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ABSTRACT
Key-value stores are an important tool in managing and accessing
large in-memory data sets. As many applications benefit from having
as much of their working state fit into main memory, an important
design of the memory management of modern key-value stores is
the use of log-structured approaches, enabling efficient use of the
memory capacity, by compacting objects to avoid fragmented states.

However, with the emergence of thousand-core and peta-byte
memory platforms (DRAM or future storage-class memories) log-
structured designs struggle to scale, preventing parallel applications
from exploiting the full capabilities of the hardware: careful co-
ordination is required for background activities (compacting and
organizing memory) to remain asynchronous with respect to the use
of the interface, and for insertion operations to avoid contending for
centralized resources such as the log head and memory pools.

In this work, we present the design of a log-structured key-value
store called Nibble that incorporates a multi-head log for supporting
concurrent writes, a novel distributed epoch mechanism for scalable
memory reclamation, and an optimistic concurrency index. We
implement Nibble in the Rust language in ca. 4000 lines of code,
and evaluate it across a variety of data-serving workloads on a 240-
core cache-coherent server. Our measurements show Nibble scales
linearly in uniform YCSB workloads, matching competitive non-
log-structured key-value stores for write- dominated traces at 50
million operations per second on 1 TiB-sized working sets. Our
memory analysis shows Nibble is efficient, requiring less than 10%
additional capacity, whereas memory use by non-log-structured
key-value store designs may be as high as 2x.
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1. INTRODUCTION
The combined growth in data, greater core counts, and new mem-

ory technologies have led to a push in developing new platforms
for processing and accessing data with even lower performance
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tolerances. As industry continues to advance towards “memory-
centric” computing [22] where tera- to peta-bytes of data pools
are accessible by thousands of concurrent low-power processing
cores, we are faced with growing demand in system software for
enabling raw access to the performance of such hardware: with
byte-addressable memory becoming persistent, memory itself is
becoming the primary source for information storage [29].

Many hundred-core “fat memory” machines are available on
the market today: SGI’s UltraViolet 3000 [3], Dell’s PowerEdge
R920 [2], and HPE’s Superdome X servers [32] with tens of ter-
abytes of main memory (DRAM). Future systems are envisioned to
include emerging rack-scale systems, such as Berkeley’s Firebox [6],
and HPE’s The Machine [31], and claim to scale to the order of
petabytes of globally accessible persistent memory pools, powered
by highly multi-core low-power [1] or custom chips.

To fully benefit from the memory capacity and concurrency of-
fered on such platforms, it is important to design efficient software
stack for managing the resident data sets. Key-value stores have
proven to be useful in managing large data sets for a variety of
applications, for caching [23, 60], using DRAM for storage [59],
and to balance persistence and performance of DRAM and disks [45,
26]. Key-value stores have especially benefited from log-structured
designs, as the ability to re-balance objects presents opportunity
to resist becoming fragmented over time, which is important for
long-lived or shared data sets.

We argue that the introduction of these new, larger, more con-
current platforms places increasing burden onto the log-structured
designs of in-memory key-value stores, specifically in their ability
to sustain high levels of concurrent execution on shared-memory
configurations. Existing systems today, such as HPE’s Superdome X
servers [32], contain many hundreds of cache-coherent cores across
16 sockets, and 48 TiB of DRAM. With hundreds of threads able
to interact with a given data set, bottlenecks arise within the overall
design of log-structured memory: it is not sufficient to replace in-
dividual components with concurrent implementations, such as the
index. Designs must incorporate principles of infrequent synchro-
nization, and an understanding of platform bottlenecks that restrict
scalability, such as how easily individual sockets may become satu-
rated.

To address these challenges, we introduce a scalable, concurrent
log-structured key-value store for in-memory data called Nibble.
Nibble presents a balance between both performance scalability
and efficient memory usage (i.e., less fragmentation), benefiting
scalable data-intensive applications on large scale machines with
massive memory and hundreds of concurrently executing CPU cores.
It introduces a multi-head log allocator design, combined with a
concurrent index and linearly scalable memory reclamation scheme
to achieve its goal.
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We make the following contributions in the paper:

1. We describe the design of a multi-head log-structured allo-
cator that supports scaling of write-intensive workloads, and
a strict “global read, local write” policy to take maximum
advantage of the underlying platform’s performance charac-
teristics;

2. We introduce a novel distributed epoch-based synchroniza-
tion mechanism that enables scalable concurrency between
applications and background threads that compact in-memory
logs;

3. We provide an evaluation of the scalability and efficiency of
our new key-value store Nibble using a mix of data-serving
and file-system-based workloads on an HPE SuperDome X
machine with 12 TiB DRAM and 240 cores.

Our measurements demonstrate Nibble exhibits linear SMP scala-
bility under large write-intensive workloads using YSCB, supported
by the use of multiple log heads. Together with distributed epochs,
all operations – GET, PUT, and DEL– show linear scalability, with
12x greater throughput than competing systems for highly dynamic
workloads at 240 threads.

2. BACKGROUND AND MOTIVATION
Computing platforms are moving towards a “memory-centric”-

style of computing [22], whereby enormous pools of byte-addressable
memory are shared by thousands of cores. In this work, we con-
sider two important aspects of such platforms: their massive main-
memory capacity, and their high concurrency. We begin this section
discussing one challenge in managing large quantities of main mem-
ory – wasted capacity, a result of fragmentation of the heap space.
State-of-the-art solutions that are used to overcome this, however,
such as log-structured allocation, are limited in practice by their con-
currency. We then illustrate how bottlenecks in modern proposals
for log-structured designs limit their overall concurrency in scaling
to hundreds of cores.

Table 1: Cost of DRAM as a percent of total, comparing a Dell
R920 and an HPE Superdome X as of September 2017.

Platform DIMM [$1k] Total [$1k] % of Total

Dell 4 CPU 3 TiB $0.65 * 96 = $62.4 $80 78%

HPE 16 CPU 24 TiB $2.0 * 384 = $768 $1200 64%

2.1 Fragmentation Eats Memory
Our proposal for using log-based management of memory is

motivated by our observation that the fragmentation of memory
heaps arising from frequent use of allocation and release of memory
objects, even with overheads costing as little as 20% additional
memory, can amount to enormous absolute quantities of wasted
storage capacity. For example, 4.8 TiB of memory remains inac-
cessible on machines with 24 TiB of main memory, if allocator
overhead due to fragmentation consumes 20% of available memory.
Over-provisioning is not an acceptable solution [29]: (1) DRAM is
expensive, the majority cost in a platform – see Table 1 for repre-
sentative large systems; (2) how much additional memory is needed
is not easily known in advance. The latter, for example, is seen in
representations of graph data structures, and the amount of mem-
ory consumption due to heap allocators depends on the specific
allocation patterns and the heuristics of the allocator.

The fragmentation problem is further amplified for applications
using enormous data sets. It is desirable to allow such data sets
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Figure 1: Fragmentation within general-purpose heap allocators.
Allocation patterns P1-P6 are outlined in Figure 9b.

to remain longer in main memory, as regenerating or reloading
them from alternative storage may take hours or days. Long-lived
data sets, however, may fragment more easily over time, seen in
servers [40], storage systems [63, 16], and distributed data process-
ing [49], resulting in decreased performance (either due to allocator
searching, or garbage collection activities). In-memory systems
where allocation patterns are subject to client workloads characteris-
tics, such as in object- or key- value stores (the focus of our work),
face similar challenges.

We demonstrate the variability in memory consumption overhead
by common heap allocators, shown in Figure 1, with a simple alloca-
tor benchmark we implemented. We observed ca. 2-3x greater use
of memory, and noticed that allocator patterns did not exhibit the
same effect across all implementations (e.g., see P2 and P3). While
this is a simple measurement, it illustrates that a simple change in
allocator heuristics or design can lead to wildly variable overheads.
Much prior work on the performance of heap allocators show them
to be very fast and scalable; our work is concerned with the memory
consumption overheads incurred.

objectlog
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Figure 2: Overview of log-structured allocation.

2.1.1 Log-Structured Allocation
In-memory systems such as object stores have found benefit from

log-structured allocation1, with origins from earlier research on file
systems [58]. Environments in which log-structured designs are
used present software with higher performance when interfacing
with persistent storage by converting random writes into sequential
writes. Additionally, due to the longevity of persistent data, use of
logs enables storage holes to be reclaimed, thereby also improving
performance, e.g. due to faster allocation or scanning of blocks [16],
and to reduce garbage collection overhead [49]. It is specifically the
latter feature – reclamation of memory – that makes log-structured
designs attractive for managing long-lived in-memory data sets.

Figure 2 illustrates a basic design; memory is arranged linearly
(logically) with an offset referred to as the head; modifications are
copied in whole to the head, and the head is incremented. Alloca-
tions are fast, as the location of the head already points to a free area,
and bumping it is a few instructions. Memory “behind” the head is
immutable; background workers typically rearrange this memory to
1Not to be mistaken for log-structured merge trees.
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Table 2: Comparison of competing in-memory data management
systems.

Concurrent
System Defrag [RD UP UPHO INS] Obj Size

Redis × × × × × Any

Masstree × • ◦ � ◦ Any

Cuckoo n/a • • ◦ • Fixed

MICA × • • • ◦ Any

LevelDB • × × × × Any

bLSM • × × × × Any

cLSM • • • � • Any

RAMCloud • ◦ × × × Any

OPlog • × • � • Fixed

Bw-Tree * • ◦ ◦ � • Any

Nibble • • • ◦ • Any

(* Projected, source code not available.)

Legend
Defrag The capability to rearrange objects.

RD, UP, INS Reads, updates, insertions – all specify the ability to perform
operations at high multi-core concurrency.

UPHO The same as UP, but under high memory occupancy.

• Fully capable, given published results or as measured on available
hardware, i.e., near-linear scalability.

◦ Partially capable, i.e., performance peaks at low/moderate
parallelism and does not improve or drops.

× Incapable, i.e., maximum performance with no/low parallelism.

� Unknown, either because a system may not understand how to
work with limited memory, or no data or source code is available.

reclaim holes, moving available memory (logically) to be in front
of the head. Object locations within the log are tracked by an index
data structure, associating keys with logical offsets within the log.
Relocation of objects cannot be done with heap allocators, as they
give out the exact location to clients (i.e., virtual addresses).

2.2 Competing Systems
Table 2 highlights competing systems (a subset of which are

evaluated against in this paper) describing their general capabilities
to perform in concurrent settings, the main environment targeted
for this work. The first category of data stores utilizes fit-based
allocation via traditional heap allocators. The second group uses
log-structured merge trees, a tree-based hierarchy of sorted buffers;
top-level buffers are appended to and kept in memory, then merged
in sorted order to lower layers of a hierarchy, where eventually
buffers are kept primarily on persistent storage devices. The last
set of systems use a form of log-based allocation as the primary
principle for their operation, using the general design principle just
described.

General key-value stores. General-purpose key-value stores
aimed at fast, parallel operations in memory have adopted concurrent
data structure designs for their indexes, as all operations must access
or modify the index: Masstree [50] uses a trie-like structure formed
of B+-trees, a cuckoo-based hash table by Li et al. [44] allows
for insertions and lookups to occur optimistically, and MICA [46]
leverages a linear-addressing optimistic hash table. While fixed-size
objects can be placed in the index itself (such as with the work
by Li), variable-sized keys and objects require use of an external
allocator, such as used by Masstree and MICA. Doing so subjects
the system to potential memory fragmentation, as seen in Figure 1,
making them less suitable for managing large dynamically changing

and long-lived data sets in main memory. Log-based methods thus
allow a system to overcome fragmentation.

Log-structured merge trees. Key-value store interfaces match
well with log-based methods: they present an interface to clients
where objects have a key and value, copying them in their entirety,
and the indirection between keys and their memory location is ab-
stracted by the interface and index. Log-structured merge trees [55]
(LSMs) such as LevelDB [26] arrange log buffers hierarchically, ap-
pending to buffers in the top layer, and merging downwards during
overflows. Appending and merging of buffers allows these designs
to avoid fragmentation. The complexity of appending, merging,
and reclaiming buffers has limited their scalability: LevelDB and
bLSM [62] assume a single-writer design, and thus allow for no
concurrency. cLSM [28] uses an in-memory skip list for concur-
rent lookups, and applies atomics and finer-grained reader-writer
locks for managing log buffers. While they demonstrate scalable
operation, results are limited to their 8-core platform, and source
code is unavailable to evaluate on larger systems. Reference coun-
ters on memory buffers in cLSM are used to avoid memory being
reclaimed during a read; we suspect this may pose a bottleneck at
high parallelism, as it introduces two atomic operations on common
data structures in the critical path.

General log-structured allocation. Shown in Figure 2, log-
based allocation differs from log-based merge trees in that data
is not sorted. This obviates the need to perform sorted merging of
buffers, removing this task from the critical path of client threads.
Background tasks instead may, independently, scan log buffers and
rearrange objects to release memory. Both RAMCloud [59] and
our system, Nibble, take this approach, gaining parallelism in com-
paction and prioritizing client thread latencies. Designs like RAM-
Cloud are intended for execution in a distributed system, with paral-
lelism arising from many machines, and network being the primary
bottleneck. Design choices such as coarse-grained locking in their
hash table index and a single log head limit scalability severely
when the network is no longer the bottleneck (such as execution
on extremely large SMP machines). In contrast, Nibble adopts an
optimistically concurrent design for the index, and provides many
log heads, enabling concurrency in both reads and writes.

Designs intended for write-heavy data structures can improve
performance further. OpLog [11], for example, utilizes per-core
logs that append operations in temporal order, assigning a CPU
clock time stamp to each update; threads may update a common
data structure in parallel. Read operations become more complex,
however, as all logs must be examined, and (previously deferred)
updates applied; this requires locking each per-core log.

The Bw-Tree data structure [48] creates a log per object – called
a ‘delta chain’ – allowing client threads to perform incremental
updates to an object, appending each delta using non-blocking op-
erations (atomics). Updates are thus very fast and support high
parallelism. Ensuring that each delta chain does not grow too large
is important for read performance, as the reading thread will need
to replay updates in sequential order (to have the latest view of the
object). This design is more amenable to larger objects where the
meta data for update operations is smaller than the object itself (e.g.,
with data base tables).

Partitioning. One well-known scalability technique is to parti-
tion data structures, such as the logs in OpLog, or data base tables in
FOEDUS [36]. Partitioned key-value stores have also been demon-
strated on alternative multi-core platforms like the Tilera [9], or to
better provision last-level caches [53], albeit for smaller working set
sizes. MICA also takes advantage of this, for routing in-bound net-
work requests to the appropriate core for processing. Partitioning is
a useful technique, and enables threads to avoid contention on locks,
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by accessing a unique resource partition. Nibble applies partitioning
to both its logs, index, and background compaction activity.

Epochs and timestamps. Another common technique to im-
prove critical path latency and support parallelism is to leverage
time stamps to defer applying updates (e.g., OpLog, and Bw-Tree
implicitly), or to remove memory reclamation operations and allow
them to be performed in the background (e.g., RAMCloud, Nibble).
In the latter, memory that is ready to be reused is stamped with a
clock. This memory is released when no in-flight operations have
begun prior to a memory chunk’s reclamation time stamp, ensuring
no client threads could hold a reference into it (e.g., via the index).

Work on the K42 [37] operating system maintains a list of in-
flight operations or memberships each client would need to register
themselves with. RAMCloud uses such a mechanism, but it limits
scalability, becoming a contention point among all threads. Earlier
work with the Bw-Tree had instead used a global epoch, incremented
with atomics; this also proved detrimental to scalability. Recent
work in Deuteronomy [43] adds to this global epoch a thread-local
epoch; objects in a garbage list are released when their time stamp
is smaller than the minimum of all thread-local epoch values. The
dual-epoch design reduces contention on atomic increments, as they
occur less frequently. As described in the next sections, this design
is similar to Nibble, however we avoid all software management of
epochs by utilizing the CPU clock itself, resulting in zero contention,
as the processor core increments the clock autonomously.

Summary. Various techniques exist across data storage systems
to achieve scalability on extreme-SMP machines. Our goals are to
apply these techniques to a memory-fragmentation-resistant design
using log-based allocations, supporting both high read and write
throughputs on small and large objects. As described in the next sec-
tion, Nibble combines the use of concurrent optimistic hash tables,
parallel partitioned logs, and hardware-based epochs to achieve near
linear scalability.

3. DESIGN
Nibble is a scalable log-structured key-value store intended for

main-memory object allocation in highly concurrent and shared
environments, maintaining low memory overhead. Data sets Nibble
does well with are ones in which objects vary in size and lifetime
(i.e., objects may be removed or inserted throughout execution). In
this section, we review the design of the main components.

The basic design of Nibble consists of three key pieces (Figure 3):

1. Optimistically-concurrent index. A partitioned, resizable
hash table for mapping application keys to virtual memory
locations — it reduces contention for highly concurrent oper-
ations, and allows memory compaction to run concurrently
with application threads.

2. Partitioned multi-head logs. Per-socket log-structured mem-
ory managers with per-core log heads and socket-isolated
compaction support concurrent writes and concurrent alloca-
tion of memory.

3. Distributed hardware-based epochs. Thread-private epochs
accessible from a shared table enable full concurrency be-
tween operations and with background compaction to quickly
identify quiescent periods for releasing memory.

Collectively, these three components enable Nibble to scale on
extreme-SMP platforms and to support high capacity use for dy-
namic workloads. We next discuss each in detail.

3.1 Index – Optimistic Concurrency
As every operation requires interacting with the index, we must

choose a design that allows enough concurrency between operations

Figure 3: High-level design of Nibble. A global index is partitioned
across sockets, pointing to objects anywhere within the system.
Logs, segments, and compaction activities are isolated to the cores
and memory within each socket.

Bucket
Index

4 cache lines
version k k e e… …

Keys Entries
15 keys, entries per bucket

64-bit

socket vaddr
Bucket Entry

16-bit 48-bit

Log-resident 
object

Used to access per-
socket log context

…

bucket idx = hash(key) % buckets

Figure 4: The hash table with optimistic concurrency. Buckets are
inlined and entries searched for via linear probing. Nibble allocates
15 entries and one version counter per bucket. Update operations
will atomically increment the version to an odd value, blocking
new traversals into the bucket, and forcing in-progress reads to
restart. Once complete, the version is bumped again, allowing read
operations to scan the bucket concurrently.

as possible. Given our target to run on extreme-SMP systems, we
additionally must ensure there is sufficient bandwidth for scaling
lookups. The former we address with optimistic concurrency, and
the latter by distributing the entire index across sockets in the system,
both techniques were used successfully in other systems (the latter
we discuss in the subsequent section).

We wish to avoid use of a sorted index as concurrent methods can
add complexities to the overall design, such as for trees [38], skip
lists [56], and especially balanced trees [41, 64, 33, 12]. Further-
more, the use of balanced or search data structures present longer
latencies for item insertion and retrieval than other data structures,
such as a hash table. Thus, our index implements an open-addressing
hash table, with no per-bucket chaining, illustrated in Figure 4.

Optimistic concurrency in our hash table uses the following de-
sign. Each bucket has a version counter, initialized to zero. Mutators
lock the bucket by atomically incrementing the version by one (to
become odd), and again incrementing upon completion (to become
even). Readers will enter only when the version is even, recording
the version to their thread stack. Upon extracting an entry, the ver-
sion is read again; if both are equal, it means no update modified
the bucket contents, otherwise the read restarts. Writers attempt
to increment the version by one when it is even; doing so ensures
entry by one mutator, and forces in-progress reads to abort and retry.
With an odd value, readers and writers will wait, reading the ver-
sion until it becomes even. This method of optimistic concurrency
has been demonstrated in other systems, such as in OLFIT [13],
Masstree [50], MICA [46], and OPTIK [30], and is used in Nibble
for its simplicity and performance.

The index is able to grow, which is achieved by incrementally
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Figure 5: Decomposition of one multi-head log in Nibble.

locking each bucket, then iterating over each key within a bucket to
compute its new location, moving it if required. A resize is triggered
by an insertion that fails due to insufficient capacity in a bucket. By
designing the index to contain 2i buckets, resizing involves doubling
the size of the index; we detail scalable techniques for allocating
memory and avoiding relocation of the entire index in the following
section. By partitioning the index into multiple (e.g., hundreds to
thousands) pieces, we are able to allow growth within one area of
the index while not impacting access to objects in the remainder of
the index.

Within each bucket entry are two pieces of information: a partition
number, enabling access to the log-specific meta data holding that
object, and of course the virtual address of the object within the log.

3.2 Multi-Head Log Allocation
As shown earlier in Figure 2, traditional log-structured designs

maintain a single head as a reference into unused memory for new
updates, bumped incrementally. Data is immutable within the log,
and subsequent updates to an object result in appending a new copy,
updating the index. The previous object location is invalidated
and must be reclaimed. Such a design is sufficient for systems
which interact with much slower hardware than DRAM, such as
storage or networks, but will not scale to hundreds of cores: (1)
contention to mutually lock the head increases, and (2) without
considering platform topology, many threads would quickly saturate
the bandwidth available on one socket.

Nibble introduces a hierarchical log design to solve both prob-
lems: on each CPU socket we instantiate an instance of the log,
shown in Figure 5, and within each, numerous head segments. When
client threads wish to append data in Nibble, a log instance is se-
lected, then a specific head. Nibble holds to a “write local read
global” policy where append operations are always performed to lo-
cal memory nodes, to avoid high memory write costs and contention
on the shared interconnect. Local-memory log-based allocation
allows Nibble to gracefully handle skewed workloads by restricting
contention to exist only within the index; threads will not attempt
to overwrite the same location in memory for the object (explored
in Section 5.4). Removing contention on shared object memory in
this way has been demonstrated in both Bw-Tree and OpLog during
updates.

Asynchronous compaction. Designs for maintaining logs may
borrow the executing client thread to perform cleanup activities
(Bw-Tree), or use a single background thread (LevelDB, cLSM), or
provide complete parallelism (RAMCloud). Nibble uses the latter
design, as it removes maintenance code from the critical path of
client threads, reducing jitter, and removes any dependence on avail-
ability of client threads to perform necessary work. The separation
further allows assignment of sets of immutable segments to spe-
cific threads for monitoring, so that compaction may proceed when
appropriate, instead of when a client thread requires more memory.

Log-structured allocation requires objects never to be overwritten
once committed to the log. Each mutation of an object creates a

new copy at the head, making the prior instance stale (and thus
contribute to memory bloat); such holes in the log may also arise
from deleted objects. To reclaim unused memory such as this,
immutable segments must be scanned, and any live objects copied
to a fresh segment – a (private) head segment of a size just large
enough to hold the live data to be moved. General designs of such
background operations may naively consider any such segments
across the entire system. Nibble restricts such threads to only operate
on segments within a memory node, to both reduce cross-socket
noise and ensure compaction operations remain as fast as possible.

Once segments have rolled over from being a head, they become
immutable and are candidates for compaction. Segment selection
in Nibble follows prior work [59] where segments are sorted by
a cost-benefit ratio of their age and amount of reclaimable bytes.
Segments with the largest calculated benefit are selected first for
compaction.

bene f iti =
(1 − utili) · agei

1 + utili
where utili =

livei

lengthi
for segment i

Reclamation queue. Segments wait in a reclamation queue for
quiescent periods, where no application thread may hold references
into the segment. Identifying quiescent periods is required as we
allow segments to be read concurrently by both compaction and
client threads. Once this is determined (using scalable epochs,
discussed below in Section 3.3), the segment is deconstructed, and
its memory released. If the new segment was constructed with
memory from the reserve pool, any released memory obtained is
first used to fill the reserve pool, before going back to the general
allocator.

SegmentInfo table. In order for compaction to determine the
current set of live bytes within a segment, it would normally have
to scan the segment, checking each key one-by-one against the
index. This becomes increasingly prohibitive with greater numbers
of segments, or smaller objects. Instead, we create a metadata table
called the SegmentInfo table where each entry stores the current sum
of live objects within the associated segment, shown in Figure 6.
To distribute the work of maintaining the live bytes per segment,
each application thread that performs a PUT or DEL will look up
the associated segments and atomically increment or decrement the
information directly.

We would not expect such operations to typically become bottle-
necks: incrementing this value for a segment means a thread has
chosen to append to that segment, but this process is made unique
via the head selection method described earlier; decrementing a
value means an object has become stale or was removed. On very
small data sets where access patterns are highly localized, objects
may be updated while the original is still located within a head
segment (competing with the current appending thread). Larger data
sets make this increasingly unlikely, rolling the segment sooner.

3.3 Fast Memory Reclamation
To allow as much concurrency between PUT, GET, and DEL opera-

tions and background compaction activities, memory reclamation
is made asynchronous, and not performed by client threads. Client
threads may update, delete, or read objects concurrently on objects
within a log that are also being compacted. The main challenge in
knowing when to release old memory segments is in determining
when a memory segment will not have any references into it held
by threads; this requires maintaining an active set of in-flight opera-
tions, determining the earliest such operation, and marking waiting
segments as they become ready for reclamation.

Determining whether in-flight operations may possibly hold ref-
erences into a memory segment requires marking each operation
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Figure 6: Illustration of synchronization between application
threads recording their current epochs, and compaction threads
determining minimum epoch for recycling segment memory (left),
and updating the live bytes information for segments (right). Each
entry in both tables is a separate cache line.

opi with an epoch eopi indicating when it began. The set of epochs
for all active operations is defined by ε = {eopi }, what we refer
to as the active participant set. By also marking a segment seg
that has completed compaction with the current epoch eseg we may
conclude that operations which have begun after that segment has
finished compaction cannot contain references into it, due to atomic
updates to entries in the index. In other words, a segment may be
deconstructed when eseg < min( ε ).

As each thread executes one operation at a time in Nibble, we
need not record operations themselves, but rather record the state τ
of the thread, represented by the current value of the global epoch:
τ = nil for executing outside of Nibble, in other words, it cannot
have a reference into a log; or, τ = i : i ∈ N+ when executing PUT,
GET, or DEL inside Nibble and most likely stored a reference into
the log on the stack or in a register. τ is recorded into a set data
structure. This is the active participant set.

Our use of thread-local epochs is illustrated in Figure 6. The
very first operation performed by client threads invoking Nibble
operations is to record the global epoch into its thread-local storage.
Upon completion, this storage is reset to nil. No coordination
between threads exists when recording the epoch. Nibble-internal
threads which periodically examine segments in the reclamation
queue will scan over the active participant set to identify the earliest
epoch an operation began at. With this it pops segments from the
waiting queue and destructs them.

4. IMPLEMENTATION
In this section, we elaborate on implementation details within

Nibble that help explain its scalability claims, and assist in under-
standing its overall architecture.

4.1 Memory Organization and Terminology
In Nibble, we organize memory into indivisible contiguous chunks

of memory called blocks (see Figure 7). Their length is a multiple
of the size of a virtual memory page, each represented by a struc-
ture that encodes its starting virtual address, length, and segment
information if it has been allocated to one. Segments, informally
used in the prior section, are merely container objects, allowing
the rest of the system to identify a specific collection of blocks,
and apply operations on them in some linear order, such as writing
new data. A set of segments forms a log, one per memory node or
socket, and all segments and blocks of a log are managed by a single
allocator. A head segment is used for appending new objects, the
exact location determined by the head offset (and then bumping it).
When full, head segments are rolled over – closed and replaced with
a new segment from free blocks. If the block pool size crosses below
some threshold, threads will compact existing fragmented segments.
To reduce stampede effects on the underlying block allocator, new
segments are allocated with a variable size.

Objects provided by application threads are placed next to each
other within blocks, prefixed by a 32-bit header, encoding the length

blockblock block block
value len key value

segment

L k v

log head offsetobject

block

header

Figure 7: A segment – a container of blocks holding objects.

of the object, and a 64-bit key. To ensure optimal memory usage, we
allow objects to be split across block boundaries within a segment;
objects may not span segments. Storing the key within the segment
allows us to determine whether this instance of the object is the live
copy via a lookup in the index.

Appending objects. At high thread counts, the probability of
eliminating contention with random selection of a head segment
becomes small, as threads must attempt to choose unique segments
with each operation. One way to overcome this is to assign each
thread a head segment, however, we chose to avoid this option and
instead assign a head segment to each CPU core. When an append
operation is issued, we identify the specific core a thread is on, and
use this information to lookup a given head segment. To ensure such
an operation is as fast as possible, we directly leverage the hardware:
on all modern x86 processors the rdtscp instruction (or rdpid on
very recent implementations) returns both the socket and core ID
within 30 cycles.2

Reading objects. When storing new objects in Nibble, we must
be able to later identify the location of the object quickly. Appending
to the log returns a virtual address of the object header, and this
we store together with the ID of the specific log segment into our
index (shown in Figure 4). We use the remaining 16 bits of our
64-bit entry to store this ID, as virtual addresses on x86 systems are
a maximum of 48 bits. When executing read operations, if the head,
key, or value lie within a block, we directly copy them out using the
instructions rep movsb to minimize the implementation of the copy
routine. As blocks within a segment may not be contiguous, for
objects that span these boundaries, we must identify the subsequent
block to copy from: we map the virtual address to a segment by (1)
aligning the address to the next-lowest block boundary and using
this to index into our vector of blocks, then (2) extract the segment
information to locate the address of the next block to read from.

4.2 Concurrent Index
The index in Nibble is an open-addressing hash table that does

not utilize chaining. Thus, on resize, we must expand the table and
relocate objects, accomplished by asking the operating system for
more physical memory. To avoid encountering allocation scalability
bottlenecks within the operating system, we allocate 64 GiB of
virtual address space per index partition, but only fault in the pages
needed to hold the current range of buckets. Upon resizing, we
do not invoke mmap (as it is serialized within the OS kernel [15])
and instead simply write to the virtual memory areas immediately
following the existing buckets to cause physical page allocation.
We bind the memory regions to sockets at the time the subtable is
created, to avoid the “first-touch” policy, which would allocate pages
potentially from other sockets. Thus, each time a table partition
with 2i buckets grows, we only allocate at most an additional 2i

buckets, instead of a second table of size 2i+1 into which all objects
are moved. Modern heap allocators use this virtual memory method
to also avoid concurrent updates to underlying page tables [39, 21].

2Data returned are the user-defined bits in the IA32_TSC_AUX ma-
chine state register (MSR), initialized for every core by the OS upon
first boot.
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Locking alternatives. Bucket versions are managed by atomic
increment and decrement for mutators, and simple memory read
operations by readers. We have considered alternative lock designs
for the bucket such as MCS or ticket locks [52]. As our index
is optimistically concurrent, there are a few considerations. First,
exclusively locking a bucket is only done by mutators; readers must
be free to read in parallel. Second, contention on a bucket may only
occur in highly skewed write-heavy access distributions (as bucket
selection is determined by a hash). Third, at any point readers must
know when a mutator has acquired the bucket lock (regardless if it
still holds it when the reader completes). If a bucket becomes locked
after a reader begins, and unlocked before the reader completes,
unless there was a counter to track this, the reader may conclude the
bucket was not mutated from underneath it and return inconsistent
data. Updating our bucket version after a mutator completes could
be implemented without an atomic, reducing their use to one per
update, as only one mutator will be doing so.

Given our goal to ensure index operations remain as fast as possi-
ble, we also strive to implement fast locking mechanisms. Scalable
locks like MCS require more setup to be performed (connecting a
new entry to the lock chain), increasing latency. If we use the ver-
sion counter within a ticket lock, then two mutators may increment
the version from even → odd → even, indicating to readers they
may enter the bucket, when in fact multiple mutators are enqueued.
Additional state in a bucket also reduces the capacity to hold ob-
ject entries. Our optimistic method does not provide fairness for
ordering. However, given operations are expected to be very fast,
starvation is expected to be an unlikely occurrence.

Alternatively, having a lock for each record (object) instead of
per bucket would increase storage capacity, and be especially pro-
nounced with small objects. Should objects be 8 bytes, a lock of 8
bytes would double the amount of space needed. If we do not keep
this in the hash table, then accessing a secondary structure would
mean additional cache line miss delays on each lookup. Due to
bucket placement, hot records may pose some unfairness on readers
co-located in the same bucket. Keeping buckets small (handful of
items) ensures this exposure is limited.

4.3 Supporting Memory Reclamation
Maintaining the participant set ε has been a source of past scala-

bility challenges in other systems. RAMCloud, for example, based
off the earlier work in K42 [8], maintains a single non-concurrent
linked list of received messages from the network. Adding and
removing entries from a single list becomes a bottleneck, especially
with very low processing latencies. Early work in Deuteronomy [48,
42] maintained for each epoch a counter whose value indicated a
count of active operations started during that epoch; atomic manip-
ulations of the counter for each operation resulted in a bottleneck.
Their later work [43] instead maintained a software-incremented
global counter together with thread-local counters. At very large
scales, however, software-maintained counters eventually become
bottlenecks [19].

In Nibble, all threads register themselves in an Epoch Table (Fig-
ure 6). Each entry is a cache-line-sized unsigned value that records
the current state τ for that thread (its epoch, if not nil). The set of
participants is then determined by scanning this table for non-nil
values without locking, resulting only in cache line invalidations.
Joining or leaving simply involves modifying an entry in the table.

Instead of a software-maintained global epoch, we leverage the
CPU’s global time-stamp counter (TSC). Without the use of a
software-maintained epoch within a cache line, synchronization
points are eliminated and reading of the epoch becomes very fast,
avoiding cache line invalidations, as the hardware autonomously

increments its value. Reading the TSC is fast – 30 cycles on an Intel
Haswell processor. The value zero we implement to represent nil,
indicating a thread is not in the active participant set.

Use of the TSC has been evaluated in other systems for global
synchronization, such as OpLog [11] and work by Wang et al. [66],
and is shown to not have measurable skew. Should skew exist, we
may run a stress benchmark to ascertain which clock is farthest
ahead and its time cmax, then calculate a distance ∆ci = cmax − ci

from that to every clock. When comparing epochs, we would first
add the respective ∆ci to each. If clocks progress at different rates,
these offsets would need to be periodically recalculated.

Cost-benefit maintenance and compaction. Compaction threads
in Nibble cache the benefit metric for each candidate segment along
with a record of their live size in order to determine when re-
computation of this metric becomes required. This cache, with
a reference to its associated segment, is kept within a vector; peri-
odically (when available capacity reduces below 20%), compaction
threads will iterate over each and if the cached live bytes metadata
differs from the current, that segment’s benefit is updated. The vec-
tor is sorted in-place, and the segments with the highest benefit ratio
are selected for compaction.

Each time a head is rolled, it is placed round-robin into a queue
destined for a specific compaction worker thread, ensuring an even
distribution of load among threads at all times. Each thread manages
a private set of candidates, allowing us to make further use of scale
by having such threads perform candidate selection and sorting in
parallel, instead of maintaining an large vector with all segments,
using parallel algorithms to sort. Finally, as compaction threads are
bound to a memory node, they are unaware of and do not synchro-
nize with thread or memory of other sockets, keeping the amount of
work per thread low.

The actual process of compaction is straight-forward. The sum of
live bytes is calculated from the set of candidate segments, using the
SegmentInfo table, and a new segment is allocated. Should there
not be sufficient memory, a reserve pool is used. Each candidate seg-
ment is scanned and keys found are verified with the index: lookup
failures or mappings which do not point to the current location indi-
cate the object is stale, and the item is thus skipped. Live objects
are individually locked via the index while the object is copied – a
minimal, required synchronization with client threads. Once com-
pleted, the new segment is added to the set of candidates, and the
old is pushed into a reclamation queue.

5. EVALUATION
The main focus of this work is to evaluate our methods for scaling

log-based allocation as a memory management design within in-
memory key-value stores. We compare our design in Nibble with
both a competing log-based key-value store, RAMCloud, in two
alternative configurations, and other systems that leverage varied
memory allocation strategies (see Table 3), such as general-purpose
heap allocators, or custom methods (slabs, segregated fits, etc.).
Supporting this, we address the following questions:

• How does the performance of Nibble compare to competitive
systems for both static and dynamically changing workloads?

• How much does memory pressure affect performance?
• How well does Nibble’s log allocator avoid fragmentation?
• How well does Nibble handle high insertion workloads?
• What role does use of multiple log heads and our distributed

epoch play in overall performance?

The more general question we aim to address from the entire
evaluation is, given the added complexity in Nibble to scale log-
based allocation, in which situations is our design most useful?
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Table 3: Summary of compared systems.

System Version Description

Redis [60] 3.2.8 In-memory data structure store
allocator: jemalloc [21]

RAMCloud [59] d802a969 In-memory log-structured KVS

Masstree [50] 15edde02 Concurrent optimistic B+-tree
allocator: Streamflow [61]

MICA [46] b8e2b4ca Concurrent partitioned KVS
allocator: custom segregated-fits [67]

Table 4: Summary of workloads.

Workload Configuration(s)

Benchmark derived from prior work [59]:
Fragmentation Given a pair of sizes, allocate objects of first size,

benchmark randomly delete 90%, allocate objects of second
size until allocation fails (or until a specific
capacity has been reached).

Dynamic 2 million files, 500-4096 bytes,
Postmark [35] 32 million transactions, 10k subdirectories

As a trace: 18 million objects, 183 million operations
per thread: 5.7 GiB working set size

Static data-serving 1 billion 1 KiB objects, 100/95/50% GET,
YCSB [17] 100% PUT, uniform and zipfian

Platform. We performed all measurements on an HPE Super-
dome X computer with 16 cache-coherent Intel Xeon E7-2890 v2
CPUs, each with 15 physical cores at 2.80 GHz, for a total of
240 cores. Each CPU addresses 768 GiB of DDR3 ECC DRAM, for
a total of 12 TiB of system memory. SMT is enabled, but alternate
threads were unallocated across all experiments; all default CPU
prefetchers were enabled. The host operating system is Red Hat
Enterprise Linux 7.3, kernel 3.10.0-327.28.3.

Our evaluation focuses on SMP performance across all systems,
thus there are no networking components considered in this study.

Workloads. Table 4 summarizes the workloads used in our study.
We evaluate each system with workloads which stress scalability,
variable access patterns, the level of stress on the underlying memory
management, and susceptibility to memory fragmentation.

With computing becoming increasingly memory-centric, we aim
to evaluate each system with a more dynamic workload at scale.
Using Postmark [35] – a well-known file system benchmark – we
expose each system to a working set with variable object sizes
and a fairly high churn in objects – frequent insertion and dele-
tion. In order to capture this behavior for key-value stores, we use
TableFS [57] that converts I/O operations into equivalent key-value
store operations (it implements a file system with LevelDB [26]
within a FUSE [4] mount point).

Using YCSB we measure overall system throughput in terms of
operations per second. YCSB models typical data-serving envi-
ronments, where data is often consumed at large scales. Note that
with YCSB, the in-memory data set does not change in size, nor are
objects ever created or deleted throughout our experiments, thus we
label this as static workload behaviors.

Compared systems. The compared systems are summarized in
Table 3. We modified systems when necessary to isolate the core

functionality and package them as a shared library for evaluation;
where systems may act either as a cache (i.e., items may be evicted)
or a store, we select the latter mode. We do not compare the ad-
vanced features of each system, such as multi-object transactions,
failure recovery, or persistence, and instead use the simplest com-
mon subset – PUT, GET, and DEL operations. All persistent storage
features of these systems (if present) were not enabled, and all eval-
uation was performed with client workloads executing on the same
machine.

Redis: No modifications. Its implementation does not permit
creating multiple instances within a single address space, thus we
create multiple servers and use UNIX domain sockets with the
hiredis client library. We use the hash to assign a key to an instance.

RAMCloud: We extracted the internal ObjectManager class, which
encapsulates its key index, log allocator, and cleaner threads, allow-
ing us access to invoke PUT, GET, and DEL methods directly. As it
is the only recent key-value store implementing log allocation, we
provide two configurations for comparison: using a single instance
of ObjectManager (the default RAMCloud configuration) and one
with an array of instances, to model a trivially parallelized log-based
key-value store. Statistics collection was disabled. A key is assigned
an instance based on its hash.

Masstree: We extracted the primary radix tree data structure. We
create a single instance thereof, on which client threads directly
invoke PUT, GET, and DEL operations.

MICA: The ‘EREW’ mode is enabled to support shared-memory
configuration, allowing application threads to read and update ob-
jects located on any core; the segregated fits allocator was configured
with 8192 size classes, offset by 256 bytes to accommodate the range
of object sizes in our workloads; additional code was added to ob-
ject deletion to invoke region coalescing3 and the index hash uses
SipHash [7].

Nibble: We enable eight compaction threads per socket, segment
and block sizes of 32 MiB and 64 KiB, respectively, and 1-2% of
memory is reserved for compaction. While each CPU has only 15
cores, this many compaction threads does not unnecessarily steal
the CPU; most of the time, these threads sleep. This is unlike in
RAMCloud which devotes specific cores to perform compaction
work. When compaction must be executed, perturbance of client
threads is unavoidable and irrelevant, as they would otherwise wait
for PUT to become unblocked.

5.1 Breakdown of Components
To better understand the impact of each design feature within

Nibble, we experiment with alternative designs, shown in Figure 8.
Epoch. We compare our distributed epoch design with that of

a single atomic counter, shown in Figure 8a, and measure a large
impact on performance — a 20x gain in throughput. While the
epoch is required primarily by the compaction logic, to enable
concurrent function with front-facing client operations GET, PUT,
and DEL, it has the most impact on the latter. Releasing segments
back to the free pools requires keeping track of in-flight operations,
and the “time” at which the operation began. Use of an atomic
counter requires threads to manually ensure forward progress. The
hardware-based TSC increments autonomously, however, and can
be read independently from any core in ca. 30 nanoseconds; the onus
is on hardware designers to ensure all core TSCs are synchronized.

Furthermore, having threads remain as independent as possible by
keeping track of their own operations and time stamps in a private
cache line (their slot within the Epoch Table) allows for scalability.
Only when compaction threads must interpret a global value will
they scan the entire table and record the minimum; no locking
3Provided by the authors of MICA from personal correspondence.
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GET
1kB

Mix
1kB

Mix
100B

0

50

100

T
h

ro
u

gh
p

u
t

[o
p

/s
ec

x1
0

6
]

Global PUT

Local PUT

(b) Nibble restricts writes to local memory,
resulting in a 1.75x-2.48x improvement in
overall performance for mixed workloads.

GET
1kB

Mix
1kB

Mix
100B

0

20

40

60

80

100

120

T
h

ro
u

gh
p

u
t

[o
p

/s
ec

x1
0

6
]

Random head selection
[no. heads/socket]

Core-local head

1

2

4

8

15
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vide the greatest initial performance gains. Se-
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contention, gaining an additional 15%.

Figure 8: Performance breakdown of various designs in Nibble: uniform YCSB 240 threads (Mix is a 50:50 ratio of PUT and GET). For (a)
and (b) we allocate one log head per core (15 per CPU) and perform core-local selection.

is necessary for consistency, as we rely on the CPU coherence
mechanism. The impact of our design is apparent regardless of the
mix of operations.

Local vs remote memory. One design strategy to distribute work
across all resources is to use the key hash. On small platforms with
two sockets, this results in only half of all operations to traverse
remote-socket distances. Our large test platform, with 16 sockets,
exaggerates this ratio, resulting in 15/16 accesses (94%!) to remote
memory. When compared with a strategy of always writing to local
memory (Figure 8b), we measure an improvement in throughput
of 1.75x and 2.48x, for large and small objects, respectively. Fur-
thermore, use of a hash to determine the log head may result in
increased contention between threads during append operations. We
next look at how to reduce contention on selecting a log head when
implementing PUT.

Log head design. In systems like RAMCloud with a single log
head, supporting parallel write-heavy workloads becomes strenuous.
We evaluate the effect of having multiple log heads, and furthermore
the method of choosing a head when implementing PUT (Figure 8c).
With threads writing only to local memory, we increase the number
of heads available on each socket from 1 to 15, and select the head
(i) randomly, or (ii) with 15 heads, based on the core the request is
executing on. As discussed in Section 3, we accomplish the latter
using the rdtscp instruction to determine socket and core IDs.

More heads results in greater, but diminishing, throughput: a
maximum gain of ca. 2x over just one log head on each socket. For
smaller objects, a performance plateau is reached with only four
heads. There is room for further improvement, as random selection,
and very high rates of operations, creates some contention on the
local log heads. We designed Nibble to select a head based on
the core; as long as threads do not migrate during a transaction, or
cores are not over-subscribed, this results in zero contention for PUT,
gaining an additional 15% in throughput.
B Summary. Scaling log-structured designs have resulted in

uncovering bottlenecks within a multitude of components. Solutions
must ensure minimal synchronization and use of local resources
as much as possible. To scale on extreme-SMP platforms, Nibble
implements a write local, read global policy, contention-less log
head selection, and an epoch that minimizes synchronization.

5.2 Memory Overhead
Ensuring efficient use of available memory alleviates applications

from the responsibility of handling failed allocations that result from
fragmentation when a dataset is known to fit within the system’s
physical memory. Additionally, long-running services must remain
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(a) Memory overhead of each system. Reported is the ratio of
total resident memory over aggregate size of allocated objects.

Label Pattern Label Pattern

P1 60→ 70 B P4 1→ 10 KiB
P2 1000→ 1024 B P5 10→ 100 KiB
P3 1000→ 1030 B P6 500→ 600 KiB

(b) Memory allocation patterns. 8 GiB of objects of the first size
are allocated, 90% randomly removed, then again allocated of
the second size until (i) insertion fails, or (ii) we allocate a total
of 8 GiB again.

Figure 9: Measured memory overhead (bloat) for each system
evaluated. Nibble has the lowest memory pressure – less than 10%
additional memory (except for ‘P1’ with 21%). Only Nibble and
RAMCloud utilize log-based allocators.

resistant to changes in both access and allocation patterns that may
cause performance loss.

We visit the challenge of ensuring efficient use of available mem-
ory by subjecting each system to a series of object allocation and
release cycles, modeled after prior work [59] shown in Figure 9.
Both RAMCloud and Nibble are log-allocating systems, and are
able to accommodate destructive allocation patterns by relocating
memory to reclaim holes. Nibble consumes less than 10% additional
memory for all but the smallest objects; all systems have greater
pressure when managing small objects, due to the fixed-cost of
meta-data needed to manage their greater numbers (as is expected).

Non-copying allocation methods are unable to readjust allocated
memory to reclaim holes, resulting in over-use of available memory.
Our measurements show MICA and Masstree consistently using
up to 2x the amount of memory actually allocated. How much
memory is consumed also depends: Redis’ use of memory varies
significantly, depending on the size of objects used.
B Summary. The ability to relocate objects in response to frag-

mented states provides the ability to keep memory pressure low.
Non-copying allocators are unable to correct fragmentation after-
the-fact, and the amount of memory bloat varies between designs.
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(a) Objects accessed a total
of 18 times or less comprise
80% of all operations —
very little reuse.

(b) The set of accessible objects changes
over time: 10% of operations delete exist-
ing objects and another 10% insert new
objects, DEL(hit) and PUT(ins), respec-
tively, and 20% of operations overwrite
existing objects (= PUT- PUT(ins)).

Figure 10: Characteristics of our trace captured from Postmark.
Overall, the workload presents a dynamic behavior: most objects
are accessed infrequently, yet a consistently high churn in objects is
present. 20% of all operations will add or remove objects, putting
stress on each system’s object allocator logic.
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Figure 11: Weak scaling of our Postmark trace, measured in time-
to-completion, at a consistent 17% memory utilization: as each
thread executes the entire trace on a private working set, we increase
available memory as appropriate (except for Masstree). Nibble
completes the trace within a few minutes, whereas the other systems
require upwards of an hour or more with more threads. RAMCloud
was able to run with only 2% utilization until system memory was
insufficient.

5.3 Dynamic Workloads – Postmark
In this set of experiments, we opted to evaluate each system in

how well it can support workloads which operate on more dynamic
data sets – objects are destroyed, created, and are of a variety of
sizes. To accomplish this, we capture a trace from a standard file
system benchmark called Postmark. We execute an instance of
Postmark within a file system created by TableFS, a storage layer
that uses a key-value store within FUSE to implement file system
operations.

Trace characteristics. The Postmark benchmark creates a set
of files across a number of subdirectories, then performs transac-
tions on them, such as append or deletion (refer to Table 4 for our
configuration of Postmark). The trace we captured has 183 million
operations and 18 million objects (see Table 4) with, on average, 5.7
GiB of active objects allocated in memory at any given moment. Ob-
ject access frequency is show in Figure 10a. The majority of objects
are accessed a small number of times – 18 individual operations or
fewer per object for 80% of the entire trace. Such objects are cre-
ated, accessed a minimal number of times, then removed. With little
reuse of objects, most of the work in this trace is in the insertion
and removal of unique objects and responding to GET requests.

Figure 10b shows a breakdown of the types of operations. There
is a brief setup phase with a high portion of writes and object
insertions – PUT and PUT(ins) respectively. Throughout the majority
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Figure 12: From Figure 11 we measure time-to-completion for
Nibble and MICA at 135 threads, and progressively decrease avail-
able memory. At 65% utilization, Nibble’s runtime doubles due to
compaction costs. MICA seems unaffected, however any such effect
is masked by contention on its per-core heap allocators.

of the trace, a consistent 10% of operations insert new objects, and
10% remove existing objects – DEL(hit). At the end of the trace,
nearly 50% of operations are deletions, as Postmark cleans up all
objects.

Scalability. We measured the ability to sustain executing the
trace, with a thread executing the trace independently on its own
set of objects. As we add more threads, we are adding more work
to the system (weak scaling), but as each thread is independent, no
thread coordination occurs. Figure 11 shows our results. To ensure
a consistent capacity utilization (ca. 17%), we increase the total
amount of memory allocated to each system as more threads are
added.

Runtime increases very little for Nibble, as each thread can inde-
pendently (over-)write objects without synchronization with other
threads, and having created all objects on the local socket, object
accesses are fast. Within MICA, runtime is higher due to multiple
factors: the majority of PUT and GET traverse the chip interconnect,
as an object’s location is determined by its key’s hash, and, there
is high contention on the per-core heap allocators, which arises
when objects are newly allocated or destroyed. The latter is greatly
increased with greater numbers of threads.

With high rates of insertions and deletions, Masstree unfortunately
suffers from frequent rebalancing of its trees, resulting in very high
completion times. We were able to execute RAMCloud only by
reducing the utilization to 2% overall, with 240 instances. At 45
threads, this would require more memory than exists in our test
platform.

Impact of capacity utilization. Using the two highest-perform-
ing systems from the prior experiment – MICA and Nibble – we
measure the effect of memory pressure on overall performance. With
135 threads, we decrease available memory such that the utilization
increases to 80%, shown in Figure 12. MICA’s measured perfor-
mance is as explained earlier: per-core heap allocators are guarded
each by a mutex, creating contention for the 20% of operations
which create and destroy objects throughout the trace. Any effects
due to memory pressure may be masked by this bottleneck. As
Nibble does not experience this bottleneck, it spends more time
compacting segments, as expected, more than doubling the execu-
tion time at 80% utilization, but Nibble still outperforms MICA
under 80% memory utilization.
B Summary. Workload patterns with churn place high stress

on the memory management of key-value stores. Nibble scales by
ensuring object insertion and deletion are independent operations,
completing Postmark in 80% less time than MICA at 135 threads.

5.4 Data Serving Workloads — YCSB
We implemented an internal YCSB workload driver, measur-

ing the scalability of each system as a function of throughput and
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Figure 13: YCSB throughput measurements on 1 TiB of data – ca. 230 1 KiB objects. “95% RD 5% WR” is a workload with GET composing
95% of all operations and 5% with PUT. No configuration uses DEL. Approximately 8 TiB of storage capacity was provided to ensure a low
utilization rate of ca. 12%.
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Figure 14: Throughput of MICA and Nibble driven with YCSB
(uniform) using all 240 cores, steadily increasing the capacity used.

number of client threads. Figure 13a and Figure 13b show our
YCSB measurements of each system. The notation [N] indicates
N instances of the associated system used for that configuration.
All YCSB experiments do not perform DEL and all objects are in-
stantiated before throughput is measured; thus, PUTs never require
insertion of new objects.

Uniform access. With uniform key distribution (Figure 13a),
both Nibble and MICA are able to scale with increasing threads.
For mostly-GET configurations, MICA demonstrates up to 25% and
43% greater throughput for 100% and 95% GET, respectively. With
high percentages of PUT, both systems show roughly equivalent
performance; Nibble executes PUT to local socket memory, whereas
MICA distributes them based on the key hash. Scalability for both
systems is achieved via optimistically concurrent indexes, and the
ability to overwrite (and for Nibble, append) independently.

Single-instance RAMCloud scales up to ca. 30 threads, then de-
clines. Threads in YCSB quickly saturate the off-chip bandwidth of
a single socket: by default, RAMCloud’s internal memory allocator
will fault in all pages backing the log and index, restricting memory
to a single socket. Any application that has a fault-then-use pattern
will exhibit this type of bottleneck at scale, but less so on much
smaller platforms.

Multi-instance RAMCloud plateaus much later (after 135 threads),
but drops precipitously thereafter. With 240 instances, the operating
system scheduler will spread out all initialization tasks, enabling
pages backing the log and index to be faulted in across all mem-
ories (there is significant variability in measured performance for
RAMCloud, as memory allocation by the operating system is in-
deterministic). The drop may be attributed to growing contention
on the index. Each bucket in the hash table is guarded by a mutex,
thus any two lookup operations will serialize. For the tree index in
Masstree, despite greater lookup costs, its optimistic design supports
further scaling.

High percentages of PUT create additional bottlenecks for RAM-
Cloud and Masstree. Single-instance RAMCloud is limited to a
single log head, which becomes an immediate bottleneck, and multi-
instance RAMCloud, nevertheless with 240 log heads, is limited by
append operations that frequently chose the same head, as objects
are assigned based on their hash.

We ran Redis with 64 instances. Each server contains a single
thread to service requests. The use of UNIX domain sockets adds
additional buffer copying, as well as system call overhead into
the critical path, limiting scalability, a 6× or more difference in
throughput.

Zipfian access. Both MICA and Nibble scale with the number
of threads in a pure read configuration, for a maximum difference
in throughput of 25% at 240 threads. Overall throughput is slightly
higher than with a uniform distribution, as zipfian results in a smaller
effective working set size. Masstree shows some scalability, and
along with MICA and Nibble, it utilizes optimistic concurrency
within their indices, enabling contention-less access for read opera-
tions. Due to the smaller working set size, the bucket locks within
RAMCloud’s index limit its scalability across all configurations.

With greater ratios of PUT, a greater portion of operations will
overwrite a subset of objects in the dataset. As hashes determine
which instance in RAMCloud objects are written to, a zipfian dis-
tribution will create skew in the load across the 240 log heads –
more contention on a subset of all log heads. This skew also affects
MICA in a similar fashion: frequent writes to a subset of objects
places contention on the memory backing those objects, as objects
are overwritten with each PUT.

In contrast, writes in Nibble are not directed to a shared subset
of memory (the log-structured nature ensures this) and where an
append occurs is not determined by the hash, but instead by the per-
core log heads. Thus, threads will copy objects to private memory
areas in local memory, but contention still exists within the index to
reflect the new location created for the objects.

Impact of capacity utilization. Figure 14 examines the impact
on overall throughput when the total system capacity is increased to
near full. Given that MICA and Nibble are the highest-performing
systems in our YCSB study, we limited this analysis to just these
two. At high utilizations (≥ 70%), compaction in Nibble becomes
the dominant overhead. For systems which do not utilize log-based
allocation, such as MICA, no allocation logic is exercised in these
experiments (as the YCSB workload does not delete or create new
objects). At high capacity utilizations, log-based allocation becomes
prohibitive under moderate to substantial write configurations.
B Summary. Nibble supports scalable execution, within 25%-

43% of the best non-log-structured system (MICA) for read work-
loads, supported by the use of a scalable epoch implementation. Our
use of multiple log heads supports write-dominated workloads and
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out-performs all compared systems by 2x for skewed workloads at
high thread counts, demonstrating our write-local read-global policy
is advantageous. With static data sets and high memory pressure,
use of a non-log-structured system proves better for write-dominated
workloads, due to lack of compaction costs.

6. RELATED WORK
Section 2 provides detailed comparison of Nibble against other

key-value stores and log-based systems. Here, we summarize addi-
tional related work with respect to concurrency and memory man-
agement.

Memory reclamation and concurrent data structures. Our
system Nibble shares a technique for memory reclamation found
in many prior systems using the time stamp counter [66, 11] as an
epoch for enabling concurrent access with memory reclamation [59,
54, 24, 8]. Read-Copy-Update [51] is a form of memory reclamation
applied to data structures to allow concurrent lockless reads, even in
the presence of some writes, by copying portions of a data structure,
atomically committing changes. RCU has been successfully applied
to a variety of data structures, such as balanced trees in operating
systems [14]. New hardware features such as HTM have also been
explored in enabling concurrent memory reclamation [5].

Supporting dynamic resizing is challenging with RCU, thus alter-
native techniques for scaling data structures, such as hash tables [65]
have been proposed. As Nibble prioritizes low-latency operations,
use of relativistic hash tables would require chained buckets – a
linked-list data structure that presents poor cache locality.

Comprehensive surveys and analyses of synchronization tech-
niques on very large systems have given rise to general programming
paradigms for designing a wide variety of concurrent data structures,
such as ASCY [19, 20]. Scaling Optimistic Concurrency Control
(OCC) data structures, such as in Optik [30], provide general design
guidelines for applying OCC to a variety of data structures. How to
resize OCC-based hash tables, however, is not reviewed in-depth.

Broom [27] is a recent study on “big data” processing systems,
which found that high object churn causes language-based garbage
collection to introduce large runtime costs. They propose a special
region-based allocator (examined also in other work, Reaps [10])
to mitigate this overhead. From the study, it is unclear how one
might use regions in multi-tenant systems using a common data
store, where Nibble is intended to be used.

NUMA. Much prior work evaluates the impact of NUMA char-
acteristics on applications [25], with proposals to use automated
solutions to avoid memory bandwidth bottlenecks [18], or compiler
and language support to infer memory access patterns [34]. Further
challenges exist in overcoming the transparent nature of manag-
ing physical memory; proposals to use hardware acceleration for
memory movement [47, 34] have demonstrated success in some
situations, compared to CPU-based copying. These efforts may
complement applications that use Nibble on large NUMA systems,
as Nibble explicitly allocates memory across sockets, exposing inter-
faces for applications to explicitly place data in specific memories.

7. CONCLUSION
New hardware designs incorporating ultra-large volumes of main

memory and parallelism into the hundreds of cores are being de-
veloped to address the requirements of scalable applications. The
utility of these systems is highly dependent on the effectiveness of
their memory management to efficiently utilize the available mem-
ory capacity and to provide scalable performance. In this paper, we
illustrate that current solutions, include competing log-structured
and non-copying-based key-value stores of various designs, fall

short specifically when reconciling these two competing goals. In
response, we propose Nibble, an in-memory object store that intro-
duces a scalable multi-head log allocator design, combined with a
concurrent index and linearly scalable memory reclamation scheme
using a distributed epoch, to achieve balance between both perfor-
mance scalability and efficient memory capacity usage.

Using various data-intensive workloads we show that, by lever-
aging a combined set of designs for concurrent indexing, memory
reclamation, and log management that Nibble scales linearly and
matches competitive non-log-structured key-value stores for write-
dominated configurations on tera-byte-size data sets. Our memory
analysis shows Nibble is efficient, requiring less than 10% additional
capacity, whereas memory use by non-log-structured key-value store
designs may be as high as 2x.

In the future we plan to extend this work to rack-scale systems
with globally accessible fabric-attached memory and address persis-
tence and failure recovery with emerging non-volatile memory.
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