
Clustering Uncertain Graphs

Matteo Ceccarello

Department of Information

Engineering

University of Padova (Italy)

ceccarel@dei.unipd.it

Carlo Fantozzi

Department of Information

Engineering

University of Padova (Italy)

carlo.fantozzi@unipd.it

Andrea Pietracaprina

Department of Information

Engineering

University of Padova (Italy)

capri@dei.unipd.it

Geppino Pucci

Department of Information

Engineering

University of Padova (Italy)

geppo@dei.unipd.it

Fabio Vandin

Department of Information

Engineering

University of Padova (Italy)

vandinfa@dei.unipd.it

ABSTRACT
An uncertain graph G = (V,E, p : E ! (0, 1]) can be viewed
as a probability space whose outcomes (referred to as pos-
sible worlds) are subgraphs of G where any edge e 2 E oc-
curs with probability p(e), independently of the other edges.
These graphs naturally arise in many application domains
where data management systems are required to cope with
uncertainty in interrelated data, such as computational biol-
ogy, social network analysis, network reliability, and privacy
enforcement, among the others. For this reason, it is impor-
tant to devise fundamental querying and mining primitives
for uncertain graphs. This paper contributes to this en-
deavor with the development of novel strategies for cluster-
ing uncertain graphs. Specifically, given an uncertain graph
G and an integer k, we aim at partitioning its nodes into
k clusters, each featuring a distinguished center node, so to
maximize the minimum/average connection probability of
any node to its cluster’s center, in a random possible world.
We assess the NP-hardness of maximizing the minimum con-
nection probability, even in the presence of an oracle for the
connection probabilities, and develop e�cient approxima-
tion algorithms for both problems and some useful variants.
Unlike previous works in the literature, our algorithms fea-
ture provable approximation guarantees and are capable to
keep the granularity of the returned clustering under con-
trol. Our theoretical findings are complemented with several
experiments that compare our algorithms against some rel-
evant competitors, with respect to both running-time and
quality of the returned clusterings.

PVLDB Reference Format:

Matteo Ceccarello, Carlo Fantozzi, Andrea Pietracaprina, Gep-
pino Pucci, Fabio Vandin. Clustering Uncertain Graphs. PVLDB,
4(11): �472�-�4�4, 2017.
DOI: 10.1145/3164135.3164143

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/12.
DOI: 10.1145/3164135.3164143

1. INTRODUCTION
In the big data era, data management systems are often

required to cope with uncertainty [2]. Also, many applica-
tion domains increasingly produce interrelated data, where
uncertainty may concern the intensity or the confidence of
the relations between individual data objects. In these cases,
graphs provide a natural representation for the data, with
the uncertainty modeled by associating an existence proba-
bility to each edge. For example, in Protein-Protein Inter-
action (PPI) networks, an edge between two proteins cor-
responds to an interaction that is observed through a noisy
experiment characterized by some level of uncertainty, which
can thus be conveniently cast as the probability of existence
of that edge [3]. Also, in social networks, the probability of
existence of an edge between two individuals may be used to
model the likelihood of an interaction between the two indi-
viduals, or the influence of one of the two over the other [22,
1]. Other applications of uncertainty in graphs arise in the
realm of mobile ad-hoc networks [6, 16], knowledge bases [8],
and graph obfuscation for privacy enforcement [7]. This va-
riety of application scenarios calls for the development of
fundamental querying and mining primitives for uncertain
graphs which, as argued later, can become computationally
challenging even for graphs of moderate size.

Following the mainstream literature [30], an uncertain
graph G = (V,E, p) is defined over a set of nodes V , a set
of edges E between nodes of V , and a probability function
p : E ! (0, 1]. G can be viewed as a probability space whose
outcomes (referred to as possible worlds, in accordance with
the terminology adopted for probabilistic databases [5, 13])
are graphs G = (V,E0) where any edge e 2 E is included in
E0 with probability p(e), independently of the other edges.
The main objective of this work is to introduce novel strate-
gies for clustering uncertain graphs, aiming at partition-
ing the node set V so to maximize two connectivity-related
objective functions, which can be seen as reinterpretations
of the objective functions of the classical k-center and k-
median problems [31] in the framework of uncertain graphs.

In the next subsection we provide a brief account on the
literature on uncertain graphs most relevant to our work.

1.1 Related work
Early work on network reliability has dealt implicitly with

the concept of uncertain graph. In general, given an uncer-

472

8

tain graph, if we interpret edge probabilities as the comple-
ment of failure probabilities, a typical objective of network
reliability analysis is to determine the probability that a
given set of nodes is connected under random failures. This
probability can be estimated through a Monte Carlo ap-
proach, which however becomes prohibitively cumbersome
for very low reliability values. In fact, even the simplest
problem of computing the exact probability that two distin-
guished nodes s and t are connected is known to be #P -
complete [4, 33]. In the last three decades, several works
have tried to come up with better heuristics for various reli-
ability problems on uncertain graphs (see [21] and references
therein). Some works have studied various formulations of
the problem of determining the most reliable source in a
network subject to edge failures, which are special cases of
the clustering problems studied in this paper (see [14] and
references therein).

The definition of uncertain graph adopted in this paper
has been introduced in [30], where the authors investigate
various probabilistic notions of distance between nodes, and
develop e�cient algorithms for determining the k nearest
neighbors of a given source under their di↵erent distance
measures. It has to be remarked that the proposed mea-
sures do not satisfy the triangle inequality, thus ruling out
the applicability of traditional metric clustering approaches.
In the last few years, there has been a multitude of works
studying several analytic and mining problems on uncertain
graphs. A detailed account of the state of the art on the
subject can be found in [28], where the authors also inves-
tigate the problem of extracting a representative possible
world providing a good summary of an uncertain graph for
the purposes of query processing.

A number of recent works have studied di↵erent ways of
clustering uncertain graphs, which is the focus of this paper.
In [23] the authors consider, as a clustering problem, the
identification of a deterministic cluster graph, which corre-
sponds to a clique-cover of the nodes of the uncertain graph,
aiming at minimizing the expected edit distance between the
clique-cover and a random possible world of the uncertain
graph, where the edit distance is measured in terms of edge
additions and deletions. A 5-approximation algorithm for
this problem is provided in [23]. The main drawback of this
approach is that the formulation of the clustering problem
does not allow to control the number of clusters. Moreover,
the approximate solution returned by the proposed algo-
rithm relies on a shallow star-decomposition of the topology
of the uncertain graph, which always yields a large number
of clusters (at least |V |/(� + 1), where � is the maximum
degree of a node in V). Thus, the returned clustering may
not exploit more global information about the connectivity
properties of the underlying topology.

The same clustering problem considered in [23] has been
also studied by Gu et al. in [18] for a more general class
of uncertain graphs, where the assumption of edge indepen-
dence is lifted and the existence of an edge (u, v) is correlated
to the existence of its adjacent edges (i.e., edges incident on
either u or v). The authors propose two algorithms for this
problem, one that, as in [23], does not fix a bound on the
number of returned clusters, and another that fixes such a
bound. Neither algorithm is shown to provide worst-case
guarantees on the approximation ratio.

In [25] a clustering problem is defined with the objective
of minimizing the expected entropy of the returned cluster-

ing, defined with respect to the adherence of the clustering
to the connected components of a random possible world.
With this objective in mind, the authors develop a cluster-
ing algorithm which combines a standard k-means strategy
with the Monte Carlo sampling approach for reliability es-
timation. No theoretical guarantee is o↵ered on the quality
of the returned clustering with respect to the defined ob-
jective function, and the complexity of the approach, which
does not appear to scale well with the size of the graph,
also depends on a convergence parameter which cannot be
estimated analytically. In summary, while the pursued ap-
proach to clustering has merit, there is no rigorous analysis
of the tradeo↵s that can be exercised between the quality
of the returned clustering and the running time of the algo-
rithm.

In [34] the Markov Cluster Algorithm (mcl) is proposed
for clustering weighted graphs. In mcl, an edge weight is
considered as a similarity score between the endpoints. The
algorithm does not specifically target uncertain graphs, but
it can be run on these graphs by considering the edge prob-
abilities as weights. In fact, some of the aforementioned
works on the clustering of uncertain graphs have used mcl

for comparison purposes. The algorithm focuses on finding
so-called natural clusters, that is, sets of nodes characterized
by the presence of many edges and paths between their mem-
bers. The basic idea of the algorithm is to perform random
walks on the graph and to partition the nodes into clusters
according to the probability of a random walk to stay within
a given cluster. Edge weights (i.e., the similarity scores) are
used by the algorithm to define the probability that a given
random walk traverses a given edge. The algorithm’s be-
havior is governed by a parameter, called inflation, which
indirectly controls the granularity of the clustering. How-
ever, there is no fixed analytic relation between the inflation
parameter and the number of returned clusters, since the
impact of the inflation parameter is heavily dependent on
the graph’s topology and on the edge weights. The author
of the algorithm maintains an optimized and very e�cient
implementation of mcl, against which we will compare our
algorithms in Section 5.

Finally, it is worth mentioning that the problem of influ-
ence maximization in a social network under the Indepen-
dent Cascade model, introduced in [22], can be reformulated
as the search of k nodes that maximize the expected num-
ber of nodes reachable from them on an uncertain graph
associated with the social network, where the probability
on an edge (u, v) represents the likelihood of u influencing
v. A constant approximation algorithm for this problem,
based on a computationally heavy Monte Carlo sampling,
has been developed in [22], and a number of subsequent
works have targeted faster approximation algorithms (see
[9, 32] and references therein). It is not clear whether the
solution of this problem can be employed to partition the
nodes into k clusters that provide good approximations for
our two objective functions.

1.2 Our Contribution
In this paper we develop novel strategies for clustering

uncertain graphs. As observed in [25], a good clustering
should aim at high probabilities of connectivity within clus-
ters, which is however a hard goal to pursue, both because
of the inherent di�culty of clustering per se, and because of
the aforementioned #P-completeness of reliability estima-

473

tion in the specific uncertain graph scenario. Also, it has
been observed [30, 25] that the straightforward reduction to
shortest-path based clustering where edge probabilities be-
come weights may not yield significant outcomes because it
disregards the possible world semantics.

Motivated by the above scenario, we will adopt the con-
nection probability between two nodes (a.k.a. two-terminal
reliability), that is, the probability that the two nodes be-
long to the same connected component in a random pos-
sible world, as the distance measure upon which we will
base our clustering. As a first technical contribution, which
may be of independent interest for the broader area of net-
work reliability, we show that this measure satisfies a form
of triangle inequality, unlike other distance measures used
in previous works. This property allows us to cast the prob-
lem of clustering uncertain graphs into the same framework
as traditional clustering approaches on metric spaces, while
still enabling an e↵ective integration with the possible world
semantics is encapsulated in the use of the connection prob-
ability.

Specifically, we study two clustering problems, together
with some variations. Given in input an n-node uncertain
graph G and an integer k, we seek to partition the nodes
of G into k clusters, where each cluster contains a distin-
guished node, called center. We will devise approximation
algorithms for each of the following two optimization prob-
lems: (a) maximize the Minimum Connection Probability of
a node to its cluster center (MCP problem); and (b) max-
imize the Average Connection Probability of a node to its
cluster center (ACP problem).

We first prove that the MCP problem is NP-hard even in
the presence of an oracle for the connection probability, and
make the plausible conjecture that the ACP problem is NP-
hard as well. Our approximation algorithms for the MCP
and ACP problems are both based on a simple determinis-
tic strategy that computes a partial k-clustering aiming at
covering a maximal subset of nodes, given a threshold on
the minimum connection probability of a node to its clus-
ter’s center. By incorporating this strategy within suitable
guessing schedules, we are able to obtain k-clusterings with
the following guarantees:

• for the MCP problem, minimum connection probabil-
ity ⌦

�
p2

opt�min

(k)
�
, where p

opt�min

(k) is the maximum
minimum connection probability of any k-clustering.

• for the ACP problem, average connection probabil-
ity ⌦

�
(p

opt�avg

(k)/ log n)3
�
, where p

opt�avg

(k) is the
maximum average connection probability of any k-
clustering.

We also discuss variants of our algorithms that allow to im-
pose a limit on the length of the paths that contribute to
the connection probability between two nodes. Computing
provably good clusterings under limited path length may
have interesting applications in scenarios such as the analy-
sis of PPI networks, where topological distance between two
nodes diminishes their similarity, regardless of their connec-
tion probability.

We first present our clustering algorithms assuming the
availability of an oracle for the connection probabilities be-
tween pairs of nodes. Then, we show how to integrate a
progressive sampling scheme for the Monte Carlo estima-
tion of the required probabilities, which essentially preserves

the approximation quality. Recall that, due to the #P-
completeness of two-terminal reliability, the Monte Carlo
estimation of connection probabilities is computationally in-
tensive for very small values of these probabilities. A key
feature of our approximation algorithms is that they only re-
quire the estimation of probabilities not much smaller than
the optimal value of the objective functions. In the case of
the MCP problem, this is achieved by a simple adaptation of
an existing approximation algorithm for the k-center prob-
lem [19], while for the ACP problem our strategy to avoid
estimating small connection probabilities is novel.

To the best of our knowledge, ours are the first clustering
algorithms for uncertain graphs that are fully parametric in
the number of desired clusters while o↵ering provable guar-
antees with respect to the optimal solution, together with
e�cient implementations. While the theoretical bounds on
the approximation are somewhat loose, especially for small
values of the optimum, we report the results of a number
of experiments showing that in practice the quality of the
clusterings returned by our algorithms is very high. In par-
ticular, we perform an experimental comparison of our algo-
rithms with mcl which, as discussed above, is widely used
in the context of uncertain graphs. We also compare with
a naive adaptation of a classic k-center algorithm to verify
that such adaptations lead to poor results, prompting for the
development of specialized algorithms. We run our experi-
ments on uncertain graphs derived from PPI networks and
on a large collaboration graph derived from DBLP, finding
that our algorithms identify good clusterings with respect to
both our as well as other metrics, while a clustering strat-
egy that is not specifically designed for uncertain graphs,
as the one employed by MCL, may in some cases provide a
very poor clustering. Moreover, on PPI networks, we evalu-
ate the performance of our algorithms in predicting protein
complexes, finding that we can obtain results comparable
with state-of-the-art solutions.

The rest of the paper is organized as follows. In Section 2
we define basic concepts regarding uncertain graphs and for-
malize the MCP and ACP problems. Also, we prove a form
of triangle inequality for the connection probability measure
and discuss the NP-hardness of the two problems. In Sec-
tion 3 we describe and analyze our clustering algorithms. In
Section 4 we show how to integrate the Monte Carlo prob-
ability estimation within the algorithms while maintaining
comparable approximation guarantees. Section 5 reports
the results of the experiments. Finally, Section 6 o↵ers some
concluding remarks and discusses possible avenues of future
research.

2. PRELIMINARIES
Let G = (V,E, p) be an uncertain graph, as defined in the

introduction. In accordance with the established notation
used in previous work, we write G v G to denote that G
is a possible world of G. Given two nodes u, v 2 V , the
probability that they are connected (an event denoted as
u ⇠ v) in a random possible world can be defined as

Pr(u ⇠ v) =
X

GvG

Pr(G)I
G

(u, v),

where

I

G

(u, v) =

(
1 if u ⇠ v in G

0 otherwise

474

We refer to Pr(u ⇠ v) as the connection probability between
u and v in G. The uncertain graphs we consider in this pa-
per, hence their possible worlds, are undirected and, except
for the edge probabilities, no weights are attached to their
nodes/edges.

Given an integer k, with 1 k < n, a k-clustering of G
is a partition of V into k clusters C

1

, . . . , C
k

and a set of
centers c

1

, . . . , c
k

with c
i

2 C
i

, for 1 i k. We aim at
clusterings where each node is well connected to its cluster
center in a random possible world. To this purpose, for a
k-clustering C = (C

1

, . . . , C
k

; c
1

, . . . , c
k

) of G we define the
following two objective functions

min-prob(C) = min
1ik

min
v2C

i

Pr(c
i

⇠ v), (1)

avg-prob(C) = (1/n)
X

1ik

X

v2C

i

Pr(c
i

⇠ v). (2)

Definition 1. Given an uncertain graph G with n nodes
and an integer k, with 1 k < n, the Minimum Connection
Probability (MCP) (resp., Average Connection Probability
(ACP)) problem requires to determine a k-clustering C of G
with maximum min-prob(C) (resp., avg-prob(C)).

By defining the distance between two nodes u, v 2 V as
d(u, v) = ln(1/Pr(u ⇠ v)), with the understanding that
d(u, v) = 1 if Pr(u ⇠ v) = 0, it is easy to see that the
k-clustering that maximizes the objective function given in
Equation (1) (resp., (2)) also minimizes the maximum dis-
tance (resp., the average distance) of a node from its cluster
center. Therefore, the MCP and ACP problems can be re-
formulated as instances of the well-known NP-hard k-center
and k-median problems [35], which makes the former the
direct counterparts of the latter in the realm of uncertain
graphs. However, objective functions that exercise alterna-
tive combinations of minimization and averaging of connec-
tion probabilities are in fact possible, and we leave their
exploration as an interesting open problem.

While the k-center/median problems are NP-hard even
when the distance function defines a metric space, thus, in
particular, satisfying the triangle inequality (i.e, d(u, z)
d(u, v) + d(v, z)), this assumption is crucially exploited by
most approximation strategies known in the literature. So,
in order to port these strategies to the context of uncertain
graphs, we need to show that the distances derived from
the connection probabilities, as explained above, satisfy the
triangle inequality. This is equivalent to showing that for
any three nodes u, v, z, Pr(u ⇠ z) � Pr(u ⇠ v) · Pr(v ⇠ z),
which we prove below.

Fix an arbitrary edge e 2 E and let A(e) be the event:
“edge e is present”. We need the following technical lemma.

Lemma 1. We have Pr(x ⇠ y|A(e)) � Pr(x ⇠ y|¬A(e))
for any pair x, y 2 V .

Proof. Let Gx,y

e

(resp., Gx,y

¬e

) be the set of possible worlds
where x ⇠ y, and edge e is present (resp., not present). We
have that

Pr(x ⇠ y|A(e)) =
X

GvGx,y

e

Pr(G)/p(e),

Pr(x ⇠ y|¬A(e)) =
X

GvGx,y

¬e

Pr(G)/(1� p(e)).

The lemma follows by observing that for any graph G in
Gx,y

¬e

the same graph with the addition of e belongs to Gx,y

e

,
and the corresponding terms in the two summations are
equal.

Theorem 1. For any uncertain graph G = (V,E, p) and
any triplet u, v, z 2 V , we have:

Pr(u ⇠ z) � Pr(u ⇠ v) · Pr(v ⇠ z).

Proof. The proof proceeds by induction on the number
k of uncertain edges, that is, edges e 2 E with p(e) > 0 and
p(e) < 1. Fix three nodes u, v, z 2 V . The base case k = 0
is trivial: in this case, the uncertain graph is deterministic
and for each pair of nodes x, y 2 V , Pr(x ⇠ y) is either 1 or
0, which implies that when Pr(u ⇠ v) · Pr(v ⇠ z) = 1, then
Pr(u ⇠ z) = 1 as well. Suppose that the property holds
for uncertain graphs with at most k uncertain edges, with
k � 0, and consider an uncertain graph G = (V,E, p) with
k+1 uncertain edges. Fix an arbitrary uncertain edge e 2 E
and let A(e) denote the event that edge e is present. For
any two arbitrary nodes x, y 2 V , we can write

Pr(x ⇠ y) = Pr(x ⇠ y|A(e)) · p(e)
+ Pr(x ⇠ y|¬A(e)) · (1� p(e))

= (Pr(x ⇠ y|A(e))� Pr(x ⇠ y|¬A(e))) · p(e)
+ Pr(x ⇠ y|¬A(e)).

By Lemma 1, the term multiplying p(e) in the above expres-
sion is nonnegative. As a consequence, we have that

Pr(u ⇠ v) ·Pr(v ⇠ z)�Pr(u ⇠ z) = A · (p(e))2+B ·p(e)+C,

for some constants A,B,C independent of p(e), with A � 0.
Therefore, the maximum value of Pr(u ⇠ v) · Pr(v ⇠ z) �
Pr(u ⇠ z), as a function of p(e), is attained for p(e) = 0 or
p(e) = 1. Since in either case the number of uncertain edges
is decremented by one, by the inductive hypothesis, the dif-
ference must yield a nonpositive value, hence the theorem
follows.

A fundamental primitive required for obtaining the de-
sired clustering is the estimation of Pr(u ⇠ v) for any two
nodes u, v 2 V . While the exact computation of Pr(u ⇠ v) is
#P -complete [4], for reasonably large values of this probabil-
ity a very accurate estimate can be obtained through Monte
Carlo sampling. More precisely, for r > 0 let G

1

, . . . , G
r

be
r sample possible worlds drawn independently at random
from G. For any pair of nodes u and v we can define the
following estimator

p̃(u, v) =
1
r

rX

i=1

I

G

i

(u, v) (3)

It is easy to see that p̃(u, v) is an unbiased estimator of
Pr(u ⇠ v). Moreover, by taking

r �
3 ln 2

�

"2 Pr(u ⇠ v)
(4)

samples, we have that p̃(u, v) is an (", �)-approximation of
Pr(u ⇠ v), that is,

Pr

✓
|p̃(u, v)� Pr(u ⇠ v)|

Pr(u ⇠ v)
 "

◆
� 1� � (5)

(e.g., see [27, Theorem 10.1]). This approach is very e↵ective
when Pr(u ⇠ v) is not very small. However, when Pr(u ⇠ v)

475

is small (i.e., it approaches 0), the number of samples, hence
the work, required to attain an accurate estimation becomes
prohibitively large.

Even if the probabilities Pr(u ⇠ v) were provided by an
oracle (i.e., they could be computed e�ciently), the MCP
problem remains computationally di�cult. Indeed, consider
the following decision problem: given an uncertain graph
G = (V,E, p), an oracle for estimating pairwise connection
probabilities, an integer k � 1, and p̂ with 0 p̂ 1, is
there a k-clustering C such that min-prob(C) � p̂? We have:

Theorem 2. The above decision problem is NP-hard.

The proof of Theorem 2, which is fairly technical, is based
on a reduction from set cover and is omitted for brevity.
(The proof can be found in [10].) We remark that the NP-
hardness of our clustering problem on uncertain graphs does
not follow immediately from the transformation of connec-
tion probabilities into distances mentioned earlier, which
yields instances of the standard NP-hard k-center clustering
problem, since such a transformation only shows that our
problem is a restriction of the latter, where distances have
the extra constraint to be derived from connection proba-
bilities in the underlying uncertain graph.

We conjecture that a similar hardness result can be proved
for the decision version of the ACP problem. Evidence in
this direction is provided by the fact that by modifying both
the MCP and ACP problems to feature a parametric upper
limit on the lengths of the paths contributing to the connec-
tion probabilities, a variant which we study in Section 3.4,
NP-hardness results for both the modified problems follow
straightforwardly (i.e., when paths of length at most 1 are
considered) from the hardness of k-center and k-median clus-
tering.

3. CLUSTERING ALGORITHMS
A natural approach to finding good solutions for the MCP

and ACP problems would be to resort to the well-known ap-
proximation strategies for the distance-based counterparts
of these problems [31]. However, straightforward implemen-
tations of these strategies may require the computation of
exact connection probabilities (to be transformed into dis-
tances) between arbitrary pairs of nodes, which can in prin-
ciple be rather small. As an example, the popular k-center
clustering strategy devised in [17] relies on the iterated se-
lection of the next center as the farthest point from the set of
currently selected ones, which corresponds to the determi-
nation of the node featuring the smallest connection proba-
bility to any node in the set, when adapted to the uncertain
graph scenario. As we pointed out in the previous section,
the exact computation of connection probabilities, especially
if very small, is a computationally hard task. Therefore, for
uncertain graphs we must resort to clustering strategies that
are robust to approximations and try to avoid altogether the
estimation of very small connection probabilities.

To address the above challenge, in Subsection 3.1 we in-
troduce a useful primitive that, given a threshold q on the
connection probability, returns a partial k-clustering of an
uncertain graph G where the clusters cover a maximal subset
of nodes, each connected to its cluster center with probabil-
ity at least q, while all other nodes, deemed outliers, remain
uncovered. In Subsections 3.2 and 3.3 we use such a prim-
itive to derive approximation algorithms for the MCP and

ACP problems, respectively, which feature provable guaran-
tees on the quality of the approximation and lower bounds
on the value of the connection probabilities that must ever
be estimated. We also show how the approximation guar-
antees of the proposed algorithms change when connection
probabilities are defined only with respect to paths of lim-
ited length.

All algorithms presented in this section take as input an
uncertain graph G = (V,E, p) with n nodes, and assume the
existence of an oracle that given two nodes u, v 2 V returns
Pr(u ⇠ v). In Section 4 we will discuss how to integrate
the Monte Carlo estimation of the connection probabilities
within our algorithms.

3.1 Partial clustering
A partial k-clustering C = (C

1

, . . . , C
k

; c
1

, . . . , c
k

) of G
is a partition of a subset of V into k clusters C

1

, . . . , C
k

(i.e., [
i=1,k

C
i

✓ V), where each cluster C
i

is centered at
c

i

2 C
i

, for 1 i k. We can still define min-prob(C) as in
Equation 1 with the understanding that the uncovered nodes
(i.e., V � [

i=1,k

C
i

) are not accounted for in min-prob(C).
In what follows, the term full k-clustering or, simply, k-
clustering will refer only to a k-clustering covering all nodes.

The following algorithm, called min-partial (Algorithm 1
in the box), computes a partial k-clustering C of G with
min-prob(C) � q covering a maximal set of nodes, in the
sense that all nodes uncovered by the clusters have proba-
bility less than q of being connected to any of the cluster
centers. The algorithm is based on a generalization of the
strategy introduced in [11] and uses two design parameters,
↵ and q̄, where ↵ � 1 is an integer and q̄ 2 [q, 1], which are
employed to exercise suitable tradeo↵s between performance
and approximation quality. In each of the k iterations, min-
partial picks a suitable new center as follows. Let V 0 de-
note the nodes connected with probability less than q to the
set of centers S selected so far. In the iteration, the algo-
rithm selects an arbitrary set T of ↵ nodes from V 0 (or all
such nodes, if they are less than ↵) and picks as next center
the node v 2 T that maximizes the number of nodes u 2 V 0

with Pr(u ⇠ v) � q̄. (The role of parameters ↵ and q̄ will
be evident in the following subsections.) At the end of the
k iterations, it returns the clustering defined by the best
assignment of the covered nodes to the k selected centers.
Namely, cluster C

i

will consist of all covered nodes u such
that c

i

= argmax
c2S

{Pr(u ⇠ c)} (denoted as c
i

= c(u, S)
in the pseudocode). It easily follows that for each u 2 C

i

,
Pr(u ⇠ c

i

) � q.

3.2 MCP clustering
We now turn the attention to the MCP problem. The fol-

lowing lemma shows that if Algorithm min-partial is pro-
vided with a suitable guess q for the minimum connection
probability, then the returned clustering covers all nodes and
is a good solution to the MCP problem. Let p

opt�min

(k) be
the maximum value of min-prob(C) over all full k-clusterings
C of G. (Observe that p

opt�min

(k) > 0 if and only if G has
at most k connected components and, for convenience, we
assume that this is always the case.)

Lemma 2. For any q p2

opt�min

(k), ↵ � 1, and q̄ 2
[q, 1] we have that the k-clustering C returned by min-

partial(G, k, q,↵, q̄) covers all nodes.

Proof. Consider an optimal k-clustering Ĉ =
(Ĉ

1

, . . . , Ĉ
k

; ĉ
1

, . . . , ĉ
k

) of G, with V = [
i=1,k

Ĉ
i

and

476

Algorithm 1: min-partial(G, k, q,↵, q̄)
S ;; . Set of centers

V 0 V ;
for i 1 to k do

select an arbitrary T ✓ V 0 with |T | = min{↵, |V 0|};
for (v 2 T) do M

v

 {u 2 V 0 : Pr (u ⇠ v) � q̄} ;
c

i

 argmax
v2T

|M
v

|;
S S [{c

i

};
V 0 V 0 � {u 2 V 0 : Pr (u ⇠ c

i

) � q};
end

if (|S| < k) then
add k � |S| arbitrary nodes of V � S to S;

S {c
1

, . . . , c
k

};
for i 1 to k do C

i

 {u 2 V � V 0 : c(u, S) = c
i

};
return C = (C

1

, . . . , C
k

; c
1

, . . . , c
k

);

Algorithm 2: MCP(G, k, �)
q 1;
while true do

C min-partial(G, k, q, 1, q);
if C covers all nodes then return C;
else q q/(1 + �);

end

min-prob(Ĉ) = p
opt�min

(k). Let c
i

be the center added to S
in the i-th iteration of the for loop of min-partial, and let
Ĉ

j

i

be the cluster in Ĉ which contains c
i

, for every i � 1.
By Theorem 1 we have that for every node v 2 Ĉ

j

i

Pr (c
i

⇠ v) � Pr (c
i

⇠ ĉ
j

i

) · Pr (ĉ
j

i

⇠ v) � p2

opt�min

(k) � q

Therefore, at the end of the i-th iteration of the for loop,
V 0 cannot contain nodes of Ĉ

j

i

. An easy induction shows
that at the end of the for loop, V 0 is empty.

Based on the result of the lemma, we can solve the MCP
problem by repeatedly running min-partial with progres-
sively smaller guesses of q, starting from q = 1 and decreas-
ing q by a factor (1 + �), for a suitable parameter � > 0, at
each run, until a clustering covering all nodes is obtained.
We refer to this algorithm as MCP (Algorithm 2 in the
box). The following theorem is an immediate consequence
of Lemma 2.

Theorem 3. Algorithm 2 requires at most
b2 log

1+�

(1/p
opt�min

(k))c+ 1 executions of min-partial,
and returns a k-clustering C with

min-prob(C) �
p2

opt�min

(k)

(1 + �)
.

It is easy to see that all connection probabilities Pr(u ⇠ v)
used in Algorithm 2 are not smaller than p2

opt�min

(k)/(1+�).
Also, we observe that once q becomes su�ciently small to
ensure the existence of a full k-clustering, a binary search
between the last two guesses for q can be performed to get
a higher minimum connection probability.

3.3 ACP clustering
In order to compute good solutions to the ACP problem

we resort again to the computation of partial clusterings.

For a given connection probability threshold q 2 (0, 1], de-
fine t

q

as the minimum number of nodes left uncovered by
any partial k-clustering C of G with min-prob(C) � q. It is
easy to argue that t

q

is a non-decreasing function of q. Ob-
serve that any partial k-clustering can be “completed”, i.e.,
turned into a full k-clustering, by assigning the uncovered
nodes arbitrarily to the available clusters (possibly with con-
nection probabilities to the cluster centers equal to 0), and
that q(n� t

q

)/n is a lower bound to the average connection
probability of such a full k-clustering. Let p

opt�avg

(k) be
the maximum value of avg-prob(C) over all k-clusterings C
of G. The following lemma shows that for a suitable q, the
value q(n� t

q

)/n is not much smaller than p
opt�avg

(k).

Lemma 3. There exists a value q 2 (0, 1] such that

q · n� t
q

n
� p

opt�avg

(k)
H(n)

,

where H(n) =
P

n

i=1

(1/i) = lnn+O(1) is the n-th harmonic
number.

Proof. Let Ĉ be the k-clustering of G which maximizes
the average connection probability. Let p

0

 p
1

 · · ·
p

n�1

the connection probabilities of the n nodes to their
cluster centers in Ĉ, sorted by non-decreasing order, and
note that avg-prob(Ĉ) = (1/n)

P
n�1

i=0

p
i

. It is easy to argue
that for each 0 i < n there exists a partial k-clustering of
G which covers n� i nodes and where each covered node is
connected to its cluster center with probability at least p

i

.
This implies that t

p

i

 i. We claim that

max
i=0,...,n�1

p
i

n� i
n
� p

opt�avg

(k)
H(n)

.

If this were not the case we would have

p
opt�avg

(k) =
1
n

n�1X

i=0

p
i

<
p
opt�avg

(k)
H(n)

n�1X

i=0

1
n� i

= p
opt�avg

(k),

which is impossible. Therefore, there must exist an index
i 2 [0, n� 1] such that

p
i

n� t
p

i

n
� p

i

n� i
n
� p

opt�avg

(k)
H(n)

.

Based on the above lemma, we can obtain an approxi-
mate solution for the ACP problem by seeking partial k-
clusterings which strike good tradeo↵s between the mini-
mum connection probability and the number of uncovered
points. The next lemma shows that Algorithm min-partial

can indeed provide these partial clusterings.

Lemma 4. For any q 2 (0, 1], we have that the partial
k-clustering C returned by min-partial(G, k, q3, n, q) covers
all but t

q

nodes.

Proof. The proof can be obtained by rephrasing the
proof of the 3-approximation result for the robust k-center
problem in [11, Theorem 3.1] in terms of connection proba-
bilities rather than distances.

We are now ready to describe our approximation algorithm
for the ACP problem, which we refer to as ACP. The idea is
to run min-partial so to obtain partial k-clusterings with t

q

477

Algorithm 3: ACP(G, k, �)
C min-partial(G, k, 1, n, 1);
�best (1/n)

P
u2V

pC(u);
Cbest any full k-clustering completing C;
q 1/(1 + �);
while (q3 � �best) do

C min-partial(G, k, q3, n, q);
� (1/n)

P
u2V

pC(u);
if (� � �best) then

�best � ;
Cbest any full k-clustering completing C;

end

else q q/(1 + �);
end

return Cbest

uncovered nodes, for progressively smaller values of q. For
each such value of q, min-partial is employed to compute a
partial k-clustering C where at most t

q

nodes remain uncov-
ered and where each covered node is connected to its cluster
center with probability at least q3. If C has the potential to
provide a full k-clustering with higher average connection
probability than those previously found, it is turned into
a full k-clustering by assigning the uncovered nodes to ar-
bitrary clusters. The algorithm halts when further smaller
guesses of q cannot lead to better clusterings. The pseu-
docode (Algorithm 3 in the box) uses the following nota-
tion. For a (partial) k-clustering C and a node u 2 V , pC(u)
denotes the connection probability of u to the center of its
assigned cluster, if any, and set pC(u) = 0 otherwise. We
have:

Theorem 4. Algorithm 3 returns a k-clustering C with

avg-prob(C) �
✓

p
opt�avg

(k)
(1 + �)H(n)

◆
3

,

where H(n) is the n-th harmonic number, and requires at
most

⌅
log

1+�

(H(n)/p
opt�avg

(k))
⇧
+ 1 executions of min-

partial.

Proof. Note that the while loop maintains, as an invari-
ant, the relation avg-prob(Cbest) � �best. Hence, this rela-
tion holds at the end of the algorithm when the k-clustering
Cbest is returned. Let q⇤ 2 (0, 1] be a value such that

q⇤ · n� t
q

⇤

n
� p

opt�avg

(k)
H(n)

.

The existence of q⇤ is ensured by Lemma 3. If the while
loop ends when q > q⇤, then

�best > q3 > (q⇤)3 �
✓

n
n� t

q

⇤

p
opt�avg

(k)
H(n)

◆
3

�
✓
p
opt�avg

(k)
H(n)

◆
3

.

If instead q becomes q⇤, consider the first iteration of the
while loop when this happens, that is when q⇤/(1 + �) <
q q⇤ and let C be the partial k-clustering computed in the
iteration. By Lemma 4, at most t

q

nodes are not covered by
C and since t

q

is non-decreasing, as observed before, we have

that t
q

< t
q

⇤ . This implies that the value � derived from C
(hence, �best at the end of the iteration) is such that

� > q3 · n� t
q

n
�

✓
q⇤

1 + �

◆
3

· n� t
q

⇤

n

�
✓

n
n� t

q

⇤

p
opt�avg

(k)
(1 + �)H(n)

◆
3

· n� t
q

⇤

n

�
✓

p
opt�avg

(k)
(1 + �)H(n)

◆
3

.

In all cases, the average connection probability of the re-
turned clustering satisfies the stated bound. As for the
upper bound on the number of iterations of the while
loop, we proved above that as soon as q falls in the in-
terval (q⇤/(1 + �), q⇤] we have �best � (p

opt�avg

(k)/((1 +
�)H(n)))3, hence, from that point on, q cannot become
smaller than p

opt�avg

(k)/((1 + �)H(n)) < q⇤. This implies
that

⌅
log

1+�

(H(n)/p
opt�avg

(k))
⇧
+ 1 iterations of the while

loop are executed overall.

It is easy to see that all connection probabilities Pr(u ⇠ v)
that Algorithm 3 needs to compute in order to be correct
are not smaller than (p

opt�avg

(k)/((1 + �)H(n)))3.
We remark that while the theoretical approximation ra-

tios attained by our algorithms for both the MCP and ACP
problems appear somewhat weak, especially for small val-
ues of p

opt�min

and p
opt�avg

, we will provide experimental
evidence (see Section 5) that, in practical scenarios where
connection probabilities are not too small, they return good-
quality clusterings and, by avoiding the estimation of small
connection probabilities, they run relatively fast.

3.4 Limiting the path length
The algorithms described in the preceding subsections can

be run by setting a limit on the length of the paths that con-
tribute to the connection probability between two nodes. As
mentioned in the introduction, this feature may be useful in
application scenarios where the similarity between two nodes
diminishes sharply with their topological distance regardless
of their connection probability.

For a fixed integer d, with 1 d < n, we define Pr(u
d⇠

v) =
P

GvG Pr(G)I
G

(u, v; d), where I

G

(u, v; d) is 1 if u is
at distance at most d from v in G, and 0 otherwise. In

the following, we refer to Pr(u
d⇠ v) as the d-connection

probability between u and v. By easily adapting the proofs
of Lemma 1 and Theorem 1, it can be shown that for any
pair of distances d

1

, d
2

, with d � d
1

+d
2

, and for any triplet
u, v, z 2 V , it holds that

Pr(u
d⇠ z) � Pr(u

d1⇠ v) · Pr(v d2⇠ z).

We now reconsider the MCP and ACP problems under paths
of limited depth. For a k-clustering C

1

, . . . , C
k

with centers
{c

1

, . . . , c
k

}, we define the objective functions

min-prob
d

(C) = min
1ik

min
v2C

i

Pr(c
i

d⇠ v), (6)

avg-prob
d

(C) = (1/n)
X

1ik

X

v2C

i

Pr(c
i

d⇠ v), (7)

and let p
opt�min

(k, d) and p
opt�avg

(k, d), respectively, be the
maximum values of these two objective functions over all
k-clusterings. Algorithms 1, 2 and 3 can all be rephrased

478

by imposing limited path lengths in the estimation of con-
nection probabilities so to obtain the results stated in the
following two theorems, whose proofs are omitted for lack of
space and can be found in [10].

Theorem 5. Suppose that p
opt-min

(k, bd/2c) > 0. When
run with d-connection probabilities, Algorithm 2 requires
at most b2 log

1+�

(1/p
opt�min

(k, bd/2c))c+ 1 executions of
min-partial, and returns a k-clustering C with

min-prob
d

(C) �
p2

opt�min

(k, bd/2c)
(1 + �)

.

Theorem 6. When run with d-connection probabilities,
Algorithm 3 returns a k-clustering C with

avg-prob
d

(C) �
✓
p
opt�avg

(k, bd/3c)
(1 + �)H(n)

◆
3

,

where H(n) is the n-th harmonic number, and requires at
most

⌅
log

1+�

(H(n)/p
opt�avg

(k, bd/3c))
⇧
+ 1 executions of

min-partial.

We remark that the assumption p
opt-min

(k, bd/2c) > 0 in
Theorem 5 is required to ensure that, in Algorithm 2, a
suitable guess for q is reached in a finite number of iterations.
Termination is instead always guaranteed for Algorithm 3
since p

opt�avg

(k, bd/3c) � k/n > 0, for every d � 0.

4. IMPLEMENTING THE ORACLE
In the previous section we assumed that the probabilities

Pr(u ⇠ v) could be obtained exactly from an oracle. In prac-
tice, the estimation of these probabilities is the most criti-
cal part for the e�cient implementation of our algorithms.
In this section, we show how to integrate the Monte Carlo
sampling method for the estimation of the connection prob-
abilities within the algorithms described in Section 3, main-
taining similar guarantees on the quality of the returned
clusterings. The basic idea of our approach is to adjust the
number of samples dynamically during the execution of the
algorithms, based on safe guesses of the probabilities that
need to be estimated.

For ease of presentation, throughout this section
we assume that lower bounds to p2

opt�min

(k) and to
(p

opt�avg

(k)/H(n))3 are available. We will denote both
lower bounds by p

L

, since it will be clear from the con-
text which one is used. For example, these lower bounds
can be obtained by observing that p

opt�min

(k) is greater
than or equal to the probability of the most unlikely world,
and p

opt�avg

(k) � k/n. In practice, p
L

can be employed
as a threshold set by the user to exclude, a priori, cluster-
ings with low values of the objective function. In this case,
if the algorithm does not find a clustering whose objective
function is above the threshold, it terminates by reporting
that no clustering could be found. Recall that p̃(u, v) de-
notes the estimate of the probability Pr(u ⇠ v) obtained
by sampling possible worlds (see Equation 3). Moreover,
for a node u 2 V and a set of nodes S ⇢ V , we define
c̃(u, S) = argmax

c2S

{p̃(c, u)} as the function returning the
node of S connected to u with the highest estimated prob-
ability. Similarly, we define ⇡̃(u, S) = Pr(c̃(u, S) ⇠ u) =
max

c2S

{p̃(c, u)}. We use " > 0 to denote an approximation
parameter to be fixed by the user.

4.1 Partial clustering
A key component of Algorithms mcp and acp is the min-

partial subroutine (Algorithm 1), whose input includes two
thresholds q and q̄ for the connection probabilities. Note
that in each invocation of min-partial within mcp and acp,
we have that q̄ � q, and that only connection probabilities
not smaller than q are needed. We implement min-partial
as follows. Suppose that we estimate connection probabil-
ities using a number r of samples, based on Equation (4),
which ensures that any Pr(u ⇠ v) � q is estimated with
relative error at most "/2 with probability at least 1 � �,
where ", � 2 (0, 1) are suitable values. Then, in each of
the k iterations of the main for-loop of min-partial, a new
center c is selected which maximizes the number of uncov-
ered nodes u with p̃(c, u) � (1 � "

2

)q̄, and all nodes u with
p̃(c, u) � (1� "

2

)q are removed from the set V 0 of uncovered
nodes. The following two subsections analyze the quality of
the clusterings returned by Algorithms mcp and acp when
using this implementation of min-partial.

4.2 Implementation of MCP
Recall that Algorithm mcp invokes min-partial with a

probability threshold q which is lowered at each iteration
of its main while loop. Using the implementation of min-

partial described before, this iterative adjustment of q cor-
responds to a progressive sampling strategy. In particular,
if for each iteration of the while loop we use a number of
samples

r =

⇠
12
q"2

ln

✓
2n3

✓
1 +

�
log

1+�

1
p

L

⌫◆◆⇡
, (8)

we obtain the following result.

Theorem 7. The implementation of mcp terminates af-
ter at most b2 log

1+�

(1/p
opt�min

(k))c+ 1 iterations of the

while loop and returns a clustering C̃ with

min-prob(C̃) � (1� ")
(1 + �)

p2

opt�min

(k)

if p2

opt�min

(k) > p
L

, with high probability.

Proof. Consider an arbitrary iteration of the while loop
of mcp, and a pair of nodes u, v 2 V . For

� =
1

n3

⇣
1 +

j
log

1+�

1

p

L

k⌘ ,

we have that using the number of samples specified by Equa-
tion (8), the following properties for the estimate p̃(u, v)
hold:

• if Pr(u ⇠ v) > q, then p̃(u, v) < (1 � "

2

)q with proba-
bility < �.

• if Pr(u ⇠ v) < (1 � ")q, then p̃(u, v) � (1 � "

2

)q with
probability < �.

Moreover, note that mcp performs at most 1 + blog
1+�

1

p

L

c
iterations of the while loop. Therefore, by union bound on
the number of node pairs and the number of iterations, we
have that the following holds with probability at least 1 �
1/n: in each iteration of the while loop every node connected
to some center with probability � q is added to a cluster,
and no cluster contains nodes whose connection probability
to the center is < (1� ")q. Consider now the `-th iteration,

479

with ` = b2 log
1+�

(1/p
opt�min

(k))c+1, in which we have q
p2

opt�min

(k). In this iteration, the algorithm completes and
returns a clustering. Since at the beginning of this iteration
we have q > p2

opt�min

(k)/(1 + �), by the above discussion we
have that

min-prob(C̃) � (1� ")q � (1� ")
(1 + �)

p2

opt�min

(k)

with probability at least 1�1/n, and the theorem follows

We observe that, for constant �, the overall num-
ber of samples required by our implementation is
O
�
(1/(p

opt�min

(k)")2)(log n+ log log(1/p
L

))
�
. As we men-

tioned before, p
L

can be safely set equal to the prob-
ability of the most unlikely world. In case this
lower bound were too small, a progressive sampling
schedule similar to the one adopted in [29] could be
used where p

L

is not required, which ensures that
O
�
(1/(p

opt�min

(k)")2)(log n+ log(1/p
opt�min

(k))
�

samples
su�ce.

4.3 Implementation of ACP
Algorithm acp also uses a probability threshold q which

is lowered at each iteration of its main while loop, and in
each iteration it needs to estimate reliably probabilities that
are at least q3. Again, we use the implementation of min-

partial described before and in each iteration of the while
loop we set the number of samples as

r =

⇠
12
q3"2

ln

✓
2n3

✓
1 +

�
log

1+�

H(n)
p

L

⌫◆◆⇡
. (9)

We have the following result, whose proof, analogous to that
of Theorem 7, is omitted for brevity.

Theorem 8. The implementation of acp terminates af-
ter at most blog

1+�

(H(n)/p
opt�avg

(k))c+1 iterations of the

while loop and returns a clustering C̃ with

avg-prob(C̃) � (1� ")

✓
p
opt�avg

(k)
(1 + �)H(n)

◆
3

if (p
opt�avg

(k)/H(n))3 � p
L

, with high probability.

We observe that, for constant �, the overall num-
ber of samples required by our implementation is
O
�
(1/(p3

opt�avg

(k)"2)(log n+ log log((log n)/p
L

))
�
. Con-

sidering that we can safely set p
L

= k/n, as men-
tioned at the beginning if the section, we conclude that
O
�
(1/(p3

opt�avg

(k)"2) log n
�
samples su�ce.

5. EXPERIMENTS
We experiment with our clustering algorithms mcp and

acp along two di↵erent lines. First, in Subsection 5.1, we
compare the quality of the obtained clusterings against those
returned by well-established clustering approaches in the lit-
erature on four uncertain graphs derived by three PPI net-
works and a collaboration network. Then, in Subsection 5.2,
we provide an example of applicability of uncertain cluster-
ing as a predictive tool to spot so-called protein complexes
in one of the aforementioned PPI networks.

The characteristics of the four di↵erent graphs used in
our experiments are summarized in Table 1. Three graphs
are PPI networks, with di↵erent distributions of edge prob-
abilities: Collins [12], mostly comprising high-probability

Table 1: Graphs considered in our experiments. The

number of nodes and the number of edges in the

largest connected component are shown.

graph nodes edges

Collins 1004 8323
Gavin 1727 7534
Krogan 2559 7031
DBLP 636751 2366461

edges; Gavin [15], where most edges are associated to low
probabilities, and the CORE network introduced in [24]
(Krogan in the following), which has one fourth of the edges
with probability greater than 0.9, and the others almost uni-
formly distributed between 0.27 and 0.9. To exercise a larger
spectrum of cluster granularities, we target clusterings only
for the largest connected component of each graph. As a
computationally more challenging instance, we also experi-
ment with a large connected subgraph of the DBLP collab-
oration network with edge probabilities obtained with the
same procedure of [30]: each node is an author, and two
authors are connected by an edge if they are co-authors of
at least one journal publication. The probability of such an
edge is 1�exp{�x/2}, where x is the number of co-authored
journal papers. Consequently, a single collaboration corre-
sponds to an edge with probability 0.39, and 2 and 5 col-
laborations correspond to edges with probability 0.63 and
0.91, respectively. Roughly 80% of the edges have probabil-
ity 0.39, 12% have probability 0.63 and the remaining 8%
have a higher probability. While finding an accurate proba-
bilistic model of the interactions between authors is beyond
the scope of this paper, the intuition behind the choice of
this distribution is that authors that are likely to collaborate
again in the future share an edge with large probability.

We implemented our algorithms in C++, with the Monte
Carlo sampling of possible worlds performed in parallel us-
ing OpenMP. The code and data, along with instructions to
reproduce the results presented in this section, are publicly
available1. When running both mcp and acp, we set � =
0.1. To optimize the execution time, we set the probability
threshold q of Algorithms 2 and 3 to q

i

= max{1�� ·2i, p
L

}
in iteration i, with p

L

= 10�4. Once q
i

equals p
L

or is
such that the associated clustering covers all nodes, we per-
form a binary search between q

i

and q
i�1

to find the fi-
nal probability guess, stopping when the ratio between the
lower and upper bound is greater than 1 � �. This proce-
dure is essentially equivalent, up to constant factors in the
final value of q, to decreasing q geometrically as is done
in Algorithms 2 and 3, thus the guarantees of Theorems 7
and 8 hold. In the implementation of acp, we decided to in-
voke min-partial with parameters (G, k, q, 1, q) rather than
(G, k, q3, n, q). While this setting does not guarantee the
theoretical bounds stated in Theorem 8, the values were
chosen after testing di↵erent combinations of the two pa-
rameters and finding that the chosen setting provides better
time performance while still returning good quality cluster-
ings in all tested scenarios. In particular, we found out that
higher values of parameter ↵ yielded similar scores, albeit
with a lower variance. For both implementations, we ver-
ified that setting parameter �, which essentially controls a

1

https://github.com/Cecca/ugraph

480

24 69 99k
0.0

0.5

1.0

p
m

i
n

.
1
7
7

.
2
5
6

.
3
2
0

.
1
5
3

.
2
3
2

.
4
5
5

.
3
5
6

.
4
1
3

.
5
5
2

.
2
9
9

.
3
3
8

.
4
4
7

Collins

50 172 274

.
0
0
2

.
0
1
1

.
0
2
4

.
0
0
2

.
0
1
5

.
0
5
7

.
0
4
8

.
0
9
5

.
1
6
3

.
0
2
8

.
0
6
2

.
0
9
3

Gavin

77 289 517

.
0
7
3

.
1
1
5

.
1
5
1

.
0
3
0

.
0
6
5

.
1
6
2

.
1
4
1

.
2
2
0

.
3
4
7

.
1
2
9

.
1
7
5

.
2
8
5

Krogan

1818 5274 15576

.
0
0
3

.
0
0
3

.
0
0
7

<
1
0

�
3

<
1
0

�
3

<
1
0

�
3

.
0
6
3

.
0
6
7

.
1
2
4

.
0
3
0

.
0
7
1

.
1
1
8

DBLP

24 69 99k
0.0

0.5

1.0

p
a

v
g

.
7
6
5

.
8
5
9

.
8
6
5

.
9
2
9

.
9
4
5

.
9
5
1

.
8
9
5

.
9
0
2

.
9
5
1

.
9
0
4

.
9
4
4

.
9
6
7

50 172 274

.
2
7
4

.
3
9
1

.
5
3
0

.
6
0
3

.
7
4
8

.
7
8
4

.
5
9
8

.
6
6
9

.
7
3
1

.
6
6
7

.
7
2
7

.
7
9
0

77 289 517

.
6
2
4

.
6
4
8

.
7
8
7

.
7
4
9

.
8
1
1

.
8
2
7

.
7
5
4

.
7
7
8

.
8
8
0.
7
7
4

.
8
3
5

.
8
9
8

1818 5274 15576

.
3
1
9

.
2
6
6

.
6
3
6

.
7
2
4

.
7
5
0

.
7
7
3

.
7
1
4

.
7
1
1

.
6
6
3

.
7
5
8

.
7
3
0

.
7
4
7

Figure 1: Minimum connection probability (p
min

, top row of plots) and

average connection probability (p
avg

, bottom row of plots).

gmm

mcl

mcp

acp

time/quality tradeo↵, to values smaller than 0.1 increases
the running time without increasing the quality of the re-
turned clusterings significantly. Considering that the sample
sizes defined in Section 4 are derived to tolerate very conser-
vative union bounds, we verified that in practice starting the
progressive sampling schedule from 50 samples always yields
very accurate probability estimates. We omit the results of
these preliminary experiments for lack of space. Both our
code and mcl were compiled with GCC 5.4.0, and run on a
Linux 4.4.0 machine equipped with an Intel I7 4-core proces-
sor and 18GB of RAM. Each figure we report was obtained
as the average over at least 100 runs, with the exception of
the bigger DBLP dataset, where only 5 runs were executed
for practicality.

5.1 Comparison with other algorithms
A few remarks on the algorithms chosen for (or excluded

from) the comparison with mcp and acp presented in this
subsection are in order. We do not compare with the cluster-
ing algorithm for uncertain graphs devised in [23] because it
does not allow to control the number k of returned clusters,
which is central in our setting. (A comparison between mcp

and the algorithm by [23] is o↵ered in the next subsection
with respect to a specific predictive task.) Also, we were
forced to exclude from the comparison the clustering algo-
rithms of [25], explicitly devised for uncertain graphs, since
the source code was not made available by the authors and
the algorithms do not lend themselves to a straightforward
implementation. Among the many clustering algorithms for
deterministic weighted graphs available in the literature, we
selected mcl [34] since it has been previously employed in
the realm of uncertain graphs by using edge probabilities as
weights. Finally, we compare with an adaptation of the k-
center approximation strategy of [17], dubbed gmm, where
the clustering of the uncertain graph is computed in k it-
erations by repeatedly picking the farthest node from the
set of previously selected centers, using the shortest-path
distances generated by setting the weight of any edge e to
w(e) = ln(1/p(e)). Considering the modest performance of
gmm observed in our experiments, and the fact that it has

been repeatedly stated in previous works [25, 30] that the
application of shortest-path based deterministic strategies
to the probabilistic context yields unsatisfactory results, we
did not deem necessary to extend the comparison to other
such strategies.

We base our comparison both on our defined cluster qual-
ity metrics and on other ones. Namely, for each clustering re-
turned by the various algorithms, we compute the minimum
connection probability of any node to its center2 (denoted
simply as p

min

), and the average connection probability of
all nodes to their respective centers (denoted as p

avg

). Fur-
thermore, we consider the inner Average Vertex Pairwise
Reliability (also defined in [25]) which is the average con-
nection probability of all pairs of nodes that are in the same
cluster, namely,

inner-AVPR =

P
⌧

i=1

P
u,v2C

i

Pr(u ⇠ v)
P

⌧

i=1

�|C
i

|
2

� ,

and the outer Average Vertex Pairwise Reliability, which
is the average connection probability of pairs of nodes in
di↵erent clusters, namely,

outer-AVPR =

P
⌧

i=1

P
u2C

i

,v /2C

i

Pr(u ⇠ v)
P

⌧

i=1

|C
i

| · |V \ C
i

| .

Intuitively, a good clustering in terms of connection proba-
bilities exhibits a low outer-AVPR and a significantly higher
inner-AVPR, indicating that each cluster completely encap-
sulates a region of high reliability. Inner-AVPR and outer-
AVPR are akin to the internal and external cluster density
measures used in the setting of deterministic graphs [31].
We also compare the algorithms in terms of their running
time.

Recall from Section 1 that the number of clusters com-
puted by mcl cannot be controlled accurately, but it is influ-
enced by the inflation parameter. Therefore, for each graph
in Table 1, we run mcl with inflation set to 1.2, 1.5, and
2.0 for protein networks, and 1.15, 1.2, and 1.3 for DBLP, so

2For mcl, when computing this metric we consider as cluster
centers the attractor nodes as defined in [34].

481

24 69 99k
0.0

0.5

1.0
in

n
er

-A
V

P
R

.
8
6
2

.
9
2
6

.
9
5
5

.
8
9
4

.
9
2
3

.
9
3
2

.
8
0
9

.
8
5
1

.
9
0
7

.
8
2
7

.
8
9
6

.
9
3
5

Collins

50 172 274

.
5
3
8

.
6
8
9

.
7
8
0

.
5
5
7

.
7
4
4

.
8
0
8

.
4
3
9

.
4
9
1

.
5
9
2

.
4
5
0

.
5
3
8

.
6
0
7

Gavin

77 289 517

.
6
4
1

.
7
2
3

.
7
9
7

.
6
1
9

.
7
1
0

.
7
2
2

.
6
0
8

.
6
6
7

.
7
7
0

.
6
1
0

.
6
8
0

.
7
7
4

Krogan

1818 5274 15576

.
5
9
9

.
6
1
4

.
6
4
3

.
5
8
7

.
6
2
0

.
6
6
1

.
5
8
3

.
5
8
1

.
6
0
5

.
5
7
6

.
5
9
3

.
5
9
8

DBLP

24 69 99k
0.0

0.5

1.0

ou
te

r-
A
V

P
R

.
7
2
0

.
7
3
4

.
7
3
9

.
7
6
1

.
7
7
0

.
7
7
2

.
3
0
6

.
3
9
3

.
4
4
9

.
3
7
8

.
4
6
5

.
5
1
4

50 172 274

.
4
0
0

.
4
0
8

.
4
0
8

.
4
0
3

.
4
0
6

.
4
0
7

.
0
3
4

.
0
6
0

.
1
0
6

.
0
5
5

.
1
0
9

.
1
2
8

77 289 517

.
3
1
6

.
4
5
9

.
4
7
1

.
5
7
6

.
5
7
8

.
5
7
9

.
1
0
4

.
1
7
8

.
2
5
5

.
1
1
2

.
2
0
0

.
2
6
8

1818 5274 15576

.
4
9
6

.
5
7
4

.
5
3
8

.
5
7
4

.
5
7
4

.
5
7
4

.
0
8
3

.
0
6
1

.
1
3
7

.
0
2
7

.
1
2
4

.
1
1
5

Figure 2: Inner and outer Average Vertex Pairwise Reliability. For the

inner-AVPR metric higher is better, for the outer-AVPR metric lower

is better.

gmm

mcl

mcp

acp

to obtain a reasonable number of clusters. We then run the
other algorithms with a target number k of clusters match-
ing the granularity of the clustering returned by each mcl

run. Note that, in terms of running time, this setup favors
mcl: if we were instead given a target number of clusters,
we would need to perform a binary search over the possible
inflation values to make mcl match the target, and the run-
ning time for mcl would become the sum of the times over
all these search trials.

As expected, with respect to the p
min

metric (Figure 1,
top) mcp is always better than all other algorithms. In
particular, on the DBLP graph, both gmm and mcl find clus-
terings with p

min

very close to zero (< 10�3), meaning that
there is at least one pair of nodes in the same cluster with
almost zero connection probability. In contrast, mcp finds
clusterings with p

min

very close to 0.1 or larger. The infe-
rior performance of gmm, a clustering algorithm aiming at
optimizing an extremal statistic like p

min

in a deterministic
graph, provides evidence that naive adaptations of deter-
ministic clustering algorithms to the probabilistic scenario
struggle to find good solutions. Further evidence in this di-
rection is provided by the fact that acp yields higher values
of p

min

than both gmm and mcl.
For what concerns the p

avg

metric (Figure 1, bottom), ob-
serve that, being an average, the metric hides the presence
of low probability connections in the same cluster, which
explains the much higher values returned by all algorithms
compared to p

min

. Somewhat surprisingly, we have that
mcl and acp have comparable performance. Recall, how-
ever, that mcl does not guarantee total control on the num-
ber of clusters, which makes acp a more flexible tool. In all
cases, the gmm algorithm finds clusters with a p

avg

that is
lower than the one obtained by the other algorithms. We ob-
serve that the experiments provide evidence that the actual
values of p

avg

obtained with acp are arguably much higher
than the theoretical bounds proved in Theorem 8, and we
conjecture that this also holds for p

min

. Consider now the
inner- and outer-AVPRmetrics (Figure 2, resp. top and bot-
tom). For all graphs, the clusterings computed by mcp and

acp feature an inner-AVPR comparable to gmm and mcl,
but a considerably lower outer-AVPR, which is a desirable
property of a clustering, as mentioned earlier. Conversely,
for a given graph and value of k, mcl and gmm compute clus-
terings where the inner- and outer-AVPR scores are similar.
This fact suggests that the other clustering strategies are
driven more by the topology of the graphs rather than by
the connection probabilities.

As for the running times (Figure 3), gmm is almost al-
ways the fastest algorithm, due to its obliviousness to the
possible world semantics that requires Monte Carlo sam-
pling, and its running time grows linearly in k. On the
other hand, mcl exhibits an opposite dependence on k since
clusterings for low values of k, which are arguably more in-
teresting in practical scenarios, are the most expensive to
compute. Furthermore, we observed that the memory re-
quired by mcl increases sharply for small values of k (that
is for small values of its inflation parameter): on the DBLP

graph for k < 1818, mcl crashed after exhausting the mem-
ory available on the system, whereas our algorithm is very
e�cient for such values. Thanks to the use of progressive
sampling, our algorithms feature a running time which is
significantly better or comparable to mcl, depending on the
granularity of the clustering. With respect to gmm our al-
gorithms are slower, but they provide far better clusterings,
as discussed above.

5.2 Clustering as a predictive tool
In PPI networks, proteins can be grouped in so-called

complexes, that is, groups of proteins that stably interact
with one another to perform various functions in a cell.
Given a PPI network, a crucial problem is to predict protein
pairs belonging to the same complex. Our specific bench-
mark is the Krogan graph, for which the authors published
a clustering with 547 clusters obtained using mcl with a
configuration of parameters that maximizes biological sig-
nificance [24, Suppl. Table 10]. We consider a ground truth
derived from the publicly available, hand-curated MIPS
database of protein complexes [26, 20] as used in [24]. For

482

24 69 99k
0

2

4

ti
m

e
(m

s)
�102

0
.1

1
3

0
.3

4
7

0
.4

9
9

5
.5

1
0

2
.4

0
0

1
.4

7
0

1
.2

2
1 2
.2

7
7

0
.8

1
8

2
.2

9
0

0
.7

5
9

0
.9

7
1

Collins

50 172 274
0.0

0.5

1.0

�103

0
.0

3
0

0
.1

0
2

0
.1

5
9

1
.1

1
3

0
.3

6
1

0
.2

1
0

0
.2

3
1

0
.3

3
0

0
.2

7
7

0
.2

1
6

0
.2

8
2

0
.2

8
5

Gavin

77 289 517
0

1

2

3

�103

0
.0

6
0

0
.2

1
9

0
.3

9
1

3
.1

9
7

0
.6

2
4

0
.3

1
8

0
.1

2
8

0
.3

3
0

0
.5

5
4

0
.1

4
3

0
.3

9
1

0
.6

3
1

Krogan

1818 5274 15576
0.0

0.5

1.0

1.5

2.0
�107

0
.1

0
7

0
.2

9
8

0
.9

4
11
.8

9
3

1
.0

4
6

0
.3

5
2

0
.3

3
9

0
.5

2
6

1
.4

3
8

0
.2

6
8

0
.5

4
1

1
.3

8
4

DBLP

Figure 3: Running times in milliseconds.

gmm

mcl

mcp

acp

the purpose of the evaluation, we restrict ourselves to pro-
teins appearing in both Krogan and MIPS, thus obtaining
a ground truth with 3,874 protein pairs. The input to the
clustering algorithms is the entire Krogan graph. We evalu-
ated the returned clusterings in terms of the confusion ma-
trix. Namely, a pair of proteins assigned to the same cluster
is considered a true positive if both proteins appear in the
same MIPS complex, and a false positive otherwise.

For brevity, we restrict ourselves to exercise mcp and acp

considering only d-connection probabilities (see Section 3.4)
for di↵erent values of d, and by setting k = 547 so as to
match the cardinality of the reference clustering from [24].
The idea behind the use of limited path length is that we
expect proteins of the same complex to be connected with
high probability and, at the same time, to be topologically
close in the graph. We do not report results for d = 1 since
there is no clustering of the Krogan graph with d = 1 and
k = 547. We compare the True Positive Rate (TPR) and
the False Positive Rate (FPR) obtained by mcp with di↵er-
ent values of d against those obtained with the mcl-based
clustering of [24], and with the clustering computed by the
algorithm in [23] (dubbed kpt in what follows). The results
are shown in Table 2. We observe that, for small values of d,
our algorithm is able to find a clustering with scores similar
to the clustering of [24], while higher values of d yield fewer
false negatives at the expense of an increased number of false
positives. Note that acp is slightly better than mcp w.r.t.
the TPR, and mcp tends to be more conservative when it
comes to the FPR. Furthermore, the FPR performance of
acp degrades more quickly as the depth increases. This is
because acp optimizes a measure that allows clusters where
a few nodes are connected with low probability to their cen-
ters, and this e↵ect amplifies as the depth increases. Thus,
we can use mcp if we want to keep the number of false pos-
itives low, or acp to achieve a higher TPR. Observe that a
moderate number of false positives may be tolerable, since
the corresponding protein pairs can be the target of further
investigation to verify unknown protein interactions. Also,
mcp, acp, and mcl yield TPRs substantially higher than
ktp

3. This experiment supports our intuition that consid-
ering topologically close proteins, while aiming at high con-
nection probabilities, makes our algorithm competitive with
state-of-the-art solutions in the predictive setting.

3We remark that the performance of ktp reported here di↵ers
from the one reported in [23] since the ground truth considered
in that paper only comprises pairs of proteins that appear in the
same complex in the MIPS database and are connected by an
edge in the Krogan graph, which clearly amplifies the TPR.

Table 2: mcp and acp with limited path length

against mcl and kpt on Krogan w.r.t. the MIPS

ground truth.

TPR FPR

mcp acp mcp acp

Depth

8
>><

>>:

2 0.344 0.384 0.003 0.006
3 0.416 0.459 0.012 0.078
4 0.429 0.585 0.147 0.419
6 0.695 0.697 0.604 0.633
8 0.737 0.730 0.678 0.647

mcl [24] 0.423 0.002
kpt [23] 0.187 6.3 · 10�4

6. CONCLUSIONS
We presented a number of algorithms for center-based

clustering of uncertain graphs. Unlike previous approaches,
ours features provable guarantees on the clustering quality,
and a↵ords e�cient implementations and an e↵ective control
on the number of clusters. We also provide an open source
implementation of our algorithms which compares favorably
with algorithms commonly used when dealing with uncer-
tain graphs.

Our algorithms (mcp, acp) consider objective functions
capturing di↵erent statistics (minimum, average) of con-
nection probabilities, that are not directly comparable. As
such, there cannot be application-independent guidelines for
choosing one of the two that apply to all practical scenarios.
Considering that mcp and acp feature comparable running
times, the most reasonable approach could be to apply both
and then choose the most “suitable” returned clustering,
where suitability could be measured, for instance, through
the use of external metrics such as inner/outer-AVPR.

Several challenges remain open for future research. From
a complexity perspective, the conjectured NP-hardness of
the ACP problem and, possibly, inapproximability results
for both the MCP and ACP problems remain to be proved.
More interestingly, there is still ample room for the devel-
opment of practical algorithms featuring better analytical
bounds on the approximation quality and/or faster perfor-
mance, as well as for the investigation of other clustering
problems on uncertain graphs.

7. ACKNOWLEDGMENTS
This work was supported by NSF grant IIS-1247581 and

by University of Padova projects SID2017, CPDA152255.

483

8. REFERENCES
[1] E. Adar and C. Re. Managing uncertainty in social

networks. IEEE Data Engineering Bullettin,
30(2):15–22, 2007.

[2] C. Aggarwal. Managing and Mining Uncertain Data.
Advances in Database Systems. Springer US, 2010.

[3] S. Asthana, O. King, F. Gibbons, and F. Roth.
Predicting protein complex membership using
probabilistic network reliability. Genome Research,
14(4):1170–1175, 2004.

[4] M. Ball. Computation compexity of network reliability
analysis: An overview. IEEE Transactions on
Reliability, R-35(3):230–239, 1986.

[5] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and
J. Widom. ULDBs: Databases with uncertainty and
lineage. In Proc. VLDB, pages 953–964, 2006.

[6] A. Biswas and R. Morris. ExOR: opportunistic
multi-hop routing for wireless networks. ACM
SIGCOMM Computer Communication Review,
35(4):133–144, 2005.

[7] P. Boldi, F. Bonchi, A. Gionis, and T. Tassa. Injecting
uncertainty in graphs for identity obfuscation.
PVLDB, 5(11):1376–1387, 2012.

[8] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In Proc.
SIGMOD, pages 1247–1250. ACM, 2008.

[9] C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier.
Maximizing social influence in nearly optimal time. In
Proc. SODA, pages 946–957. ACM-SIAM, 2014.

[10] M. Ceccarello, C. Fantozzi, A. Pietracaprina,
G. Pucci, and F. Vandin. Clustering uncertain graphs.
CoRR, abs/1612.06675, 2016.

[11] M. Charikar, S. Khuller, D. Mount, and
G. Narasimhan. Algorithms for facility location
problems with outliers. In Proc. SODA, pages
642–651. ACM-SIAM, 2001.

[12] S. Collins, P. Kemmeren, X. Zhao, J. Greenblatt,
F. Spencer, F. C. Holstege, J. S. Weissman, and
N. Krogan. Toward a comprehensive atlas of the
physical interactome of saccharomyces cerevisiae.
Molecular & Cellular Proteomics, 6(3):439–450, 2007.

[13] N. Dalvi and D. Suciu. E�cient query evaluation on
probabilistic databases. The VLDB Journal,
16(4):523–544, 2007.

[14] W. Ding. Extended most reliable source on an
unreliable general network. In Proc. ICICIS, pages
529–533. IEEE, 2011.

[15] A. C. Gavin, P. Aloy, P. Grandi, R. Krause,
M. Boesche, M. Marzioch, C. Rau, L. J.Jensen,
S. Bastuck, B. Dümpelfeld, et al. Proteome survey
reveals modularity of the yeast cell machinery. Nature,
440(7084):631–636, 2006.

[16] J. Ghosh, H. Ngo, S. Yoon, and C. Qiao. On a routing
problem within probabilistic graphs and its
application to intermittently connected networks. In
Proc. INFOCOM, pages 1721–1729. IEEE, 2007.

[17] T. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
38:293–306, 1985.

[18] Y. Gu, C. Gao, G. Cong, and G. Yu. E↵ective and

e�cient clustering methods for correlated probabilistic
graphs. IEEE Transactions on Knowledge and Data
Engineering, 26(5):1117–1130, 2014.

[19] D. Hochbaum and D. Shmoys. A best possible
heuristic for the k-center problem. Mathematics of
Operations Research, 10(2):180–184, 1985.

[20] Institute of Bioinformatics and Systems Biology. The
MIPS comprehensive yeast genome database. ftp:
//ftpmips.gsf.de/fungi/Saccharomycetes/CYGD/,
May 2006.

[21] R. Jin, L. Liu, B. Ding, and H. Wang.
Distance-constraint reachability computation in
uncertain graphs. PVLDB, 4(9):551–562, 2011.

[22] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing
the spread of influence through a social network. In
Proc. KDD, pages 137–146. ACM, 2003.

[23] G. Kollios, M. Potamias, and E. Terzi. Clustering
large probabilistic graphs. IEEE Transactions on
Knowledge and Data Engineering, 25(2):325–336,
2013.

[24] N. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo,
A. Ignatchenko, J. Li, S. Pu, N. Datta, A. Tikuisis,
et al. Global landscape of protein complexes in the
yeast saccharomyces cerevisiae. Nature,
440(7084):637–643, 2006.

[25] L. Lin, J. Ruoming, C. Aggarwal, and S. Yelong.
Reliable clustering on uncertain graphs. In Proc.
ICDM, pages 459–468. IEEE, Dec 2012.

[26] H. Mewes, C. Amid, R. Arnold, D. Frishman,
U. Güldener, G. Mannhaupt, M. Münsterkötter,
P. Pagel, N. Strack, V. Stümpflen, et al. MIPS:
analysis and annotation of proteins from whole
genomes. Nucleic Acids Research, 32(suppl
1):D41–D44, 2004.

[27] M. Mitzenmacher and E. Upfal. Probability and
computing: Randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005.

[28] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi.
Uncertain graph processing through representative
instances. ACM Transactions on Database Systems,
40(3):20:1—20:39, 2015.

[29] A. Pietracaprina, M. Riondato, E. Upfal, and
F. Vandin. Mining top-k frequent itemsets through
progressive sampling. Data Mining and Knowledge
Discovery, 21(2):310–326, 2010.

[30] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios.
k-nearest neighbors in uncertain graphs. PVLDB,
3(1):997–1008, 2010.

[31] S. Schae↵er. Graph clustering. Computer Science
Review, 1(1):27–64, 2007.

[32] Y. Tang, Y. Shi, and X. Xiao. Influence maximization
in near-linear time: A martingale approach. In Proc.
SIGMOD, pages 1539–1554. ACM, 2015.

[33] L. G. Valiant. The complexity of enumeration and
reliability problems. SIAM Journal on Computing,
8(3):410–421, 1979.

[34] S. van Dongen. Graph clustering via a discrete
uncoupling process. SIAM Journal on Matrix Analysis
and Applications, 30(1):121–141, 2008.

[35] V. Vazirani. Approximation Algorithms. Springer,
2001.

484

