q that applies filters on a set of attributes Aq, one can
build an RC-Index whose Range Index is on an attribute set ARC to
answer q as long as Aq ⊆ ARC. Theorem 8 and 9 show that the di-
versity score and query time are irrelevant to the size of ARC. Here
we fix |Aq| = 1 and vary d = |ARC| in {1,2,3,4,5,6}. As Fig-
ure 16 illustrates, the diversity score and query time are unaffected
as d grows.

7. RELATED WORK
Search result diversification is about selecting a small subset of

diverse items to present to the user when a large set of items satisfy
the user query. It finds its application in many scenarios such as
data exploration, Web search, and recommendation systems. Ac-
cording to the surveys [13, 39, 47], diversification problems can
be classified into three categories: (1) content-based (or similarity-
based) diversification finds items that are dissimilar to each other;
(2) intent-based (or semantic coverage-based) diversification finds
items relevant to various topics to help user further disambiguate
the query; (3) novelty-based diversification finds items that are dif-
ferent from the previously retrieved ones for the user. Our work
focuses on content-based diversification, which mainly maximizes
the distance between selected items and the relevance of items to
the query [18, 10, 11]. In our setting, we assume the query filtering
conditions encode relevance to the user.

There are two most common objective functions in content-
based diversification problems: MAXMIN and MAXSUM.
MAXMIN maximizes the minimum pairwise distances between se-
lected items while MAXSUM maximizes the sum of pairwise dis-
tances. Both problems have been studied earlier in operational re-
search as dispersion problems. The original motivation is to locate
undesired facilities like nuclear reactors among the given nodes in a
network. These two problems are proven to be NP-hard in the dis-
crete and continuous cases [16, 40, 38]. We focus on MAXMIN as
its results are more representative in many applications like geolo-
cation based diversifications. Ravi et al. [38] prove that MAXMIN
is NP-hard and has no polynomial-time relative approximation al-
gorithm for general distance functions. But when the distance func-
tion obeys the triangle inequality, a greedy heuristic, or GMM, re-
sults in a 1/2-approximation algorithm, and no polynomial algo-
rithm can achieve a better performance guarantee unless P=NP.

However, researchers cannot directly migrate this greedy 1/2-
approximation algorithm to a database because it is too expensive.
The time complexity of this algorithm is O(kn) where n is the num-
ber of items in a query result. A database can have a million items
satisfying a query in a data exploration or product search scenario.
So O(kn) can be very large even when k is as small as ten. Its
bottleneck is the scan of O(n) items. Yu et al. [46] have devel-
oped a similar approach which starts with k items and swaps better
items with them greedily. Carbonell and Goldstein [7] iteratively
select items with maximal marginal relevance. Vieira et al. [42]
merge more scores and apply randomization in the greedy algo-
rithm. Khan et al. [23] classify the above techniques as “process-
first-diversify-next”, which are expensive because they may scan or
sort O(n) items in the worst case. Our index-based approach avoids
this issue to offer greater efficiency.

Many researchers use indexes or buffers to improve the effi-
ciency for diversification. Vee et al. [41] work on categorical dis-
tance and use an index to probe diverse items. Qin et al. [37] con-
sider binary distance. So they reduce the problem to weighted inde-
pendent set and solve it with the help of the graph structure. In con-

trast, we are dealing with more general distance functions. Some
researchers reuse selected items to further shorten query evaluation
time. Several papers [33, 15, 12] work on extracting diverse items
from a continuous data stream. While new items arrive, the user
continuously queries the stream including both new and old items,
so they can mix processed old items with new items as a result.
Some other papers [24, 25, 26] assume correlation between con-
secutive queries during data exploration. So they can also reuse
previously returned items. Our approach does not make such as-
sumptions. We support any range queries efficiently with a quality
guarantee, making our approach applicable to more general scenar-
ios. If range queries do overlap, we can adapt our query evaluation
algorithm by maintaining an intermediate cover tree as a buffer of
candidates to guarantee approximation ratio and efficiency. Several
papers [21, 8] are based on the idea of “core-sets”, where they parti-
tion the data, compute a small diverse subset for each partition, and
combine the subsets to answer a query. Core-sets have two draw-
backs in answering a range query in our problem setting. First, their
1/3 approximation ratio is less than 1/2. Second, core-sets’ query
time complexity and insertion/deletion complexity are less satisfac-
tory. Having more partitions leads to greater query complexity, but
having fewer partitions leads to greater insertion/deletion complex-
ity. These two complexities cannot be both better than RC-Indexes’
due to the linear scan embedded in the algorithm. Drosou and Pi-
toura [14] also use an index, but they solve a variant of the diver-
sification problem where the distance between selected items only
needs to be greater than a given threshold. Khan and Sharaf [23]
prune items according to the sorted partial distance. But they focus
on MAXSUM and the performance guarantee is unclear. We focus
on MAXMIN and our algorithm has a formal approximation bound.

Our approach uses cover trees [5], which were originally de-
signed for nearest neighbor search. Some other early data structures
like ball tree [36], metric skip list [22], and navigating net [27] also
have similar features. We use a cover tree as our Diversity Index
because of its simplicity and good runtime performance in practice,
but our approach is not necessarily limited to this data structure.

The study of range query dates back to 1970s. Researchers pro-
pose k-d tree [2], quad tree [17], B+ tree [9], VA-file [44], range
tree [31, 3, 45, 29], and so on. We use range tree because of its
good time complexity [45, 29, 32]. The range tree in our approach
can be replaced by any other range query index if necessary.

8. CONCLUSIONS
In this paper, we study the problem of query result diversifica-

tion. We propose a novel index structure, the RC-Index, and al-
gorithms to significantly reduce the number of items we extract to
answer a range diversification query. Compared to state-of-the-art
algorithms which are linear or quadratic, our query time is sub-
linear with respect to the number of items that satisfy the query.
Moreover, our framework guarantees an approximation ratio for
the diversity score, tunable through two parameters. When the pa-
rameters are large, the approximation ratio approaches 1/2, which
is the best possible ratio of a polynomial algorithm unless P=NP.
Our experiments, using both synthetic data and real data, show that
the quality of our result is close to (or even better than) the Greedy
algorithm whose approximation ratio is 1/2. In future work, we
plan further study on generalized algorithms for continuous rele-
vance scores, index selection, and distributed RC-Indexes.

Acknowledgements. This material is based upon work supported
by the National Science Foundation under grants IIS-1741254, CNS-
1744471, and IIS-1453543.

784

9. REFERENCES
[1] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry

Milner, Samuel Madden, and Ion Stoica. Blinkdb: Queries
with bounded errors and bounded response times on very
large data. In EuroSys, pages 29–42, 2013.

[2] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM,
18(9):509–517, September 1975.

[3] Jon Louis Bentley. Decomposable searching problems. Inf.
Process. Lett., 8(5):244–251, 1979.

[4] Jon Louis Bentley and Jerome H. Friedman. Data structures
for range searching. ACM Comput. Surv., 11(4):397–409,
1979.

[5] Alina Beygelzimer, Sham Kakade, and John Langford. Cover
trees for nearest neighbor. In ICML, pages 97–104, 2006.

[6] Jock A. Blackard and Denis J. Dean. Comparative accuracies
of artificial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables.
Computers and Electronics in Agriculture, 24(3):131 – 151,
1999.

[7] Jaime Carbonell and Jade Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR, pages 335–336, 1998.

[8] Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci,
and Eli Upfal. Mapreduce and streaming algorithms for
diversity maximization in metric spaces of bounded doubling
dimension. PVLDB, 10(5):469–480, 2017.

[9] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv.,
11(2):121–137, June 1979.

[10] Ting Deng and Wenfei Fan. On the complexity of query
result diversification. PVLDB, 6(8):577–588, 2013.

[11] Ting Deng and Wenfei Fan. On the complexity of query
result diversification. ACM Trans. Database Syst.,
39(2):15:1–15:46, 2014.

[12] M. Drosou and E. Pitoura. Diverse set selection over
dynamic data. IEEE Transactions on Knowledge and Data
Engineering, 26(5):1102–1116, 2014.

[13] Marina Drosou and Evaggelia Pitoura. Search result
diversification. SIGMOD Rec., 39(1):41–47, 2010.

[14] Marina Drosou and Evaggelia Pitoura. Disc diversity: Result
diversification based on dissimilarity and coverage. PVLDB,
6(1):13–24, 2012.

[15] Marina Drosou and Evaggelia Pitoura. Dynamic
diversification of continuous data. In EDBT, pages 216–227,
2012.

[16] Erhan Erkut. The discrete p-dispersion problem. European
Journal of Operational Research, 46(1):48 – 60, 1990.

[17] R. A. Finkel and J. L. Bentley. Quad trees a data structure for
retrieval on composite keys. Acta Inf., 4(1):1–9, March 1974.

[18] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic
approach for result diversification. In WWW, pages 381–390,
2009.

[19] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer.
Generalized search trees for database systems. In VLDB,
pages 562–573, 1995.

[20] Ramon Huerta, Thiago Mosqueiro, Jordi Fonollosa,
Nikolai F Rulkov, and Irene Rodriguez-Lujan. Online
decorrelation of humidity and temperature in chemical
sensors for continuous monitoring. Chemometrics and
Intelligent Laboratory Systems, 157:169 – 176, 2016.

[21] Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and
Vahab S. Mirrokni. Composable core-sets for diversity and
coverage maximization. In PODS, pages 100–108, 2014.

[22] David R. Karger and Matthias Ruhl. Finding nearest
neighbors in growth-restricted metrics. In STOC, pages
741–750, 2002.

[23] H. A. Khan and M. A. Sharaf. Progressive diversification for
column-based data exploration platforms. In ICDE, pages
327–338, 2015.

[24] Hina A. Khan, Marina Drosou, and Mohamed A. Sharaf.
Dos: An efficient scheme for the diversification of multiple
search results. In SSDBM, pages 40:1–40:4, 2013.

[25] Hina A. Khan, Marina Drosou, and Mohamed A. Sharaf.
Scalable diversification of multiple search results. In CIKM,
pages 775–780, 2013.

[26] Hina A. Khan, Mohamed A. Sharaf, and Abdullah Albarrak.
Divide: Efficient diversification for interactive data
exploration. In SSDBM, pages 15:1–15:12, 2014.

[27] Robert Krauthgamer and James R. Lee. Navigating nets:
Simple algorithms for proximity search. In SODA, pages
798–807, 2004.

[28] D. T. Lee and C. K. Wong. Worst-case analysis for region
and partial region searches in multidimensional binary search
trees and balanced quad trees. Acta Inf., 9(1):23–29, March
1977.

[29] D. T. Lee and C. K. Wong. Quintary trees: A file structure
for multidimensional datbase sytems. ACM Trans. Database
Syst., 5(3):339–353, 1980.

[30] M. Lichman. UCI machine learning repository, 2013.
[31] George S. Lueker. A data structure for orthogonal range

queries. In Proceedings of the 19th Annual Symposium on
Foundations of Computer Science, pages 28–34, 1978.

[32] George S. Lueker and Dan E. Willard. A data structure for
dynamic range queries. Information Processing Letters,
15(5):209 – 213, 1982.

[33] Enrico Minack, Wolf Siberski, and Wolfgang Nejdl.
Incremental diversification for very large sets: A
streaming-based approach. In SIGIR, pages 585–594, 2011.

[34] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven
approach to predict the success of bank telemarketing.
Decision Support Systems, 62:22 – 31, 2014.

[35] J. Nievergelt and E. M. Reingold. Binary search trees of
bounded balance. SIAM Journal on Computing, 2(1):33–43,
1973.

[36] Stephen M. Omohundro. Five balltree construction
algorithms. Technical report, 1989.

[37] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Diversifying top-k
results. PVLDB, 5(11):1124–1135, 2012.

[38] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and
special case algorithms for dispersion problems. Operations
Research, 42(2):299–310, 1994.

[39] Rodrygo L. T. Santos, Craig Macdonald, and Iadh Ounis.
Search result diversification. Found. Trends Inf. Retr.,
9(1):1–90, March 2015.

[40] Arie Tamir. Obnoxious facility location on graphs. SIAM J.
Discret. Math., 4(4):550–567, September 1991.

[41] Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram,
Prashant Bhat, and Sihem Amer Yahia. Efficient computation
of diverse query results. In ICDE, pages 228–236, 2008.

[42] Marcos R. Vieira, Humberto L. Razente, Maria C. N.
Barioni, Marios Hadjieleftheriou, Divesh Srivastava, Caetano
Traina, and Vassilis J. Tsotras. On query result
diversification. In ICDE, pages 1163–1174, 2011.

785

[43] Yue Wang, Alexandra Meliou, and Gerome Miklau.
Rc-index: Diversifying answers to range queries. Technical
report, https://web.cs.umass.edu/publication/
details.php?id=2445, 2017.

[44] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A
quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In
VLDB, pages 194–205, 1998.

[45] Dan E. Willard. Predicate-Oriented Database Search
Algorithms. Outstanding Dissertations in the Computer
Sciences. Garland Publishing, New York, 1978.

[46] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. It
takes variety to make a world: Diversification in
recommender systems. In EDBT, pages 368–378, 2009.

[47] Kaiping Zheng, Hongzhi Wang, Zhixin Qi, Jianzhong Li,
and Hong Gao. A survey of query result diversification.
Knowl. Inf. Syst., 51(1):1–36, 2017.

786

https://web.cs.umass.edu/publication/details.php?id=2445
https://web.cs.umass.edu/publication/details.php?id=2445

	Introduction
	Overview and background
	Result Diversification
	Distance Function
	Solution and System Overview
	Cover Tree
	Range Tree

	Index-based Framework
	Query Module: Sketch
	Query Module: Diversity Index
	Query Module: Range Index
	Query Module: Candidate Extraction
	Diversification Module

	Performance Analysis
	Query Quality and Complexity
	Index Complexity

	Index Selection
	Experimental Evaluation
	Quality and Scalability
	Parameter Selection
	Streaming Data
	Index Selection

	Related Work
	Conclusions
	References

