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ABSTRACT

The RDF data model allows publishing interlinked RDF
datasets, where each dataset is independently maintained
and is queryable via a SPARQL endpoint. Many appli-
cations would benefit from querying the resulting large,
decentralized, geo-distributed graph through a federated
SPARQL query processor. A crucial factor for good per-
formance in federated query processing is pushing as much
computation as possible to the local endpoints. Surpris-
ingly, existing federated SPARQL engines are not effective at
this task since they rely only on schema information. Con-
sequently, they cause unnecessary data retrieval and com-
munication, leading to poor scalability and response time.
This paper addresses these limitations and presents Lusail,
a scalable and efficient federated SPARQL system for query-
ing large RDF graphs that are geo-distributed on different
endpoints. Lusail uses a novel query rewriting algorithm to
push computation to the local endpoints by relying on infor-
mation about the RDF instances and not only the schema.
The query rewriting algorithm has the additional advantage
of exposing parallelism in query processing, which Lusail ex-
ploits through advanced scheduling at query run time. Our
experiments on billions of triples of real and synthetic data
show that Lusail outperforms state-of-the-art systems by or-
ders of magnitude in terms of scalability and response time.
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1. INTRODUCTION

The Resource Description Framework (RDF) is exten-
sively used to represent structured data on the Web. RDF
uses a simple graph model in which data is represented in
the form of (subject, predicate, object) triples. A key fea-
ture is the ability to link two entities from two different
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Figure 1: A decentralized graph for two universities
managed by independent geo-distributed SPARQL
endpoints (EP). The red dotted line represents an
interlink between endpoints, i.e., a vertex in an end-
point referring to another vertex in another end-
point. Thus, to get the address of the university
from which Tim got his PhD, the interlink from EP2
to EP1 must be traversed.

SELECT ?S 7P ?U 7A WHERE{

?S ub:advisor 7P . ?S rdf:type ub:graduateStudent .
7P ub:teacher0f 7C . ?P rdf:type ub:associateProfessor .
?S ub:takesCourse 7C . ?C rdf:type ub:graduateCourse .

7P ub:PhDDegreeFrom ?U . ?U ub:address 7A . }

Figure 2: A SPARQL query, )., over a decentralized
RDF graph across different universities. This query
has to traverse the interlink between EP2 and EP1.

RDF datasets which are maintained by two independent au-
thorities, as shown in Figure 1. Through such links, large
decentralized graphs are created among a large number of
geo-distributed RDF stores where each RDF store can be
queried through its own SPARQL endpoint. The Linked
Open Data Cloud is one such decentralized RDF graph; it
has more than 150 billion triples in around 10,000 datasets’
from different domains, such as media, government, and life
sciences [32].

Users can retrieve data from an individual dataset by is-
suing SPARQL queries against its SPARQL endpoint. How-
ever, it is often very useful to issue SPARQL queries that
integrate data from multiple RDF datasets, which would
require federated query processing. For example, Figure 2
shows a query (Qq) on data from the LUBM benchmark [14]
at two endpoints. @, returns all students who are taking
courses with their advisors along with the URI and loca-
tion of the advisors’ alma mater. (), has three answers:
(Kim, Joy, CMU, "CCCC?”), (Kim, Tim, MIT, "XXX"),
and (Lee, Ben, MIT, ”XXX”). One cannot simply evaluate
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Q. independently at each endpoint and concatenate their
results as this will miss the results about Tim since EP2
does not have the address of MIT. Instead, we need a fed-
erated query processor that can automatically identify the
endpoints that can answer each triple pattern, detect inter-
links between endpoints, and automatically traverse them
to compute the query answer. A federated query processor
would decompose Q. into subqueries, send each subquery to
the relevant endpoint, and compute the answer to @, from
the results of the subqueries. Computing such an answer
typically requires the federated query processor to join the
results obtained from the endpoints. For example, in @,
this join would combine the address of MIT from EP1 with
the information about Tim from EP2.

Conceptually, a query like QQ, can be processed by send-
ing each of its triple patterns to all the endpoints, retrieving
all matching triples from the endpoints, and joining all of
these triples at the federated query processor to compute
the query answer. This strategy is clearly inefficient since
it sends triple patterns to endpoints even if they have no
answers for them, retrieves triples that may not be relevant,
and joins triples at the federated query processor even if
they could be joined at the endpoints. Thus, this strategy
would result in an unnecessarily large number of requests to
the endpoints and unnecessarily large amounts of data re-
trieved from the endpoints and transferred over the network
to the federated query processor. To avoid these unnecessary
overheads, it is important for a federated query processor to
push as much processing as possible to the endpoints.

Existing SPARQL federated query processing systems
rely on schema information to push processing to the end-
points. For example, they use SPARQL ASK queries to
check whether or not a triple pattern has an answer at an
endpoint [34]. If a group of triple patterns can be answered
exclusively by one endpoint, then it is possible to send this
group to the endpoint as one unit, known as an ezxclusive
group. Relying solely on schema information is not effec-
tive since RDF sources often utilize similar ontologies (e.g.,
EP1 and EP2 in Figure 2 have the same predicates), thus
a triple pattern could be answerable by multiple endpoints
and therefore cannot be part of an exclusive group. In this
case, the triple pattern is sent to all the endpoints that can
answer it and the values in the retrieved triples are bound to
other triple patterns; the triple patterns with bound values
are sent to the endpoints to retrieve further triples. This is
known as a bound join operation, and effectively amounts
to the query being processed one triple pattern at a time.

This strategy retrieves unnecessary data from the end-
points, since it retrieves all data matching a triple pattern
even if this data is not useful for the rest of the query. More-
over, this process limits the available parallelism since only
one join step can be processed at a time, and the federated
query processor has to wait for the results of this join step
before issuing the next join. To quantify the inefficiency of
this approach, we note that our experiments on FedX [34], a
federated SPARQL system that uses this approach and that
was shown to outperform similar systems [30], show that in-
creasing the number of endpoints from 1 to 4 can lead to 6
orders of magnitude increase in the number of requests sent
to the endpoints, and 3 orders of magnitude increase in the
running time (see [3] for details).

This paper addresses the limited ability of existing sys-
tems to push query processing to the local endpoints. We
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present Lusail, a scalable and efficient system for federated
SPARQL query processing over decentralized RDF graphs.
Lusail is the first system to decompose the federated query
based on instance information not just schema information.
That is, Lusail decomposes the query based on knowledge
of the locations of the actual RDF triples matching triple
patterns in the query. This knowledge helps us identify, for
example, that the instances matching the variable 78 in (78,
ub:advisor, ?P) and (7S, ub:takesCourse, 7C) in Q, are al-
ways located in the same endpoint, so these triple patterns
can be joined locally at the endpoint even though schema in-
formation tells us that both endpoints can answer both triple
patterns. In contrast, the instances matching the variable
?U in (7P, ub:PhDDegreeFrom, ?U) and (?U, ub:address, 7A)
are sometimes located in different endpoints, so these triple
patterns cannot be joined locally.

Lusail processes queries in a two-phase strategy:
(7) Locality-Aware DEcomposition (LADE) of the query into
subqueries to maximize the computation at the endpoints
and minimize intermediate results, and (%) Selectivity-
Aware and Parallel Execution (SAPE) to reduce network
latency and increase parallelism. Unlike prior approaches,
the decomposition of LADE is based not only on schema in-
formation but also on instance information, i.e., the location
of triples satisfying the triple patterns in the query. SAPE
decides the order of executing the subqueries generated by
LADE based on their result sizes and degree of parallelism.

We demonstrated Lusail in [20] and discussed the chal-
lenges of processing federated SPARQL queries at scale in
a short paper [4]. In this paper, we describe the complete
system. Our main contributions are:

e A locality-aware decomposition method that dramati-
cally reduces the number of remote requests and allows
for better utilization of the endpoints. We also provide
a proof of correctness. (Section 3)

e A cost model that uses lightweight runtime statistics to
decide the order of submitting subqueries and the exe-
cution plan for joining the results of these subqueries in
a non-blocking fashion. This leads to a parallel execu-
tion that balances between remote requests and local
computations. (Section 4)

e Our experiments on real data and synthetic bench-
marks with billions of triples show that Lusail outper-
forms state-of-the-art systems by up to three orders of
magnitude and scales up to 256 endpoints compared
to 4 endpoints in existing systems. (Section 5)

We present the architecture of Lusail in Section 2, discuss
related work in Section 6, and conclude in Section 7.

2. THE LUSAIL ARCHITECTURE

The Lusail architecture is shown in Figure 3. Lusail an-
alyzes each query to identify the relevant endpoints and its
correct decomposition that achieves high parallelism and
minimal communication cost. After that, Lusail sends the
subqueries to the relevant endpoints, joins their results, and
sends the query answer back to the user.

Locality-Aware Decomposition (LADE): Query de-
composition starts by identifying the relevant endpoints
(source selection). Like similar systems [34, 31], we use a
set of SPARQL ASK queries, one for each triple pattern.
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Figure 3: The Lusail system architecture.
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Furthermore, LADE takes the additional step of checking,
for each pair of triple patterns with a common (or join) vari-
able, whether the pair can be evaluated as one unit by the
relevant endpoints. To do so, LADE utilizes the knowledge
of the locations of the actual RDF triple instances matching
a query variable. The result of this check determines a group
of triple patterns, i.e., a subquery, that can be sent together
to an endpoint. Based on this analysis, LADE decomposes
the query into a set of independent subqueries. Lusail caches
the results of both the source selection phase and the check
queries that determine the triple patterns which cannot be
executed locally at an endpoint.

Selectivity-Aware Planning and Parallel Execution
(SAPE): SAPE takes as input the set of subqueries pro-
duced by LADE and schedules them for execution. This set
of independent subqueries can be submitted concurrently for
execution at each of the relevant endpoints, and Lusail can
use one thread per endpoint to collect their results. SAPE
uses cardinality estimates for the different triple patterns to
delay subqueries that are expected to return large results.
The results of these subqueries will then need to be joined
by SAPE using a parallel join, where the join order is de-
termined based on the actual sizes of the subquery results.
SAPE achieves a high degree of parallelism while minimiz-
ing the communication cost by (¢) obtaining results from
different endpoints simultaneously, and (i) utilizing differ-
ent threads in joining the results.

Elastic Request Handler (ERH): Lusail utilizes multiple
threads for evaluating the ASK queries from LADE or the
subqueries from SAPE at the endpoints. ERH manages the
allocation of threads from one or more machines to these
tasks, where the number of available threads is determined
by the number of physical cores.

3. LOCALITY-AWARE DECOMPOSITION

To push as much processing as possible to the endpoints,
LADE maximizes the number of triple patterns in a given
query that can be sent together to each endpoint. In a
decentralized RDF graph, data instances matching a pair
of triples may not be located in the same endpoint, e.g.,
the triples having ?U as a common variable in Figure 1.
Thus, putting this pair in the same subquery may miss re-
sults. LADE starts by analyzing which triples cannot be in
the same subquery, and identifying the common variables
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S;4={s | s a GraduateStudent and s advisor ?P}
S,={s | s a GraduateStudent and s takesCourse ?C}
P;={p | p a AssociateProfessor and ?S advisor p}
P,={p | p a AssociateProfessor and p teacherOf ?C}

U= {u | ?P PhDDegreeFrom u}
U,={u | u address ?A}

-$={}
-Si={}

-U={MIT}

e

-P={}

Endpoint EP1

Endpoint EP2

Figure 4: Locality analysis of data instances in EP1
and EP2 from Figure 1 that match 7S, 7U, and 7P in
a pair of triple patterns in Q,.

in these triples as global join variables (GJV). Then, it de-
composes the conjunction of triple patterns into subqueries.
We assume no prior knowledge of the data sources, such as
schema, data distribution, or statistics. LADE relies solely
on a set of check queries written in SPARQL.

In this section, we only discuss how Lusail evaluates con-
junctive SPARQL queries. However, Lusail also supports
queries with joins on variable predicates as well as UNION,
FILTER, LIMIT, and OPTIONAL statements (see [3] for
more details). For example, Lusail determines where to add
the FILTER and OPTIONAL clauses during query decom-
position and during the global join evaluation.

3.1 Detecting Global Join Variables

A global join variable (v) is a variable that appears in
at least two different triple patterns such that these triple
patterns, when taken together, cannot be solved by a single
endpoint. A global join between data coming from two or
more endpoints will be needed. Given two triple patterns,
TP; and T Pj, in a subquery, a GJV may appear in the triple
patterns as: (¢) object in T'P; and subject in T'P;, (ii) object
in both patterns, or (%) subject in both. Let v; and v; be the
sets of instances of v that satisfy T'P; and T P;, respectively.

Qa (Figure 2) has four variables appearing in more than
one triple pattern, namely 7S, ?U, 7P, and 7C. Figure 4 shows
our analysis for the first three variables. In EP1 and EP2, all
instances matching 7S in (7S, ub:advisor, ?P) are co-located
with all instances matching 7S in (7S, ub:takesCourse, 7C).
Thus, 7S is not a GJV and hence the two corresponding
triple patterns can be sent together in a single subquery to
each relevant endpoint. However, for the triples involving
?U, (7P, ub:PhDDegreeFrom, ?U) and (?U, ub:address, 74),
we notice that in EP2 there is a professor, Tim, who got
his PhD from another university. Thus, to get the address
of that university, we need to perform a join between data
fetched from EP1 and EP2. Therefore, 7U is a GJV.

We now describe how LADE detects GJVs by determining
the actual location of data instances depending on the roles
they play, i.e., object or subject. We first discuss how to
merge two triple patterns and then generalize to more than
two (see Algorithm 1). Two triple patterns TP; and TP;
are put together in a single subquery under two conditions:
(7) both triple patterns have the same list of relevant end-
points, and (%) each relevant endpoint can fully answer both
triple patterns without missing any result, i.e, all instances
that match v in T'P; and T'P; are in the same endpoint.
Object and Subject. Consider the variable ?U in
Q. (Figure 2). It appears as an object in TP;: 7P
ub:PhDDegreeFrom ?U and as a subject in TPFP;: 7U



1 SELECT 7P WHERE {

2 7P rdf:type T

3 7S < Predicate; > 7P .

4 FILTER NOT EXISTS { SELECT 7P WHERE {
5 7P < Predicate; > 7C.

61}} .} LIMIT 1

Figure 5: A Lusail SPARQL check query to detect
whether 7P is a global join variable or not. The check
query returns zero or only one value.

ub:address 7A. Checking the location of the data instances
v; and v; that match ?U in each endpoint has two cases:
(¢) remote instances, where v; and v; are located in differ-
ent endpoints, i.e., all or some professors received their PhD
from another university (in a different endpoint); e.g., EP2
in Figure 4, and (%) local instances, where all v; and v; are
located in the same endpoint, i.e., all professors teaching
in a university A received their PhD from A (in the same
endpoint), e.g., EP1 in Figure 4.

We check the relative complement (i.e., set difference) of
v; and v; in all relevant endpoints by sending a SPARQL
query to each endpoint. If one or more of these endpoints
has instances in v; but not in v;, then v is a GJV. At each
endpoint, we check for each data instance appearing as an
object in T'P; whether this instance appears locally as a
subject in TP;. Once a common variable is found to be a
GJV, the triple patterns cannot be combined in the same
subquery even for those endpoints that return an empty
result for the difference in the instances, e.g., the pair of
triple patterns where ?U is common (Figure 4). This allows
us to have simple plans and better parallel execution.

Set difference (—) is implemented using FILTER NOT
EXISTS (Figure 5) where T'P;: (7S, Predicate;, ?P), and
TP;: (7P, Predicate;, ?C). If there is a triple pattern setting
a type for v ((?P, rdf:type, T)), we use it to limit the check
to only the relevant values of v. Since Lusail needs to only
know whether the result is an empty set, we use LIMIT 1.
Objects/Subjects Only. If a variable appears only as
object, respectively subject, in both triple patterns T'P; and
T P;, Lusail checks in each relevant endpoint that v; —v; and
vj; — v; are both empty. As shown in Figure 4, the variable
?S appears as subject in both (7?8, ub:advisor, ?P) and (7S,
ub:takesCourse, ?C). Having two empty sets in the same
endpoint means that (i) any graduate student ?S having an
advisor ?P should take a course ?C and (7)) any graduate
student 7S taking a course 7C should have an advisor 7P, all
located in the same endpoint.

Algorithm 1 receives a query and a list of relevant end-
points and outputs a set of GJVs (V) along with the triple
patterns that caused each variable to be a GJV. It assumes
that source selection is already done using ASK requests or
the Lusail cache. The algorithm starts by retrieving the set
of query variables and triple patterns. Each variable is as-
sociated with its subject and object patterns (line 2). The
algorithm iterates over the variables to detect GJVs.

If the variable joins triple patterns from different sources,
then it is a GJV (lines 8-11). There is no need to check
the other conditions. Otherwise, Algorithm 1 formulates a
set of check queries as discussed above. For the object only
and subject only cases, Algorithm 1 formulates check queries
for all possible pairwise combinations of the triple patterns
associated with the variable (lines 13-14). For the object
and subject case, the check query is a combination of object
triples and subject triples (lines 15-16).

Algorithm 1: Detecting Global Join Variables

Input: Input query (Q), Set of relevant sources (Sources)
Result: List of Global Join Variables (V')

1 Triples < Q.getTriplePatterns();
2 vars < getJoinEntities (Triples);
3 chkQueries < 0;
a4V« 0
5 foreach var; in vars do
6 pairWiseTriples <—getPairTriples (var;.Triples);
7 joinVar < False;
8 foreach pair; in pairWiseTriples do
9 if pair;[0].sources # pair;[1].sources then
10 V .addJoinVar (var;.varName, pair;);
11 joinVar < True;
12 if joinVar is True then continue ;
13 if var; is subject only || var; is object only then
14 chkQueries < formulatePairWiseQuery (var;,
pairWiseTriples);
15 if var; is subject and object then
16 chkQueries < formulateSubjObjQuery (var;,
var;.subjTriples, var;.objTriples);
17 if chkQueries is not empty then
18 RegqHandler < initializeRequestHandler (thrdPoolSize,
Sources);
19 foreach chkQry; in chkQueries do
20 //each chkQry; is attached with its relevant sources;
21 RES = ReqHandler.executechkQAtRelSrcs (chkQry;);
22 if RES is not empty then
23 V.addJoinVar (chkQry,;.varName,
chkQry; .triples);

24 return V;

The algorithm uses the elastic request handler (Figure 3)
to execute check queries. It initializes the handler with the
size of the thread pool and the set of endpoints (line 18).
Then, it iterates over all check queries and executes each
at the relevant endpoints (lines 19-23). If the query returns
any results, then the corresponding variable is a GJV (lines
22-23). The algorithm returns the set of GJVs along with
the triple patterns that caused each variable to be a GJV.

Let |V| be the number of variables appearing in more
than one triple pattern in the query and |T'| be the number
of triples. Since check queries are formed for pairs of triples,
the maximum number of check queries, Cq, is bound by
O(|V| % |T|?). Assuming N relevant endpoints, LADE cre-
ates a maximum of N *x Cg requests. Since the number
of triple patterns in real-world SPARQL queries is usually
small [12], the number of GJVs is also small. Therefore,
NxCgq will be typically small. In addition, the check queries
are lightweight and have minimal overhead (see Section 5.4).

3.2 Query Decomposition

Algorithm 2 decomposes a query @ into multiple sub-
queries to be sent to different endpoints. If @ has no GJVs,
the algorithm returns @ (line 3). Otherwise, LADE uses the
set of GJVs and the source selection information to decom-
pose Q. It iterates over all join variables in any order using
the current join variable as a root. It tries to find the best
decomposition that leads to a set of subqueries with mini-
mal execution cost (cost estimation is discussed in Section
4). The algorithm has two phases: branching (lines 9-30)
and merging (lines 32).

In the branching phase, we build a query tree with the
current join variable as its root (line 9). An initial set of
subqueries is created at the root, one subquery per child
(lines 13-20) and each subquery is expanded through depth
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Algorithm 2: Query Decomposition

Input: Input query (Q), set of GJVs (V)

Result: Set of independent subqueries

best Decomposition <+ 0;

minDecompCost < infinity;

if V is empty then return subqueries.add (Q);

Triples < Q.getTriplePatterns();

foreach jvar; in V do

visitedTriples < (;

nodes < 0;

subqueries < (;

nodes.push (jvar;);

while nodes is not empty do

vrtz < nodes.pop ();

edges + vrtz.edges ();

if subqueries is empty then

foreach edge; in edges do
if visited (edge;, visitedTriples) then
continue ;
sq <+ createSubquery(edge;);
subqueries.add (sq);
nodes.push (edge;.destNode);
visitedTriples.add (edge;);

© 0N WA N

[
o

e e
[SLI N

16
17
18
19

20 continue;

21
22
23
24
25

parentSq < getParentSubquery (vrtz, subqueries);
foreach edge; in edges do
if visited (edge;, visitedTriples) then continue ;
if canBeAddedToSubQ (parentSq, edge;, V) then

L parentSq < addToSubquery (parentSq, edge;);

else

i

nodes.push (edge;.destNode);
visitedTriples.add (edge;);

26
27
28

sq < createSubquery(edge;);
subqueries.add (sq);

29
30

if visitedTriples = Triples then
subqueries < mergeSubQ (subqueries);
cost < estimateCost (subqueries);
if cost < minDecompCost then
best Decomposition < subqueries;
minDecompCost < cost;

31
32
33
34
35
36

37 return best Decomposition;

first traversal (lines 21-30). A triple pattern is added (lines
24-25) if both the subquery and the triple pattern have the
same relevant sources, and the addition of the pattern does
not cause a query variable to be a GJV. If one of the condi-
tions is invalid, a new subquery is created from the current
triple pattern and added to the set of subqueries (lines 27-
28). In both cases, the edge destination node is added to
the nodes stack and marked as visited (lines 29-30).

The merging phase (line 32) starts once all triple patterns
are assigned to one of the subqueries (line 31). The function
mergeSubQ (line 32) loops through the set of subqueries and
merges a pair of subqueries if they have common variables,
the same relevant sources, and no pair of triple patterns
from both subqueries has a common variable that is global.
If the estimated cost (line 33) of the current decomposition
is less than other decompositions, the algorithm updates
the minimum cost and selects the current decomposition as
the current best. The algorithm continues to check other
possible decompositions using the remaining join variables.

The algorithm returns the best subquery decomposition
(line 37). For simplicity, the pseudo-code of the algorithm
assumes a connected query graph. Lusail also supports
queries with multiple disconnected subgraphs, in which case
it executes each subquery independently and creates a spe-
cial join variable that connects these subqueries, if possible.
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Figure 6: Two possible decompositions of (),, where
the GJVs are ?7U and ?P. Any pair of predicates,
which causes a variable to be a GJV, cannot be in
the same subquery.

Figure 6 shows two possible decompositions for Q, (Fig-
ure 2), which has two GJVs, namely ?U and ?P. The gener-
ated set of subqueries may change depending on the order
in which variables are selected during query decomposition
(line 5 in Algorithm 2). However, all decompositions pro-
duce the same result set and do not miss any triple (details
in Section 3.3), but some decompositions may generate more
intermediate results and thus cost more. To avoid a costly
decomposition, LADE enumerates all possible decomposi-
tions and chooses at compile time the best decomposition
expected to minimize the intermediate results.

The outer loop (line 5 in Algorithm 2) iterates over the
set of GJVs to generate all possible query decompositions.
Each iteration performs a depth first traversal, whose com-
plexity is O(|V'|+|T'|) where |V] is the total number of query
variables and |T'| is the number of triple patterns. Since the
number of iterations is the number of GJVs, which is small,
the algorithm complexity is still bound by O(|V| + |T|).

3.3 Result Completeness

Missing Results. The optimization introduced by LADE
assigns triple patterns to different subqueries based on the
concept of locality. Results could be missed in two cases.
Case 1: A subquery contains a set of triple patterns where
a GJV is considered to be local. This can only happen
if the subquery contains triple patterns that access predi-
cates through interlinks, e.g., a subquery that contains (?P,
ub:PhDDegreeFrom, ?U) and (?U, ub:address, 7A) will cause
Qo to miss the result (Kim, Tim, MIT, "XXX”) when the
subquery is submitted to EP2. However, such a case cannot
happen since LADE puts triple patterns into the same sub-
query only if the data instances matching them are located
in the same endpoint. Lemma 1 formalizes this argument.
Case 2: A subject or object may be present in more than
one endpoint, e.g., EP1 has (al, p, b), (b, q, c1) and EP2 has
(a2, p, b), (b, q, c2). Having the pair of triple patterns, (?x,
p, 7y) and (?y, q, 7z), in the same subquery does not miss
the local triples matching the query. Lusail first detects 7y
as a local join variable and then performs the join between
the results of the same subquery from different endpoints at
the Lusail server (see Section 4.2).

LEMMA 1. Any local join variable detected by LADE is a
true local join variable.

PROOF: Let v be the join variable and TP(v)
{tp1,tp2,...tpx,} be the set of triple patterns in which v ap-
pears. v can appear in T'P(v) as subject only, object only,
or subject and object.



Subject only: In this case, Vip,erp(v) tpi-subj = v. Let
B; and B; be the set of bindings of v from triples tp;
and tp;, respectively. LADE decides that v is a local
join variable iff: Voci<: Yo<ij<k,iz; Bilepi) — Bj(ep) = ¢
and Bj(ep)) — Bi(epi) = ¢ where k=|TP(v)| and t is the
number of relevant endpoints. At each relevant endpoint,
B; — Bj = ¢ means that each endpoint can fully evaluate
tp; > tp; locally. This means that v is a true local join
variable and there is no need to join tp; and tp; across end-
points. The same applies for B; — B;.

Object only: In this case, Vip,erp(v) tpi-obj = v. The same
analysis of the subject only case applies.

Subject/Object: Let TPS(v) = {tpsi1,...tpss} and TPO =
{tpo1, ...tpoo} be the set of triples in which v appears as
subject and object, respectively. Vips,cTps(v) tPsi.subj = v
and Vipo,eTPo(v) tP0i.0bJ v. Let B; and B; be the
set of bindings of v using triple tps; and tpoj, respec-
tively. LADE decides that v is a local join variable iff:
Vo<i<t Yo<i<s, o<j<o Bilepi) — Bj(ep)) = ¢. At each rel-
evant endpoint, B; — B; = ¢ means that each endpoint can
fully evaluate tps; > tpo; locally. It also means that v is a
true local join variable and there is no need to join tps; and
tpo; across endpoints. O
Extraneous computations. In some cases, LADE may
detect a join variable as being global while the triple patterns
sharing this variable could be solved together locally at the
endpoints. For example, the variable ?P in (?8, ub:advisor,
?P) and (7P, ub:teacherOf, 7C). As shown in EP1 (Figure 4),
there is an advisor (Ann) who works at MIT but who is not
a teacher of any course. 7P will be considered as a GJV
based on our checks. However, it is clearly safe to send both
triple patterns in the same subquery since there is no need
to access data in remote endpoints. Adding more checks
to avoid such cases would be too expensive since it would
require accessing all other relevant endpoints. Such cases
may lead to query plans with unnecessary GJVs, i.e., more
remote requests and more join computations at global level
rather than at the endpoints. Lemma 2 shows that assuming
that a join variable is global, while it is not, does not affect
the correctness of the results.

LEMMA 2. Any local join variable v can be selected as a
global join variable without affecting the result correctness.

PRrOOF: Let TP(v) = {tp1,...,tpx} be the set of triple pat-
terns in which v appears. If v is a local join variable, each
relevant endpoint can evaluate TP(v) as a single subquery.
The set of bindings of the local join variable v is simply
the union of all bindings from all relevant endpoints, i.e.
Bi(v,TP(v)) = Uo<i<t Bi(v, TP(v), ep;) where t is the num-
ber of relevant endpoints. Assume now that v is considered a
global join variable. In this case, each endpoint will evaluate
each triple pattern independently and the results are joined
at the global level. Let Bg(v,tp;) = Uo<i<tBg(v,tpj,epi)
be the set of bindings of the global variable v for triple pat-
tern ¢p;. Then, the global bindings of v is By(v, TP(v)) =
By (v,tp1) > Bg(v,tp2)... > Bg(v,tpy). Since v should be
a local join variable, then the join between different end-
points is always empty. This means that Bg(v, TP(v)) =
Uo<i<tBg(v,tp1,epi) b By(v,tpz2,epi)... ™ By (v, tpk, epi)
which is equivalent to evaluating all triples in TP(v) as a
single subquery and taking the union across the relevant
endpoints. Consequently, By(v, TP(v)) = B;(v,TP(v)). O
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Figure 7: Query evaluation in Lusail

4. SELECTIVITY-AWARE EXECUTION

The Selectivity-Aware Planning and parallel Execution
(SAPE) algorithm is responsible for choosing: (¢) a good ex-
ecution order for the subqueries that would balance between
the communication cost and the degree of parallelism and
(it) a good join order for the subquery results. An overview
of SAPE is shown in Figure 7. SAPE estimates the cardinal-
ity of the different subqueries and accordingly delays sub-
queries expected to return large results. Non-delayed sub-
queries are evaluated concurrently while the delayed ones
are evaluated serially using bound joins. The objective of
SAPE is to maximize the degree of parallelism while min-
imizing the communication cost in terms of the number of
requests to endpoints and size of subquery results.

4.1 Subquery Ordering and Cost Model

LADE outputs a set of independent subqueries that can be
submitted concurrently for execution at each of the relevant
endpoints. The results of these subqueries will then need
to be joined at the global level. There are two extreme
approaches to execute these subqueries.

The simplest approach is to simultaneously submit the
subqueries to the relevant endpoints and wait for their re-
sults to start the join. For example, the subqueries of Fig-
ure 6 would be executed concurrently and after receiving all
their results, a join phase would start. Notice that the sub-
query (?U, address, 7A) is so generic that executing it inde-
pendently will retrieve all entities with addresses regardless
of whether these entities match ?U in the remaining sub-
queries (see Figure 1). These subqueries, which touch most
of the endpoints or retrieve large amounts of intermediate
results, affect query evaluation time by overwhelming the
network, the endpoints, and Lusail with irrelevant data. Ex-
amples include: (7) generic subqueries that are relevant to
the majority of the endpoints, e.g., common RDF predicates
such as owl:sameAs, rdf:type, rdfs:label, and rdfs:seeAlso.
(i) Simple subqueries that have one triple pattern with two
or three variables, e.g., (?s, 7p, 7o) or (?s, owl:sameAs, 7o),
and (%) optional subqueries.

At the other extreme, we can submit the most selective
subquery first and use the actual bindings of the variables
obtained to submit the next most selective subquery with
its variables bound to the values retrieved by the first sub-
query, and then submit the next most selective subquery in
a similar fashion, and so on. While limiting the amount of
intermediate results to be retrieved from the endpoints, this
approach offers no parallelism beyond submitting the same
subquery to multiple endpoints.



Our objective is to balance between the degree of par-
allelism, i.e., the number of subqueries submitted concur-
rently, and the communication cost, which is dominated
by the size of intermediate results. Our only constraint is
that Lusail should avoid collecting expensive statistics dur-
ing pre-processing or at runtime. Therefore, Lusail uses only
lightweight per-triple statistics during query evaluation. To
fulfill our objective, we detect the subqueries expected to re-
turn substantially fewer results if some of their variables are
bound to the results already obtained. The idea is to clus-
ter subqueries based on their estimated cardinality and the
number of endpoints they access while taking into account
the variability in these values. To this end, we introduce
the concept of delayed subqueries, which are evaluated using
the actual bindings of the variables that have been already
obtained. We thus follow a two-phase subquery evaluation:
(7) concurrently submit non-delayed subqueries to the end-
points, and (i) use the variable bindings obtained from the
first phase to evaluate the delayed subqueries.

We introduce a cost model to determine delayed and non-
delayed subqueries. SAPE assumes that subquery cardinal-
ities follow a normal distribution, so most subqueries return
results whose sizes are within one standard deviation of the
mean. SAPE calculates the mean p and standard devia-
tion o values for all the cardinalities and all the numbers of
relevant endpoints per subquery. Outliers, e.g., subqueries
returning extremely large results (very low selectivity) or ac-
cessing a large number of endpoints compared to other sub-
queries, misleadingly increase the standard deviation. This
may lead SAPE to consider some subqueries that are bet-
ter to be delayed as non-delayed. We, therefore, apply the
Chauvenet’s criterion [7] for detecting and rejecting outliers
before computing p and o. Any subquery sqg; with cardinal-
ity C(sqi) > pc + oc is delayed, as shown in Figure 7. We
apply the same concept for the number of relevant endpoints
per subquery. With this heuristic, only subqueries (includ-
ing outliers) whose results are expected to be significantly
larger than the majority of subqueries will be delayed.

The cardinality of a subquery is estimated based on the
cardinality of its triple patterns, which is collected during
the query analysis phase using a simple SELECT COUNT
query, one per triple pattern. Whenever a filter clause is
available for a subject and/or object, it is pushed with the
statistics query to obtain better cardinality estimates. Note
that cardinality statistics per predicate are usually collected
by RDF engines for their runtime query optimization [10,
23, 17] and it may be possible to use them to provide the
required estimates. We leave this as future work.

We need to estimate the cardinality of the variables in
the projection list of each subquery. The cardinality of a
variable v in a subquery sg¢;, denoted C(sg;,v), represents
the number of bindings of v. If two triple patterns T'P; and
TP; join on a variable v, then the number of bindings of v
at endpoint ep after the join will be:

C(sgi,v, epr) = min(C(TP;, epr), C(T'P;, epk))

Therefore, we use the minimum cardinality of the predicates
in which v is a common variable as an upper bound of the
cardinality of v per endpoint. Thus, the total cardinality of
v in the subquery sq; is the sum of its cardinalities in all the
relevant endpoints ep, estimated as:

>

epEsres(sq;)

C(sqi,v) = C(sqi,v,ep)

491

Algorithm 3: Subqueries Evaluation

Input: Subqueries list (subQs), relevant sources (srcs)
Result: The final query results (qResult)

1 ReqHandler < initializeRequestHandler (srcs);

2 if subQs.size ()=1 then

3 RegHandler.executeSubQAtRelSrcs (subQs[0]);

4 return aggregateEndptResults (ReqHandler);
foundBindings < Empty;

5
6 foreach sq in subQs.nonDelayed do

7 L ReqHandler.executeSubQAtRelSrcs (sq);
8

sqsRes <—joinSubqsResults (ReqHandler.threads);

9 updateFoundBindings (subqRes, foundBindings);
while subQs.delayed is not empty do
sq < getMostSelectiveSubq (subQs, foundBindings);
boundSubQs < formulateBoundSubgs (sq, foundBindings);
sq.relSrcs < refineRelSrs (sq.relSrcs, foundBindings);
sqRes «+— Empty;
foreach boundSubq; in boundSubQs do

sqRes = sqRes U ReqHandler.executeSubQAtRelSrcs

(boundSubg;);

updateFoundBindings (subgRes, foundBindings);
| subQs.delayed.remove (sq);

return joinSubgsResults (ReqHandler);

The cardinality of a subquery sg;, denoted as C(sg;), is the
maximum cardinality of the subquery projected variables.
While the proposed cost model is simple, it provides accu-
rate cardinality estimates. To measure estimation accuracy,
we compared the estimated vs. actual cardinality of sub-
queries with more than one triple pattern using the g-error
metric [22]. Let a be the actual cardinality and e be an es-
timate of a. The g-error is defined as max(e/a,a/e). Using
LargeRDFBench queries [29], the median g-error of Lusail
in our experiments is 1.09, close to the optimal value of 1.

4.2 Evaluation of Subqueries

Different orders of delayed subquery evaluation can re-
sult in different computation and communication costs. Our
query planner tries to find an order of subqueries that has
the minimum cost. Given a set of non-delayed subqueries,
SAPE evaluates them concurrently and builds a hashmap
that contains the bindings of each variable. As a result,
SAPE knows the exact number of bindings of each subquery
variable. Then, we refine the cardinality of the delayed sub-
queries based on the cardinality of variables they can join
with. The first delayed subquery to be evaluated is the one
with the lowest cardinality.

Once the first subquery is selected, it is evaluated at the
corresponding endpoints and its results are used to update
the bindings hashmap. SAPE continues to select the next
subquery to be evaluated until all subqueries are executed.
When executing a subquery with its variables bound to val-
ues from the bindings hashmap, SAPE groups values from
the hashmap into blocks and submits a subquery for each
block (as opposed to a subquery for each value).

Algorithm 3 describes our selectivity-aware evaluation
technique for subqueries. The input is a set of independent
subqueries with their delay decisions. Each subquery con-
tains its triple patterns, the relevant endpoints (sources),
the projection variables, and whether the subquery is op-
tional. The algorithm initializes the request handler which
creates a thread per relevant endpoint (line 1). If there is
only one subquery, the algorithm evaluates the whole query
at all relevant endpoints independently (line 3). Then, it ag-
gregates the results obtained from relevant endpoints, joins



the partial results from different endpoints, if necessary, and
returns the final query answer (line 4).

If there is more than one subquery, SAPE iterates over
all input subqueries and evaluates each subquery at its rel-
evant endpoints (lines 6-19). In the first phase, non-delayed
subqueries are evaluated and their results are collected con-
currently (lines 6-7). This step is non-blocking, i.e, each
thread is assigned all relevant subqueries at the same time.

Whenever possible, the results of non-delayed subqueries
are joined together. This reduces the number of found bind-
ings used in delayed subqueries. In the second phase, SAPE
evaluates the delayed subqueries using the found bindings
from the first phase (lines 10-18). SAPE selects the next
delayed subquery to be the one with the smallest estimated
cardinality (line 11). SAPE formulates a set of modified
subqueries from the subquery itself using the found bindings
(line 12). It appends a data block to the subquery using the
SPARQL VALUES construct, which allows multiple values
to be specified in the data block. If the subquery contains
triple patterns of the form (?s, ?p, 7o), the source selec-
tion process is repeated using the found bindings to reduce
the number of relevant endpoints (line 13). Without this
refinement, such subqueries are relevant to all endpoints.

We empirically verified that the source selection refine-

ment step on irrelevant endpoints using ASK queries costs
significantly less than evaluating the delayed subquery with
the found bindings. Finally, the bound subqueries are eval-
uated and their results are merged (lines 15-16). SAPE up-
dates the set of found bindings using the current subquery
results (line 17). After that, the evaluated subquery is re-
moved from the delayed subqueries list (line 18). SAPE
continues to evaluate the other subqueries until no more
delayed subqueries are left.
Join Evaluation. Each endpoint thread maintains a set
of relevant subqueries and their corresponding results. This
information is encapsulated in the request handler object
which is then passed to the threads performing the joins
(line 19). Each subquery corresponds to a relation (R)
for which we know the true cardinality and is partitioned
among a set of threads. The join evaluation algorithm has
four main steps: (i) For each subquery, it collects aggre-
gate statistics (relation size and number of partitions) from
all threads. (7) It then uses a cost-based query optimizer
based on the Dynamic Programming (DP) enumeration al-
gorithm [21]. The DP algorithm starts with a join tree of
size 1, i.e., a single relation, where the join cost is initially
zero. It then builds larger join trees by considering the rest
of the relations, pruning expensive partial plans as early as
possible. At each DP step, SAPE joins the current subplan
with another relation (R) leading to a new state S’ with
cost: Cost(S’) = min(Cost(S’), Cost(S)+ JoinCost(S, R)).
Since the expanded state S’ can be reached using differ-
ent orders, we associate each state with the minimum cost
found. Using an in-memory hash join algorithm, joining the
subplan at state S with another relation R has two phases;
hashing and probing. Assuming that S is the smaller rela-
tion, the join cost is estimated as follows:

. 1 1
JoinCost(S, R) = S C(R,
( ’ ) S.threadsl |+ R.threads (£, v)
hashing probing

All threads with the smaller relation build a hash table for
their part of S. The threads that maintain R evaluate the
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Table 1: Datasets used in experiments.
Benchmark Endpoint Triples
QFed DailyMed 164,276

Diseasome 91,182
DrugBank 766,920
Sider 193,249
Total Triples 1,215,627
LargeRDFBench LinkedTCGA-M 415,030,327
LinkedTCGA-E 344,576,146
LinkedTCGA-A 35,329,868
ChEBI 4,772,706
DBPedia-Subset 42,849,609
DrugBank 517,023
Geo Names 107,950,085
Jamendo 1,049,647
KEGG 1,090,830
Linked MDB 6,147,996
New York Times 335,198
Semantic Web Dog Food 103,595
Affymetrix 44,207,146
Total Triples 1,003,960,176
LUBM 256 Universities 35,306,161

join by probing these hash tables with the found bindings of
the join variables. (4i¢) Given the devised join order, SAPE
joins the different subqueries together to produce the query
answer. (i) Finally, SAPE aggregates the joined results
from the individual threads and returns the result.

5. EXPERIMENTAL STUDY
5.1 Evaluation Setup

Compared Systems. We evaluate Lusail®> against one
index-free system, FedX [34], and two index-based systems,
SPLENDID [13] and HiBISCuS [31]. [30] has shown that
FedX outperformed other systems on the majority of queries
and datasets. HiBISCuS [31] is an add-on to improve per-
formance; we use it on top of FedX. SPLENDID showed
competitive performance to FedX on several queries in [30]
and LargeRDFBench®. Similarly to Lusail, both FedX and
SPLENDID support multiple-threads.

Computing Infrastructure. We used two settings for our
experiments: two local clusters, 84-cores and 480-cores, and
the public cloud. The 84-cores cluster is a Linux cluster of 21
machines, each with 4 cores and 16GB RAM, connected by
1Gbps Ethernet. The 480-cores cluster is a Linux cluster of
20 machines, each with 24 cores and 148GB RAM, connected
by 10Gbps Ethernet. We use the 8/-cores cluster in all
experiments except those that need 256 endpoints for the
LUBM dataset. For the public cloud, we use 18 virtual
machines on the Azure cloud to form a real federation.
Datasets. We used several real and synthetic datasets. Ta-
ble 1 shows their statistics. QFed [26] is a federated bench-
mark of four different real datasets. Although the total num-
ber of triples used in QFed is only 1.2 million, there are in-
terlinks between the four datasets, which makes federated
query evaluation challenging. LargeRDFBench is a recent
federated benchmark of 13 different real datasets with more
than 1 billion triples in total. We also used the synthetic
LUBM benchmark [14] to generate data for 256 universities,
each with around 138K triples. It includes links between the
different universities through students and professors.
Queries. QFed [26] has different categories of queries. Each
query has a label C followed by the number of entities
for each class, and a label P followed by the number of
predicates linking different datasets. LUBM comes with its

’https://github.com/Lusail/lusail
3https://github.com/AKSW/LargeRDFBench
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benchmark queries. We only used the queries that access
multiple endpoints. Queries Q1, @2, and Q3 in our exper-
iments correspond to @2, Q9, and Q13 in the benchmark
while @4 is a variation of Q9; it retrieves extra informa-
tion from remote universities. LargeRDFBench has three
categories: simple S, complex C, and large (big) B. Larg-
eRDFBench subsumes the FedBench benchmark [33]. The
complex category contains 10 queries with a high number of
triple patterns and advanced SPARQL clauses. The large
category has 8 queries with large intermediate results.
Endpoints. We used Jena Fuseki 1.1.1 as the SPARQL en-
gine at the endpoints for LUBM and QFed. Since Jena runs
out of memory while indexing LargeRDFBench endpoints,
we used a Virtuoso 7.1 instance for each of the 13 endpoints
in LargeRDFBench. The standard, unmodified installation
of each SPARQL engine was run at the endpoints and used
by all federated systems in our experiments.

Data Preprocessing Cost. Index-based systems such as
SPLENDID and HiBISCuS require a preprocessing phase
that generates summaries about the data schemas and col-
lects statistics that are used during query optimization. In
real applications, endpoints might not allow collecting these
statistics. Moreover, it is a time consuming process domi-
nated by the dataset size. For example, SPLENDID needs
25 and 3,513 seconds to pre-process QFed and LargeRDF-
Bench, respectively. In contrast, Lusail and FedX do not
require any preprocessing. Hence, index-free methods are
preferred in a large scale and dynamic environment, since
endpoints can join and leave the federation at no cost.

In the rest of this section, we present the results of our
evaluation on a local cluster and on a geo-distributed set-
tings, in Sections 5.2 and 5.3, respectively. We analyze the
different costs of Lusail’s query processing and its sensitivity
to the threshold for delayed queries in Section 5.4.

In all subsequent experiments, all systems are allowed to
cache the results of source selection. Each query is run three
times and we report the average of the last two. We set a
time limit of one hour per query before aborting.

5.2 Lusail on a Local Cluster

‘We compare Lusail to FedX, HiBISCuS, and SPLENDID.
They are all deployed on one machine of the 84-cores cluster.
The endpoints are also deployed on the same cluster.
QFed Dataset. Figure 8 shows the query performance of
Lusail compared to FedX and HiBISCuS. SPLENDID timed
out in all QFed queries except C2P2 which is answered in
56 seconds. Lusail achieves better performance than FedX
and HiBISCuS for all queries. Queries with filter, namely
C2P2BF, C2P2BOF, C2P2F and C2P20F, have high se-
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based on the location of data instances.

lectivity, i.e., less intermediate data. Hence, most of these
queries are answered within a few seconds. Lusail is up to
six times faster than other systems for these queries. Using
big literal object (C2P2B, C2P2B0) increases the volume of
communicated data. Hence, FedX and HiBISCuS timed out
after one hour in C2P2BO0, while FedX took significant time
to evaluate C2P2B, on which HiBISCuS timed out. This is
due to the large size of communicated data and the num-
ber of remote requests. Lusail successfully answered both
queries in less than 2 seconds.

LUBM Dataset. This experiment utilizes up to four uni-
versity datasets? from the LUBM benchmark, each in a dif-
ferent endpoint. Figures 9(a) and 9(b) show the results
using two and four endpoints, respectively. The datasets
at the endpoints have the same schema. Therefore, FedX
and HiBISCuS cannot create exclusive groups. Instead, a
subquery is created per triple pattern and is sent to all end-
points. Bound joins are then formulated using all the results
retrieved from the different endpoints. This leads to a huge
number of remote requests. Lusail utilizes the schema as
well as the location of data instances accessed by the query
to formulate the subqueries. Thus, Lusail discovered that
both @I and @2 have only one subquery and their final re-
sults can be formulated by sending the whole query to each
endpoint independently.

Q3 and Q4 need to join data from different endpoints.
@3 finds graduate students who received their undergradu-
ate degree from university0. This limits the size of interme-
diate data and the number of endpoints. FedX and HiBIS-
CuS do not utilize such filtering so they sent the query to
all endpoints. Lusail decomposed the query into two sub-
queries: the first subquery (students who obtained an un-
dergraduate degree from university0) is sent to the relevant
endpoint. The second subquery contains only (?x, rdf:type,
ub:GraduateStudent), which is relevant to all endpoints.
Hence, Lusail decided to delay its evaluation and managed to
outperform the other systems on four endpoints. Lusail de-
composed @4 into two subqueries, with the second subquery
delayed until the results of the first subquery are ready. The
figures illustrate that Lusail is up to three orders of magni-
tude faster than FedX and HiBISCuS for queries Q1, Q2,
and Q4. FedX and HiBISCuS ran out of memory for Q1
on four endpoints. SPLENDID managed to run only Q8
on four endpoints and took 52 seconds, significantly slower
than all other systems, so it is not included in the figures.
LargeRDFBench Dataset. Figure 10 shows the re-
sponse times of the different systems on the LargeRDFBench

4The other systems do not scale beyond four endpoints while
Lusail scales to 256 endpoints (Figures 12(b) and 12(c)).



Time in seconds (logscale)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12813S14 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10BI B2 B3 B4 B5 B6 B7 B8

Figure 10: LargeRDFBench: Most of the simple queries do not access large intermediate data, unlike the
complex and large queries. X corresponds to time out while missing bars correspond to runtime errors.

B Lusail B8 FedX EE HiBIS B SPLND

B Lusail B8 FedX EE HiBIS B SPLND

B Lusail B FedX I HiBIS

Time in seconds (logscale)
Time in seconds (logscale)

Time in seconds (logscale)

Cl C2 C3 C4 C5 C6 C7T C8 C9 Cl10

(a) LargeRDFBench: Complex Queries

Bl B2 B3

B4 BS

(b) LargeRDFBench: Large Queries

B6 B7 B8

Ql

@ @ @
(c) LUBM Queries: Two Endpoints

Figure 11: Geo-distributed federation: endpoints are deployed in 7 different regions of the Azure cloud.
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queries. The performance of Lusail and FedX is compara-
ble for most of the simple queries. The preprocessing per-
formed by the index-based systems, HIBISCuS and SPLEN-
DID, sometimes results in better performance on the simple
queries, but not always. For example, HiBISCuS is much
slower than Lusail for S18 and S14, and SPLENDID has
the worst performance in S6, 57, S9, and S14. Lusail is the
fastest system for S138 and S14 since these two queries re-
turn relatively large intermediate results. However, Lusail
is generally not faster than the index-based systems on the
simple queries since they do not generate large intermediate
results and they access datasets with different schemas, so
Lusail’s optimizations do not improve performance.

The complex and large (or big) queries have a larger num-
ber of triple patterns per query, on average, and access a
larger amount of intermediate data. Lusail achieves sig-
nificantly better performance than other systems for most
of the complex queries (Figure 10). C5 contains two dis-
joint subgraphs joined by a filter variable, a query not sup-
ported by Lusail’s competitors. Both FedX and HiBISCuS
could not finish on C7 and C9 within an hour. SPLEN-
DID evaluated only 5 out of the 10 complex queries. C2
is a selective query returning 4 results, which explains why
all systems have comparable performance. FedX achieved
the best performance for C4 followed by Lusail, while Hi-
BISCuS could not evaluate the query within one hour. CJ
contains a LIMIT clause of 50 results. Lusail’s current im-
plementation uses a simple approach for the LIMIT clause.
It computes all the final results and returns only the top 50
results. FedX cuts short the query execution once the first
50 results are obtained, so it outperformed Lusail on CJ.
SPLENDID achieved the best performance only on C6, and
other systems have comparable performance on this query.
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Lusail is superior for all large queries. These queries gen-

erate large intermediate results, which explains the high re-
sponse time of Lusail. Similar to C5, B5 and B6 contain two
disjoint subgraphs joined by a filter variable, which is not
supported by systems other than Lusail. For the remaining
queries, FedX and HiBISCuS timed out on two queries and
returned no results on another two. SPLENDID succeeded
only on B2 and timed out on the rest.
Summary. Lusail is the only system that successfully ex-
ecutes all queries of LargeRDFBench, often showing orders
of magnitude better performance than other systems. In
contrast, the other systems time out or fail to execute on
some queries, in addition to their performance being highly
variable and unpredictable.

5.3 Lusail in a Geo-Distributed Setting

In this section, we evaluate Lusail by simulating a real
scenario on the cloud as well as using real endpoints.
Using the MS Azure cloud. We create a real geo-
distributed setting by deploying SPARQL endpoints in 7 re-
gions of the Azure cloud in the US and Europe. We used 17
D4 Azure VMs (8 Cores, 28 GB memory), 13 for the Larg-
eRDFBench endpoints and four for the LUBM and QFed
endpoints, interchangeably. Lusail and its competitors are
deployed on one D5_V2 instance (16 Cores, 56 GB memory)
in Central US. None of the 17 VMs is located in Central US.

The communication cost imposed a clear overhead. For
QFed, neither FedX nor HiBISCuS were able evaluate most
of the queries. FedX finished only C2P2BF in 23 seconds,
compared to 1.9 seconds for Lusail, while HIBISCusS finished
only C2P2 in 4,477 seconds, compared to 9.5 seconds for Lu-
sail. Figures 11(a) and 11(b) show the query response times
of both complex and large queries on LargeRDFBench. We
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Figure 12: Profiling Lusail by varying query complexity, the number of endpoints, and the data size.

Table 2: Query runtimes (sec) on real endpoints.
ZR: zero results error, RE: runtime exception.

Bio2RDF LargeRDFBench
R1 R2 R3 R4 R5 |S3 S4 S7 S10 S14 C9
Lusail | 123 8.1 356 287 139(19 21 19 33 89 23
FedX | 1281 7215 RE ZR RE |05 05 21.6 148 453 TO

omit the simple queries since they exhibit the same behav-
ior. The high communication overhead affected the runtime
of all systems. For complex queries, FedX timed out on two
queries and gave runtime errors on two others. HiBISCuS
timed out on three queries but did reasonably well in the
rest. SPLENDID was able evaluate only five out of the ten
complex queries. Lusail outperformed all other systems in
all complex queries, in some cases by up to two orders of
magnitude (CI1 and C9). Large queries show the same be-
havior. Lusail is the only system that returns results, with
no time out or runtime errors.

Figure 11(c) shows results on two endpoints of the LUBM

dataset. Lusail’s query response times increased slightly
compared to the local cluster (Figure 9(a)). All queries
finished in around 1 second. In contrast, both FedX and
HiBISCuS required more than 1,000 seconds; an order of
magnitude degradation compared to the local cluster. This
shows their sensitivity to the communication overhead since
they tend to communicate large volumes of data. With four
endpoints, FedX and HiBISCuS were able to evaluate only
@3 and ran out of memory or timed out on the rest.
Real Endpoints. In this experiment, we use Lusail
and FedX to query real independently deployed endpoints.
Specifically, we use the Bio2RDF endpoints® and a subset of
the LargeRDFBench endpoints®. We extracted five repre-
sentative queries from the Bio2RDF query log: R1, R2, R3,
R4, and R5 (queries shown in [3]). For LargeRDFBench,
we evaluated six queries: S8, S4, S7, S10, S14, and C9. We
use a single machine of the 84-cores cluster to run Lusail
and FedX. We show the results in Table 2. For S8 and S/,
which are simple and selective queries, FedX outperforms
Lusail, as it does when running on a local cluster (Figure 10).
FedX was unable to execute four of the other queries, and
is one or two orders of magnitude slower than Lusail on the
queries that it does execute. This demonstrates that Lusail
is capable of answering queries accessing real independently
deployed endpoints with good performance.

5.4 Analyzing Lusail

Profiling Lusail. Lusail has three phases: source se-
lection, query analysis using LADE, and query execution
using SAPE. In this experiment, we profile these phases

Shttp://bio2rdf.org/
Shttp://manager.costfed.aksw.org/costfed-web
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while varying the query complexity and data size. We use
LargeRDFBench queries with different complexities, simple
(S10), complex (C4), and large (B1). Lusail is deployed
on a single machine of the 84-cores cluster. The results are
shown in Figure 12(a). Source selection and query analy-
sis require a small amount of time compared to query ex-
ecution, especially for C4 and B1. As expected, the total
response time is dominated by the query execution phase.
Lusail’s query analysis phase is lightweight, requiring less
time than the source selection phase in S10 and C4. BI1
requires performing a union operation between two sets of
triple patterns and retrieves its data from the endpoints with
the largest data sizes. Hence, the query analysis phase takes
slightly more time than the source selection phase. In all
cases, query analysis does not add significant overhead.

The cost of query processing in Lusail also depends on the
number of endpoints and the sizes of the datasets. There-
fore, we profiled Lusail while varying the number of end-
points, which also increases the data size. LUBM allows
us to increase both endpoints and data size in a systematic
way by adding more universities. We deployed 256 univer-
sity endpoints on the 480-cores cluster. Lusail is deployed
on one machine in the same cluster.

Figures 12(b) and 12(c) show the time required for each
phase of Q8 and @4, respectively. Both queries join data
from different endpoints to produce the final result. Lusail’s
query analysis is lightweight, especially for @3 since it has
only two triple patterns. For @3, Lusail detects the GJVs
using the source selection information, i.e., it does not need
to communicate with the endpoints. Source selection time
is substantial for these queries and increases slightly as the
number of endpoints increases. Query execution time is the
dominant factor as the number of endpoints increases. The
figures show the total query response time with and without
caching the results of ASK and check queries. The cache
helps, especially for the more complex @4 and when the
number of endpoints is large.

Delayed Subqueries. This experiment evaluates different
threshold values for identifying subqueries to delay, namely
W, 4+ o, and pu + 20, in addition to delaying only sub-
queries with outlier estimated cardinalities. We used the
Chauvenet criterion [7] for outlier detection. In this experi-
ment, we use our LargeRDFBench deployment in Microsoft
Azure. Figure 13 reports the total time for evaluating the
queries of each category in LargeRDFBench. For simple
and complex queries, u+ 20 and QOutliers allowed most sub-
queries to be evaluated concurrently and delayed only a few
of them. Hence, these thresholds missed the opportunity to
delay some subqueries that could reduce the communication
cost and the cost of joining the fetched data. Thus, u + 20
and Outliers performed significantly worse than p and p+o,
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as seen in the figure. For large queries, delaying too many
subqueries limits parallelism. Thus, p performed signifi-
cantly worse than others since too few subqueries were eval-
uated concurrently while the rest were delayed. As shown,
u + o consistently performs well in all the three categories
and hence we use it in our system.
Effect of LADE and SAPE: This experiment measures
the gain obtained through LADE and SAPE compared to
FedX as a baseline. FedX and Lusail are each deployed on a
single machine of the 84-cores cluster, and the endpoints are
on the same cluster. We only report results for two queries
from each benchmark. We observed similar behavior in most
of the queries with medium and high complexity. Figure 14
shows the total response time for each query using FedX, Lu-
sail with LADE alone, and Lusail with LADE and SAPE.
FedX takes a significant amount of time for query execution
due to its static query decomposition and bound join evalua-
tion. It could not process three queries out of the six within
the time limit of one hour. In these three queries, FedX
sent a large number of requests to the endpoints and spent
the hour waiting for them to finish. LADE decomposition
shifts some of the computation of intermediate results from
Lusail to the endpoints, which enables Lusail to outperform
FedX by up to three orders of magnitude. Using SAPE ex-
ecution in addition to LADE always improves performance
compared to using LADE alone.

In [3], we show additional experiments to demonstrate
that Lusail reduces the memory footprint and communica-
tion costs compared to FedX.

6. RELATED WORK

Distributed RDF systems [1, 17, 15, 36, 19, 18] deal with
data stored in a single endpoint, where the data is replicated
and/or partitioned among different servers in the same clus-
ter [2, 25]. The goal of these systems is to speed up query
execution for RDF data at one endpoint. In contrast, feder-
ated RDF systems have no control over the data; the data is
accessible through independent, remote SPARQL endpoints.
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Federated SPARQL systems can be classified into index-
based and index-free. The source selection in index-based
systems, such as ANAPSID [5], SPLENDID [13], and Hi-
BISCusS [31], is based on collected information and statistics
about the data hosted by each endpoint. The cost of adding
a new endpoint is proportional to the size of the data. Index-
free systems, such as FedX [34] and Lusail, do not assume
any prior knowledge of the datasets. FedX [34] and Lusail
utilize SPARQL ASK queries to find the relevant endpoints
and cache the results of these queries for future use. Thus,
the startup cost and the cost of adding a new endpoint is
small. Federated SPARQL systems usually divide the query
into exclusive groups of triple patterns, where each group
has a solution at only one endpoint. This decomposition is
typically based on the schema and not the data instances.
In contrast, Lusail decomposes the query based on checking
the data instances, thereby shifting more of the computation
of intermediate results to the endpoints.

APlug [28] automatically tunes the execution of a bag of
independent tasks. Unlike APlug, the execution of the in-
dependent tasks in Lusail, i.e., the subquery ordering, is
followed by joining their results. Moreover, Lusail considers
the communication cost of executing each subquery to de-
termine the best ordering which balances between the com-
munication cost and the degree of parallelism.

Several efforts, such as Ariadne [6], InfoMaster [9], Gar-
lic [27], and Disco [35], have focused on web-based data in-
tegration over heterogeneous information sources [24]. In
general, a wrapper is run at each data source to translate be-
tween the supported languages and data models. Moreover,
systems, such as Piazza [16], coDB [11] and HePToX [§],
are peer-to-peer systems that interconnect a network of het-
erogeneous data sources. Since Lusail works with SPARQL
endpoints, it does not need wrappers, and it takes advantage
of the capabilities of SPARQL (e.g., ASK). Moreover, while
these systems utilize source descriptions (schema), Lusail
does not assume any prior knowledge about the datasets.
In terms of query decomposition, these systems also aim
at dividing a query into exclusive subqueries based on the
known schema, where each subquery is submitted to only
one data source. In contrast, Lusail’s decomposition bene-
fits from the actual location of data matching the query to
maximize the local computation and increase parallelism.

7. CONCLUSION

Lusail optimizes federated SPARQL query processing
through a locality-aware decomposition (LADE) at compile
time followed by selectivity-aware and parallel query exe-
cution (SAPE) at run time. The LADE decomposition is
based not only on the schema but also on the actual loca-
tion of data instances satisfying the query triple patterns.
This decomposition increases parallelism and minimizes the
retrieval of unnecessary data. SAPE query execution orders
queries at run time by delaying subqueries expected to re-
turn large results, and chooses join orders that achieve a
high degree of parallelism. Lusail outperforms state-of-the-
art systems by orders of magnitude and scales to more than
250 endpoints with data sizes up to billions of triples.

As future work, we plan to investigate keyword search as a
means for querying federated RDF systems, and to develop
methods for returning fast and early results during federated
query execution. Both extensions aim to facilitate interac-
tive data discovery and exploration on linked web data.
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