
Distributed Evaluation of Subgraph Queries Using
Worst-case Optimal Low-Memory Dataflows

Khaled Ammar†, Frank McSherry‡, Semih Salihoglu†, Manas Joglekar]
†University of Waterloo, ‡ETH Zürich,]Google, Inc
khaled.ammar, semih.salihoglu@uwaterloo.ca,

frank.mcsherry@inf.ethz.ch, brahmaneya@gmail.com

ABSTRACT
We study the problem of finding and monitoring fixed-size sub-
graphs in a continually changing large-scale graph. We present the
first approach that (i) performs worst-case optimal computation and
communication, (ii) maintains a total memory footprint linear in
the number of input edges, and (iii) scales down per-worker com-
putation, communication, and memory requirements linearly as the
number of workers increases, even on adversarially skewed inputs.

Our approach is based on worst-case optimal join algorithms,
recast as a data-parallel dataflow computation. We describe the
general algorithm and modifications that make it robust to skewed
data, prove theoretical bounds on its resource requirements in the
massively parallel computing model, and implement and evaluate it
on graphs containing as many as 64 billion edges. The underlying
algorithm and ideas generalize from finding and monitoring sub-
graphs to the more general problem of computing and maintaining
relational equi-joins over dynamic relations.

PVLDB Reference Format:
Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar.
Distributed Evaluation of Subgraph Queries Using Worst-case Optimal Low-
Memory Dataflows. PVLDB, 11(6): 691-704, 2018.
DOI: https://doi.org/10.14778/3184470.3184473

1. INTRODUCTION
Subgraph queries, i.e., finding instances of a given subgraph in a

larger graph, are a fundamental computation performed by many
applications and supported by many software systems that pro-
cess graphs. Example applications include finding triangles and
larger clique-like structures for detecting related pages in the World
Wide Web [19] and finding diamonds for recommendation algo-
rithms in social networks [23]. Example systems include graph
databases [41, 56], RDF engines [42, 67], as well as many other
specialized graph processing systems [2, 38, 54]. As the scale
of real-world graphs and the speed at which they evolve increase,
applications need to evaluate subgraph queries both offline and in
real-time on highly-parallel and shared-nothing distributed systems.

This paper studies the problem of evaluating subgraph queries
on large static and dynamic graphs in a distributed setting, with ef-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 6
Copyright 2018 VLDB Endowment 2150-8097/18/02... $ 10.00.
DOI: https://doi.org/10.14778/3184470.3184473

ficiency and scalability as primary goals. Our approach is to design
distributed versions of recent worst-case join algorithms [43, 45,
58]. We show that our algorithms require memory that is linear
in the size of the input graphs and are worst-case optimal in terms
of computation and communication costs (defined momentarily).
We also show optimizations to balance the workload of the ma-
chines in the cluster (workers hereafter) and make our algorithms
provably skew-resilient, i.e., guarantee that the costs per worker
decrease linearly as we introduce additional workers. We prove
the efficiency of our algorithms theoretically and demonstrate their
practicality through extensive evaluation of their implementations
in the Timely Dataflow system [40, 55]. Although we focus on sub-
graph queries, our algorithmic and theoretical contributions apply
equally to more general relational equi-joins.

1.1 Joins and Worst-case Optimality
Throughout the paper, we adopt the relational view of subgraph

queries (as done by many previous work [2, 42, 58, 65]) in which
any subgraph query can be seen as a multiway join on replicas of an
edge table of the input graph. Given a directed subgraph query Q,
we label each vertex in the query with an attribute ai. Instances
of Q in an input graph G is equivalent to the multiway join of
tables edge(ai, aj) for each edge (ai, aj) in Q, where each
edge(ai, aj) table contains each edge (u, v) in G. For exam-
ple, the directed triangle query, in Datalog syntax, is equivalent to:

tri(a1,a2,a3) := edge(a1,a2),edge(a2,a3),edge(a3,a1)

In the serial setting, a join algorithm is worst-case optimal for
a query Q if its computation cost is not asymptotically larger than
the AGM bound of Q [9], which is the maximum possibly out-
put size for the given size of the relations in Q. We refer to this
quantity as MaxOutQ. For example, on a graph with IN edges,
MaxOutQ for the triangle query is IN3/2. Analogously, we say a
distributed algorithm has worst-case optimal computation and com-
munication costs, if respectively the total computation and commu-
nication done across all workers are O(MaxOutQ), for any paral-
lelism level, i.e., number of workers.

1.2 Existing Approaches
Existing distributed approaches that can be used to evaluate gen-

eral subgraph queries can be broadly grouped into two classes: (i)
edge-at-a-time approaches [16, 20, 27, 42, 52, 54, 65] that corre-
spond to binary join plans in relational terms; and (ii) those that use
variants of the Shares [5] or Hypercube [10, 11, 32] algorithm. We
also review a recent vertex-at-a-time approach that has been used in
the serial setting and on which we base our distributed algorithms.

691

1.2.1 Edge-at-a-time Approaches
Perhaps the most common approach to finding instances of a

query subgraph is to treat it as a relational query, and to execute
a sequence of binary joins to determine the result. For example,
this approach computes:

open-tri(a1,a2,a3):=edge(a1,a2),edge(a2,a3)

tri(a1,a2,a3):=open-tri(a1,a2,a3),edge(a3,a1)

Recent developments [43, 45] have shown that edge-at-a-time
approaches are provably suboptimal. For example on a graph with
IN edges, any edge-at-a-time approach will do O(IN2) computa-
tion in the worst-case and comparable communication in the dis-
tributed setting, which is worse than the AGM bound of IN3/2.
This is because irrespective of the join order, the worst-case size
of the first join is O(IN2). Although couched in the language of
worst-case bounds, these suboptimalities do manifest on real graph
datasets, especially those demonstrating skew. For example, the
largest graph we consider has a maximum degree of 45 million,
and any algorithm that considers the (4.5 × 107)2 ⊥ 2 × 1015

candidate pairs of neighbors of the maximum degree vertex will
simply not work.

Different systems have several optimizations on top of this basic
approach including: (i) picking different join orders; (ii) decom-
posing the query into several subqueries; and (iii) preprocessing
and indexing commonly appearing subqueries [15, 25, 33, 37, 66].
None of these techniques correct the asymptotic sub-optimality.

1.2.2 The Shares Algorithm
The second existing technique for distributed evaluation of sub-

graph queries is to use the Shares of Hypercube join algorithm from
references [5, 10, 11, 32]. Consider a distributed cluster with w
workers and a query with n relations and m attributes, i.e., n is
the number of edges and m is the number of vertices in the query
subgraph. Shares divides the m-dimensional output space equally
over the w workers and replicates each tuple t of each relation to
every worker that can produce an output that depends on t. Finally,
each worker runs any local join algorithm on the inputs it receives.

There are several advantages of Shares. For most queries and
parallelism levels w (but not all), Shares’ communication cost is
less than the AGM bound (and often much less). In addition, in
distributed bulk synchronous parallel systems, in which the com-
putation is broken down into a series of rounds, Shares requires a
very small number of rounds. However, Shares’ cumulative mem-
ory requirement isO(w1−εIN) and its per worker memory require-
ment is O(IN

wε
). Here IN is the size of the input and ε ∈ [0, 1] is

a query-dependent parameter. This implies a super-linear cumula-
tive memory growth and sub-linear scaling of per-worker memory
(and workload) as w increases. For example, for the triangle query,
ε = 1/2. Often ε is much smaller, and scaling becomes an increas-
ingly resource-inefficient way to improve performance.

1.2.3 Vertex-at-a-time Approaches
In the serial setting, Ngo et. al. and soon after Veldheuizen re-

cently developed the first worst-case optimal join algorithms called
respectively the NPRR [45] and Leapfrog TrieJoin [58] algorithms.
These algorithms were shown to be instances of another algorithm
called Generic Join [43] (GJ), on which we base our algorithms.
In graph terms, these algorithms adopt a vertex-at-a-time evalua-
tion technique. Specifically, on a query that involves a1, ..., am
vertices, these algorithms first find all of the (a1) vertices that can
end up in the output. Then they find all of the (a1, a2) vertices
that can end up in the output and so forth until the final output is
constructed. When extending a partial subgraph to a new vertex

ai, all of the edges that are incident on ai are considered and inter-
sected. For example, on the triangle query, these algorithms would
first find all (a1) vertices and then (a1, a2) edges that can possibly
be part of a triangle. Then the algorithms extend these edges to (a1,
a2, a3) triangles by intersecting a1’s incoming and a2’s outgoing
edges. Compared to edge-at-a-time approaches, these algorithms
will never generate intermediate data larger MaxOutQ. We note
that TurboISO [24] is a serial algorithm that was developed inde-
pendently in the context of subgraph matching around the same
time as NPRR and Leaprfrog Triejoin. The algorithm is not worst-
case-optimal but overall adopts a vertex-at-a-time approach.

1.3 Our Approach and Contributions
Our approach is based on recasting the basic building block of

the GJ algorithm as a distributed dataflow computation primitive.
We optimize and modify this basic primitive to obtain different al-
gorithms tailored for different settings and achieving different the-
oretical guarantees. Our contributions are as follows:

1. A distributed algorithm called BiGJoin for static graphs that ach-
ieves a subset of the theoretical guarantees we seek.

2. A distributed algorithm called Delta-BiGJoin for dynamic graphs
that achieves the same guarantees as BiGJoin in insertion-only
workloads.

3. A distributed algorithm called BiGJoin-S for static graphs that
achieves all of the theoretical guarantees we seek including work-
load balance across distributed workers on arbitrary input in-
stances.
We implement BiGJoin and Delta-BiGJoin algorithms in Timely

Dataflow and evaluate their performances extensively. Our eval-
uations include comparisons against an optimized single threaded
algorithm, an existing shared-parallel system, and two existing dis-
tributed systems specialized for evaluating subgraph queries. We
show that our approach can monitor complex sugraphs very ef-
ficiently on graphs with up to 64B edges on a cluster of 16 ma-
chines using just over eight bytes per edge. Graphs at the scale we
process are significantly larger than graphs used in previous work.
We note that our algorithms can also be easily used in both exist-
ing distributed bulk synchronous parallel systems, such as MapRe-
duce [17] and Spark [64], as well as streaming systems, such as
Storm [57] and Apache Flink [14].

We end this section with a note on our theoretical contributions.
Delta-GJ’s Optimality (Theorem 3.2): Our Delta-BiGJoin algo-
rithm is a distributed version of a new incremental view main-
tenance algorithm we develop for join queries called Delta-GJ.
We prove that under insertion only workloads Delta-GJ is worst-
case optimal. When we distribute Delta-GJ in Delta-BiGJoin, we
achieve worst-case optimality in terms of communication as well.
BiGJoin-S’s Optimality (Theorem 3.4): The challenge in the dis-
tributed setting is to achieve optimality in cumulative bounds while
requiring low memory, e.g., O(IN

w
), and workload per worker. In-

deed, a naive ?distributed? algorithm can send all of the input to one
worker w∗ and use a sequential worst-case join algorithm. This al-
gorithm would achieve all of the optimality guarantees we seek but
without balancing the workload in the cluster.

BiGJoin achieves cumulative worst-case optimality and in our
real-world data sets and queries achieves good workload-balance
and low per-worker memory. However, on adversarial inputs it can
lead to a single worker performing most of the work. We address
this theoretical shortcoming with BiGJoin-S. Specifically, BiGJoin-
S is the first distributed join algorithm that has worst-case com-
munication and computation costs and achieves workload-balance
across workers on every query. In addition, BiGJoin-S achieves

692

1 P0={}
2 for (j = 1... m):
3 Pj={}
4 for (p ∈ Pj−1):
5 // ∩ below is performed starting from smallest Extij(p)
6 extp = ∩Extij(p)
7 Pj = Pj ∪ extp

Figure 1: Pseudocode of GJ.

these guarantees with as low as O(IN
w

) memory per-worker. In
prior work, reference [32] had shown that variants of the Shares
algorithm have the same guarantees only for certain queries, e.g.,
cycles. We provide a detailed comparison of BiGJoin-S with the
algorithm in reference [32] in our longer technical report [30].

2. PRELIMINARIES

2.1 Notation
We present our algorithms in the general setting when they pro-

cess general multiway equi-join queries, also referred to as full con-
junctive queries. Let Q be a query over n relational tables, R1, ...,
Rn, where eachRi is over a subset ofm attributes a1, . . . , am. We
let IN = Σi|Ri| be the size of the input. We write Q as:

Q(a1, ..., am) := R1(a11, ..., a1r1), ..., Rn(an1, ..., anrn)

2.2 Generic Join
We base our work on the GJ algorithm (Figure 1). Given a query

Q, GJ consists of the following three high-level steps:
• Global Attribute Ordering: GJ first orders the attributes. Here

we assume for simplicity the order is a1, . . . , am. We will have
a stronger preference on the order, but everything that follows
remains correct if the attributes are arbitrarily ordered.
• Extensions Indices: Let a prefix j-tuple be any fixed values of

the first j < m attributes. For each Ri and j-tuple p only some
values for attribute aj+1 exist in Ri. Let the extension index
Extij map each j-tuple p to values of aj+1 matching p in Ri:

Extij : (p = (a1, .., aj))→ {aj+1} .

Extension indices need three properties for the theoretical bounds
of GJ: for a given p we can retrieve (i) the size |Extij(p)| in con-
stant time, (ii) the contents of Extij(p) in time linear in its size,
and (iii) check that a value e of attribute aj+1 exists in Extij(p)
in constant time. Throughout the text we denote by Extij(p • e)
the operation of checking of value e in Extij(p). These proper-
ties are satisfied by many indices, for example hash tables.
• Prefix Extension Stages: GJ iteratively computes intermediate

results P1 . . . Pm, where Pj is the result ofQwhen each relation
is restricted to the first j attributes in the common global order.
GJ starts from the singleton relation P0 with no attributes, deter-
mines Pj+1 from Pj using the extension indices, and ultimately
arrives at Pm = Q. Specifically, for each prefix j-tuple p ∈ Pj ,
GJ determines the (possibly empty) set of (j+ 1)-tuples extend-
ing p by intersecting the Extij(p) extension sets of each relation
Ri containing aj+1. This is done by proposing candidate ex-
tensions from the smallest of the sets, and then intersecting each
candidate with the extension indices of the remaining relations.
Starting from the smallest set, and in general performing this

intersection in time proportional to the size of the smallest set
ensures worst-case optimal run-time.
An example of GJ is given in our longer technical report [30].

We next re-state a theorem from [43] using our notation:

THEOREM 2.1. [43] For any query Q comprising relations
R1 . . . Rn and attributes a1 . . . am, and any ordering of attributes,
if Extij indices satisfy the three properties discussed above, GJ
runs in time O(mnMaxOutQ).

2.3 Massively Parallel Computation Model
Massively Parallel Computation (MPC) [10, 11, 32] is an ab-

stract model of distributed bulk synchronous parallel systems. Brief-
ly there are w workers in a cluster. The input data is assumed to be
equally distributed among the workers arbitrarily. The computa-
tion is broken down into a series of rounds, where in each round
the workers first perform some local computation and then send
each other messages. The complexity of algorithms are measured
in terms of three parameters: (1) r: the number of rounds; (2) L:
the maximum load or messages any of the workers receives in any
of the rounds; and (3) C: the total communication, i.e., sum of the
loads across all rounds.

We extend MPC with a fourth parameter M that measures the
memory that an algorithm uses. Let LocM t

k be the local mem-
ory that worker k requires in round t, excluding the output tuples.
In our setting, LocM t

k will be the load L of worker k in round t
and the amount of input data worker k has indexed. M is then the
maxt=1,...,r Σk=1,...,wLocM

t
k. We assume output tuples are writ-

ten to a storage outside the cluster and do not stay in memories of
workers. This is because any correct algorithm incurs this cost.

For simplicity, similar to prior work [4, 10, 32] our unit of com-
munication and memory will be tuples and prefixes, instead of bits,
and we assume that tuples and prefixes have a common unit size.

2.4 Timely Dataflow
Timely Dataflow [40] is a distributed data-parallel dataflow sys-

tem, in which one connects dataflow operators describing compu-
tation using dataflow edges describing communication. The oper-
ators are data-parallel, meaning that their input streams may be
partitioned by a provided key, and their implementations may be
distributed across multiple workers. All operators are distributed
across all workers, and each worker is responsible for the execu-
tion of some fraction of each operator, which allows our algorithms
to share indices (of the underlying relations) between operators.

Timely Dataflow is a dataflow system in the sense that com-
putation occurs in response to the availability of data, rather than
through centralized control. The timely modifier corresponds to the
extension of each operator with information about logical progress
through the input streams, roughly corresponding to punctuation or
watermarks in traditional stream processing systems. Importantly
for the current paper, operators can delay processing inputs with
some timestamps until others have finished, which can be used to
synchronize the workers and ensure that the work queues of down-
stream operators have drained, an important component of ensuring
a bounded memory footprint.

3. ALGORITHMS
Our algorithms are based on a common dataflow primitive that

extends prefixes Pj to Pj+1. We first describe a naive version of
the primitive that explains the overall structure (and is closest to
the implementation we evaluate). We then develop the BiGJoin
and Delta-BiGJoin algorithms using this core primitive. We then

693

modify the primitive and develop BiGJoin-S to achieve workload-
balance and skew-resilience.

3.1 Dataflow Primitive
The core dataflow primitive starts from a collection of Pj tuples

stored across w workers, and produces the Pj+1 tuples across the
same workers. We first describe a dataflow that closely tracks the
GJ algorithm, starting from the full collection Pj and producing
the full collection Pj+1. We will need to modify this dataflow in
several ways to achieve both memory boundedness and workload
balance across workers to achieve our theoretical bounds, but this
simpler description is instructive and empirically useful.

3.1.1 A synchronous implementation
We first describe the dataflow primitive as a sequence of steps,

where workers execute each step to completion and synchronize
between each step (corresponding to a round in BSP terms). Naive
execution of these steps may produce very large amounts of data
between steps and require very large memory in the workers.
• Initially: The tuples of Pj are distributed among the w workers

arbitrarily. Each prefix p is transformed into a triple (p,∞,⊥)
capturing the prefix, the currently smallest candidate set size, and
the index of the relation with that number of candidates.
• Count minimization: For each Ri binding attribute aj+1, in or-

der: Workers exchange the triples by the hash of p’s attributes
bound by Ri, placing each triple at the worker with access to
Extij(p). Each worker, for each triple updates the smallest count
and introduces its own index if |Extij(p)| is smaller than the
recorded smallest count. Each triple is then output as input of
the count minimization for the next relation. In the end we have
a collection of triples (p,min-c,min-i) indicating for each pre-
fix the relation with the fewest extensions.
• Candidate Proposal: Each worker exchanges triples using a hash

of p’s attributes bound byRmin-i. Each worker now produces for
each triple (p,min-c,min-i) it has, and each extension e of p
in Extmin-i

j (p), a candidate (j + 1)-tuple (p • e).
• Intersection: For each relation Ri binding attribute aj+1, in or-

der: Workers exchange the candidate (p•e) tuples by the hash of
(p • e)’s attributes bound by Ri. Each worker consults Extij(p).
If e exists (p • e) is produced as output otherwise it is discarded.

Figure 2 shows the operators of this dataflow primitive. In the
figure, the vertical lines annotated with s indicate synchronization
points. These steps, executed in sequence would be a synchronous
BSP implementation of the computation extending Pj to Pj+1,
which we could repeat until we arrive at Pm = Q. The random ac-
cess working set of these operators are only the extension indices;
all inputs and outputs are processed sequentially. Nonetheless, the
sizes of the inputs and intermediate outputs to operators could be
quite large requiring large memory/storage, which we address next.

3.1.2 A batching optimization to reduce memory
Notice that the Proposal operator is the only operator that

may produce more output than it consumes as input and increase
the memory usage of the system. We can fix this with a simple
batching optimization. Instead of producing all of the proposals for
each Pj prefix they have, each Proposal operator produces its
candidate extensions in batches of B′. The remaining extensions
are produced in the subsequent invocations. This may leave some
prefixes only partially extended. To keep track of these partial ex-
tensions, we store (p,min-c,min-i, rem-ext) quadruples where
rem-ext is the remaining extensions metadata. Letting B = wB′,
this ensures that the dataflow has at mostB queued elements at any

Figure 2: Dataflow Primitive.

time across the workers, as the B proposals created by Proposal
operators are retired before any more are produced. The Count
and Intersect steps remain unchanged.

3.1.3 A streaming implementation
Except for the Proposal operators, the operators described

above do not need to synchronize. Specifically, instead of synchro-
nizing, the Count and Intersect operators can produce outputs
as inputs to their next operators as soon as they receive inputs. This
leads to a streaming implementation, which can improve perfor-
mance in practice. When implementing the above batching opti-
mization however, the Proposal operators need to synchronize
and be notified that they can produce another batch of extensions.

3.2 Joins on Static Relations: BiGJoin
We now describe how to use our dataflow primitive to build a

dataflow for evaluating queries on static graphs. First, we order the
attributes arbitrarily, and build indices over each relation for each
prefix of its attributes in the global order. Next, we assemble the
dataflows for extending each Pj to Pj+1 for each attribute aj , so
that starting from an empty input tuple () we produce streams of
prefixes Pj , out to Pm = Q. Finally, we introduce the empty tuple
to start the computation, producing the stream of records from Q
as output. We use the batching optimization described above and
when deciding which batch of Pj to Pj+1 extensions to invoke
next, we pick the largest j value such that at least one worker has
B′ prefixes to propose. We refer to this algorithm as BiGJoin. The
next lemma summarizes the costs of BiGJoin:

LEMMA 3.1. Given a query Q over m attributes and n rela-
tions, the communication and computation cost of BiGJoin equals
that of computation of GJ and is O(mnMaxOutQ). Let B′ be a
batching parameter and let B = wB′. The cumulative memory
BiGJoin requires is O(mIN + mB), and the number of rounds of
computation BiGJoin takes is O(

mnMaxOutQ
B′).

The proof of this lemma, presented in our longer technical report [30]
, is based on the fact that each operation that BiGJoin does on each
tuple corresponds to an operation in the serial execution of GJ and
small enough batches can keep the memory footprint very low. In
essence, BiGJoin inherits its computation and communication opti-
mality from GJ. Moreover, as we will demonstrate in Section 5, in
practice BiGJoin also achieves good workload-balance across the
workers in the cluster. However, on adversarial inputs BiGJoin can-
not guarantee workload balance. We will address this theoretical
shortcoming in Section 3.4 to achieve one of our main theoretical
results.

3.3 Joins on Dynamic Relations: Delta-BiGJoin
We next show how to use our dataflow primitive to maintain join

queries over dynamic relations, which we use to maintain subgraph
queries on dynamic graphs. We first describe a new incremental
view maintenance (IVM) algorithm for join queries called Delta-
GJ and then describe its distributed version Delta-BiGJoin.

3.3.1 Delta-GJ
Let Q be a query and consider a setting where for each rela-

tion Ri we have a change ∆Ri, corresponding to the addition and
deletion of some records in Ri. We begin by reviewing an incre-
mental view maintenance technique based on delta queries from

694

references [13, 22]. Let’s assume that tuples in each ∆Ri are la-
beled such that we can tell the inserted tuples apart from the deleted
ones. Let R′i be Ri + ∆Ri, where the union operation removes a
tuple t in Ri if ∆Ri contains a deletion of t. Let Out and Out′

be the output of Q before and after the updates, respectively. Then
consider the following n delta queries:

dQ1 := ∆R1, R2, R3, ..., Rn

dQ2 := R′1,∆R2, R3, ..., Rn

dQ3 := R′1, R
′
2,∆R3, ..., Rn

...

dQn := R′1, R
′
2, R

′
3, ...,∆Rn

We assume output tuples that emerge from inserted and deleted
tuples are labeled as inserted and deleted, respectively. It can be
shown that the union of the n queries above are exactly the changes
to the output ofQ, i.e., Q′ \Q = dQ1 +dQ2 + ...+dQn [13, 22].

Delta-GJ runs the n delta queries indepenpendently, where each
dQi is executed using GJ. Note that Delta-GJ’s correctness, i.e.,
that it finds the correct differences to the output of Q, simply fol-
lows from the correctness of the delta query technique [13, 22].
However, in order to prove that Delta-GJ is efficient, we need to
order the attributes of each dQi in a specific order. Specifically, for
dQi, Delta-GJ picks an attribute ordering that starts with any per-
mutation of Ri’s attributes ai1, ai2, ..., airi and an arbitrary order
for the remaining m−ri attributes. The next theorem states that
under insertion-only workloads, Delta-GJ is a worst-case optimal
IVM algorithm for join queries. The proof is given in our longer
technical report [30].

THEOREM 3.2. Consider a query Q and a series of z updates
that only consist of inserting tuples to the input relations of Q.
Let Ri(z) denote the relation Ri after the z’th update. Then the
total computation cost of Delta-GJ is O(mn2MaxOutQ), where
MaxOutQ is the AGM bound of Q on Ri(z).

It is harder to characterize the performance of Delta-GJ under work-
loads with both insertions and deletions because ?problematic? rec-
ords might require a lot of work and could simply be repeatedly
added and removed. A more precise characterization of Delta-GJ
under arbitrary workloads is left as future work. We note that an
incremental version of the Leapfrog TrieJoin algorithm [59] also
achieves worst-case optimality under insertion-only workloads but
by maintaining indices that can be super-linear in the size of the
inputs. Delta-GJ’s indices are linear in the size of the inputs.1

3.3.2 Delta-BiGJoin
We next describe how we parallelize Delta-GJ in the distributed

setting. We have a separate dataflow for each dQi that is a dQi-
specific variation of the BiGJoin dataflow from Section 3.2. By
ordering the attributes of dQi starting with the attributes of Ri, we
can seed the computation with the elements of ∆Ri, instead of (),
which is expected to be much smaller than the other relations in
dQi. Importantly, we only need to maintain the indices as changes
occur, rather than fully rebuilding them. The resulting cost is pro-
portional to the number of changes (for rebuilding indices) and the
number of prefixes in the delta queries as we evaluate them.

The next lemma is proved in our longer technical report [30].

1In a separate paper, one of the co-authors and his colleagues have
used Delta-GJ to support triggers in the context of an active graph
database called Graphflow [31]. The Graphflow paper cited a pre-
vious partial technical report version of the current paper.

LEMMA 3.3. Consider a series of z insertion-only updates to
the input relations of a query Q. Let Ri(z) denote the relation
Ri after the z’th update and IN(z) be

∑
i |Ri(z)|. Then, given a

batch size B′ and letting B = wB′, Delta-BiGJoin’s communi-
cation and computation cost is O(mn2MaxOutQ). The cumula-
tive memory Delta-BiGJoin uses is O(mnIN(z) + mB). In MPC
terms, the number of rounds of computation Delta-BiGJoin takes is

O(
mn2MaxOutQ

B′ + zmn2).

3.4 A Work-balanced Dataflow: BiGJoin-S
As we demonstrate in Section 5, BiGJoin and Delta-BiGJoin per-

form very well on the real-world queries and datasets we experi-
mented with. However they have an important theoretical short-
coming. Specifically, they do not guarantee that the workloads of
the workers are balanced. Indeed, it is easy to construct skewed
inputs where most of the work could even be performed by a single
worker. We next modify our dataflow primitive to ensure work-
load balance across workers. We note that the contributions of this
section are theoretical. An implementation and evaluation of these
techniques are left for future work.

There are three sources of imbalance in our dataflow primitive:
1. Sizes of extension indices: Recall that Extij are distributed ran-

domly. Yet for each prefix p, a single worker stores the entire
Extij(p) (the aj+1 extensions of p). In graph terms, this corre-
sponds to a single worker storing the entire adjacency list of a
vertex. On skewed inputs, this may generate imbalances in the
amount of data indexed at each worker.

2. Number of Proposals: After count minimization, each worker
gets a set of (p,min-c,min-i, rem-ext = min-c) quadruples
where p is a Pj prefix to extend. Even if each worker has to ex-
tend the same number of prefixes, each worker might have to do
imbalanced amount of proposals of (p • e) candidate extensions
because the counts might be very different.

3. Number of Index Lookups: When minimizing the counts of a Pj
prefix p, producing the candidate proposals, or intersecting the
(p • e) candidate extensions with Extij , prefixes and candidate
extensions are routed to the worker that holds Extij(p) based
on the hash of p’s attributes that are bound by Ri. If there are
many prefixes whose attribute values that are bound by Ri are
the same, there may be an imbalance in the number of prefixes
and extensions each worker receives. For example, consider a
triangle query where all triangles involve some specific vertex
v∗, then every P2 prefixes could be routed to a single worker to
access v∗’s count.

We show how to fix these sources of imbalance without asymptoti-
cally affecting the other costs of BiGJoin.

3.4.1 Skew-resilient Extension Indices
We distribute the contents of Extij(p) across workers, instead of

storing at a single worker. Specifically, we store three indices.
• Cij(p) Count Index: Stores the size of Extij(p). This index is

distributed randomly by the hash of prefixes p.
• Ext-Resij((p, k)) Extension Resolver Index: Let {e1, ..., ec} be

the aj+1 extensions of p in Ri. We use Ext-Resij((p, k)), for
k = 1 . . . c, to resolve the kth extension, i.e., Ext-Resij((p, k))
= ek. This index is distributed randomly by the hash of (p, k)
tuples. Essentially we distribute each element of Extij(p) ran-
domly across the workers.
• Extij((p • e)): As in the original extension indices, this index is

used to lookup the existence of a particular extension e of p and
is distributed randomly by the hash of (p, e).

695

Figure 3: Work-balanced Dataflow Primitive.

Since the contents ofExtij(p) are now randomly distributed across
workers, these indices fix the first source of imbalance from above.

3.4.2 Balance and Extension Resolving Operators
We modify the dataflow primitive as shown in Figure 3. Com-

pared to BiGJoin’s dataflow primitive, BiGJoin-S’s dataflow prim-
itive contains modifications of the Count and Intersect oper-
ators, does not contain the Proposal operator, and contains two
new operators Balance and Extension-Resolve. In Fig-
ure 3, the Pj tuples are (p,min-i, start, end) quadruples which
indicate a range, indicated by start and end of candidate exten-
sions that the worker holding the tuple should make for the prefix
j-tuple p. The dataflow however takes (p, k) tuples where k ∈
[start, end] and produces a set of (p′,min-i, start, end) where
p′ ∈ Pj+1. The (p, k) tuples move along the operators as follows:
• Extension-Resolve: Each worker for each (p, min-i,
start, end) tuple and k ∈ [start, end], resolves (p, k) by con-
sulting the Ext-Resmin-i

j indices and gets back a candidate ex-
tension (p • e). As in BiGJoin this happens in batches of B′

(p, k) tuples per worker. Recall that the lookup for (p, k) is
made to the worker that holds Ext-Resmin-i

j based on the at-
tributes of p bound by Rmin-i. Although each (p, k) is distinct,
there may be skew in the attribute values of (p, k) that are bound
by Rmin-i. To guard against this, workers first locally aggregate
the Ext-Resmin-i

j requests they will make to the same relation
Rmin-i with the same lookup key (the attributes of p bound by
Rmin-i) and k value, and send only one request instead. This
and a similar aggregation optimization in the Intersect and
Count operators fix the third source of imbalance from above.
Upon receiving the answers to their requests, workers have the
set of candidate extensions, which we refer to as CEj .
• Intersect: Instead of routing each (p • e) through the Extij

indices one by one as done by BiGJoin’s Intersect opera-
tor, each worker manages each (p • e) candidate extension it
initially holds. Specifically for each Ri that contains aj+1, in
synchronous rounds, each worker does a distributed lookup of
(p • e) in Extij by sending (p • e) to the worker that holds
Extij(p • e) and gets the tuple back with a yes/no label. Similar
to the Extension-Resolve operator, workers locally aggre-
gate the requests they will make with the same key.
Recall that the worker that holdsExtij(p•e) is based on the hash
of the attributes of (p • e) bound by Ri (possibly including the
value e). Although each (p • e) candidate extension is distinct,
there may be skew in these projections. To guard against this,
before sending their lookup requests, workers first aggregate the
projections of all of their CEj candidate extensions and for each
possible projection sends at most one lookup request. After at
most n intersections, each (p • e) either becomes a Pj+1 prefix
or is discarded if it does not successfully intersect an Ri.
• Count: For each Pj+1 prefix, workers compute the (p′ = (p •
e),min-c, min-i) triples, after at most n synchronous rounds,
by looking up p′ in theCij+1 indices by aggregating lookups with
the same key. Similar to the above Intersect operator and
unlike BiGJoin’s Count operator, instead of routing the prefixes
through each Cij+1 index, the workers manage the triples.
• Balance: For each (p′,min-c,min-i) tuple, there is min-c

number of proposals and following intersections to make. There

may be an imbalance in how much intersection work each worker
gets after the count minimization. To balance this intersection
work, each worker deterministically distributes its total proposal
work among the other workers. Each worker w` first finds the
target intersection work amount T to distribute and gives T/w
proposal and intersection work (with a +/- 1 difference) to each
other worker w`′ . This is done by sending (p′,min-i, start,
end) tuples to w`′ . The start ≤ end ≤ min-c indicate the
range of extensions among the min-c total candidate extensions
of p′ that the receiving worker w`′ is responsible for. At this
point each worker gets a set of (p′,min-i, start, end) ∈ Pj+1

tuples. This fixes the second form of skew discussed above.
Similar to BiGJoin, we assemble this workload-balanced dataflow
for extending Pj to Pj+1 for each attribute aj . We call this algo-
rithm with batching optimization in the Ext-Resolve operator
BiGJoin-S. When deciding which batch of Pj to Pj+1 candidate
extensions to compute next, BiGJoin-S picks the largest j value
such that all of the workers haveB′ candidate extensions to resolve
and propose (instead of at least one as in BiGJoin). The follow-
ing theorem states that BiGJoin-S achieves workload balance over
large enough, but logarithmic size, batch sizes, while asymptoti-
cally maintaining the optimality bounds of BiGJoin on any query
and arbitrary datasets (so under any amount of skew in inputs). It is
the first algorithm to achieve these bounds for arbitrary queries and
datasets. A detailed comparison of its costs against a variant of the
Shares algorithm is provided in our longer technical report [30].
The proof is technical and provided also in our longer technical
report [30].

THEOREM 3.4. Suppose B′

w
≥ max{w, log(IN×MaxOutQ)}

and let B = wB′. Then BiGJoin-S has the following costs:

• Cumulative computation and communication cost of
O(mnMaxOutQ) and memory cost of O(mnIN +mB).

• O(
mnMaxOutQ

B
) rounds of computation.

• With at least probability 1−O(1
IN

), each worker performsO(B′)
communication and computation in each round of the algorithm.
In MPC terms, the load of BiGJoin-S is O(mnIN

w
+ mB′), so

assuming B′ < IN
w

, BiGJoin-S has optimal load.

We note that we can make Delta-BiGJoin also skew-resilient under
large enough updates by using BiGJoin-S with delta queries instead
of BiGJoin. We need the update sizes, i.e., the size of the ∆Ri,
to be large enough to make Delta-BiGJoin-S skew-resilient. For
example if each update to the relations contain a single tuple, then
the amount of work to maintain the query results could be too small
to possibly distribute equally across workers.

4. IMPLEMENTATION
In this section we describe our implementations of BiGJoin and

Delta-BiGJoin in Timely Dataflow. Although our implementations
are tailored for evaluating subgraph queries, so the input relations
are binary relations consisting of the edges of an input graph, the
underlying machinery nonetheless is suitable for more general quer-
ies. We will demonstrate this in Section 5.4 when using our algo-
rithm to take as input a ternary relation. We start by developing
the prefix extension dataflow primitive as a Timely fragment. Our
implementations can be found here [29].

4.1 Prefix Extension in Timely Dataflow
Our approach to prefix extension follows the primitive from Sec-

tion 3.1: we will assemble a dataflow fragment that starts from a
stream of prefixes of some number j of attributes, and produces

696

as output the corresponding stream of prefixes resulting from the
extension of each input prefix by the relations constraining the at-
tribute aj+1 in terms of the first j attributes. As we explain in Sec-
tion 4.3, for our Delta-BiGJoin implementation, the prefixes are
tagged with a timestamp and a signed integer, reflecting the time of
change and whether it is an addition or deletion, respectively.

Prefix extension happens through three methods acting on strea-
ms, corresponding to the three steps described in Section 3.1: count
minimization, candidate proposal, and intersection. Each of these
steps is implemented as a sequence of operators, each of which cor-
responds to one of the relations constraining attribute aj+1 . Each
operator will consult some indexed form of the relation it repre-
sents, and requires the prefixes in its input stream to be shuffled by
the corresponding attribute, so that prefixes arrive at the worker that
store the appropriate fragment of the index. Importantly, we use the
same partitioning for each relation and attribute in that relation, so
that any number of uses of the relation in the query require only
one physical instance of each index. In the case of graph process-
ing, this means we keep only a forward and reverse index, storing
respectively the outgoing and incoming neighbors of each vertex.

4.1.1 Count Minimization
The implementation of this step is straightforward and follows

our description in Section 3.1 directly. There is a sequence of
operators and each one represents one relation Ri(aj+1, ak) or
Ri(ak, aj+1), where k ≤ j. The operator takes (p, c, i) triples
as input. Let v∗ = Πakp. The operator updates the count c if the
size of v∗’s outgoing neighbors (if Ri = Ri(aj+1, ak)), or incom-
ing neighbors (if Ri = Ri(ak, aj+1)), is less than c. At the end
we identify the (p,min-c,min-i) triples but then send only p to a
stream for Ri (explained next).

4.1.2 Candidate Proposal
This step is implemented by a single operator that divides its

stream of input prefixes into one stream for each relation Ri, by
the min-i index identified in the previous stage. Suppose Ri =
Ri(aj+1, ak). Then an input p whose min-i was i, where v∗ =
Πakp, will be part of the stream for Ri and be extended to a tuple
(p • {e1, ..., ec}) containing the set of candidate extensions, which
are v∗’s outgoing neighbors. WhenRi = Ri(ak, aj+1), we use the
incoming neighbors of v∗ instead. This deviates from our descrip-
tion where we had flattened this tuple for simplicity of explanation
and had c separate (p • e) candidate extensions. These extensions
are sent through a single output stream for the next stage.

4.1.3 Intersection
The stream of pairs of prefix and candidate extensions go through

a sequence of operators, one for each involved relation Ri, each of
which intersects the set of candidate extensions with an appropriate
neighbor list of a vertex and removes those extensions that do not
intersect. The result is a stream of pairs of prefix and valid exten-
sions, successfully intersected by all relations. The extensions are
flattened to a list of prefixes for the next stage except if they are the
final outputs, they are output in their compact representation.

4.2 The BiGJoin Dataflow
The dataflow for enumerating subgraphs in a static graph applies

a sequence of prefix extension stages, each corresponding to an at-
tribute in the global attribute order. For simplicity, we fix the global
order so that the first two attributes are connected by an edge, which
allows us to seed the stream of prefixes with length-two prefixes
read from the edges themselves. This is equivalent to starting the
extensions from P2 instead of the empty tuple () ∈ P0. All other

attributes are extended using the prefix extension dataflow fragment
we described above.

The indices used by the workers are static, and we simply memo-
ry-map in a pre-built index. For simplicity we use the whole graph,
which means we can easily vary the number of workers without
changing the index used. One could alternately partition the graph
and provide each worker with its own index, but the graphs on
which we evaluate the static computations are rather small. For
larger graphs, such as those we consider with DeltaBiGJoin, we
build the indices as part of the computation, distributing the data to
only the workers that require it.

The execution of the BiGJoin dataflow happens in batches, where
we feed some number of prefixes into the dataflow and await their
results before introducing more prefixes. This batching allows some
control over the peak memory requirements, but does not guarantee
that in the course of processing a batch we do not produce unbound-
edly many intermediate results. To manage back-pressure more
precisely one can use the batching techniques described in [34],
which allow the Proposal stages to wait until the downstream data-
flow has drained as our batching optimization from Section 3.1.2
does, but we have not implemented them for our evaluation as our
basic input batching worked well in our evaluations.

4.3 The Delta-BiGJoin Dataflow
The dataflow for finding subgraphs in a dynamically changing

graph is more complex than for a static graph, along a few dimen-
sions. First, as described in Section 3.3, we will have an inde-
pendent dataflow for each dQi. Each dataflow is responsible for
changes to each logical relationRi in the query, i.e., one for each of
the edges in the subgraph query. Second, although these dataflows
may execute concurrently, we will logically sequence them so that
each dataflow computes the delta query as if executed in sequence
(to resolve simultaneous updates correctly). Third, our index im-
plementation will be more complicated, as it must support changes
as well as the multi-versioned interaction required by the logical
sequencing above.

We have a dataflow for each dQi, each of which uses a different
global attribute order as described in Section 3.3. Although there
are several dataflows with different attribute orders, each operator
only requires access to either the forward or reverse edge index.

Each delta query dataflow dQi computes changes in the outputs
made to relation Ri with respect to the other relations. Recall that
dQi uses the ?new? versions R′i = Ri + ∆Ri for i < j and
the ?old? versions Ri for i > j. This has the effect of logically
sequencing the update rules, so that they are correct even if there are
simultaneous updates to the input relations, something we expect in
graph queries where the single underlying edges relation is re-used
often. This use of new and old versions of the same index requires
our implementation to be multi-versioned, if we want to only have
a single copy of each index.

Our index implementation is a multi-version index, which tracks
the accumulation of (src, dst) pairs at various times and with var-
ious integer weights. It can respond to queries about the outgoing
and incoming neighbors for a given key v using updates at a tar-
get time. The updates are ?committed? when all tuples in the sys-
tem have a timestamp greater than it (meaning the update will par-
ticipate in all future accumulations for v); this information comes
from Timely Dataflow’s progress tracking infrastructure. The index
maintains data in three regions: (i) a compacted index of commit-
ted updates, (ii) an uncompacted index of committed updates, and
(iii) an ordered list of uncommitted updates. Committed updates
are moved to the uncompacted index, which uses a log-structured
merge list for each v, which can be compacted on a per-vertex ba-

697

sis to ensure that the amortized work for each vertex lies within the
bounds prescribed for the worst-case optimality result. The com-
pact index is formed from initial data during loading and in prin-
ciple could be periodically re-formed by merging the uncompacted
committed data. Practically, on large datasets we were not able
to apply enough updates to make such re-compaction worthwhile,
within reasonable experimentation timeframes.

The execution of the Delta-BiGJoin dataflow proceeds with the
stream of batches of updates to the graph supplied as an input. Each
of the tuples moving through a delta query dataflow has both a logi-
cal timestamp and a signed integer weight. The former allows us to
work with multiple logical times concurrently, and to remain clear
on which version of an index the prefix should be matched against.
The integer weight allows us to represent both additions and dele-
tions from the underlying relations.

5. EVALUATION
We next evaluate the performance of our Timely Dataflow im-

plementations of our algorithms on a variety of subgraph queries
and large-scale static and dynamic input graphs.

We first evaluate a reference computation (triangle finding) on
several standard graphs using a few different systems, to estab-
lish a baseline for running time (Section 5.2). With each system
we quickly discover limits on their capacity; they struggle to load
graphs at the larger end of the spectrum. We then study the scaling
of our implementation as we vary the number of Timely workers
both within a single machine as well as across multiple machines
on a 64 billion-edge graph (Section 5.3). We next demonstrate that
several optimizations that have been introduced in prior work can
also be integrated into our algorithms to improve our algorithms
(Section 5.4). Here we also show an experiment in which we use
a ternary relation as input, demonstrating our algorithms’ applica-
tion to general relational queries. Finally, we study the effects of
our batch size on performance and memory usage (Section 5.5).

We used both BiGJoin and Delta-BiGJoin in our experiments
and refer to their Timely Dataflow implementations as BiGJoinT
and Delta-BiGJoinT, respectively. Unless specified explicitly, we
use a batch size of 100, 000 in all our experiments.

5.1 Experimental Setup
Table 1 reports statistics of the graphs we use for evaluation.

The sizes range from the relatively small but popular LiveJournal
graph, with 68 million edges, up three orders of magnitude to the
relatively large Common Crawl graph, with 64 billion edges. The
abbreviations we use for the datasets are given in parentheses in
Table 1. We used five queries:
• triangle:= e(a1,a2),e(a1,a3),e(a2,a3)
• 4-clique:= e(a1,a2),e(a1,a3),e(a1,a4),e(a2,a3),e(a2,a4),e(a3,a4)
• diamond:= e(a1,a2), e(a2,a3),e(a4,a1), e(a4,a3)
• house:= e(a1,a2),e(a1,a3),e(a1,a4),e(a2,a3),e(a2,a4),e(a3,a4),

e(a2,a5),e(a3,a5)2

• 5-clique:= e(a1,a2),e(a1,a3),e(a1,a4),e(a1,a5),e(a2,a3),e(a2,a4),
e(a2,a5),e(a3,a4),e(a3,a5),e(a4,a5)
We note that the Common Crawl dataset has prohibitively large

number of instances of each query. For example we estimate that
there are more than 2.36× 1016 diamonds in Common Crawl, and
enumerating all of them explicitly would take a prohibitively long
time for any correct system. Instead, for the Common Crawl graph
we focus on the incremental maintenance of these queries, which
2This is query q6 from the SEED reference [37] and is a 5-clique
with two missing edges from one node.

Table 1: Graph datasets used in our experiments.

Name Vertices Edges
LiveJournal (LJ) [36] 4.8M 68.9M
Twitter (TW) [35] 42M 1.5B
UK-2007 (UK) [35] 106M 3.7B
Common Crawl (CC) [60] 1.7B 64B

can fortunately be performed without the initial computation of all
answers.

For all experiments except one we used a local cluster of up
to 16 machines. All machines have 2x Intel E5-2670 @2.6GHz
CPU with 16 physical cores in total. Most machines have 256 GB
memory, but we occasionally used a machine with 512 GB mem-
ory to accommodate single-machine experiments. Each machine
has 10 Gigabit network interface. For experiments using Empty-
Headed (see Section 5.2.2), we used an AWS machine similar to
our cluster machines (r3.8xlarge) and another machine with 1TB
memory (x1.16xlarge) to accommodate EmptyHeaded’s memory
requirements when running the triangle query on the TW graph.

In all of our experiments we use one CPU core for each Timely
worker. For each experiment we explicitly state how the workers
are located, i.e., within a single machine, across machines, or both.

5.2 Baseline measurements
We start with measurements of several existing approaches for

finding subgraphs in static graphs. Our goal is to assess whether our
implementations have relatively good absolute performance when
evaluating queries in static graphs. We consider three baselines: (1)
a single threaded implementation; (2) the shared-memory parallel
EmptyHeaded system; and (3) the distributed Arabesque system.
All of these implementations operate only on static graphs. None
of these implementations are capable of working with our largest
graph, and not all of them can evaluate our smaller graphs either.

5.2.1 COST
COST [39] (configuration that outperforms a single thread) is a

metric to evaluate the parallelization overheads of a parallel algo-
rithm or system. Specifically, COST of a parallel algorithmA solv-
ing a problem P is the number of cores that the algorithm needs to
outperform an optimized single-threaded algorithm solving P . A
small COST indicates that the system itself introduces little over-
head, and the benefits of scaling are immediately realized.

In order to measure the COST of our algorithms, we imple-
mented an optimized single-threaded triangle enumeration algo-
rithm, that is based on GJ in Rust [49]. We considered using the
popular SNAP library [36], but found that our own single-threaded
implementation was faster. We used the TW data set. Figure 4
shows the optimized single-threaded, BiGJoinT, and Delta-BiGJoin-
T implementations for the triangle query. Delta-BiGJoinT can find
all triangles in a static graph by loading each of the edges as updates
to the initially empty graph. However, it is expected to be slower
than an algorithm that loads the whole graph first and then finds
triangles. As seen there, the COST of our two implementations are
2 and 4 cores, respectively.

5.2.2 EmptyHeaded
EmptyHeaded (EH) is a highly-optimized shared-memory paral-

lel system evaluating subgraph queries on static graphs using GJ.
EH evaluates queries using a mixture of GJ and binary join plans.
The EH optimizer considers generalized hypertree decompositions
of the query, which join multiple subsets of the relations using GJ
which are then joined using binary joins. For the queries we study

698

Figure 4: BiGJoin and Delta-BiGJoin counting triangles in the
Twitter graph, plotted with the time it takes our single-threaded im-
plementation. Both approaches outperform the single-threaded im-
plementation with small number of cores, and continue to improve
from there. The Delta-BiGJoin performance lags slightly behind,
as it uses more complex data structures to support updates.

Table 2: Comparison against EmptyHeaded. ?-R? and ?-I? indi-
cate runtime and index time, respectively. EmptyHeaded’s absolute
performance is better on a single machine. The index building time
can be non-trivial.

Query EH-R EH-I BiGJoinT-R BiGJoinT-I
Triangle-LJ 1.2s 150.3s 6.5s 1.9s
Diamond-LJ 31.7s 150.3s 712.3s 1.9s
Triangle-TW 213.8s 4155s 588s 34.4s

in this paper, EH, similar to BiGJoin, uses a pure GJ plan based
simply on attribute ordering. EH is highly optimized for evaluating
queries on static graphs, and spends a non-trivial amount of time
preparing its indices, which vary their representation in response to
structural properties of the underlying data.

To guarantee a fair comparison with EH, we run its experiment
using the AMI machine provided by the EH team. We started by us-
ing a machine with similar configuration as our cluster machines3,
however EH ran out of memory when running the triangle query
on TW. Therefore, we used an x1.16xlarge AWS machine with 64
cores and 976 GB memory. We used TW and LJ and the triangle
and diamond queries. Unfortunately, EH ran out of memory on the
diamond query on TW.

Table 2 reports two metrics for both systems: (1) the runtime;
and (2) the time to index the input data. As shown in the table, our
implementations perform worse than EH due to our lack of specific
optimizations for static datasets, such as compacting dense exten-
sion lists into bit vectors. In exchange, we are able to distribute
across multiple machines and respond to changes in input, but this
generality comes at a price. We are also evaluating EH’s index
build time and memory footprint, something EH is explicitly not
optimized for, which combined with a lack of distribution limits
our ability to evaluate EH on the largest datasets.

5.2.3 Arabesque
Arabesque is a distributed system specialized for finding sub-

graphs in large graphs. In Arabesque, each distributed worker gets
an entire copy of the graph and starts extending a partition of the
vertices to form larger and larger subgraphs that are called embed-
dings, equivalent to prefixes in our terminology. In Arabesque,
prefixes are extended by considering the neighbors of individual
vertices, rather than by intersecting the neighborhoods of multiple
vertices as GJ does, and correspond to an edge-at-a-time strategy in
our terminology . This puts it at a disadvantage for purely structural

3An r3.8xlarge AWS machine with 244 GB memory and 32 cores.

Table 3: Comparison against Arabesque. ?-R? and ?-I? indicate
runtime and index time, respectively. BiGJoinT is faster and con-
siders fewer candidate subgraphs than Arabesque.

Query Arbsq-R Arbsq-I BiGJoinT-R BiGJoinT-I
Triangle 69.0s 1.46B 3.4s 38M
4-clique 273.7s 18.7B 21.8s 350M

queries of the sort we examine (though, it more cleanly supports
queries like ?subgraphs with average edge density at least 1/2?).

We used Arabesque’s most recent version (1.0.1-BETA) which
runs on Giraph. On our cluster, Arabesque was only able to load
the LJ dataset and ran out of memory on our other datasets. We
used the triangle and 4-clique queries. We used 8 machines, each
running one Arabesque worker, and each worker using 16 cores.
We measured both run-time and intermediate prefixes considered
by the system. We used the triangle and 4-clique code provided
by the authors of the system but improved the code to not output
any intermediate prefixes or final output.4 We repeated the same
experiments with BiGJoinT on the same configuration, so using 8
machines with 16 Timely workers on each.

Table 3 reports the running times as well as the number of inter-
mediate results considered, which partly explain the running times.
Arabesque considers roughly 30x more prefixes as BiGJoinT, which
manifests as between 10x and 20x higher running times.

5.3 Capacity and Scaling
When a graph fits in the memory of a single machine, the naive

parallelization strategy of replicating the graph to each machine
should work very well in practice. That is why one of our pri-
mary goals was to scale to graphs (and datasets) whose collected
indices do not fit in the memory of a single machine, which our
algorithms achieve by using a working set that is only linear in
the input relations. At the same time, very large graphs can con-
tain prohibitively many instances for even the simplest queries. For
example, we estimate that there are over 9 trillion triangles and 23
quadrillion (2.3×1016) diamonds in Common Crawl5. Our goal is
therefore not to evaluate BiGJoin when computing all subgraph in-
stances, but Delta-BiGJoin’s throughput and capacity when main-
taining these queries under updates.

We use the Common Crawl dataset, which has 64B edges and is
roughly 1,000x larger than LJ, 50x larger than TW, and 20x larger
than UK. When each node ID requires 4 bytes, the graph requires
⊥512GB written as a list of edges (u, v), and⊥ 256GB as an adja-
cency list. Since we index edges in both directions, our implemen-
tation requires ⊥512GB.

We load up various fractions of the edges in the graph, ranging
from one-sixteenth to all edges, and evaluate Delta-BiGJoin on a
range of one to sixteen machines. We use 14 workers per machines.
So our number of cores/workers range from 14 to 224. Each subset
of the graph results in a scaling curve as we increase the number
of machines, and we require an increasing number of machines to
start the experiments as the size of the subsets grow. For each con-
figuration, we track the number of edges indexed on each machine,
the peak memory required, and the throughput of changes (both
input and output). We use the triangle query.

4We note that this code used VertexInducedEmbeddings of
Arabesque, which extend prefixes by one vertex but internally by
considering each edge separately.
5These estimates are based on the number of triangles and dia-
monds we find per edge in our incremental experiments, which are
143 and over 368K, respectively.

699

(a) Execution Time; data points are the times to perform a batch of one mil-
lion updates, averaged across twenty batches. The numbers by each data
point report the number of output changes per second (triangles changed).
The computation processes roughly 1M updates per-second, reporting be-
tween 10M and 100M changed triangles per second.

(b) Maximum Index Size per Machine, in total index tuples per machine.
Index size decrease roughly linearly with additional machines at each
scale.

(c) Maximum Memory per Machine, in gigabytes per machine. This peak
occurs in initial index building rather than steady-state execution. The
maximum does increase as we double the workers and input size, but this
appears to be due to execution skew in data loading.

Figure 5: Scaling as we increase machines (and workers) and the
initial graph input. Each line represents an experiment where we
pre-load an indicated fraction of the CC dataset, and then perform
20 rounds of 1M input edge updates for a triangle-finding query.

Figure 5 shows our scaling results on this large graph. For each
fixed subset of the graph, additional workers both improve the thro-
ughput and reduce the per-machine index size and memory require-
ments. The plot of maximum index size (across all machines) indi-
cates that as we double the amount of data and number of workers,
the maximum size stays roughly fixed at 8 billion, which is roughly
equal to the total tuples divided by the number of machines, indi-
cating effective balance despite some vertices with very high de-
gree (the largest out-degree is ⊥45 million). With the exception of
the smallest dataset on the largest number of machines, through-
put increases and peak memory requirements decrease with further
machines; however, as the work gets progressively more thin (one
sixteenth of the graph spread across 224 workers) system overheads
begin to emerge.

Table 4: Common Crawl experiments. Sixteen machines load 64
billion edges, index them, and track motifs in 20 batches of 10K
random edge changes. Although the input throughput is much
lower than for triangles, the output throughput remains relatively
high at tens of millions of observed subgraph changes per second.

Query Average
Time / batch

Output
Throughput

Max. Mem.

4-clique 226.378 s 46, 517, 875 /s 108.4 GB
Diamond 276.587 s 26, 681, 430 /s 92.6 GB

We also report our throughput and the peak memory required
when running the diamond and 4-clique queries when loading the
full graph and using 224 workers in Table 4. Here we see substan-
tially lower throughput of input changes. For example, computing
the triangles of a batch of 1M edges with 224 workers after load-
ing the entire graph takes about 1.1 seconds (shown as the highest
singleton point on the right in Figure 5a). In contrast, computing
the 4-cliques on 200K edges in the same set up takes 226 seconds.
However, we see a relatively similar throughput for output changes,
in tens of millions, in both cases. That is, each input edge changed
results in substantially more subgraph matches changed, and it is
the volume of output that limits our throughput.

5.4 Generality and Specializations
In this section we show that our algorithms can employ exist-

ing optimizations from subgraph queries and multiway joins liter-
ature. In doing so, we also achieve two things. First, we compare
our work to the recent SEED [37] work, which develops efficient
optimizations for evaluating undirected subgraph queries in the dis-
tributed setting. Second, by implementing one of the optimizations,
we demonstrate that our approach can take as input general rela-
tions instead of the binary edge(ai, aj) relations we used so
far. We implement the following three optimizations:
• Symmetry Breaking: SEED imposes constraints on vertex IDs

to break symmetries. For example, for 4-clique query, we
might constrain that a1 < a2 < a3 < a4. This allows finding
each undirected four-clique once instead of 24 times, for each
permutation of the vertices in the clique. One can be more ef-
ficient by first ordering by degree, and then by ID if there are
ties. This is commonly accomplished by giving new IDs to the
vertices so that they are ordered by degree, and edges point from
vertices with lower ID to higher ID. We incorporate this opti-
mization by transforming the input dataset, and supporting in-
equality constraints (which are just filters applied to intermediate
prefixes).
• Triangle Indexing: SEED builds index structures over small

non-trivial subgraphs, such as triangles. These indices provide
more direct access to relevant vertex IDs reflecting multiple con-
straints already imposed. The ideas are similar to the recent FAQ
work [3], which identifies some common subqueries in larger
queries (for example, triangles in a four-clique query) and ma-
terializes these subqueries. We incorporate this optimization by
first finding all the triangles in the graph and then writing these
as a ternary relation tri(ai, aj , ak). Since we support general
relational queries and can index general relations, we can index
tri(ai, aj , ak) by (ai, aj) and provide efficient random access
to vertices ak that complete a triangle with (ai, aj). Using the
tri relation, 4-clique query simplifies to:

tri(a1, a2, a3),tri(a1, a2, a4),tri(a1, a3, a4).

This rewriting reduces the complexity of the query, and results
in fewer intermediate prefixes explored. We stress that this is

700

Table 5: Comparison with SEED, against three BiGJoin variants
including several optimizations: breaking symmetry by renaming
vertices by degree (-SYM) and then re-using pre-computed trian-
gles (-TR). BiGJoin’s absolute performance is comparable to opti-
mized approaches, and improves as optimizations are applied.

Query SEED-O BiGJoinT BiGJoinT-
SYM

BiGJoinT-
SYM-TR

4-clique 60s 54.0s 43.4s 13.3s
house 1013s 370.0s 294.3s 74.1s
5-clique 1206s 2861.1s 2153.2s 315.7s

not precisely the same optimization SEED does. SEED indexes
triangles by a1 so that full neighborhoods of each vertex is avail-
able, revealing large cliques at once. Our optimization is closer
in spirit to the FAQ work, but demonstrates the utility of support-
ing general relations in evaluating subgraph queries.
• Factorization: The house query is amenable to a technique

called factorization [46], which expresses parts of the query re-
sults as Cartesian products. In the house query, (a2, a3, a4, a5)
form a clique and the missing edges are (a1, a4) and (a1, a5).
We can first compute the triangle (a2, a3, a4) and then perform
two independent extensions to the lists of a1 and a5 values. As
these two variables do not constrain each other, they can be left
as lists rather than flattened into the list of their Cartesian prod-
uct. The SEED work proposes a similar optimization (named
SEED+O) in which large cliques are kept as cliques, rather than
explicitly enumerating all bindings to variables. We use this op-
timization only for the house query.
Table 5 compares SEED+O (SEED with clique optimizations)

measurements taken from their paper with three variations of our
work: (i) vanilla BiGJoinT, (ii) BiGJoinT with symmetry breaking
(BiGJoinT-SYM), and (iii) BiGJoinT with symmetry breaking and
triangle indexing (BiGJoinT-SYM-TR). All of our house mea-
surements also contain the factorization optimization. We used 10
machines with 16 cores, which is a cluster setup similar to the one
used in the SEED paper. Table 5 demonstrates two things: (1)
Our algorithms have the flexibility to employ several optimizations
from prior work to become more efficient; and (2) The results of
the 4-clique and 5-clique queries demonstrate that we are initially
competitive with SEED using the same resources, and when incor-
porating some of their optimizations, we can even outperform it.
We emphasize that the SEED measurements are reported from [37]
rather than reproduced on identical hardware, and that our goal is
not to provide evidence that our work outperforms SEED so much
as that our work is able to accommodate similar optimizations.

5.5 Sensitivity to Batch Size
We finally evaluate the effects of the batch size on our algo-

rithms. Batch size affects two aspects of our algorithms. First,
very small batch sizes can impede parallelism. As an extreme ex-
ample, consider finding all instances of a subgraph in a graph with
a batch size of 1. Then at least initially only one worker in the
cluster will do count minimization, candidate proposals, and inter-
sections. Second, with larger batch sizes, we expect the algorithm
to use more cluster memory. Therefore we expect that as batch
sizes get larger, runtime improves because the algorithm can paral-
lelize better but after we get to a large enough batch size, we expect
the algorithm to have a stable runtime but use more memory.

To test this, we used the triangle query and ran Delta-BiGJoin
on the UK graph using 16 workers on 1 machine and using batch
sizes of 10, 100, 1K, 10K, 100K, 1M, and 10M. We first load the

Figure 6: Effects of batch size. Note that the maximum memory
usage in small batches is very close to the index size (25.1 GB).

dataset, then ran Delta-BiGJoinT using 10M edges. The results are
shown in Figure 6. The numbers on top of the points indicate the
maximum memory usage6. As shown in the figure, indeed as batch
size increases the runtime initially improves and then remains the
same around after batch size of 10K. As we expect, larger batch
sizes lead to more cluster memory usage. We note that the increase
in the memory usage is very small for batch sizes less than or equal
to 100K because the intermediate data that the algorithm generates
with these batch sizes is insignificant compared to the size of the
input graph. Batch size is a useful parameter to balance memory
usage and speedup.

6. RELATED WORK
We reviewed related work on worst-case join algorithms in Sec-

tion 1.2.3. Here, we review related work in distributed join algo-
rithms, incremental view maintenance, graph processing systems,
algorithms that evaluate one-time subgraph queries, and streaming
or semi-streaming algorithms for subgraph finding.

Distributed Multiway Join Algorithms: We reviewed some of
the algorithms based on the Shares algorithm in Section 1.2.2. A
more recent algorithm [26] has introduced a new distributed algo-
rithm for queries that involve only two relations based on sorting
the relations on their join attributes. This contrasts with the hash-
ing approach of Shares. The algorithm runs for a small number of
rounds, requires cumulative memory and communication that is as
large as the actual output but does not generalize to more complex
joins, e.g., involving three relations.

Reference [6] has introduced a multiround join algorithm called
GYM, which takes as input a generalized hypertree decomposition
(GHD) D of Q. The algorithm first computes several intermediate
relations based onD in one round using Shares. Then the algorithm
runs a distributed version of Yannakakis’s algorithm for acyclic
queries [62]. Overall the algorithm runs forO(n) rounds and incurs
a communication and cumulative memory cost ofO(INw+OUT),
where w ≥ 1 is called the width of the GHD D and OUT is the
actual output size. This amount of communication cost is always
O(MaxOutQ) butw is only 1 for acyclic queries, so for any cyclic
query the memory requirements of GYM is superlinear in IN.

Reference [28] introduces another algorithm, which we refer to
as the DBP algorithm. DBP algorithm takes 3 rounds and takes
O(L × INDBP (L) + OUT), where L is a free parameter that in-
dicates load per machine and DBP (L) is called the degree-based
packing bound of the query for load L. Similar to GYM, for any
L, DBP’s communication is alwaysO(MaxOutQ) but (for any L)

6We measure memory usage using an operating system tool which
reports a snapshot of memory usage every second instead of the
average memory usage every second. This explains the small ap-
proximation and inaccuracy in the reported memory size.

701

the algorithm can require a cluster memory that is superlinear in IN
as it computes intermediate relations that can be superlinear in IN.

Incremental View Maintenance (IVM): There is a vast body of
work on incrementally maintaining views that contain selection,
projection, joins, group-by-aggregates, among others. We refer the
readers to reference [48] for a survey of these techniques. The over-
all technique of Delta-BiGJoin falls under the algebraic technique
of representing updates to tables as delta relations and maintain-
ing views through a set of relational algebraic queries. This ap-
proach has been extensively studied by previous work. Prior work
on algebraic techniques range from addressing limitations of delta
query-based techniques, e.g., when evaluating a top-k query [63],
to techniques using higher-delta queries [7], e.g., delta queries of
delta queries of a query. When evaluating subgraph queries, these
techniques do not yield theoretically optimal results and may re-
quire materializing very large intermediate results.

The only IVM algorithm with known theoretical guarantees and
the one closest to our work is the algorithm described in refer-
ence [59]. This IVM algorithm is based on the Leapfrog TrieJoin
(LFTJ) worst-case optimal join algorithm. We refer to this algo-
rithm as LFTJ-Inc. Similar to GJ, LFTJ is based on doing inter-
sections of multiple extension sets in time proportional to the size
of the minimum-size set. Unlike our description of GJ, which uses
hash-based indices, LFTJ uses tries to index the prefixes of the tu-
ples in each input relation. LFTJ-Inc uses another set of indices
called sensitivity indices which, for each prefix p, store the set of
intervals in the extensions of p such that any update to these in-
tervals could result in the output of the query to change. For ex-
ample, consider a join R(a1, a2) ./ S(a2, a3). A sensitivity in-
dex for R could store (5, [−∞, 8)), meaning that if a tuple with
a1 = 5 and a2 ∈ [−∞, 8) is added or deleted from R, this up-
date could change the output of the join. Using the sensitivity
indices, LFTJ-Inc ?fixes? the necessary intersections to compute
the outputs that have changed. Between any two updates, LFTJ-
Inc maintains query results in time proportional to what the author
calls the trace edit distance of running LFTJ on the relations be-
fore and after the update. That is, the author analyzes the ?trace? of
LFTJ, which is the set of iterator operations that the algorithm does,
on inputs before and after the update, and conclude that the work
that LFTJ-Inc does to maintain the query result is proportional to
the amount of work one would need to ?fix? LFTJ’s iterator op-
erators before the update. We note that this is a stronger theoreti-
cal guarantee than our Delta-BiGJoin’s worst-case optimality under
insertion-only workloads. In particular a trace edit distance guar-
antee implies that LFTJ-Inc is worst-case optimal under insertion-
only workloads. However unlike Delta-BiGJoin, which requires
indices linear in the input sizes, the sensitivity indices could be as
large as the AGM bound of the query (so super-linear in the size
of the input) for some queries and thus require a prohibitively large
amount of memory.

Systems and Algorithms For One-time Subgraph Queries: Al-
though they significantly differ in their graph storage, algorithms,
and optimizations, existing systems that evaluate general subgraph
queries are based on the edge-at-a-time strategy, unlike BiGJoin’s
vertex-at-a-time strategy. We reviewed Arabesque, EmptyHeaded,
and SEED in Sections 5.2.3, 5.2.2, and 5.4. We review other work
below.

PSgL [50]: PSgL is a subgraph enumeration system that is built
on top of Giraph [21]. PSgL picks an order of the vertices (i.e.,
attributes), say a1, ..., am in Q, called a traversal order. It starts
with candidate partial matchesGpsi for a1, then extends eachGpsi
to all neighbors of a1 in Q (not just a2). When matching aj ,
the existence of edges (ai, aj) edges for i < j will be checked

and if they exist aj will be extended to all neighbors ak > aj .
This is effectively an edge-at-a-time strategy. The paper presents
techniques for picking good traversal orders, balancing workload
among workers, and breaking internal symmetries in queries over
undirected graphs, which can complement our algorithms on undi-
rected graphs as well.

TrinityRDF [65] and Spartex [1] are two distributed RDF en-
gines that can evaluate any SPARQL [51] query. SPARQL queries
can express any subgraph query, so both of these systems can eval-
uate general subgraph queries. The optimizers of both systems use
edge-at-a-time strategies although they use different techniques to
choose edge extension plans.

There are several other work, such as references [8, 47, 61] that
describe data distribution techniques or other optimizations to find
subgraphs in a distributed setting, using black box or naive sub-
graph finding algorithms as subroutines. We do not review these
references here. There are also several studies that study evaluation
of a single specific query, e.g., the triangle query [18, 23], which
we do not review here.

Streaming and Semi-streaming Algorithms: Several works stu-
dy variants of continuous subgraphs queries in a streaming or semi-
streaming setting, i.e., in which the algorithms can use slightly su-
perlinear space. A thorough review of these works is beyond the
scope of our work. Example studies include those that focus on tri-
angle finding and variants [12, 53]. Many works in this area focus
on approximating the counts of different subgraphs and instead of
enumerating, which is the problem we study in this paper.

7. FUTURE WORK
We outline three broad directions for future work. First is study-

ing the extent of workload imbalance in real-world graphs and de-
signing more efficient workload-balanced versions of BiGJoin. Al-
though BiGJoin-S is theoretically skew-resilient, in our preliminary
implementation of the algorithm, we observed that its overheads
were higher than its benefits. Better understanding the effects of
skew, when it hurts BiGJoin and DeltaBiGJoin’s performance, and
how to effectively guard against it is an interesting future direc-
tion. Second, we are interested in studying how to utilize inter-
nal symmetries of queries during query evaluation. For example,
when evaluating the 4-clique query, some of the delta-queries, e.g.,
dQ2 and dQ3, compute the same P2 and P3 prefixes due to in-
ternal symmetry of the query. An interesting future direction is
to automatically exploit such symmetries to share computations
across multiple dataflows of delta queries. Finally, from a theoreti-
cal perspective, an interesting direction is designing practical algo-
rithms that have stronger guarantees than worst-case optimality. A
stronger than worst-case optimality guarantee could be optimality
in terms of certificate complexity, which is achieved by the recent
serial Minesweeper algorithm for multiway joins in terms of com-
putation cost [44]. At a high-level, certificate complexity captures
the smallest proof size to verify that the output is correct and is a
strictly stronger notion than worst-case optimality.

8. ACKNOWLEDGEMENTS
We would like to thank Lori Paniak for assisting with numer-

ous systems issues. We would also like to thank Michael Isard and
Chris Ré for early discussions that resulted in the first implementa-
tion of BiGJoin.

9. REFERENCES
[1] Ibrahim Abdelaziz, Razen Harbi, Semih Salihoglu, Panos

Kalnis, and Nikos Mamoulis. SPARTex: A Vertex-Centric

702

Framework for RDF Data Analytics (Demonstration).
PVLDB, 8(12):1880?1883, 2015.

[2] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and
Christopher Ré. EmptyHeaded: A Relational Engine for
Graph Processing. In SIGMOD, 2016.

[3] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. Faq:
Questions asked frequently. In PODS, 2016.

[4] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman.
Upper and Lower Bounds on the Cost of a Map-Reduce
Computation. PVLDB, 6(4):277?288, 2013.

[5] F. N. Afrati and J. D. Ullman. Optimizing Multiway Joins in
a Map-Reduce Environment. TKDE, 2011.

[6] Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih
Salihoglu, and Jeffrey D. Ullman. GYM: A multiround
distributed join algorithm. In ICDT, 2017.

[7] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos
Nikolic. DBToaster: Higher-order Delta Processing for
Dynamic, Frequently Fresh Views. PVLDB, 5(10):968?979,
2012.

[8] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe.
PATRIC: A Parallel Algorithm for Counting Triangles in
Massive Networks. In CIKM, 2013.

[9] A. Atserias, M. Grohe, and D. Marx. Size Bounds and Query
Plans for Relational Joins. SIAM Journal on Computing,
2013.

[10] P. Beame, P. Koutris, and D. Suciu. Communication Steps
for Parallel Query Processing. In PODS, 2013.

[11] P. Beame, P. Koutris, and D. Suciu. Skew in Parallel Query
Processing. In PODS, 2014.

[12] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides
Gionis. Efficient Semi-streaming Algorithms for Local
Triangle Counting in Massive Graphs. In SIGKDD, 2008.

[13] Blakeley, Jose A. and Larson, Per-Ake and Tompa, Frank
Wm. Efficiently Updating Materialized Views. SIGMOD
Record, 15(2), June 1986.

[14] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker
Markl, Seif Haridi, and Kostas Tzoumas. Apache FlinkTM:
Stream and Batch Processing in a Single Engine. IEEE Data
Engineering Bulletin, 38, 2015.

[15] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, and
Haixun Wang. Fast Graph Pattern Matching. In ICDE, 2008.

[16] Sutanay Choudhury, Lawrence B. Holder, George Chin Jr.,
Khushbu Agarwal, and John Feo. A Selectivity based
approach to Continuous Pattern Detection in Streaming
Graphs. In EDBT, 2015.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[18] Danny Dolev, Christoph Lenzen, and Shir Peled. ?Tri, Tri
Again?: Finding Triangles and Small Subgraphs in a
Distributed Setting. In DISC, 2012.

[19] Gary William Flake, Steve Lawrence, C. Lee Giles, and
Frans M. Coetzee. Self-Organization and Identification of
Web Communities. Computer, 35(3), March 2002.

[20] Jun Gao, Chang Zhou, Jiashuai Zhou, and Jeffrey Xu Yu.
Continuous Pattern Detection Over Billion-edge Graph
Using Distributed Framework. In ICDE, 2014.

[21] Apache Incubator Giraph.
http://incubator.apache.org/giraph/.

[22] Gupta, Ashish and Mumick, Inderpal Singh and
Subrahmanian, V. S. Maintaining Views Incrementally.
SIGMOD Record, 22(2), 1993.

[23] Gupta, Pankaj and Satuluri, Venu and Grewal, Ajeet and

Gurumurthy, Siva and Zhabiuk, Volodymyr and Li, Quannan
and Lin, Jimmy. Real-time Twitter Recommendation: Online
Motif Detection in Large Dynamic Graphs. PVLDB,
7(13):1379?1380, 2014.

[24] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso:
Towards Ultrafast and Robust Subgraph Isomorphism Search
in Large Graph Databases. In SIGMOD, 2013.

[25] Huahai He and Ambuj K. Singh. Graphs-at-a-time: Query
Language and Access Methods for Graph Databases. In
SIGMOD, 2008.

[26] Xiao Hu, Yufei Tao, and Ke Yi. Output-optimal Parallel
Algorithms for Similarity Joins. In PODS, 2017.

[27] Mohammad Husain, James McGlothlin, Mohammad M.
Masud, Latifur Khan, and Bhavani M. Thuraisingham.
Heuristics-Based Query Processing for Large RDF Graphs
Using Cloud Computing. TKDE, 23(9), 2011.

[28] Manas Joglekar and Christopher Ré. It’s All a Matter of
Degree. Theory of Computing Systems, Sep 2017.

[29] Dataflow Join.
https://github.com/frankmcsherry/timely-dataflow.

[30] K. Ammar, and F. McSherry, and S. Salihoglu, and M.
Joglekar. Distributed Evaluation of Subgraph Queries Using
Worst-case Optimal and Low-Memory Dataflows. CoRR,
abs/1802.03760, 2018.

[31] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi,
Jeremy Chen, and Semih Salihoglu. Graphflow: An Active
Graph Database. In SIGMOD, 2017.

[32] Paraschos Koutris, Paul Beame, and Dan Suciu. Worst-Case
Optimal Algorithms for Parallel Query Processing. In ICDT,
2016.

[33] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang.
Scalable subgraph enumeration in mapreduce: A
cost-oriented approach. The VLDB Journal, 26(3):421?446,
2017.

[34] Andrea Lattuada, Frank McSherry, and Zaheer Chothia.
Faucet: A User-level, Modular Technique for Flow Control
in Dataflow Engines. In BeyondMR, 2016.

[35] The Laboratory for Web Algorithmics.
http://law.dsi.unimi.it/datasets.php.

[36] Jure Leskovec and Andrej Krevl. SNAP: Stanford Network
Analysis Project. http://snap.stanford.edu, June
2014.

[37] Longbin Lai and Lu Qin and Xuemin Lin and Ying Zhang
and Lijun Chang. Scalable distributed subgraph enumeration.
PVLDB, 10(3):217?228, 2016.

[38] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A System for Large-scale Graph
Processing. In SIGMOD, 2010.

[39] Frank McSherry, Michael Isard, and Derek G. Murray.
Scalability! But at What Cost? In HOTOS, 2015.

[40] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martı́n Abadi. Naiad: A
Timely Dataflow System. In SOSP, 2013.

[41] Neo4j Home Page. http://neo4j.com/.
[42] Thomas Neumann and Gerhard Weikum. The RDF-3X

Engine for Scalable Management of RDF Data. The VLDB
Journal, 19(1):91?113, 2010.

[43] H. Ngo, C. Ré, and A. Rudra. Skew Strikes Back: New
Developments in the Theory of Join Algorithms. SIGMOD,
2014.

703

http://snap.stanford.edu

[44] Hung Q. Ngo, Dung T. Nguyen, Christopher Re, and Atri
Rudra. Beyond Worst-case Analysis for Joins with
Minesweeper. In PODS, 2014.

[45] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra.
Worst-case Optimal Join Algorithms. In PODS, 2012.

[46] Dan Olteanu and Maximilian Schleich. Factorized databases.
SIGMOD Record, 45(2), September 2016.

[47] Ha-Myung Park, Sung-Hyon Myaeng, and U. Kang. PTE:
enumerating trillion triangles on distributed systems. In
SIGKDD, 2016.

[48] Rada Chirkova and Jun Yang. Materialized Views.
Foundations and Trends in Databases, 4(4), 2012.

[49] Rust. https://www.rust-lang.org.
[50] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and

Ning Xu. Parallel Subgraph Listing in a Large-scale Graph.
In SIGMOD, 2014.

[51] SPARQL Specification.
http://www.w3.org/TR/rdf-sparql-query.

[52] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and
Jianzhong Li. Efficient Subgraph Matching on Billion Node
Graphs. PVLDB, 5(9):788?799, 2012.

[53] Kanat Tangwongsan, A. Pavan, and Srikanta Tirthapura.
Parallel Triangle Counting in Massive Streaming Graphs. In
CIKM, 2013.

[54] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini,
Georgos Siganos, Mohammed J. Zaki, and Ashraf
Aboulnaga. Arabesque: A System for Distributed Graph
Mining. In SOSP, 2015.

[55] Timely Dataflow.
https://github.com/frankmcsherry/timely-dataflow.

[56] Titan Home Page. http://thinkaurelius.github.io/titan/.

[57] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik
Ramasamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj
Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@Twitter.
In SIGMOD, 2014.

[58] Todd L. Veldhuizen. Leapfrog Triejoin: a worst-case optimal
join algorithm. CoRR, abs/1210.0481, 2012.

[59] Todd L. Veldhuizen. Incremental Maintenance for Leapfrog
Triejoin. CoRR, abs/1303.5313, 2013.

[60] Web Data Commons.
http://www.webdatacommons.org/hyperlinkgraph.

[61] Bin Wu and YunLong Bai. An Efficient Distributed Subgraph
Mining Algorithm in Extreme Large Graphs. In AICI, 2010.

[62] Mihalis Yannakakis. Algorithms for acyclic database
schemes. In VLDB, pages 82?94, 1981.

[63] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, and Yuguo Chen.
Efficient Maintenance of Materialized Top-k Views. In
ICDE, 2003.

[64] Zaharia, M. and Chowdhury, M. and Franklin, M. J. and
Shenker, S. and Stoica, I. Spark: Cluster Computing with
Working Sets. In HotCloud, 2010.

[65] Zeng, Kai and Yang, Jiacheng and Wang, Haixun and Shao,
Bin and Wang, Zhongyuan. A Distributed Graph Engine for
Web Scale RDF Data. PVLDB, 6(4):265?276, 2013.

[66] Lei Zou, Lei Chen, and M. Tamer Özsu. Distance-join:
Pattern Match Query in a Large Graph Database. PVLDB,
2(1):886?897, 2009.

[67] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Özsu, and
Dongyan Zhao. gStore: Answering SPARQL Queries via
Subgraph Matching. PVLDB, 4(8):482?493, 2011.

704

	Introduction
	Joins and Worst-case Optimality
	Existing Approaches
	Edge-at-a-time Approaches
	The Shares Algorithm
	Vertex-at-a-time Approaches

	Our Approach and Contributions

	Preliminaries
	Notation
	Generic Join
	Massively Parallel Computation Model
	Timely Dataflow

	Algorithms
	Dataflow Primitive
	A synchronous implementation
	A batching optimization to reduce memory
	A streaming implementation

	Joins on Static Relations: BiGJoin
	Joins on Dynamic Relations: Delta-BiGJoin
	Delta-GJ
	Delta-BiGJoin

	A Work-balanced Dataflow: BiGJoin-S
	Skew-resilient Extension Indices
	Balance and Extension Resolving Operators

	Implementation
	Prefix Extension in Timely Dataflow
	Count Minimization
	Candidate Proposal
	Intersection

	The BiGJoin Dataflow
	The Delta-BiGJoin Dataflow

	Evaluation
	Experimental Setup
	Baseline measurements
	COST
	EmptyHeaded
	Arabesque

	Capacity and Scaling
	Generality and Specializations
	Sensitivity to Batch Size

	Related Work
	Future Work
	Acknowledgements
	References

