
Conjunctive Queries with Inequalities Under Updates

Muhammad Idris
Université Libre de Bruxelles &

TU Dresden
midris@ulb.ac.be

Martı́n Ugarte
Université Libre de Bruxelles

mugartec@ulb.ac.be

Stijn Vansummeren
Université Libre de Bruxelles
svsummer@ulb.ac.be

Hannes Voigt
TU Dresden

hannes.voigt@tu-
dresden.de

Wolfgang Lehner
TU Dresden

wolfgang.lehner@tu-
dresden.de

ABSTRACT
Modern application domains such as Composite Event Recog-
nition (CER) and real-time Analytics require the ability to
dynamically refresh query results under high update rates.
Traditional approaches to this problem are based either on
the materialization of subresults (to avoid their recomputa-
tion) or on the recomputation of subresults (to avoid the
space overhead of materialization). Both techniques have
recently been shown suboptimal: instead of materializing
results and subresults, one can maintain a data structure
that supports efficient maintenance under updates and can
quickly enumerate the full query output, as well as the
changes produced under single updates. Unfortunately, these
data structures have been developed only for aggregate-join
queries composed of equi-joins, limiting their applicability in
domains such as CER where temporal joins are commonplace.
In this paper, we present a new approach for dynamically
evaluating queries with multi-way θ-joins under updates that
is effective in avoiding both materialization and recomputa-
tion of results, while supporting a wide range of applications.
To do this we generalize Dynamic Yannakakis, an algorithm
for dynamically processing acyclic equi-join queries. In tan-
dem, and of independent interest, we generalize the notions
of acyclicity and free-connexity to arbitrary θ-joins. We in-
stantiate our framework to the case where θ-joins are only
composed of equalities and inequalities (<,≤,=, >,≥) and
experimentally compare this algorithm, called IEDyn, to
state of the art CER systems as well as incremental view
maintenance engines. IEDyn performs consistently better
than the competitor systems with up to two orders of magni-
tude improvements in both time and memory consumption.

PVLDB Reference Format:
Muhammad Idris, Martin Ugarte, Stijn Vansummeren, Hannes
Voigt and Wolfgang Lehner. Conjunctive Queries with Inequalities
Under Updates. PVLDB, 11(7): 733-745, 2018.
DOI: https://doi.org/10.14778/3192965.3192966

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 7
Copyright 2018 VLDB Endowment 2150-8097/18/03... $ 10.00.
DOI: https://doi.org/10.14778/3192965.3192966

1. INTRODUCTION
The ability to analyze dynamically changing data is a key
requirement of many contemporary applications, usually as-
sociated with Big Data, that require such analysis in order to
obtain timely insights and implement reactive and proactive
measures. Examples of such applications include Financial
Systems [12], Industrial Control Systems [19], Stream Pro-
cessing [34], Composite Event Recognition (CER, also known
as Complex Event Processing) [10,15], and Business Intelli-
gence (BI) [30]. Generally, the analysis that needs to be kept
up-to-date, or at least their basic elements, are specified in a
query language. The main task is then to efficiently update
the query results under frequent data updates.

In this paper, we focus on the problem of dynamic evalu-
ation for queries that feature multi-way θ-joins in addition
to standard equi-joins. To illustrate our setting, consider
that we wish to detect potential credit card frauds. Credit
card transactions specify their timestamp (ts), the account
number (acc), and amount (amnt). A typical fraud pattern
is that the criminal tests the credit card with a few small
purchases to then make larger purchases (cf. [32]). In this
respect, we would like to dynamically evaluate the follow-
ing query, assuming new transactions arrive in a streaming
fashion and the pattern must be detected in less than 1 hour.

SELECT * FROM Trans as S1, Trans as S2, Trans as L

WHERE S1.ts < S2.ts AND S2.ts < L.ts AND L.ts < S1.ts + 1h

AND S1.acc = S2.acc AND S2.acc = L.acc

AND S1.amnt < 100 AND S2.amnt < 100 AND L.amnt > 400

Queries like this with inequality joins appear in both CER
and BI scenarios. Traditional techniques to process these
queries dynamically can be categorized in two approaches:
relational and automaton-based. We next discuss both ap-
proaches and their drawbacks.

Relational. Relational approaches such as [3, 25, 26] are
based on a form of Incremental View Maintenance (IVM).
To process a query Q over a database db, IVM techniques
materialize the output Q(db) and evaluate delta queries.
Upon update u, delta queries use db, u and the material-
ized Q(db) to compute the set of tuples to add/delete from
Q(db) in order to obtain Q(db + u). If u is small w.r.t. db,
this is expected to be faster than recomputing Q(db + u)
from scratch. To further speed up dynamic query process-
ing, we may materialize not only Q(db) but also the result
of some subqueries. This is known as Higher-Order IVM
(HIVM) [24,25,27]. (H)IVM present important drawbacks,

733

however. First, materialization of Q(db) requires Ω(‖Q(db)‖)
space, where ‖db‖ denotes the size of db. Therefore, when
Q(db) is large compared to db, materializing Q(db) quickly
becomes impractical, especially for main-memory based sys-
tems. HIVM is even more affected by this problem because
it not only materializes the result of Q but also the results
to some subqueries. For example, in our fraud query HIVM
would materialize the results of the following join in order to
respond quickly to the arrival of a potential transaction L:

σamnt<100(S1) 1S1.ts<S2.ts∧S1.acc=S2.acc σamnt<100(S2) (?)

If we assume that there are N small transactions in the time
window, all of the same account, this materialization will
take Θ(N2) space. This becomes rapidly impractical when
N becomes large, specially in a main-memory based setting.

Automata. Automaton-based approaches (e.g., [2, 9, 13, 14,
36, 39]) are primarily employed in CER systems. In contrast
to the relational approaches, they assume that the arrival
order of event tuples corresponds to the timestamp order (i.e.,
there are no out-of-order events) and build an automaton to
recognize the desired temporal patterns in the input stream.
There are two automata-based recognition approaches. In
the first approach, followed by [2, 36], events are cached
per state and once a final state is reached a search through
the cached events is done to recognize the complex events.
While the temporal constraints need no longer be checked
during the search, the additional constraints (in our example,
L.ts < S1.ts + 1h and S1.acc = S2.acc = L.acc) must still
be verified. If the additional constraints are highly selective
this approach creates an unnecessarily large update latency,
given that each event triggering a transition to a final state
may cause re-evaluation of a sub-join on the cached data,
only to find that few tuples contribute to the output. In the
second approach, followed by [9,13,14,39], partial runs are
materialized according to the automaton’s topology. For our
example query, this means that, just like HIVM, the join (?)
is materialized and maintained so it is available when a large
amount transaction L arrives. This approach hence shares
with HIVM its high memory overhead and maintenance cost.

It has been recently shown that the drawbacks of these two
approaches can be overcome by a rather simple idea [22, 28].
Instead of materializing results and subresults, one can keep
a compressed representation of the output that supports
efficient maintenance under updates. This representation
can generate the output spending only a constant amount of
work to produce each new result tuple, which makes it com-
petitive with enumeration from a fully materialized output.
This idea was first presented by a subset of the authors [22]
in the Dynamic Yannakakis Algorithm (Dyn), an algorithm
for efficiently processing acyclic aggregate-join queries under
updates that is worst-case optimal for two classes of queries
(q-hierarchical and free-connex acyclic conjunctive queries).
A different approach named F-IVM, based on so-called fac-
torized databases, was later developed to dynamically process
aggregate-join queries that are not necessarily acyclic [28].

Unfortunately, both Dyn and F-IVM are only applicable to
queries with equality joins, and as such they do not support
analytical queries with other types of joins like the ones with
inequalities (≤, <,≥, >). Therefore, the current state of the
art techniques for dynamically processing queries with joins
beyond equality suffer either from a high update latency (if

subresults are not materialized) or a high memory footprint
(if subresults are materialized).

In this paper, we overcome these problems by generalizing
the Dynamic Yannakakis Algorithm to conjunctive queries
with arbitrary θ-joins. We show that, in the specific case of
inequality joins, this generalization improves the state of the
art for dynamically processing inequality joins by performing
consistently better, with up to two orders of magnitude
improvements in processing time and memory consumption.

Contributions. We focus on the class of Generalized Con-
junctive Queries (GCQs for short), i.e., conjunctive queries
with θ-joins, evaluated under multiset semantics.

(1) We devise a succinct and efficiently updatable data
structure to dynamically process GCQs. To this end, we
first generalize the notions of acyclicity and free-connexity to
queries with arbitrary θ-joins (Section 3). Our data structure
degrades gracefully: if a GCQ only contains equalities our
approach inherits the worst-case optimality provided by Dyn.

(2) We present GDyn, a general framework for extend-
ing Dyn to free-connex acyclic GCQs. Our treatment is
general in the sense that the θ-join predicates are treated ab-
stractly. GDyn hence applies to all predicates. We analyze
the complexity of GDyn, and identify properties of indexing
structures that are required in order for GDyn to support
constant delay enumeration of results as well as efficient
update processing (Section 5).

(3) We instantiate GDyn to the particular case of in-
equality and equality joins. We show that updates can be
processed in log-linear time and results can be enumerated
with logarithmic delay. Moreover, if there is at most one
inequality between any pair of relations, then results can be
enumerated with constant delay. We call the resulting algo-
rithm IEDyn. We first illustrate this algorithm by means
of an extensive example (Section 4), and then describe the
required data structures formally at the end of Section 5.

(4) We experimentally compare IEDyn against state of the
art HIVM and CER frameworks. Our extensive experiments
show that IEDyn performs consistently better, with up to
two orders of magnitude improvements in both speed and
memory consumption (Section 6 and Section 7).

We introduce the required background in Section 2 and
discuss future work in Section 6. Proofs of formal statements
are omitted because of space constraints.

Additional related work. In addition to the work already
cited on CER and (H)IVM, our setting is closely related to
query evaluation with constant delay enumeration [4–6,8,22,
28,29,29,31,33]. This setting, however, deals with equi-joins
only. Also related, although restricted to the static setting,
is the practical evaluation of binary [16, 17, 20] and multi-
way [7, 38] inequality joins. Our work, in contrast, considers
dynamic processing of multi-way θ-joins, with a specialization
to inequality joins. Recently, Khayyat et al. [23] proposed
fast multi-way inequality join algorithms based on sorted
arrays and space efficient bit-arrays. They focus on the case
where there are exactly two inequality conditions per pairwise
join. While they also present an incremental algorithm for
pairwise joins, their algorithm makes no effort to minimize
the update cost in the case of multi-way joins. As a result,
they either materialize subresults (implying a space overhead
that can be more than linear), or recompute subresults. We
do neither.

734

2. PRELIMINARIES
Traditional conjunctive queries are cross products between
relations, restricted by equalities. Generalized conjunctive
queries (GCQs) are cross products between relations, but
restricted by arbitrary predicates. We use the following
notation for queries.

Query Language. Throughout the paper, let x, y, . . . ,
denote finite sets of variables (which will take the role of
attributes), and let x, y, z, . . . denote individual variables. A
GCQ is an expression of the form

Q = πy
(
r1(x1) 1 · · · 1 rn(xn) |

m∧
i=1

Pi(zi)
)

(1)

Here r1, . . . , rn are relation symbols; x1, . . . , xn are finite
sets of variables (of the same arity as r1, . . . , rn); P1, . . . , Pm
are predicates over z1, . . . , zm, respectively; and both y
and

⋃m
i=1 zi are subsets of

⋃n
i=1 xi. We treat predicates

abstractly: for our purpose, a predicate over x is a (not nec-
essarily finite) decidable set P of tuples over x. For example,
P (x, y) = x < y is the set of all tuples (a, b) satisfying a < b.
For convenience, we abbreviate ~t ∈ P by P (~t) and indicate
that P is a predicate over x by writing P (x).

Example 2.1. The following query is hence a GCQ.

πy,z,w,u
(
r(x, y) 1 s(y, z, w) 1 t(u, v) | x < z ∧ w < u

)
Intuitively, the query specifies that we should take the natural
join1 of r(x, y), s(y, z, w), and t(u, v), and from this result
filter those tuples that satisfy x < z and w < u.

We call y the output variables of GCQ Q and denote it
by out(Q). If y = x1 ∪ · · · ∪ xn then Q is called a full query
and we may omit the symbol πy altogether for brevity. The
elements ri(xi) are called atomic queries (or atoms). We
write at(Q) for the set of all atoms in Q, and pred(Q) for the
set of all predicate in Q. A normal conjunctive query (NCQ
for short) is a GCQ where pred(Q) = ∅.
Semantics. We evaluate GCQs over Generalized Multiset
Relations (GMRs for short) [22, 24,25]. A GMR over x is a
relation R over x (i.e., a finite set of tuples with schema x)
in which each tuple ~t is associated with a non-zero integer
multiplicity R(~t) ∈ Z\{0}.2 In contrast to classical multisets,
the multiplicity of a tuple in a GMR can hence be negative,
allowing to treat insertions and deletions uniformly. We
write supp(R) for the finite set of all tuples in R; ~t ∈ R to
indicate ~t ∈ supp(R); and |R| for |supp(R)|. A GMR R is
positive if R(~t) > 0 for all ~t ∈ supp(R).

The operations of GMR union (R+S), minus (R−S), pro-
jection (πz R), natural join (R 1 T)1 and selection (σP (R))
are defined similarly as in relational algebra with multiset
semantics. Figure 2 illustrates these operations. We refer
to [22, 25] for a formal semantics. We abbreviate σP (R 1 T)
by R 1P T , and if x is the set of attributes of R we abbreviate
πx(R 1P T) by RnP T .

1As usual, the natural join between relations that have a
disjoint schema is simply their cartesian product.
2In their full generality, GMRs can carry multiplicities that
are taken from an arbitrary algebraic ring structure (cf.,
[24]), which can be useful to describe the computation of
aggregations over the result of a GCQ. To keep the notation
and discussion simple, we fix the ring Z of integers throughout
the paper but our result generalize trivially to arbitrary rings.

R
x y z Z
1 2 2 2
2 4 6 3
1 2 3 3

S
u v Z
4 5 5
2 3 4
1 4 2

T
u v Z
4 5 −4
2 1 6
1 4 3

S 1 T
u v Z
4 5 −20
1 4 6

πy(R)
y Z
2 5
4 3

S + T
u v Z
4 5 1
2 3 4
1 4 5
2 1 6

S − T
u v Z
4 5 9
2 3 4
1 4 −1
2 1 −6

R 1y<u S
x y z u v Z
1 2 2 4 5 10
1 2 3 4 5 15

Figure 1: Operations on GMRs

A database over a set A of atoms is a function db that
maps every atom r(x) ∈ A to a positive GMR dbr(x) over x.
Given a database db over the atoms occurring in query Q,
the evaluation of Q over db, denoted Q(db), is the GMR over
y constructed in the expected way: construct the natural
join of all GMRs in the database, do a selection over the
result w.r.t. each predicate, and finally project on y.

Updates and deltas. An update to a GMR R is simply a
GMR ∆R over the same variables as R. Applying update
∆R to R yields the GMR R+ ∆R. An update to a database
db is a collection u of (not necessarily positive) GMRs, one
GMR ur(x) for every atom r(x) of db, such that dbr(x) + ur(x)
is positive. The positiveness condition ensures that after
applying u to db we obtain again a valid database. We write
db +u for the database obtained by applying u to each atom
of db, i.e., (db +u)r(x) = dbr(x) +ur(x), for every atom r(x) of
db. For every query Q, every database db and every update u
to db, we define the delta query ∆Q(db, u) of Q w.r.t. db and
u by ∆Q(db, u) := Q(db + u) − Q(db). As such, ∆Q(db, u)
is the update that we need to apply to Q(db) in order to
obtain Q(db + u).

Enumeration with bounded delay. A data structure D
supports enumeration of a set E if there is a routine enum
such that enum(D) outputs each element of E exactly once.
Such enumeration occurs with delay d if the time until the
first output; the time between any two consecutive outputs;
and the time between the last output and the termination
of enum(D), are all bounded by d. D supports enumeration
of a GMR R if it supports enumeration of the set ER =
{(~t,R(~t)) | ~t ∈ supp(R)}. When evaluating a GCQ Q, we
will be interested in representing the outputs of Q by means
of a family D of data structures, one data structure Ddb ∈ D
for each input database db. We say that Q can be enumerated
from D with delay f , if for every input db we can enumerate
Q(db) from Ddb with delay O(f(Ddb)), where f assigns a
natural number to each Ddb. Intuitively f measures Ddb in
some way. In particular, if f is constant we say the results
are generated from the data structure with constant-delay
enumeration (CDE).

As a trivial example of CDE of a GCQ Q, assume that, for
each db, the pairs (~t,Q(db)(~t)) of Q(db) are stored in an array
Adb (without duplicates). Then the family (Adb) supports
CDE of Q: enum(Adb) simply iterates over each element
in Adb, one by one, always outputting the current element.
Since array indexation is a O(1) operation, this hence gives
constant delay. CDE of a GCQ Q can hence always be done
naively by materializing Q(db) in an in-memory array Adb.
Unfortunately, Adb requires memory proportional to ‖Q(db)‖

735

which, depending on Q, can be of size polynomial in ‖db‖.
We hence search for other data structures that can represent
Q(db) using less space, while still allowing enumeration with
the same (worst-case) complexity as enumeration from a
materialized array: namely, with constant delay.

Computational Model. It is important to note that we
focus on dynamic query evaluation in main memory and
measure time and space under data complexity [35]. That is,
the query is considered to be fixed and not part of the input.
This makes sense under dynamic query evaluation, where
the query is known in advance and the data is constantly
changing. In particular, the number of relations to be queried,
their arity, and the length of the query are all constant.

Furthermore, we assume a computational model where the
space used by tuple values and integers, the time of arithmetic
operations on integers, and the time of memory lookups are
all O(1). We further assume that every GMR R can be
represented by a data structure that allows (1) enumeration
of R with constant delay; (2) multiplicity lookups R(~t) in
O(1) time given ~t; (3) single-tuple insertions and deletions
in O(1) time; while (4) having a size that is proportional to
the number of tuples in the support of R. Essentially, our
assumptions amount to perfect hashing of linear size [11].
Although this is not realistic for practical computers, it is
well known that complexity results for this model can be
translated, through amortized analysis, to average complexity
in real-life implementations [11].

3. GENERALIZED ACYCLICITY
Join queries are GCQs without projections that feature
equality joins only. The well-known subclass of acyclic join
queries [1, 37], in contrast to the entire class of join queries,
can be evaluated in time O(‖db‖ + ‖Q(db)‖), i.e., linear in
both input and output. This result relies on the fact that
acyclic join queries admit a tree structure that can be ex-
ploited during evaluation. In previous work [22], we showed
that this tree structure can also be exploited for efficient pro-
cessing of NCQs under updates. In this section, we therefore
extend the tree structure and the notion of acyclicity from
join queries to GCQs with both projections and arbitrary
θ-joins. We begin by defining this tree structure and the
related notion of acyclicity for full GCQs. Then, we proceed
with the notion corresponding to GCQs that feature projec-
tions, known as free-connex acyclicity. Finally, we discuss
how to compute these tree structures for a given GCQ Q.

Generalized Join Trees. To simplify notation, we denote
the set of all variables (resp. atoms, resp. predicates) that
occur in a mathematical object X (such as a query) by
var(X) (resp. at(X), resp. pred(X)). In particular, if X is
itself a set of variables, then var(X) = X. We extend this
notion uniformly to labeled trees. E.g., if n is a node in tree
T , then var(n) denotes the set of variables occurring in the
label of n, and similarly for edges and trees themselves.

Definition 3.1 (GJT). Let A be a finite set of atoms and
let P be a finite set of predicates. A hyperedge in A is a set
x of variables such that there exists r(y) ∈ A with x ⊆ y.
A Generalized Join Tree for A and P is a node-labeled and
edge-labeled directed tree T = (V,E) such that:
- Every leaf is labeled by an atom in A and every atom in
A occurs as the label of exactly one leaf in T .

- Every interior node n is labeled by a hyperedge in A and
has at least one child c s.t. var(n) ⊆ var(c).

{y, w}

(T1)

{y, z, w}

r(x, y)

x < z

s(y, z, w)

t(u, v)

w < u

{y, w}

(T2)

{y, z, w}

r(x, y)

x < z

s(y, z, w)

{u}

t(u, v)

w < u

Figure 2: Two example GJTs.

- Whenever the same variable x occurs in the label of two
nodes m and n of T , then x occurs in the label of each
node on the unique undirected path linking m and n.

- Every edge p→ c from parent p to child c in T is labeled
by a set pred(p → c) ⊆ P of predicates. It is required
that for every predicate P (z) ∈ pred(p → c) we have
z ⊆ var(p) ∪ var(c). Moreover, every predicate in P must
occur in the label of at least one edge of T .

Figure 2 illustrates two GJTs for P = {x < z,w < u} and
A = {r(x, y), s(y, z, w), t(u, v)}.

Definition 3.2. A GCQ Q is acyclic if there is a GJT for
at(Q) and pred(Q). It is cyclic otherwise.

Example 3.3. The join trees in Figure 2 hence show that
the following full GCQ is acyclic.

Q1 =
(
r(x, y) 1 s(y, z, w) 1 t(u, v) | x < z ∧ w < u

)
In contrast, the query r(x, y) 1 s(y, z) 1 t(x, z) (also known
as the triangle query) is the prototypical cyclic join query.

If Q does not contain any predicates, that is, if Q is a NCQ,
then the last condition of Definition 3.1 vacuously holds. In
that case, the definition corresponds to the definition of a
generalized join tree given in [22], where it was also shown
that a NCQ is acyclic under any of the traditional definitions
of acyclicity (e.g., [1]) if and only if the query has a GJT
for at(Q). In this sense, Definition 3.2 indeed generalizes
acyclicity from NCQs to GCQs.

Free-connex acyclicity. Acyclicity is actually a notion for
full GCQs. Indeed, note that whether or not Q is acyclic
does not depend on the projections of Q (if any). To also pro-
cess queries with projections efficiently, a related structural
constraint known as free-connex acyclicity is required.

Definition 3.4 (Connex, Frontier). Let T = (V,E) be a
GJT. A connex subset of T is a set N ⊆ V that includes the
root of T such that the subgraph of T induced by N is a
tree. The frontier of a connex set N is the subset F ⊆ N
consisting of those nodes in N that are leaves in the subtree
of T induced by N .

To illustrate, {{y, w}, {u}, {y, z, w}} is a connex subset of
T2 of Figure 2. Its frontier is {{y, z, w}, {u}}. In contrast,
{{y, w}, {y, z, w}, t(u, v)} is not a connex subset of T2.

Definition 3.5. (Compatible, Free-Connex Acyclic) Let T
be a GJT. A GCQ Q is compatible with T if T is a GJT for
Q and T has a connex subset N with var(N) = out(Q). A
GCQ is free-connex acyclic if it has a compatible join tree.

In particular, every full acyclic GCQ is free-connex acyclic
since the entire set of nodes V of a GJT T for Q is a connex
set with var(V) = out(Q).

736

Example 3.6. Let Q2 = πy,z,w,u(Q1) with Q1 the GCQ
from Example 3.3. Then Q2 is free-connex acyclic since it is
compatible with GJT T2 from Figure 2. By contrast, Q2 is
not compatible with GJT T1 since any connex set of T1 that
includes a node with variable u will also include variable v,
which is not in out(Q2). Finally, it can be verified that no
GJT for Q1 is compatible with πx,u(Q1); the latter query is
hence not free-connex acyclic.

We can efficiently check (free-connex) acyclicity.

Proposition 3.7. There is a polynomial time algorithm
that, given a GCQ Q, returns a GJT for Q if Q is acyclic
and Null otherwise. Moreover, if Q is free-connex acyclic
the returned tree T is compatible with Q.

For the sake of space we omit this algorithm.

Semantic acyclicity. It is important to observe that acyclic-
ity as defined above is a syntactic notion. That is, it is possi-
ble that a GCQ Q itself is not acyclic but that it is equivalent
to a GCQ Q′ that is acyclic. For example, consider

Q3 =
(
r(x, y) 1 s(y, z, w) 1 t(u, v) | x < z ∧ z < u ∧ x < u

)
It can be verified that Q3 is cyclic. Note, however, that Q3

is equivalently expressed by the acyclic GCQ

Q4 =
(
r(x, y) 1 s(y, z, w) 1 t(u, v) | x < z ∧ z < u

)
.

The problem arises here because Q3 contains a predicate
that is redundant: x < u is implied by x < z and z < u, and
therefore it could be eliminated. We say that a GCQ Q is
semantically acyclic if it is equivalent to an acylic GCQ Q′.
As such, Q3 is semantically acyclic. Semantic free-connex
acyclicity is defined similarly.

The fact that acyclicity is a syntactic notion is problematic
from a systems perspective, since we may not be able dynam-
ically process GCQ Q directly: the techniques of Sections 4
and 5 require a compatible GJT for Q (which hence needs to
be acyclic). If Q is semantically but not syntactically acyclic,
we would hence like to transform Q into an equivalent acyclic
query Q′ and process Q′ instead. For the specific setting
where Q uses only equality (=) and inequality predicates
(≤, <,≥, >), we have the following.

Proposition 3.8. There is a polynomial time algorithm
that, given a semantically acyclic GCQ Q, returns an acyclic
GCQ Q′ such that Q ≡ Q′. Moreover, if Q semantically
free-connex acyclic then Q′ is free-connex acyclic.

Binary and Strongly Compatible GJTs. In order to
simplify the presentation of what follows, we will focus on
the class of binary and strongly compatible GJTs in the rest
of the paper. A binary GJT is a GJT in which every node
has at most two children. A GJT T is strongly compatible
with a GCQ Q if it is a GJT for Q and has a sibling-closed
connex subset N such that var(N) = out(Q). Here, N is
called sibling-closed if for every node n ∈ N with a sibling m,
m is also in N . It can be shown that if N is sibling-closed,
then var(N) = var(F) where F is the frontier of N . The
following proposition shows that we can always convert to
binary and strongly compatible GJTs. Therefore, there is
no loss of generality by restricting to these classes.

Proposition 3.9. There is a polynomial time algorithm
that, given a GJT T ′ for a query Q, returns a binary GJT
T ′ for Q. Moreover, if T is compatible with Q, then T ′ is
strongly compatible with Q.

ρ{y,w}
y w #
1 3 84

ρ{y,z,w}
y z w #
1 3 3 12
2 4 6 15

ρr
x y #
2 2 2
3 2 3
2 1 4

x < z

ρs
y z w #
1 2 2 2
1 3 3 3
2 4 6 3

ρ{u}
u #
4 7
2 4

ρt
u v #
2 3 4
4 6 2
4 5 5

w < u

= πy,w(ρ{y,z,w} 1w<u ρ{u})

= πy,z,w(ρr 1x<z ρs) = πuρt

dbt(u,v)
u v Z
2 3 4
4 6 2
4 5 5

dbs(y,z,w)

y z w Z
1 2 2 2
1 3 3 3
2 4 6 3

dbr(x,y)
x y Z
2 2 2
3 2 3
2 1 4

Figure 3: Example database and its T2-reduct.

4. DYNAMIC JOINS WITH EQUALITIES
AND INEQUALITIES: AN EXAMPLE

In this section we illustrate how to dynamically process free-
connex acyclic GCQs when all predicates are inequalities
(≤, <,≥, >). We do so by means of an extensive example that
shows the required indexing structures and GMRs. The full
definitions and algorithms (that apply to arbitrary θ-joins)
will be formally presented in Section 5.

Throughout this section we consider the following query,
which was shown free-connex acyclic in Example 3.6:

Q = πy,z,w,u
(
r(x, y) 1 s(y, z, w) 1 t(u, v) | x < z ∧ w < u

)
.

Let T2 be the GJT from Figure 2. We will process Q based
on a T2-reduct, a data structure that succinctly represents
the output of Q evaluated over the current database. For
every node n, define pred(n) as the set of all predicates on
child edges of n, i.e. pred(n) =

⋃
c child of n pred(n→ c).

Definition 4.1 (T -reduct). Let T be a GJT for a query
Q and let db be a database over at(Q). The T -reduct (or
semi-join reduction) of db is a collection ρ of GMRs, one
GMR ρn for each node n ∈ T , defined inductively as follows:
- if n = r(x) is an atom, then ρn = dbr(x)
- if n has a single child c, then ρn = πvar(n) (ρc | pred(n))
- otherwise, n has two children c1 and c2. In this case we

have ρn = πvar(n) (ρc1 1 ρc2 | pred(n)).

Figure 3 depicts an example database (top) and its T2-
reduct ρ (bottom). Note, for example, that the only tuple in
the GMR at the root (ρ{y,w}) comes from the join of ρ{y,z,w}
and ρ{u} restricted to w < y and projected over {y, w}.

It is important to observe that the size of a T -reduct of a
database db can be at most linear in the size of db. To see
why, observe that, as illustrated in Figure 3, for each node n
there is some descendant atom α (possibly n itself) such that
supp(ρn) ⊆ supp(πvar(n) dbα). Note that Q(db), in contrast,
can become cubic in the size of db in the worst case.

Enumeration. From a T -reduct we can enumerate the re-
sult Q(db) rather naively simply by recomputing the query
results, in particular because we have access to the complete
database in the leaves of T . We would like, however, to make

737

the enumeration as efficient as possible. To this end, we
equip T -reducts with a set of indices. To avoid the space cost
of materialization, we do not want the indices to use more
space than the T -reduct itself (i.e., linear in db). We illustrate
these ideas in our running example by introducing a simple
set of indices that allow for constant-delay enumeration.

Let N = {{y, w}, {y, z, w}, {u}} be the sibling-closed sub-
set of T2 with var(N) = out(Q) = {y, z, w, u}. We rely on
the strong compatibility of T2 with Q without loss of general-
ity (see Proposition 3.9). To enumerate the query results, we
will traverse top-down the nodes in N . The traversal works
as follows: for each tuple t1 in ρ{y,w}, we consider all tuples
t2 in ρ{y,z,w} that are compatible with t1, and all tuples
t3 ∈ ρ{u} that are compatible with t1. Compatibility here
means that the corresponding equalities and inequalities are
satisfied. Then, for each pair (t2, t3), we output the tuple
t2 ∪ t3 with multiplicity ρ{y,z,w}(t2) × ρ{u}(t3). A crucial
difference here with naive recomputation is that, since ρ{y,w}
is already a join between ρ{y,z,w} and ρ{u}, we will only
iterate over relevant tuples: each tuple that we iterate over
will produce a new output tuple. For example, we will never
look at the tuple 〈y : 2, z : 4, w : 6〉 in ρ{y,z,w} because it
does not have a compatible tuple at the root.

To implement this enumeration strategy with constant de-
lay, we desire index structures on ρ{y,z,w} and ρ{u} that allow
to enumerate, for a given tuple t1 in ρ{y,w}, all compatible
tuples t2 ∈ ρ{y,z,w} (resp. t3 ∈ ρ{u}) with constant delay.
In the case of ρ{u} this is achieved simply by keeping ρ{u}
sorted decreasingly on variable u. Given tuple t1, we can
enumerate the compatible tuples from ρ{u} by iterating over
its tuples one by one in a decreasing manner, starting from
the largest value of u, and stopping whenever the current u
value is smaller or equal than the w value in t1. For indexing
ρ{y,z,w} we require a more standard index. In particular, we
need to enumerate all tuples that have the same y and w
value as t1. CDE can be easily achieved by using a hash-
based index on y and w. This index is depicted as Iρ{y,z,w}
in Figure 4. It is not hard to see that, since the described
indices provide CDE of the compatible tuples given t1, the
described strategy provides CDE of Q(db).

Updates. Next we illustrate how to process updates. The
objective here is to transform the T2-reduct of db into a
T2-reduct of db +u, where u is the received update. To do
this efficiently we use additional indexes on ρ. We present
the intuitions behind these indices with an update consisting
of two insertions: 〈y : 2, z : 3, w : 6〉 with multiplicity 2 and
〈u : 4, v : 9〉 with multiplicity 3. Figure 4 depicts the update
process, highlighting in gray the update modifications.

Let us first discuss how the tuple t1 = 〈y : 2, z : 3, w : 6〉 is
processed. We proceed bottom-up, starting at ρs which is
itself affected by the insertion of t1. Subsequently, we need
to propagate the modification of ρs to its ancestors ρ{y,z,w}
and ρ{y,w}. Concretely, from the definition of T -reduction,
it follows that we need to add the following modifications to
ρs, ρ{y,z,w}, and ρ{y,w} on t1:
∆ρs = [t1 7→ 2],
∆ρ{y,z,w} = πy,z,w (ρr 1x<z ∆ρs),

∆ρ{y,w} = πy,w
(
∆ρ{y,z,w} 1w<u ρ{u}

)
.

To compute the joins on the right-hand sides efficiently, we
create a number of additional indexes on ρr, ρs, and ρ{y,z,w}.
Concretely, in order to compute πy,z,w (ρr 1x<z ∆ρs) effi-
ciently we group tuples in the GMR ρr by the variables
that ρr has in common with ρs (in this case y) and then,

ρ{y,w}
y w #
1 3 120

ρ{y,z,w}
y z w↓ #
1 3 3 12
2 4 6 15
2 3 6 4

ρr
x↓y
∗ #

2 2 2
3 2 3
2 1 4

x < z

ρs
y∗z↓w #
1 2 2 2
1 3 3 3
2 3 6 2
2 4 6 3

ρ{u}
u↑ #
4 10
2 4

ρt
u v #
2 3 4
4 6 2
4 5 5
4 9 3

w < u

Iρ{y,z,w}
y w
1 3
2 6

Iρs
y
1
2

Iρr
y
2
1

= πy,w(ρ{y,z,w} 1w<u ρ{u})

= πy,z,w(ρr 1x<z ρs) = πuρt

Figure 4: T2-rep of db+u. u is the update containing
the tuples (〈y : 2, z : 3, w : 6〉, 2) and (〈u : 4, v : 9〉, 3). T2

and db are as in Figure 3.

per group, sort tuples ascending on variable x. We mark
grouping variables in Figure 4 with ∗ (e.g. y∗), and sorting
by ↓ (for ascending, e.g., x↓) and ↑ (for descending). A hash
index on the grouping variables (denoted Iρr in Figure 4)
then allows to find the group given a y value. The join can
then be processed by means of a hybrid form of sort-merge
and index nested loop join. Sort ∆ρs ascendingly on y and
z. For each y-group in ∆ρs find the corresponding group in
ρr by passing the y value to the index Iρr . Let t′ be the first
tuple in the ∆ρs group. Then iterate over the tuples of the
ρr group in the given order and sum up their multiplicities
until x becomes larger than t′(z). Add t′ to the result with
its original multiplicity multiplied by the found sum (pro-
vided it is non-zero). Then consider the next tuple in the
∆ρs group, and continue summing from the current tuple
in the ρr group until x becomes again larger than z, and
add the result tuple with the correct multiplicity. Continue
repeating this process for each tuple in the ∆ρs group, and
for each group in ∆ρs. In our case, there is only one group in
∆ρs (given by y = 2) and we will only iterate over the tuple
〈x : 2, y : 2〉 in ρr, obtaining a total multiplicity of 2, and
therefore compute ∆ρ{y,z,w} = [t1 → 4]. In order to compute

the join πy,w
(
∆ρ{y,z,w} 1w<u ρ{u}

)
efficiently, we proceed

similarly. Here, however, there are no grouping variables
on ρ{u} and it hence suffices to sort ρ{u} descendingly on
u. Note that this was actually already required for efficient
enumeration. Also note that ∆ρ{y,w} is in fact empty.

Now we discuss how to process t2 = 〈u : 4, v : 9〉. First,
we insert t2 into ρt. We need to propagate this change to
the parent ρ{u} by calculating ∆ρ{u} = πu ∆ρt. This can
be done by a simple hash-based aggregation. Finally, we
need to propagate ∆ρ{u} to the root by computing the delta
∆ρ{y,w} = πy,w(ρ{y,z,w} 1w<u ∆ρ{u}). To process this join
efficiently we proceed as before. Again, there are no grouping
variables on ρ{y,z,w} (since it has no variables in common
with ρ{u}) and it hence suffices to sort ρ{y,z,w,} ascending
on w. The only tuple that we iterate over during the hybrid
join is 〈y : 1, z : 3, w : 3〉 wich has multiplicity 12. Hence, we
have ∆ρy,w = [〈y : 1, w : 3〉 7→ 36], concluding the example.

In this section we have presented an extensive example
for dynamically processing a query involving equalities and
inequalities. In the next section, we first present a formal

738

and general framework to process free-connex acyclic GCQs
and then instantiate it to the case of equalities and inequali-
ties. Having a formal framework we study the complexity of
update processing and enumeration of results.

5. DYNAMIC YANNAKAKIS OVER GCQS
Dynamic Yannakakis (Dyn) is an algorithm to efficiently
evaluate free-connex acyclic aggregate-equijoin queries un-
der updates [22]. This algorithm matches two important
theoretical lower bounds (for q-hierarchical NCQs [6] and
free-connex acyclic NCQs [4]), and is highly efficient in prac-
tice. In this section we present a generalization of Dyn,
called GDyn, to dynamically process free-connex acyclic
GCQs. Since predicates in a GCQ can be arbitrary, our
approach is purely algorithmic; how efficiently can GDyn
process updates and produce results will depend entirely on
the efficiency of the underlying data structures. Here we only
describe the properties that those data structures should
satisfy and present the general (worst-case) complexity of
the algorithm. The techniques and indices presented in the
previous section provide a practical instantiation of GDyn
to the case of equalities and inequalities; in this section we
make a parallel between that instantiation and the more
abstract definitions of GDyn.

Throughout this section let Q be a free-connex acyclic
GCQ, let T be a strongly-compatible binary GJT for Q.
Like in the case of equalities and inequalities, the dynamic
processing of Q will be mainly based on a T -reduct of the
current database db. A set of indices will then be added to
optimize the enumeration of query results and maintenance
of the T -reduct under updates. We formalize the notion of
index as follows:

Definition 5.1 (Index). Let R be a GMR over x, let y
be a set of variables, let w be a set of variables satisfying
w ⊆ x ∪ y, and let P (z) be a predicate with z ⊆ x ∪ y. An
index on R by (P, y, w) with delay f is a data structure I
that provides, for any given GMR Ry over y, enumeration of
πw(R ./ Ry | P) with delay O(f(|R|+ |Ry|)). The update
time of index I is the time required to update I to an index
on R+ ∆R (by (P, y, w)) given update ∆R to R.

For example, Iρr in Figure 4 is used as an index on ρr by
(x < z, {y, z, w}, {y, z, w}). Indeed, in the previous section
we precisely discussed how Iρr allows to efficiently compute
πy,z,w(ρr 1x<z ∆ρs) for an update ∆ρs to ρs. Having de-
fined the notion of index, we proceed to discuss how GDyn
enumerates query results and processes updates.

Enumeration. Let db be the current state of the database
and let N be the sibling-closed connex subset of T such
that var(N) = out(Q). Such N exists since T is strongly
compatible with Q. To enumerate Q(db) from a T -reduct ρ
of db we can iterate over the reductions ρn with n ∈ N in a
nested fashion, starting at the root and proceeding top-down.
When n is the root, we iterate over all tuples in ρn. For
every such tuple ~t, we iterate only over the tuples in the
children c of n that are compatible with ~t (i.e., tuples in ρc
that join with ~t and satisfy pred(n → c)). This procedure
continues until we reach nodes in the frontier of N at which
time the output tuple can be constructed. The pseudocode
for enumeration is given in Algorithm 1. There, the tuples
that are compatible with ~t are computed by ρcnpred(n→c) ~t.

Algorithm 1 Enumerate Q(db) given T -reduct ρ of db.

1: function enumT,N (ρ)
2: for each ~t ∈ ρroot(T) do enumT,N (root(T),~t, ρ)

3: function enumT,N (n,~t, ρ)
4: if n is in the frontier of N then yield (~t, ρn(~t))
5: else if n has one child c then
6: for each ~s ∈ ρcnpred(n→c) ~t do enumT,N (c, ~s, ρ)
7: else n has two children c1 and c2
8: for each ~t1 ∈ ρc1 npred(n→c1)

~t do

9: for each ~t2 ∈ ρc2 npred(n→c2)
~t do

10: for each (~s1, µ) ∈ enumT,N (c1, ~t1, ρ) do
11: for each (~s2, ν) ∈ enumT,N (c2, ~t2, ρ) do
12: yield (~s1 ∪ ~s2, µ× ν)

Proposition 5.2. Let Q, T , and N be as above. If ρ is the
T -reduct of db, then enumT,N (ρ) enumerates Q(db).

We now analyze the complexity of enumT,N . First, observe
that by definition of T -reducts, compatible tuples will exist at
every node. Hence, every tuple that we iterate over will even-
tually produce a new output tuple. This ensures that we do
not risk wasting time in iterating over tuples that in the end
yield no output. As such, the time needed for enumT,N (ρ) to
produce a single new tuple is determined by the time taken
to enumerate the tuples in ρnnpred(p→n) ~t, where p is the par-

ent of n. Since this is equivalent to πvar(n)(ρn 1pred(p→n) ~t)
we can do this efficiently by creating an index on ρn by
(pred(p→ n), var(p), var(n)). For example, in Section 4 we
defined hash-maps and group-sorted GMRs so that given
one tuple from a parent we could enumerate the compatible
tuples in the child with constant delay. In general, the effi-
ciency of enumeration will depend on the delay provided by
the indices.

Proposition 5.3. Assume that for every n ∈ N with parent
p we have an index on ρn by (pred(p → n), var(p), var(n))
with delay f . Then, using these indices, enumT,N (ρ) enu-
merates Q(db) with delay O(|N |×f(M)) where M is given by
maxn∈N (|ρn|). Therefore, the total time required to execute
enumT,N (ρ) is O(|Q(db)| · f(M) · |N |).

In particular, if f is constant we obtain constant-delay
enumeration of |Q(db)|. Recall that N is a constant under
data complexity.

Update processing. To allow enumeration of Q(db) under
updates to db we need to maintain the T -reduct ρ (and, if
present, its indexes) up to date. As illustrated in the previous
section, it suffices to traverse the nodes of T in a bottom-up
fashion. At each node n we have to compute the delta of ρn.
For leaf nodes, this delta is given by u itself. For interior
nodes, the delta can be computed from the delta and original
reduct of its children. Algorithm 2 gives the pseudocode.

The fundamental part of Algorithm 2 is to compute joins
and produce delta GMRs (Line 10), propagating updates
from each node to its parent. When there is an update
∆n to a node n with sibling m and parent p, we need to
compute πvar(p)

(
ρm 1pred(p) ∆n

)
. To do this efficiently, we

naturally store an index on ρm by (pred(p), var(n), var(p)).
For example, we discussed how the hash-map Iρr in Figure 4
plus the sorting on x of ρr allowed us to efficiently compute
πy,z,w(ρr 1x<z ∆ρs) on update ∆ρs to ρs.

739

Algorithm 2 Update(ρ, u)

1: Input: A T -reduct ρ for db and an update u.
2: Result: Transforming ρ to a T -reduc for db + u.
3: for each n ∈ leafs(T) labeled by r(x) do
4: ∆n ← ur(x)

5: for each n ∈ nodes(T) \ leafs(T) do
6: ∆n ← empty GMR over var(n)

7: for each n ∈ nodes(T), traversed bottom-up do
8: ρn+ = ∆n

9: if n has a parent p and a sibling m then
10: ∆p+ = πvar(p)

(
ρm 1pred(p) ∆n

)
11: else if n has parent p then
12: ∆p+ = πvar(p)(∆n | pred(p))

Summarizing the discussion above, to efficiently enumerate
query results and process updates we need to store a T -
reduct plus a set of indices on its GMRs. The data structure
containing these elements is called a T -representation.

Definition 5.4 (T -representation). Let Q be a free-connex
acyclic GCQ, let T be a binary and strongly compatible
GJT, and let db be a database for at(Q). Let N be the
sibling-closed connex subset of T such that var(N) = out(Q).
A T -representation (T -rep for short) of db is a data structure
containing a T -reduct of db and, for each node n with parent
p, the following set of indices:

- If n belongs to N , then we store an index Pn on ρn by
(pred(p→ n), var(p), var(n)).

- If n is a node with a sibling m, then we store an index Sn
on ρn by (pred(p), var(m), var(p)).

Algorithms 1 and 2 plus the notion of T -representation
provide a framework for dynamic query evaluation. By
constructing the required T -reduct and set of indices (and
their update procedures) one can automatically process free-
connex acyclic GCQs under updates. Naturally, to implement
such framework one needs to devise indices for a particular
set of predicates. For example, Dyn is an instantiation of this
framework to the class of NCQs, and in the previous section
we intuitively showed how to instantiate this framework
for GCQs based on equalities and inequalities. Next, we
formally present the general set of indices required to process
free-connex acyclic GCQs with equalities and inequalities.

IEDyn. For queries that have only equality and inequality
predicates, the instantiation of a T -representation of db con-
tains a T -reduct of db and, for each node n with parent p,
the following data structures:

- For each n ∈ N , the index Pn on ρn from Definition 5.4
is obtained by doing two things. (1) First, we group ρn
according to the variables in var(n) ∩ var(p). Then, per
group, we sort the tuples according to the variables of
var(n) mentioned in pred(p→ n) (if any).(2) We create a
hash table that maps each tuple ~t ∈ πvar(n)∩var(p)(ρn) to
its corresponding group in ρn. In case that var(n) ∩ var(p)
is empty, this hash table is omitted.

- For each node n with sibling m, the index Sn of Defini-
tion 5.4 is obtained by doing two things. (1) First, we group
ρn according to the variables in var(n) ∩ var(m). Then,
per group, we sort the tuples according to the variables of
var(n) mentioned in pred(p) (if any). (2) We create a hash
table that maps each tuple ~t ∈ πvar(n)∩var(m)(ρn) to the

corresponding group in ~s ∈ ρn. In case that var(n)∩var(m)
is empty, this hash table is omitted.

Given these data structures, we have described how to process
the joins associated to Pn and Sn in Section 4. In Figure 4,
Iρr and Iρs are examples of Sn, used for update propagation,
while Iρ{y,z,w} is an example of Pn, used for enumeration.

Note that the example query from Section 4 has at most
one inequality between each pair of atoms. This causes each
edge in T to consist of at most one inequality. As such, when
creating the index Pn for a node n ∈ N , the reduct ρn will
be sorted per group according to at most one variable. This
is important for enumeration delay because, as exemplified
in Section 4, we can then find compatible tuples by first
identifying the corresponding group and then iterating over
the sorted group from the start and stopping when the first
non-compatible tuple is found. When there are multiple
inequalities per pair of atoms then we will need to sort ac-
cording to multiple variables under some lexicographic order.
This causes enumeration delay to become logarithmic be-
cause compatible tuples will intermingle with non-compatible
tuples and a binary search is necessary to find the next batch
of compatible tuples in the group.

We denote by IEDyn the algorithm for processing free-
connex acyclic GCQs with equalities and inequalities.

Theorem 5.5. Let Q be a free-connex acyclic GCQ with
equalities and inequalities only. Let T be a binary GJT
strongly compatible with Q. Given a database db over at(Q),
a T -rep D of db and an update u, IEDyn transforms D
into a T -rep of db +u in time O((|db|+ |u|) log(|db|+ |u|)).
Also, IEDyn can enumerate Q(db) with delay O(log(|db|))
and, moreover, if every pair of atoms in Q has at most one
inequality then this enumeration is done with constant delay.

6. EXPERIMENTAL SETUP
In this section, we present the setup of our experimental
evaluation, whose results are discussed in Section 7. We
first present our practical implementation of IEDyn, then
show the queries and update stream used for evaluation, and
finally discuss the competing systems.

Practical Implementation. We have implemented IEDyn
as a query compiler that generates executable code in the
Scala programming language. The generated code instanti-
ates a T -rep and defines trigger functions that are used for
maintaining the T -rep under updates. Our implementation
is basic in the sense that we use Scala off-the-shelf collec-
tion libraries (notably MutableTreeMap) to implement the
required indices. Faster implementations with specialized
code for the index structures are certainly possible.

Our implementation supports two modes of operation:
push-based and pull-based. In both modes, the system main-
tains the T -rep under updates. In the push-based mode the
system will generate, on its output stream, the delta result
∆Q(db, u) after each single-tuple update u. To do so, it uses
a modified version of enumeration (Algorithm 1) that we call
delta enumeration. Similarly to how Algorithm 1 enumerates
Q(db), delta enumeration enumerates ∆Q(db, u) with con-
stant delay (if Q has at most one inequality per pair of atoms)
resp. logarithmic delay (otherwise). To do so, it uses both
(1) the T -reduct GMRs ρn and (2) the delta GMRs ∆ρn
that are computed by Algorithm 2 when processing u. In
this case, however, one also needs to index the ∆ρn similarly
to ρn. In the pull-based mode, in contrast, the system only

740

Table 1: Queries for experimental evaluation.
Query Expression
Q1 R(a, b, c) 1 S(d, e, f)|a < d
Q2 R(a, b, c, k) 1 S(d, e, f, k)|a < d
Q3 R(a, b, c) 1 S(d, e, f) 1 T (g, h, i)|a < d ∧ e < g
Q4 R(a, b, c) 1 S(d, e, f) 1 T (g, h, i)|a < d ∧ d < g
Q5 R(a, b, c, k) 1 S(d, e, f, k) 1 T (g, h, i)|a < d ∧ d < g
Q6 R(a, b, c) 1 S(d, e, f, k) 1 T (g, h, i, k)|a < d ∧ d < g
Q7 πa,b,d,e,f,g,h(Q4)
Q8 πa,d,e,f,g,h,k(Q5)
Q9 πd,e,f,g,h,k(Q6)
Q10 πb,c,e,f,h,i(Q4)
Q11 πb,c,e,f,h,i(Q5)
Q12 πb,c,e,f,h,i(Q6)

maintains the T -rep under updates but does not generate
any output stream. Nevertheless, at any time a user can call
the enumeration procedure to obtain the current result.

We have described in Section 5 how IEDyn can process
free-connex acyclic GCQs under updates. It should be noted
that our implementation also supports the processing of
general acyclic GCQs that are not necessarily free-connex.
This is done using the following simple strategy. Let Q be
acyclic but not free-connex. First, compute a free-connex
acyclic approximation QF of Q. QF can always be obtained
from Q by extending the set of output variables of Q. In the
worst case, we need to add all variables, and QF becomes
the full join underlying Q. Then, use IEDyn to maintain a
T -rep for QF . When operating in push-based mode, for each
update u, we use the T -representation to delta-enumerate
∆QF (db, u) and project each resulting tuple to materialize
∆Q(db, u) in an array. Subsequently, we copy this array to
the output. Note that the materialization of ∆Q(db, u) here
is necessary since the delta enumeration on T can produce
duplicate tuples after projection. When operating in pull-
based mode, we materialize Q(db) in an array, and use delta
enumeration of QF to maintain the array under updates. Of
course, under this strategy, we require Ω(‖Q(db)‖) space in
the worst case, just like (H)IVM would, but we avoid the
(partial) materialization of delta queries. Note the distinction
between the two modes: in push-based mode ∆Q(db, u) is
materialized (and discarded once the output is generated),
while in pull-based mode Q(db) is materialized upon requests.

Queries and Streams. In contrast to the setting for equi-
join queries where systems can be compared based on estab-
lished benchmarks such as TPC-H and TPC-DS, there is no
established benchmark suite for inequality-join queries.

We evaluate IEDyn on the GCQ queries listed in table 1.
Here, queries Q1–Q6 are full join queries (i.e., queries without
projections). Among these, Q1, Q3 and Q4 are cross products
with inequality predicates, while Q2, Q5 and Q6 have at least
one equality in addition to the inequality predicates. Queries
Q1 and Q2 are binary join queries, while Q3–Q6 are multi-
way join queries. Queries Q7–Q12 project over the result of
queries Q4–Q6. Among these, Q7–Q9 are free-connex acyclic
while Q10–Q12 are acyclic but not free-connex.

We evaluate these queries on streams of updates where each
update consists of a single tuple insertion. The database is al-
ways empty when we start processing the update stream. We
synthetically generate two kinds of update streams: random-
order update streams and temporally-ordered update streams.
In random-order update streams, insertions can occur in any

order. In contrast, temporally-ordered update streams guar-
antee that any attribute that participates in an inequality
in the query has a larger value than the same attribute in
any of the previously inserted tuples. Random-order update
streams are useful for comparing against systems that allow
processing of out-of-order tuples; temporally-ordered update
streams are useful for comparing against systems that as-
sume events arrive always with increasing timestamp values.
Examples of the latter are automaton-based CER systems.

A random update stream of size N for a query with k
relations is generated as follows. First, we generate N/k
tuples with random attribute values for each relation. Then,
we insert tuples in the update stream by uniformly and
randomly selecting them without repetitions. This ensures
that there are N/k insertions from each relation in the stream.
To utilize the same update stream for evaluating each system
we compare to, each stream is stored in a file. We choose the
values for equality join attributes uniformly at random from 1
to 200, except for the scalability and selectivity experiments
in Section 7 where the interval depends on the stream size.

Temporally-ordered streams are generated similarly, but
when a new insertion tuple is chosen, a new value is inserted in
the attributes that are compared through inequalities. This
value is larger than the corresponding values of previously
inserted tuples. All attributes hold integer values, except for
attributes c and i which contain string values.

Competitors. We compare IEDyn (IE) against DBToaster
(DBT) [25], Esper (E) [18], SASE (SE) [2,36,39], Tesla (T)
[13,14], and ZStream (Z) [26] measuring memory footprint,
update processing time, and enumeration delay as comparison
metrics. The competing systems differ in their mode of
operation (push-based vs pull-based) and some of them only
support temporally-ordered streams.

DBToaster is a state-of-the-art implementation of HIVM.
It operates in pull-based mode, and can deal with random-
order update streams. DBToaster is particularly meticulous
in that it materializes only useful views, and therefore it is an
interesting implementation for comparison. DBToaster has
been extensively tested on equi-join queries and has proven
to be more efficient than a commercial database management
system, a commercial stream processing system and an IVM
implementation [25]. DBToaster compiles SQL statements
into executable trigger programs in different programming
languages. We compare against those generated in Scala
from the DBToaster Release 2.23. DBToaster uses actors4 to
generate events from the input files. During our experiments,
however, we have found that this creates unnecessary memory
overhead. For a fair memory-wise comparison, we have
therefore removed these actors.

Esper is a CER engine with a relational model based
on Stanford STREAM [3]. It is push-based, and can deal
with random-order update streams. We use the Java-based
open source5 for our comparisons. Esper processes queries
expressed in the Esper event processing language (EPL).

SASE is an automaton-based CER system. It operates
in push-based mode, and can deal with temporally-ordered
update streams only. We use the publicly available Java-
based implementation of SASE6. This implementation does

3https://dbtoaster.github.io/
4https://doc.akka.io/docs/akka/2.5/
5http://www.espertech.com/esper/esper-downloads/
6https://github.com/haopeng/sase

741

not support projections. Furthermore, since SASE requires
queries to specify a match semantics (any match, next match,
partition contiguity) but does not allow combinations of such
semantics, we can only express queries Q1, Q2, and Q4 in
SASE. Hence, we compare against SASE for these queries
only. To be coherent with our semantics, the corresponding
SASE expressions use the any match semantics [2].

Tesla/T-Rex is also an automaton-based CER system.
It operates in push-based mode, and supports temporally-
ordered update streams only. We use the publicly available
C-based implementation7. This implementation operates in
a publish-subscribe model where events are published by
clients to the server (TRexServer). Clients can subscribe to
receive recognized composite events. Tesla cannot deal with
queries involving inequalities on multiple attributes such as
Q3, therefore, we do not show results for Q3. Since Tesla
works in a decentralized manner, we measure the update
processing time by logging the time at the TRexServer from
the start of the stream being processed until the end.

ZStream is a CER system based on a relational internal
architecture. It operates in push-based mode, and can deal
with temporally-ordered update streams only. ZStream is
not available publicly. Hence, we have created our own
implementation following the lazy-evaluation algorithm of
ZStream described in their original paper [26]. This paper
does not describe how to treat projections, and as such we
compare against ZStream only for full join queries Q1–Q6.

Due to space limitations, we cannot include the query
expressions used for Esper (in EPL), SASE, and Tesla/T-
Rex (rules) in this paper, but they are available at [21].

Setup. Our experiments are run on an 8-core 3.07 GHz
machine running Ubuntu with GNU/Linux 3.13.0-57-generic.
To compile the different systems or generated trigger pro-
grams, we have used GCC version 4.8.2, Java 1.8.0 101, and
Scala version 2.12.4. Each query is evaluated 10 times to
measure update processing delay, and two times to measure
memory footprint. We present the average over those runs.
Each time a query is evaluated, 20 GB of main memory are
freshly allocated to the program. To measure the memory
footprint for Scala/Java based systems, we invoke the JVM
system calls every 10 updates and consider the maximum
value. For C/C++ base systems we use the GNU/Linux
time command to measure memory usage. Experiments that
measure memory footprint are always run separately of the
experiments that measure processing time.

7. EXPERIMENTAL EVALUATION
Before presenting our experimental results we make some
remarks. First, when we compare against another system
we run IEDyn in the operation mode supported by the com-
petitor. For push-based systems we report the time required
to both process the entire update stream and generate the
changes to the output after each update. When comparing
against a pull-based system, the measured time includes
only processing the entire update stream. We later report
the speed with which the result can be generated from the
underlying representation of the output (a T -representation
in the case of IEDyn). When comparing against a system
that supports random-order update streams, we only report
comparisons using streams of this type. We have also looked
at temporally-ordered streams for these systems, but the

7https://github.com/deib-polimi/TRex

Table 2: Maximum output sizes per query, k=1000.
Query |Stream| |Output|
Q1 12k 18,017k
Q2 12k 3.8k
Q3 2.7k 178,847k
Q4 2.7k 90,425k
Q5 21k 411,669k
Q6 21k 297,873k
Q7 2.7k 114,561k
Q8 21k 411,669k
Q9 21k 99,043k
Q10 2.7k 114,561k
Q11 21k 294,139k
Q12 21k 297,873k

throughput of the competing systems is similar (fluctuating
between 3% and 12%) while that of IEDyn significantly im-
proves (fluctuating between 35% and 50%) because insertions
to sorted lists become constant instead of logarithmic. We
omit these experiments for the sake of space.

It is also important to remark that some executions of the
competing systems failed either because they required more
than 20GB of main memory or they took more than 1500
seconds. If an execution requires more than 20GB, we report
the processing time elapsed until the exception was raised.
If an execution is still running after 1500 seconds, we stop it
and report its maximum memory usage while running.

Full join queries. Figure 5 compares the update processing
time of IEDyn against the competing systems for full join
queries Q1–Q6. We have grouped experiments that are run
under comparable circumstances: in the top row experiments
are conducted for push-based systems on temporally-ordered
update streams (SE, T , Z); in the second row push-based
systems on random-order update streams (E), and in the bot-
tom row pull-based systems on random-order update streams
(DBT). We observe that all of the competing systems have
large processing times even for very small update stream
sizes, and that for some systems execution even failed. All
of these behaviors are due to the low selectivity of joins on
this dataset. Table 7 shows the output size of each query for
the largest stream sizes reported in Figure 5. We report on
streams that generate outputs of different sizes below.

Figure 5 is complemented by Figures 6 and 7 where we plot
the processing time and memory footprint used by IEDyn as
a percentage of the corresponding usage in the competing sys-
tems. Both, SE and Z support temporally ordered streams,
however, SE supports only queries Q1, Q2, and Q4 and Z
supports Q1–Q6, therefore in Figure 7 we show SE (right)
and Z (left). Note that IEDyn significantly outperforms
the competing systems on all full join queries. Specifically,
it outperforms DBT up to one order of magnitude in pro-
cessing time and up to two orders of magnitude in memory
footprint. It outperforms T by up to two orders of magnitude
in processing time, and more than one order of magnitude in
memory footprint. Moreover, for these queries, even in push-
based mode IEDyn can support the enumeration of query
results from its data structures at any time while competing
push-based systems have no such support. Hence, IEDyn is
not only more efficient but also provides more functionality.

Projections. Figure 6 shows that IEDyn significantly out-
performs E and T on free-connex queries Q7–Q9: up to an
order of magnitude improvement over the throughput of E
and more than twofold improvement over that of T . Memory

742

 0

 70

 140

 210

 280

te
m

p
o
ra

lly
-o

rd
e
re

d
p
u
s
h
-b

a
s
e
d

s
e
c
o
n
d
s

IE
Z
T

SE

 0

 2

 4

 6

IE
Z
T

SE

 0

 100

 200

 300

IE
Z

 0

 200

 400

 600

 800

 1000

IE
Z
T

SE

 400

 800

 1200

 1600

IE
Z
T

 500

 1000

 1500

 2000

IE
Z
T

 8

 16

 24

 32

ra
n
d
o
m

ly
-o

rd
e
re

d
p
u
s
h
-b

a
s
e
d

s
e
c
o
n
d
s

IE
E

 0.07

 0.14

 0.21

 0.28

 0.35

IE
E

 0

 100

 200

 300

 400

IE
E

 0

 50

 100

 150

 200

 250

IE
E

 150

 300

 450

 600

 750

IE
E

 200

 400

 600

 800

IE
E

 0

 2

 4

 6

 8

2
k

4
k

6
k

8
k

1
2
k

ra
n
d
o
m

ly
-o

rd
e
re

d
p
u
ll-

b
a
s
e
d

s
e
c
o
n
d
s

Q1

IE
DBT

 0.02

 0.04

 0.06

 0.08

2
k

4
k

6
k

8
k

1
2
k

Q2

IE
DBT

 0

 50

 100

 150

0
.3

k

0
.9

k

1
.5

k

2
.1

k

2
.7

k

Q3

IE
DBT

 0

 30

 60

 90

 120

 150

0
.3

k

0
.9

k

1
.5

k

2
.1

k

2
.7

k

Q4

IE
DBT

 0

 90

 180

 270

 360

9
k

1
2
k
’

1
5
k
’

1
8
k
*’

2
1
k
*’

+

Q5

IE
DBT

 0

 500

 1000

 1500

 2000

9
k

1
2
k

1
5
k
*

1
8
k
*’

2
1
k
*’

+

Q6

IE
DBT

Figure 5: IEDyn (IE) VS (Z,DBT ,E,T , SE) on full join queries. The X-axis shows stream sizes and the y-axis
update delay in seconds (*: DBT out of memory, +: Z out of memory, ′: T was stopped after 1500 seconds).

usage is also significantly less: one order of magnitude over
E on the larger datasets for Q7, and a consistent order of
magnitude improvement over T . Similarly, IEDyn outper-
forms DBT on free-connex queries Q7 and Q8 in time and
memory by one and two orders of magnitude, respectively.

For non-free-connex queries Q10–Q12, IEDyn continues
to outperform E, T , and DBT in terms of processing time.
In memory footprint IEDyn outperforms E for Q10 and
Q12. Compared to DBT , IEDyn still improves on memory
footprint on non-free-connex queries, though less significantly.
On the contrary, IEDyn largely improves memory usage over
T on larger datasets, even on non-free-connex queries.

Result enumeration. We know from Section 5 that T -reps
maintained by IEDyn feature constant delay enumeration
(CDE). This theoretical notion, however, hides a constant
factor that could decrease performance in practice when
compared to full materialization. In Figure 8, we show the
practical application of CDE in IEDyn and compare against
DBT which materializes the full query results. We plot the
time required to enumerate the result from IEDyn’s T -rep
as a percentage of the time required to enumerate the result
from DBT ’s materialized views. As can be seen from the
figure, both enumeration times are comparable on average.

Note that we do not compare enumeration time for push-
based systems, since for these systems the time required
for delta enumeration is already included in the update
processing time reported in Figures 5, 6, and 7.

Selective inequality joins. We have analyzed the perfor-
mance of IEDyn over datasets that are uniformly distributed.
On these datasets, inequality joins yield large query results.
One could argue that this might not be realistic. To address
this concern, we generate datasets with probability distribu-
tions parametrized by a selectivity s, such that the expected
number of output tuples is s percent of the cartesian product
of all relations in the query.

Our results depicted in Figure 9 show that IEDyn not
only outperforms existing systems on less selective inequality
joins; we also perform better on very selective inequality
joins consistently.

Scalability. To present that IEDyn performs consistently
on varying sizes of input streams, we report the stream pro-
cessing time and the memory footprint each time a 10%
of the stream is processed in Figure 10. The x-axis shows
the number of tuples (in millions) that have been processed.
These results show that IEDyn has linearly increasing mem-
ory footprint as well as update delay as the stream size
advances. We show results for queries Q4, Q5, Q7, and Q8

only due to space constraints.

8. DISCUSSION
In this paper, we have generalized the Dynamic Yannakakis
(Dyn) algorithm, which was developped for the dynamic
processing of acyclic aggregate-equijoin queries to an abstract
framework called GDyn that efficiently processes GCQs with
arbitrary θ-join predicates. To implement this framework
for a particular set of predicates, suitable index structures
need to be designed (cf. Definition 5.1). We have shown
that for equality and inequality predicates (<,≤,=,≥, >)
natural and efficient index structures based on hashing and
sorting exist. We are currently investigating how disequalities
(6=) can be tackled in the GDyn framework. While it is
relatively straightforward to obtain index structures that
feature logarithmic delay, it is an open question whether
indexes with constant delay exist. Other avenues of ongoing
work include parallel and distributed versions of GDyn.

Acknowledgements M. Idris is supported by the Erasmus
Mundus Joint Doctorate in “Information Technologies for
Business Intelligence – Doctoral College (IT4BI-DC)”. M.
Ugarte is supported by the Brussels Captial Region–Innoviris
(project SPICES). S. Vansummeren acknowledges gracious
support from the Wiener-Anspach foundation.

743

 0

 20

 40

 60

 80

 100

 120
IE

 v
s
 E

 [
%

]
Time Mem.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

IE
 v

s
 D

B
T

 [
%

] Time Mem.

 0
 20
 40
 60
 80

 100
 120
 140
 160

2
k

6
k

1
2
k

2
k

6
k

1
2
k

0
.9

k

2
.1

k

2
.7

k

0
.9

k

2
.1

k

2
.7

k

9
k

1
5
k
’

2
1
k
*’ 9
k

1
5
k
*

2
1
k
*’

0
.9

k

2
.1

k

2
.7

k

9
k

1
5
k
’

2
1
k
*’ 9
k

1
5
k

2
1
k

0
.9

k

2
.1

k

2
.7

k

9
k

1
5
k
’

2
1
k
*’ 9
k

1
5
k

2
1
k
*’

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

IE
 v

s
 T

 [
%

]

Time Mem.

Figure 6: IEDyn (IE) VS (E, DBT , T) fulljoin and projection queries, (*: DBT ran out of memory, ′: T was
stopped after 1500 seconds).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

2
k

6
k

1
2
k

2
k

6
k

1
2
k

0
.9

k

2
.1

k

2
.7

k

0
.9

k

2
.1

k

2
.7

k

9
k

1
5
k

2
1
k

9
k

1
5
k

2
1
k

Q1 Q2 Q3 Q4 Q5 Q6

IE
 v

s
 Z

 [
%

]

Time
Mem.

 0

 20

 40

 60

 80

 100

 120

2
k

4
k

6
k

8
k

1
2
k

2
k

4
k

6
k

8
k

1
2
k

0
.3

k

0
.9

k

1
.5

k

2
.1

k

2
.7

k

Q1 Q2 Q4

IE
 v

s
 S

E
 [
%

] Time
Mem.

Figure 7: IEDyn (IE) VS SE and Z on temporally ordered datasets.

 0
 20
 40
 60
 80

 100
 120
 140

0
.3

k

0
.9

k

1
.5

k

2
.1

k

2
.7

k

0
.3

k

0
.9

k

1
.5

k

2
.1

k

2
.7

k

9
k

1
2

k

1
5

k

1
8

k

2
1

k

9
k

1
2

k

1
5

k

1
8

k

2
1

k

Q3 Q4 Q5 Q6

IE
 v

s
 D

B
T

 [
%

] FullJoin Free-Con. Non Free-Con

Figure 8: Enumeration of query results: IEDyn vs
DBT , different bars for Q4, Q5, Q6 show their pro-
jected versions.

 0

 20

 40

 60

 80

 100

0
.0

0
0

1

0
.0

0
0

2

0
.0

0
0

3

0
.0

0
0

4

0
.0

0
0

5

0
.1

0
.2

0
.3

0
.4

0
.5

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

Q1 (10k) Q2 (10k) Q3 (3k)

[%
]

E
DBT

Z
SE

T

Figure 9: IEDyn as percentage of (E, DBT , SE, Z,
T) for higher join selectivities. X-axis shows queries
with tuples per relation and selectivities.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

3
m

i

6
m

i

9
m

i

1
2
m

i

1
5
m

i

1
8
m

i

2
1
m

i

2
4
m

i

2
7
m

i

3
0
m

i

Q4

s
e
c
o
n
d
s

Time
Mem.

3
m

i

6
m

i

9
m

i

1
2
m

i

1
5
m

i

1
8
m

i

2
1
m

i

2
4
m

i

2
7
m

i

3
0
m

i

Q5

Time
Mem.

3
m

i

6
m

i

9
m

i

1
2
m

i

1
5
m

i

1
8
m

i

2
1
m

i

2
4
m

i

2
7
m

i

3
0
m

i

Q7

Time
Mem.

3
m

i

6
m

i

9
m

i

1
2
m

i

1
5
m

i

1
8
m

i

2
1
m

i

2
4
m

i

2
7
m

i

3
0
m

i

 0

 1

 2

 3

 4

 5

 6

 7

Q8 G
B

Time
Mem.

Figure 10: IEDyn scalability (mi = 1, 000, 000).

744

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

databases, volume 8. Addison-Wesley Reading, 1995.

[2] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In Proc.
of SIGMOD, pages 147–160, 2008.

[3] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz,
M. Datar, K. Ito, R. Motwani, U. Srivastava, and
J. Widom. STREAM: the stanford data stream
management system. In Data Stream Management -
Processing High-Speed Data Streams, pages 317–336.
2016.

[4] G. Bagan, A. Durand, and E. Grandjean. On acyclic
conjunctive queries and constant delay enumeration. In
Proc. of CSL, pages 208–222, 2007.

[5] N. Bakibayev, T. Kočiský, D. Olteanu, and J. Závodný.
Aggregation and ordering in factorised databases.
PVLDB, 6(14):1990–2001, 2013.

[6] C. Berkholz, J. Keppeler, and N. Schweikardt.
Answering conjunctive queries under updates. In Proc.
of PODS, pages 303–318, 2017.

[7] P. A. Bernstein and N. Goodman. The power of
inequality semijoins. Inf. Syst., 6(4):255–265, 1981.

[8] J. Brault-Baron. De la pertinence de l’énumération:
complexité en logiques. PhD thesis, Université de Caen,
2013.

[9] L. Brenna, A. J. Demers, J. Gehrke, M. Hong,
J. Ossher, B. Panda, M. Riedewald, M. Thatte, and
W. M. White. Cayuga: a high-performance event
processing engine. In SIGMOD, pages 1100–1102, 2007.

[10] A. Buchmann and B. Koldehofe. Complex event
processing. IT-Information Technology Methoden und
innovative Anwendungen der Informatik und
Informationstechnik, 2009.

[11] T. Cormen. Introduction to Algorithms, 3rd Edition:.
MIT Press, 2009.

[12] G. Cormode, S. Muthukrishnan, and W. Zhuang.
Conquering the divide: Continuous clustering of
distributed data streams. In ICDE, pages 1036–1045,
2007.

[13] G. Cugola and A. Margara. TESLA: a formally defined
event specification language. In Proc. of DEBS, pages
50–61, 2010.

[14] G. Cugola and A. Margara. Complex event processing
with T-REX. Journal of Systems and Software,
85(8):1709–1728, 2012.

[15] G. Cugola and A. Margara. Processing flows of
information: From data stream to complex event
processing. ACM CSUR, 44(3):15:1–15:62, 2012.

[16] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An
evaluation of non-equijoin algorithms. In VLDB
Conference, pages 443–452, 1991.

[17] J. Enderle, M. Hampel, and T. Seidl. Joining interval
data in relational databases. In Proc. SIGMOD, pages
683–694, 2004.

[18] EsperTech. Esper complex event processing engine.
http://www.espertech.com/.

[19] M. P. Groover. Automation, production systems, and
computer-integrated manufacturing. 2007.

[20] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized search trees for database systems. In

VLDB Conference, pages 562–573, 1995.

[21] M. Idris. Queries in sase, tesla, esper, and sql for
dbt/iedyn expression.
http://cs.ulb.ac.be/~midris/iedyn.html.

[22] M. Idris, M. Ugarte, and S. Vansummeren. The
dynamic Yannakakis algorithm: Compact and efficient
query processing under updates. In Proc. of SIGMOD,
2017.

[23] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani,
P. Papotti, J. Quiané-Ruiz, N. Tang, and P. Kalnis.
Fast and scalable inequality joins. VLDB J.,
26(1):125–150, 2017.

[24] C. Koch. Incremental query evaluation in a ring of
databases. In Proc. of PODS, pages 87–98, 2010.

[25] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli,
D. Lupei, and A. Shaikhha. DBToaster: higher-order
delta processing for dynamic, frequently fresh views.
VLDB Journal, pages 253–278, 2014.

[26] Y. Mei and S. Madden. ZStream: a cost-based query
processor for adaptively detecting composite events. In
Proc. SIGMOD, pages 193–206, 2009.

[27] M. Nikolic, M. Dashti, and C. Koch. How to win a hot
dog eating contest: Distributed incremental view
maintenance with batch updates. In Proc.of SIGMOD,
pages 511–526, 2016.

[28] M. Nikolic and D. Olteanu. Incremental view
maintenance with triple lock factorisation benefits. In
SIGMOD 2018, 2018. To appear.

[29] D. Olteanu and J. Závodný. Size bounds for factorised
representations of query results. ACM TODS,
40(1):2:1–2:44, 2015.

[30] B. Sahay and J. Ranjan. Real time business intelligence
in supply chain analytics. Information Management &
Computer Security, 16(1):28–48, 2008.

[31] M. Schleich, D. Olteanu, and R. Ciucanu. Learning
linear regression models over factorized joins. In Proc.
of SIGMOD, pages 3–18, 2016.

[32] N. P. Schultz-Møller, M. Migliavacca, and P. R.
Pietzuch. Distributed complex event processing with
query rewriting. In Proc. of DEBS, 2009.

[33] L. Segoufin. Constant delay enumeration for
conjunctive queries. SIGMOD Record, 44(1):10–17,
2015.

[34] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8
requirements of real-time stream processing. SIGMOD
Rec., (4):42–47, 2005.

[35] M. Y. Vardi. The complexity of relational query
languages (extended abstract). In Proc. of STOC,
pages 137–146, 1982.

[36] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In Proc. of
SIGMOD, pages 407–418, 2006.

[37] M. Yannakakis. Algorithms for acyclic database
schemes. In VLDB Conference, pages 82–94, 1981.

[38] M. Yoshikawa and Y. Kambayashi. Processing
inequality queries based on generalized semi-joins. In
VLDB Conference, pages 416–428, 1984.

[39] H. Zhang, Y. Diao, and N. Immerman. On complexity
and optimization of expensive queries in complex event
processing. In Proce. of SIGMOD, 2014.

745

