
An Experimental Study on Hub Labeling based Shortest
Path Algorithms

Ye Li#1 Leong Hou U#2 Man Lung Yiu∗3 Ngai Meng Kou#4

#Department of Computer and Information Science, University of Macau
1yb47438@umac.mo 2ryanlhu@umac.mo 4yb27406@umac.mo

∗Department of Computing, Hong Kong Polytechnic University
3csmlyiu@comp.polyu.edu.hk

ABSTRACT
Shortest path distance retrieval is a core component in
many important applications. For a decade, hub labeling
(HL) techniques have been considered as a practical solution
with fast query response time (e.g., 1-3 orders of magnitude
faster), competitive indexing time, and slightly larger stor-
age overhead (e.g., several times larger). These techniques
enhance query throughput up to hundred thousands queries
per second, which is particularly helpful in large user envi-
ronment. Despite the importance of HL techniques, we are
not aware of any comprehensive experimental study on HL
techniques. Thus it is difficult for a practitioner to adopt
HL techniques for her applications.

To address the above issues, we provide a comprehen-
sive experimental study on the state-of-the-art HL technique
with analysis of their efficiency, effectiveness and applicabil-
ity. From insightful summary of different HL techniques, we
further develop a simple yet effective HL techniques called
Significant path based Hub Pushing (SHP) which greatly
improves indexing time of previous techniques while retains
good query performance. We also complement extensive
comparisons between HL techniques and other shortest path
solutions to demonstrate robustness and efficiency of HL
techniques.

PVLDB Reference Format:
Ye Li, Leong Hou U, Man Lung Yiu, Ngai Meng Kou. An Exper-
imental Study on Hub Labeling based Shortest Path Algorithms.
PVLDB, 11(4): 445 - 457, 2017.
DOI: https://doi.org/10.1145/3164135.3164141

1. INTRODUCTION
Shortest path distance retrieval is a core component in

several application domains, e.g., route planning, location-
based games, recommendation and analytics on social net-
works. The shortest path problem has received abundant at-
tention over the past few decades. Dijkstra’s algorithm [20]
is the first study to find the shortest path by network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 4
Copyright 2017 VLDB Endowment 2150-8097/17/12... $ 10.00.
DOI: https://doi.org/10.1145/3164135.3164141

traversal, which takes O(|E|+ |V | log |V |) time. Many sub-
sequent work have been developed based on the network
traversal paradigm over the past five decades, e.g., A* [27],
ALT [24], REACH [26], HH [34], CH [23], AH [40], TNR [10],
REAL [25], ReachFlags [12], SHARC [11], CALT [12], and
CHASE [12]. However, these solutions incur considerable
time on traversing a network. In addition, these methods
are specifically designed to exploit road network properties
(e.g., highway dimension [4, 23, 34, 40]), rendering them in-
effective for complex networks (e.g., social, communication,
hyperlink, and citation networks).

Another line of solutions is to retrieve the shortest path
distance without network traversal. Recent studies attempt
to answer the shortest path distance rapidly by hub labeling
(HL) techniques. The first HL algorithm was proposed by
Cohen et al. a decade ago [15]. The main idea of hub labeling
is to precompute a set of hub labels for each vertex. At query
time, the shortest path distance from source s to destination
t can be computed by a sort-merge join between the label
sets of s and t.

1.1 Motivations
To the best of our understanding, HL techniques are the

only all-round solutions that can compute shortest path dis-
tance in microseconds for all types of large networks (e.g.,
with millions of vertices), which is particularly helpful in
large user environment (e.g., social networks). Figure 1
shows the performance of the state-of-the-art shortest path
distance solutions (cf. [5, 6, 9, 10, 18, 21, 23, 38, 40]) on
two types of networks, CAL (road network, 1.8M vertices
and 2.3M edges) and SKITTER (complex network, 1.7M
vertices and 11M edges). Except TNR [10], none of the
network traversal based solutions can compete with HL so-
lutions, e.g., DHP [6], PHL [5], BHP [16], and SHP (this
work), in terms of response time. Although there exist some
experimental studies [3, 5, 6, 18] on HL techniques, we iden-
tify four issues in these studies.

[Experimental Settings] We summarize the discrepan-
cies among their experimental settings as follows. Thus, it
is hard to infer a clear winner among the HL techniques [3,
6, 5, 18].
(a) Experimental results were conducted on different plat-
forms which might misreport the relative performance, e.g.,
competitors on Linux vs. own solution on Windows [16],
competitors on Windows vs. own solution on Linux [5].
(b) The size of the data structures were not reported, e.g.,
[6] mentioned they used 8-bit for distance attribute while [3,

445

(a) Response time vs indexing time

(b) Index size (MB)

Property Type

D
irected

W
eig

h
ted

R
o
a
d

C
o
m
p
lex

CH [23] © © © 4
AH [40] © © © ×
TNR [10] © © © ×
PHL [5] × © © 4
IS-L [21] © © 4 ©

DHP [6, 32] © © 4 ©
BHP [16] © © ©©
SHP © © ©©
+BP [6] © × × ©
+HLC [18] © © ©©

(c) Applicable? ©: yes, 4:
yes but too costly, ×: no

Figure 1: Relative performance of the shortest path
distance on networks of ∼1.5 million vertices

16] did not elaborate it in their work. For HL methods, the
size of distance attribute significantly affects the index size
and memory usage.
(c) Some performance factors were not reported, e.g., no
response time for DHP in [6, 16], no indexing time for com-
pression techniques in [16].

[Completeness of Evaluation]
(a) Solutions were compared only on a specific network type,
e.g., only undirected complex networks in [6, 16] and only
road networks in [5]. The performance of solutions on other
network types remains unknown.
(b) The performance comparison between the state-of-the-
art network traversal solutions and the latest HL techniques
remains unclear. For instance, AH [40] can be viewed as the
state-of-the-art solution on road networks but there is no
experimental comparison with the latest HL techniques. In
addition, most HL studies focused on distance queries but
did not report the performance of path queries.

[Hub Labeling Optimization] Existing work [3, 6, 16,
18, 28] treat the hub labeling construction as a holistic algo-
rithm, which may conceal the contribution of each individual
technique. For instance, a fast label construction optimiza-
tion is proposed in [6] but it has not been considered in more
recent studies [16]. Besides, some nice properties from the
path-based solutions [5, 29, 35, 39] could be extended to
improve the HL techniques.

[Performance Factors] The performance factors include
the response time, the index size, and the indexing time.
Some techniques excel in one performance factor but per-
form badly in others. We are not aware of any unified metric
for comparing the performance between the solutions.

1.2 Contributions
[Unified Experimental Settings] In order to fairly eval-
uate the methods, we conducted our experiments on 22 rep-
resentative datasets which cover various graph categories in
real world. By observing experimental results on different
types of graphs with a great variety of graph properties, we
obtain several insightful conclusions on how well a method
can perform in a comprehensive set of scenarios. In addition,
we have made necessary adaptations (e.g., using the same
size for distance attribute) in implementations in order to
enforce consistency.

[Enriched Evaluation] We systematically evaluate the
HL techniques [3, 6, 16] with all known optimizations [6, 16,
18]. In addition, this is the first work to compare the latest
HL techniques with other state-of-the-art competitors (e.g.,
AH [40]).

[Significant Path Optimization] A significant path
based ordering heuristic (cf. Section 4.3) is proposed for
improving the index construction of HL, which is inspired
by path based solutions [5, 29, 35, 39]. Our new ordering
heuristic greatly improves the indexing time while retains
good query performance. More importantly, it achieves scal-
ability for extremely large datasets which cannot be sup-
ported by the previous techniques [6, 16].

[Overall Performance] We propose a metric, called Over-
all Performance Score (OPS) (cf. Section 6.3.4), to express
the overall performance of a method. This helps to decide
the best all-round method in various application scenarios.
In addition, we define the Preference Probability that com-
pares the methods on different preference space. Lastly, we
also give a summary that guides users to select the best
method for their applications (cf. Section 7).

[Source Codes] The source codes of our implementations
can be accessed at [1].

The remainder of the paper is organized as follows. Sec-
tion 2 elaborates taxonomy of HL techniques. State-of-the-
art construction paradigms and ordering schemes are intro-
duced in Section 3 and Section 4 respectively, with detailed
discussions on design philosophy. We briefly summarize op-
timization techniques in Section 5. Our extensive experi-
mental analysis is demonstrated in Section 6. At last, with
comparisons among HL techniques and against other state-
of-the-art shortest path solutions, we summarize our sugges-
tions and conclusions in Section 7.

2. PRELIMINARIES

2.1 Shortest Path and Shortest Path Distance
Let G = (V,E) be a graph associated with a non-negative

weight function w : E 7→ R≥0. Given a source s and a
destination t, the shortest path SPs→t is the path from s to
t with the smallest total distance (with respect to function
w). We denote the shortest path distance, i.e., the total
distance of SPs→t, by dist(SPs→t).

446

2.2 Hub Labeling

2.2.1 Background of Hub Labeling

Definition 1 (Hub label of vertex v). A hub label
of a vertex v is a key/value pair that consists of a hub indi-
cator h and the distance between v and h.

Definition 1 shows the formal definition of a label in the
HL techniques. For undirected graphs, a hub h can be
viewed as a transit vertex between v and other vertices. We
denote the label set of a vertex v as L(v). For directed
graphs, the hub labeling index stores two label sets of every
vertex, where one set stores the distance information from v
to other vertices (forward labels) and another set stores the
distance from other vertices to v (backward labels). For ease
of our discussion, we use undirected graphs by default. We
will explain if there is any difference to apply HL techniques
for directed graphs.

We summarize our frequently used notations.

symbol description

G = (V,E) a graph with vertices V and edges E
SPs→t the shortest path from s to t

dist(SPs→t) the distance of SPs→t
L(v) the label set of v

Table 1: Notations

2.2.2 Label Cover Property

Property 1 (Label cover). For each pair of reach-
able vertices s, t ∈ V , there exists at least one shortest path
vertex h ∈ SPs→t in both label sets, L(s) and L(t).

To answer the shortest path distance of any two vertices,
the hub labels must fulfill a cover property that guarantees
the shortest path distance of any two reachable vertices can
be found in a sort-merge join between the label sets of two
vertices. (Property 1)

(a) Graph G

L(v)

v1 v1:0(−)

v2 v1:2(v3), v2:0(−)
v3 v1:1(v1), v2:1(v2), v3:0(−)
v4 v1:1(v1), v2:2(v5), v3:2(v1), v4:0(−)

v5 v1:2(v4), v2:1(v2), v4:1(v4), v5:0(−)

v6 v1:1(v1), v2:1(v2), v6:0(−)

(b) A possible hub labeling of G

Figure 2: A hub labeling index fulfilled the cover
property (the brackets indicate the predecessors)

Figure 2 shows a graph G and a possible hub labeling
index that fulfills the cover property. For instance, v2 is
kept in v5’s label set L(v5) and v6’s label set L(v6) since v2
falls on the shortest path SPv5→v6 .

2.2.3 Hub Labeling Query Processing

Distance queries. Given the hub labeling index L of a
graph, the shortest path distance from s to t can be answered
by

dist(SPs→t) = min
h∈L(s)∩L(t)

{dist(SPs→h) + dist(SPh→t)}

The above equation can be computed by a sort-merge join
in linear time with respect to the sizes of the label sets. The
time complexity is O(|L̄|) where |L̄| indicates the average
label size of all label sets. According to [36], the distance
query is particularly helpful in estimating the strength be-
tween two users in a social network.

Path queries. In order to trace back the shortest path
from the hub labels, we keep the vertex’s predecessor for
each hub label, e.g., the brackets in Figure 2(b). For in-
stance, given a hub label v1 ∈ L(v5), we say v4 is the pre-
decessor of v5 in a tree rooted at hub v1. Based on the
predecessor information, we can backtrack the path by a re-
cursive process. As an example of SPv5→v1 , we first join the
label sets of two vertices and the joined hub is v1 (under-
lined labels in Figure 2(b)). Based on the label in L(v1), we
know v1 is the end vertex in the path since it has no prede-
cessor (denoted as “−” in Figure 2(b)). Based on the label
in L(v5), we know the predecessor of v5 (towards hub v1) is
v4. Next we backtrack L(v4) and find v1 as the predecessor
of v4 (in a graph rooted at v1). Finally, we reconstruct the
shortest path v5 → v4 → v1 as shown in Figure 3. The
complexity is O(|L̄| · |S̄P |) where |S̄P | indicates the average
length of the shortest paths.

(a) Graph rooted at
v1

labels hub prec. shortest path

L(v1) v1 − ...→ v1
L(v5) v1 v4 v5 → ...→ v1
L(v4) v1 v1 v5 → v4 → v1

(b) Path reconstruction steps

Figure 3: Path reconstruction for SPv5→v1

2.2.4 Canonical Hub Labeling
From theoretical point of view, the optimal hub labeling

should provide the best query performance (i.e., response
time) as it has the minimum average label size. However,
constructing the optimal hub labeling is a non-trivial NP-
hard problem [15]. A polynomial-time algorithm having an
approximation ratio O(log |V |) has been proposed by Cohen
et al. [15]. This approximate algorithm takes O(|V |4) time
and O(|V |2) space.

The prohibitive costs of the approximate algorithm call
for other directions to address the scalability issues. Many
subsequent work [2, 3] attempt to construct the hub labeling
based on a heuristic idea called network hierarchy.

The network hierarchy has been imposed in many mod-
ern shortest path solutions, e.g., highway hierarchy (HH) [4],
contraction hierarchy (CH) [2, 23], etc. Roughly speaking,
a vertex v (an edge e) is more important than another ver-
tex v′ (edge e′) in a network if v (e) exists in more pair-wise
shortest paths than v′ (e′). As an example in road networks,

447

a highway segment is more important than a residential seg-
ment since a highway is the transit point between many pairs
of sources and destinations.

Definition 2 (Canonical hub labeling). Given a
total order (i.e., hierarchy) O of all vertices V , a canoni-
cal hub labeling is the labeling that contains only the follow-
ing labels: for every shortest path SPs→t, the highest ranked
vertex v ∈ SPs→t is kept in the label sets L(s) and L(t).

Abraham et al. [3] is the first work to build the hub label-
ing based on the network hierarchy. To impose the network
hierarchy, a new definition, called canonical hub labeling (see
Definition 2), is defined in [3] that restricts the appearance
of the labels.

We can derive three properties from Definition 2. (1) The
canonical hub labeling satisfies the cover property since it
keeps at least one common vertex for each shortest path. (2)
In addition, a less important vertex cannot be the hub label
of a more important vertex since only the highest ranked
vertex of a shortest path SPs→t is kept in L(s) and L(t). (3)
Lastly, the canonical hub labeling is minimal since removing
any hub h from a label set will violate the cover property.
This is because h is the highest ranked vertex of a shortest
path SPs→t.

Even though the canonical hub labeling secures the cover
property and minimality (i.e., no redundant label existed),
the performance remains uncertain as the size of the canon-
ical hub labeling is sensitive to the total order O.

3. CONSTRUCTION PARADIGM
In this section, we first focus on the construction paradigm

of the canonical hub labeling. Given a total order O, the
construction paradigm is to build a labeling that fulfills Def-
inition 2. Without explicitly mentioning the graph type, we
assume that the default graph is undirected and unweighted.
We will add the discussion of the directed and weighted cases
if there is any difference from the default case.

(a) Pushing hub v1 to all
vertices

(b) Pushing hub v2 to v4, v5,
v7

Figure 4: Hub pushing algorithm

To build a canonical hub labeling, one idea is to push the
hub information from higher ranked vertices to lower ranked
vertices such that (O1) all shortest paths are covered, (O2)
the highest ranked vertex of any shortest paths is kept, and
(O3) the labeling is minimal. The most common construc-
tion is called hub pushing, which iteratively pushes a vertex
(as a hub label) to all its reachable vertices of lower rank.
For instance, the highest ranked vertex v1 is pushed to all
vertices in Figure 4(a), where the label distances are set to

their network distances. Obviously, this pushing mechanism
fulfills objectives (O1) and (O2) but fails to secure the min-
imality (O3).

To address the minimality (O3), Akiba et al. [6] pro-
posed a pruning method, called Pruned Landmark Labeling
(PLL), where a label v stops pushing further at a vertex w
if it has been covered by any prior label(s) in L(w) ∩ L(v).
Specifically, suppose h is a co-existed label in both L(w)
and L(v), the pushing vertex v is being covered by h if
distv→w ≥ distv→h + disth→w. In other words, hub h can
be used to answer all shortest paths from v to w and beyond
so we stop pushing v at w.

As shown in Figure 4(b), v2 stops pushing at ver-
tices v3 and v6 since it has been covered by hub v1,
i.e., distv2→v3 ≥ distv2→v1 + distv1→v3 and distv2→v6 ≥
distv2→v1 + distv1→v6 . Suppose we want to calculate the
shortest path from v2 to v8, the co-existed hub v1 (in both
L(v2) and L(v8)) can be used to answer the query.

Algorithm 1 HubPushing(G: graph; O: vertex order)

Q: Queue
1: for v ∈ V subject to the order of O do . Pushing v as a hub
2: Q = {(v, 0)} . BFS from v
3: while Q is not empty do
4: (w, dist) = Q.pop()
5: d = minh∈L(v)∩L(w){distv→h + disth→w}
6: if dist < d then . Pruned by co-existed label
7: Add label (v, dist) into L(w)
8: for unvisited neighbor vertex u of w do
9: Q.push(u, dist+ 1)

For clarity, we show the pseudo codes of the hub pushing
algorithm in Algorithm 1. For each vertex v (subject to the
vertex order O), we run a network traversal (e.g., BFS1)
from v. Line 5 returns the shortest path distance using the
hub labels (cf. Section 2.2.3). We stop further traversal at a
vertex w if there is a common hub h in L(v) and L(w) such
that distv→w ≥ distv→h + disth→w (cf. Line 6). Otherwise,
the network traversal continues and v is added into the label
set of w (cf. Lines 7-9).

Directed graphs. In directed graphs, two network traver-
sals are conducted from each vertex v. Forward (backward)
network traversal from v pushes it into backward (forward)
label sets of reachable vertices.

Alternative: Hub pulling algorithm. Abraham et
al. [2] proposed a hub label construction method that pulls
the label sets from all reachable vertices of higher ranks.
As an example in Figure 4, when constructing L(v2), we
pull the labels from L(v1) as v1 is the only reachable vertex
of higher rank. However, this construction algorithm is no
longer considered in recent studies [6, 16, 28] due to the
cost of finding all reachable vertices, where an experimental
comparison can be found in [6].

4. ORDERING SCHEME
Given a graph G, the construction algorithm (e.g., Hub

Pushing Algorithm) builds a unique canonical hub labeling
of the same index size subject to a vertex order O. Given
that the response time of a shortest path distance query is
linear to the label size, the query performance is indeed

1For a weighted graph, BFS should be replaced by a Dijkstra
like algorithm.

448

sensitive to O. The construction time is also correlated
to the quality of O since the pruning processing takes linear
time of the label size. It is indisputable that the ordering
scheme is decisive in the canonical HL techniques.

In this section, we will introduce two widely used order-
ing schemes, DHP (Degree based Hub Pushing) [6, 28, 32]
and BHP (Betweenness based Hub Pushing) [2, 3, 8, 15,
16], which rank vertices based on local and global informa-
tion, respectively. In addition, we also study a simple yet
effective ordering scheme, SHP (Significant path based Hub
Pushing), that shows a better trade-off between the indexing
time and the ordering quality in practice.

4.1 Degree based Hub Pushing (DHP)
Vertex degree is considered as a natural indicator for the

importance of a vertex in many shortest path solutions [21,
32, 37]. This simple yet effective ordering scheme is adopted
in canonical HL techniques [6, 28]. Jiang et al. [28] was the
first attempt to study the robustness of the degree ordering
in the canonical hub labeling. They observed that a vertex of
high degree is probably a good hub for many other vertices.
However, our experiments (as well as [16]) demonstrate that
the degree ordering scheme may yield larger label size than
other schemes due to the lack of use of global information.

Directed graphs. As suggested in [28, 39], we may simply
use the multiplication of the in-degree and the out-degree of
a vertex to represent its degree score. Their experiments
show that this idea exhibits good performance in practice.

4.2 Betweenness based Hub Pushing with
Sampling Technique (BHP)

In graph theory, the betweenness of a vertex v is the num-
ber of shortest paths passing through v. Accordingly, a ver-
tex of high betweenness can be viewed as an important ver-
tex since it is a hub that can answer many shortest paths.
Recent canonical HL studies [2, 3, 8, 15] have already em-
ployed the betweenness [14, 22] in ordering. For instance,
Abraham et al. [2, 3] compute the betweenness using short-
est path trees. Suppose every shortest path is unique, the
betweenness of a vertex v is the sum of the descendant sizes
of v in all shortest path trees.

The betweenness ordering scheme works with the con-
struction algorithm as follows. At each hub pushing iter-
ation (cf. Line 2-9 of Algorithm 1), the vertex of the high-
est betweenness (e.g., v) is selected as the hub. Then the
descendants of v are removed from all shortest path trees
since hub v is sufficient to answer the shortest path from
any descendant to the root. The betweenness of all unse-
lected vertices are then recomputed. However, this solution
requires quadratic space to store the shortest path trees.

To address the quadratic cost, random sampling [14, 22]
is then introduced to boost the betweenness computation.
Delling et al. [16] proposed to use only sk shortest path
trees as a sampled set T . The betweenness of each vertex is
then estimated based on T . However, the estimation based
on T becomes less accurate at later iterations since many
descendants of the trees have been removed. The estimation
accuracy can be recovered by building extra shortest path
trees (being controlled by a parameter sβ) subject to a space
budget sc. These newly sampled trees are then added into
T for enhancing the estimation quality. It stops sampling
more trees when the size of T (i.e., the number of vertices)

exceeds sc · |V |. According to [16], the default settings (sk =
16, sβ = 1, sc = 160) show a robust performance.

4.3 Significant path based Hub Pushing (SHP)
Typically BHP is more costly to construct than DHP since

it requires to maintain |T | sampling trees. When the vertex
degrees are insufficient to identify the importance of vertices,
DHP may be more costly to construct. This motivates us to
ask a question: Can we propose a more systematic solution
that preserves good ordering (e.g., generating small |L̄|) but
has relatively low overhead (e.g., removing cost factor |T |)?

Our solution is inspired by path based (i.e., multi-hops)
HL techniques, e.g., PHL [5] and [29, 39], where the hub la-
bel indicator becomes a path (instead of a vertex) in a label.
A common observation in this work is that a shortest path
Psig is significant if Psig (and the sub-paths of Psig) is passed
through by many other shortest paths. Apparently, a vertex
vsig ∈ Psig should also be significant as the betweenness of
vsig is relatively high.

To find a significant path of a graph, PHL [5] starts from
an important vertex v (e.g., the highest degree vertex) and
builds the shortest path tree rooted at v. We observe that
the hub pushing process (lines 2-9) in Algorithm 1 is also
returning a shortest path tree rooted at v (i.e., an important
vertex according to O).

(a) SPTree of v1 (b) Psig

Figure 5: Identifying a significant path

After the shortest path tree is built, PHL recursively (from
root to leaf) picks a child vertex of the largest descendants
on Psig. Figure 5 shows a concrete example, where v2 is
picked as it has more descendants than other vertices on
Psig. Our next mission is to pick the significant vertex from
Psig, which will be used as the next hub to be pushed in
Algorithm 1.

Note that the significant vertex vsig ∈ Psig cannot be
picked according to the descendant size since some vertices
in the shortest path tree are already covered by root v (i.e.,
adding vsig into the label set of these vertices does not help
to answer any shortest path queries). To effectively pick a
significant vertex vsig ∈ Psig, we suggest to rank the vertices
using two common heuristics, vertex degree and size differ-
ence of descendants 2. For simplicity, we suggest to pick vsig
based on the multiplication of these two values.

Discussion. In short, the significant path should provide
better ordering than the vertex degree since the order is de-
cided not only by the neighborhood information but also by
the descendants. It offers reasonable overhead as compared
to the betweenness based solution. We will extensively com-
pare these ordering techniques in the experimental section.

2For instance, the descendant size difference of a highway
vertex (in road networks) is high since there are many resi-
dential vertices connected to it.

449

5. OPTIMIZATION TECHNIQUES
In this section, we discuss an optimization on how to re-

duce the indexing time in Section 5.1, and then two opti-
mizations on how to reduce the index size in Section 5.2.

5.1 Fast Label Construction
The first optimization, called Bit-Parallel (BP) [6], is only

applicable to unweighted graphs. To reduce the label con-
struction time, BP executes hub pushing for multiple neigh-
bor hubs simultaneously and also stores some hub labels in
compact bit vectors.

(a) BP pushing

Pushing h to v

L(v) h : 2
B0
h(v) “010”: meaning u1 u2 u3

B−1
h (v) “100”: meaning u1 u2 u3

(b) BP hub labeling

Figure 6: BP hub labeling index of G, using 3-bit
vectors

Consider the example in Figure 6 and assume that the
vertex order is: h, u3, u2, u1, · · · . The original hub push-
ing algorithm processes each hub one-by-one, then obtains
the label set of v as L(v) = {h : 2, u2 : 2, u1 : 1}. With
the BP technique, the hub h and its set of neighbor hubs
(e.g., Sh = {u1, u2, u3}) will be processed simultaneously.
For an unweighted graph, the distances dist(SPui→v) and
dist(SPh→v) must differ by either -1, 0 or 1. With this ob-
servation, BP encodes the vertices of Sh as three compact
bit vectors, instead of storing them in L(v). In the bit vector
Bjh(v), the i-th bit is set if dist(SPui→v)−dist(SPh→v) = j.
For example, the bit vector B−1

h (v) = “100” means that
dist(SPu1→v)− dist(SPh→v) = −1. In practical implemen-
tation, BP limits the size of Sh to 64 so that each bit vector
can be encoded into a 64-bit unsigned integer.

During query processing between s and t, BP can retrieve
the hub information by using both the label sets L(s), L(t),
and their bit vectors. Thus, the query time is asymptotically
identical to the original hub index [6]. In some cases, BP
also improves query performance due to smaller label set for
each vertex.

Applicability. BP can only support unweighted graphs.
When it is applied to directed graphs, the parallel processing
performance will be degraded since only the neighbors co-
exist in both in/out-neighbor lists can be taken into Sh.

5.2 Label Compression
Hub Label Compression (HLC) [18, 16] compresses hub

labeling by indexing and referencing common groups of hub
labels. We illustrate common hub vertices with an example.
First, in Figure 4(a), v1 is pushed to v2, and then later
pushed to v4 and v5. In the next iteration (see Figure 4(b)),
v2 is also pushed to v4 and v5. Hence L(v4) and L(v5)
contain common hubs v1 and v2.

HLC represents common groups of hubs as subtree struc-
tures [18]. We show the framework to compress a hub label
set L(v) in Figure 7. First, HLC transforms each hub label
set L(v) into a tree Tv rooted at v [2], where each tree node
represents a hub in L(v). A tree edge (h1, h2) is inserted if
the shortest path between two hubs h1, h2 does not pass any
other vertex in L(v). Then, HLC compresses the tree in a

Figure 7: Tokenization of a label set

bottom-up fashion as follows. It replaces a two-layer subtree
with a leaf node as a token (shown in black color). A hash
module is used to generate the token ID and to guarantee
that the tokens are unique. The tokenization continues until
the entire tree is compressed to a single token (tree node).
When HLC processes the hub label sets for other vertices,
existing tokens (and subtrees) can be reused to reduce the
space.

While HLC provides effective compression for road net-
works, it is less effective for complex networks since subtrees
in complex networks tend to be wide and shallow. Delling et
al. [16] extend this method to HLC with masks (HLCM), in
which different tokens with same root are merged into a su-
pertoken and a single token is represented by a bit-reference
to its supertoken.

Query. At the query time, a traversal algorithm can be
applied on compressed lists to rebuild the original label sets.
After that, the hash-join operation is invoked to compute the
intersection of hubs and thus the distance [18].

Applicability. Both HLC and HLCM can support any
type of graphs. However, they cannot be used for path query
since predecessor information can not be compressed.

6. EXPERIMENTS
This section presents our experimental comparisons and

analysis for all canonical HL techniques as well as the
state-of-the-art competitors, including CH [23], TNR [10],
AH [40], IS-L [21], PHL [5].

6.1 Experimental Settings
We implemented all discussed HL techniques, including

three hub pushing algorithms (DHP, BHP, and SHP) in Sec-
tion 4, and two optimization techniques (fast label construc-
tion in Section 5.1, and label compression in Section 5.2).
We have released our source codes at [1]. Regarding the
competitors (CH, TNR, AH, IS-L, PHL), we obtained their
source codes from the authors [5, 21, 40] and a previous ex-
perimental study [38], then made necessary adaptation to
enforce consistency with our experimental settings.

All algorithms were implemented with C++ and compiled
by g++ 4.8 with -O3 flag. All experiments were conducted
on a Linux Sever in 64-bit Ubuntu 14.04.2 LTS with Intel
Xeon E5-2650v3 and 256GB main memory. We omitted
the result of a method if it ran out of memory or did not
terminate within 10 hours.

Regarding the parameter settings in the competitors, we
follow exactly the same suggestions from their authors. For

450

instance, we set sk = 16, sβ = 1, sc = 160 for BHP [16],
the number of parallel iterations to 50 for Bit-Parallel [6],
and level parameters to 215 and 6 for graphs smaller and
larger than 1 million vertices for IS-L, respectively [21]. For
road network solutions (e.g., CH [23], TNR [10], AH [40]),
we follow the settings of prior studies [38, 40].

Graph Name Category |V | |E| degree diameter

C
o
m

p
le

x D
ir

ec
te

d

GNUTELLA Social 62K 147K 4.7 11
SLASHDOT Social 82K 1M 11.5 11

NOTREDAME Hyperlink 325K 2M 9 46
DBLP Citation 1.3M 37M 7.9 10

WIKI-POLISH Hyperlink 1.5M 11M 75.2 10
TRECWT10G Hyperlink 1.6M 16M 10.1 112
WIKITALK Comm. 2.3M 5M 2.1 9

FLICKR Social 2.3M 33M 28.8 23
INDOCHINA Hyperlink 7.4M 383M 52 207

UK2002 Hyperlink 19M 584M 32 183

U
n

d
ir

ec
te

d CATDOG Social 62K 15M 50.3 15
COM-DBLP Citation 317K 1M 6.6 23
SKITTER Computer 1.7M 11M 13.1 31

YOUTUBE Social 3.2M 9M 5.8 31
HOLLYWOOD Social 1.1M 112M 99 9

R
o
a
d

U
n

d
ir

ec
te

d

BAY Area 321K 400K 1.25 1311
FLA State 1.1M 1.3M 1.27 2826
CAL State 1.8M 2.3M 1.23 4482

E Region 3.5M 4.4M 1.22 6824
W Region 6.2M 7.6 M 1.22 8085

CTR Region 14M 17M 1.22 8597
USA Continent 24M 29M 1.22 13941

Table 2: List of datasets

Datasets. Our testing datasets cover different categories
of real-world graphs in order to conduct a complete and fair
evaluation. These datasets can be broadly classified into two
major types, namely complex networks and road networks,
as shown in Table 2. All datasets are accessible at [19, 30,
31, 13].

Queries. We evaluate the shortest path distance queries
on both complex and road networks. However, we only eval-
uate the shortest path queries on road networks because the
shortest paths on complex networks are short in practice.
The performance of the path queries is similar to that of the
distance queries on complex networks.

6.2 Performance Factors
Indexing time. The indexing time denotes the CPU clock
time for the index construction. The I/O time of building
the index file(s) is excluded as in previous studies [38, 2, 3,
6, 16].

Response time. We report the average response time of
1 million random queries. Prior to running experiments, 0.5
million queries are used for warm-up.

Index size. We use a 32-bit integer to represent a vertex
ID or a distance value in the index. We report the index size
for each evaluated method. For HL techniques, each label
is a 2-tuple 〈hub, dist〉 for those solutions only applicable
to distance queries (i.e., SHP+BP and SHP+HLC) and a
3-tuple 〈hub, dist, predecessor〉 otherwise.

6.3 Evaluation of HL Techniques
In this subsection, we extensively evaluate all discussed

HL techniques, including ordering schemes, construction
paradigms and optimizations.

6.3.1 Ordering Schemes
Recall that we have examined three ordering schemes in

Section 4, namely, degree based (DHP), betweenness based
(BHP), and significant path based (SHP).

10¡1

101

103

105

In
d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

10¡1

101

103

105

In
d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

DHP
BHP

SHP
Out of memory

(a) Idx. time on FLICKR

100

102

104

In
d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

100

102

104

In
d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

(b) Idx. time on ROADs

10¡1

100

101

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

10¡1

100

101

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

(c) Resp. time on FLICKR

10¡1

100

101

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

10¡1

100

101

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

(d) Resp. time on ROADs

100

101

102

103

104

In
d
e
x
 S

iz
e
 (
M
B

)

219 220 221 222 223 224

Graph Instance Size |E|

100

101

102

103

104

In
d
e
x
 S

iz
e
 (
M
B

)

219 220 221 222 223 224

Graph Instance Size |E|

(e) Index size on FLICKR

102

103

104

105

In
d
e
x
 S

iz
e
 (
M
B

)

219 220 221 222 223 224

Graph Instance Size |E|

102

103

104

105

In
d
e
x
 S

iz
e
 (
M
B

)

219 220 221 222 223 224

Graph Instance Size |E|

(f) Index size on ROADs

Figure 8: Scalability of ordering schemes

Scalability of ordering schemes. First, we study the
scalability of ordering schemes by varying the graph instance
size from 219 edges to 224 edges (i.e., from 0.52M edges to
16.7M edges). For complex networks, we extract 6 historical
snapshots of FLICKR subject to their sizes, and denote this
collection as FLICKR. For road networks, we pick BAY,
FLA, CAL, E, W and CTR, and denote this collection as
ROADs.

Figure 8 shows the performance of three ordering schemes.
The indexing and response time of all methods increase pro-
portionally with the network size. SHP offers the lowest in-
dexing time since the significant path is relatively easy to
compute. In addition, the response time of SHP is similar to
BHP, e.g., BHP is only 4.7% faster than SHP on the largest
instance. This indicates that SHP and BHP generate hub
labels of similar size on different network instances.

Although DHP is the default ordering scheme in many
HL studies [6, 28, 32], its performance is very sensitive to
the network types. As compared to SHP, the indexing time
of DHP is just 25% (on average) slower on FLICKR but 46
times (on average) slower on ROADs. This is because the
degree of vertices in road networks is very small (e.g., 1.23
on average for all ROADs), that is ineffective to identify

451

important vertices. Besides, the average response time of
DHP is 8 times slower than SHP on ROADs.

Robustness of ordering schemes. Next we verify the
robustness of 3 ordering schemes by demonstrating their per-
formance on 22 networks in Figure 9. SHP is consistently
the fastest indexing method on all networks due to its light
overhead and good ordering quality. Regarding the response
time, SHP is competitive; it is only 10% slower than BHP on
average. The performance of DHP is not robust across dif-
ferent networks. For example, DHP performs well on many
complex networks but not on TRECWT10G. Thus, we do
not recommend DHP due to its instability. For the largest
network UK2002, both DHP and BHP run out of memory in
the index construction process, whereas SHP can complete
successfully.

Effects of graph properties. By referring to Table 2
and Figure 9, we study how graph properties (e.g., diame-
ter, average degree) affect performance of different ordering
schemes. For road networks, DHP is inferior to other two
methods in label quality since the degree based ordering
becomes ineffective in graphs of high diameters. For com-
plex networks, we divide them into low-diameter instances
(with diameter ≤ 20) and high-diameter ones (with diame-
ter > 20). The response time of DHP is one time slower than
BHP on average in high-diameter instances while the superi-
ority of BHP to DHP degrades to only 24% in low-diameter
ones. In contrast, our proposed SHP is consistently around
10% slower than BHP in response time on average (includ-
ing road networks, in which DHP is 10 times slower than
BHP in response time). Meanwhile we do not observe any
significant impact of average degree on response time of all
three methods.

Tuning of BHP. SHP is parameterless whereas BHP re-
quires a parameter sβ in the sampling process. The higher
the sβ value, BHP yields a smaller label size but incurs a
higher indexing time [16]. To investigate the effect of sβ , we
tune sβ from 0.1 to 1 (the default setting) with a step of 0.1.
We conduct experiments on a complex network CATDOG
and a road network FLA. Figure 10 plots the average label
size and the indexing time of the methods. We label BHP
(for different values of sβ) and SHP by circles and a triangle,
respectively.

SHP consistently resides at the skyline trade-off points
in both graphs, which indicates its efficiency in identifying
good ordering. Furthermore, the sensitivity of sβ is diverse
in different graphs. Changes of sβ dramatically affect label
size of FLA due to the importance of highway dimension
on road networks [4]. This incurs difficulties in tuning a
universal sβ for different graphs. Hence we recommend SHP
as a trade-off solution rather than BHP.

6.3.2 Construction Paradigm
For completeness, we also demonstrate the indexing time

of different construction paradigms in Figure 11. We as-
sume all three orderings have been precomputed hence the
indexing time of hub pushing only contains the time for la-
bel pushing processing, while hub pulling consists of overlay
graph construction and label pulling processing. We paral-
lelize overlay graph construction via OpenMP on 10 cores
as suggested by [3].

The superiority of hub pushing is consistent for both types
of networks on different network instances. For example,

with significant path based ordering, hub pushing is on av-
erage 2 times and 1 time faster than hub pulling on FLICKR
and ROADs respectively.

6.3.3 Optimizations

Fast label construction. Next we investigate the effec-
tiveness of BP applied to ordering schemes on unweighted
FLICKR. For better presentation, we only demonstrate in-
dexing and response time for SHP and SHP+BP in Fig-
ure 12.

The result indicates BP can achieve considerable improve-
ment for both indexing time and query performance. On
average, it enhances indexing and response time of SHP by
2 times and 3 times, respectively. In contrast, BP only im-
proves those of BHP by 1.4 times and 2.5 times (we do not
show these results in the figures). The extra improvements
for SHP comes from the fact that important vertices in com-
plex networks tend to be highly reachable. Hence even an
unimportant vertex is picked as a BP hub, its neighbor hubs
may contain some important vertices. In this way, BP can
compensate the defectiveness of worse vertex ordering.

Overall, BP is an effective optimization for speeding up in-
dexing and response time for unweighed complex networks.

Label compression. We verify the effectiveness of HLC
and HLCM when they are applied to ordering schemes. For
completeness, we also demonstrate a simpler compression
technique in [16] called delta compression (DELTA), which
is based on gap representation of adjacent lists [13]. The
index size and response time are demonstrated in Figure 13
for both FLICKR and ROADs. For better presentation, we
only show the results for SHP, SHP+HLC, SHP+HLCM
and SHP+DELTA. The results demonstrates that, DELTA
can not compress the index as much as HLC and HLCM
for the reasons that it can only reduce the size of hub IDs.
Although DELTA does not deteriorate much on the query
performance, we focus our discussions on HLC and HLCM,
which can compress the index much effectively.

For ROADs, we observe that both HLC and HLCM can
reduce label size significantly compared to the original la-
bels and they tend to compress more on SHP due to worse
vertex ordering generally incurs more duplicated subtrees.
The result also indicates that HLCM is a worse trade-off for
ROADs. Compared to HLC, HLCM can only slightly re-
duce 28% more index size on SHP. In contrast, it drastically
degrades average query performance of HLC by 3 times.

For FLICKR, HLCM is more effective in compression
compared to HLC. And the degradation of query perfor-
mance of both compression techniques is highly sensitive to
their compression ratio.

HLC is not as effective as HLCM on FLICKR due to larger
average degree in complex networks generally. To verify
this conclusion, we provide experimental results of SHP and
SHP+HLC on YOUTUBE and W respectively. Both net-
works have similar number of edges and index size generated
by SHP. However, the compression ratio of HLC on W is 2
times better than that on YOUTUBE. HLC can achieve
more compression when the unique tokens can be referred
by a large number of duplicated subtrees in label sets. How-
ever, larger average degree of complex network results in flat
subtrees which makes tokens can not be refered by others
since a trival difference will generate a new unique token.

452

GNUTELLA

SLASHDOT

NOTREDAME
DBLP

WIKI.-PL.

TRECTWT10G
WIKITALK

FLICKR

INDOCHINA
UK2002

CATDOG

COM-DBLP
SKITTER

YOUTUBE
HLWD.

BAY FLA CAL E W CTR USA
100

101

102

103

104

105

106

In
d
e
x
in

g
 T

im
e
 (
s) Out of memory DHP BHP SHP

GNUTELLA

SLASHDOT

NOTREDAME
DBLP

WIKI.-PL.

TRECTWT10G
WIKITALK

FLICKR

INDOCHINA
UK2002

CATDOG

COM-DBLP
SKITTER

YOUTUBE
HLWD.

BAY FLA CAL E W CTR USA
10-1

100

101

102

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

Figure 9: Robustness of ordering schemes

0

100

200

300

A
v
e
ra

g
e
 L

a
b
e
l
S
iz

e

0 250 500 750 1000 1250
Indexing Time (s)

0

100

200

300

A
v
e
ra

g
e
 L

a
b
e
l
S
iz

e

0 250 500 750 1000 1250
Indexing Time (s)

BHP SHP

(a) Complex net CATDOG

0

20

40

60

80

100

120

140

A
v
e
ra

g
e
 L

a
b
e
l
S
iz

e

0 20 40 60 80 100
Indexing Time (s)

0

20

40

60

80

100

120

140

A
v
e
ra

g
e
 L

a
b
e
l
S
iz

e

0 20 40 60 80 100
Indexing Time (s)

(b) Road net FLA

Figure 10: Varying sβ in BHP vs. SHP

10-1

100

101

102

103

104

In
d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

10-1

100

101

102

103

104

In
d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

DHP
BHP
SHP
Out of memory

D+Pull
B+Pull
S+Pull

(a) Idx. time on FLICKR

10-1

100

101

102

103

104

In
d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

10-1

100

101

102

103

104

In
d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

(b) Idx. time on ROADs

Figure 11: Scalability of construction paradigms

We also verify that average degree has an impact on com-
pression ratio of both HLC and HLCM in complex networks.
We divide all 13 complex networks can be finished by all
three methods into low-degree instances (deg: ≤ 20) and
high-degree ones (deg: > 20). And from the results, we ob-
serve that both of HLC and HLCM on average can achieve 2
times better compression ratio on low-degree instances than
that on high-degree ones.

In summary, both HLC and HLCM can achieve compres-
sion ratio within one order of magnitude with sacrifice on
query performance. Since HLCM is less robust in road net-

10-1

100

101

102

103
In

d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

10-1

100

101

102

103
In

d
e
x
in

g
 T

im
e
 (
s)

219 220 221 222 223 224

Graph Instance Size |E|

SHP
SHP+BP

(a) Indexing time

10-2

10-1

100

101

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

10-2

10-1

100

101

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

(b) Response time

Figure 12: Effectiveness of BP on FLICKR

works, we recommend HLC as a better compression tech-
nique in consideration of both index size and response time.

6.3.4 Overall Performance Score and Preference
Probability

It is not easy to conclude the winner of all evaluated meth-
ods due to multiple performance factors. This motivates us
to aggregate all performance factors into a unified score for
fair comparison. Let M be the set of all evaluated meth-
ods, F be the target set of performance factors, and D be
the evaluated datasets, the relative performance of method
m ∈ M on dataset d ∈ D in factor f ∈ F among all evalu-
ated methods can be represented as

scorerel(m, d, f) = log10
score(m, d, f)

minm∈M score(m, d, f)
(1)

where score(m, d, f) indicates the performance of method
m on dataset d in factor f . Logarithm is used to nor-
malize the relative performance. The method with smaller
scorerel score is preferable. The Overall Performance
Score (OPS) of m is defined as:

OPS(m,W,D, F) =

∑
d∈D

∑
f∈F wf × scorerel(m, d, f)

|F ||D|
(2)

453

100

101

102

103

104

In
d
e
x
 S

iz
e
 (
M
B

)

219 220 221 222 223 224

Graph Instance Size |E|

100

101

102

103

104

In
d
e
x
 S

iz
e
 (
M
B

)

219 220 221 222 223 224

Graph Instance Size |E|

SHP
SHP+DELTA

SHP+HLC
SHP+HLCM

(a) Index size on FLICKR

10-1

100

101

102

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

10-1

100

101

102

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

(b) Resp. time on FLICKR

101

102

103

104

In
d
e
x
 S

iz
e
 (
M
B

)

219 220 221 222 223 224

Graph Instance Size |E|

101

102

103

104

In
d
e
x
 S

iz
e
 (
M
B

)

219 220 221 222 223 224

Graph Instance Size |E|

(c) Index size on ROADs

10-1

100

101

102

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

10-1

100

101

102

R
e
sp

o
n
se

 T
im

e
 (
¹
s)

219 220 221 222 223 224

Graph Instance Size |E|

(d) Resp. time on ROADs

Figure 13: Effectiveness of HLC and HLCM

where W = {wf |f ∈ F} denotes the the preference vector
on factors (such that

∑
f∈F wf = 1). For instance, assum-

ing equal importance on three factors (i.e., W = (1
3
, 1
3
, 1
3
)),

the OPS of SHP for distance query on complex network
NOTREDAME is 0.18, meaning that SHP is about on aver-
age 51.3% worse than the “ideal” all-round method in each
performance factor.

In real applications, these three performance factors may
not be equally important. For example, in the static sce-
nario we may have heavier preference on response time,
while in the dynamic scenario [17] we may rebuild the in-
dex frequently and have heavier preference on indexing time.
We define the Preference Probability of a method m by
the probability of randomly sampling a preference vector W
(subject to

∑
f∈F wf = 1) such that m achieves the best

OPS among all methods.

SHP
+BP
75%

SHP
+HLCM

21%

BHP
2%

Others
2%

(a) Complex networks

SHP
49% SHP

+HLC
43%

BHP
5%

Others
3%

(b) Road newtorks

Figure 14: Preference probability of HL techniques

We show the preference probability of the evaluated HL
techniques in Figure 14. We have the following conclusions:
(1) SHP is consistently superior to BHP and DHP (with the
same optimization) due to its high indexing efficiency and
robust performance in query performance; (2) the compres-
sion techniques (e.g., HLC and HLCM) should be adopted
if the index size is a concern in your applications; (3) BP
can improve overall performance of each ordering scheme
in unweighted graphs. In the next subsection, we only show
experimental results for SHP, and its variants with HLC and
BP optimization against other competitors.

6.4 Comparisons with Other Techniques
In this subsection, we compare HL techniques to other

competitors for distance query application on both complex
and road networks and for path query application on road
networks. For complex networks, the competitors consist of
PHL [5] and IS-L [21] while for road networks, the competi-
tors include PHL, CH [23], TNR [10] and AH [40].

CH [23] is excluded for complex networks since the index
cannot be built within a reasonable time (e.g., CH takes
more than 10 thousands seconds in indexing a small complex
network of ∼100k vertices [3].). TNR [10] and AH [40] are
inapplicable to complex networks since both require spatial
coordinates. IS-L [21] construction relies on a linear-time
independent set heuristic which is only effective in complex
networks. In addition, we exclude some HL optimizations
for road networks (e.g., SHP+BP) and path queries (e.g.,
SHP+BP and SHP+HLC) due to their inapplicability.

All results are demonstrated in Table 3 (indexing time
and index size), Table 4 (response Time). The empty slots
indicate a specific method is not applicable or can not be fin-
ished within 10-hour running time or 256GB memory limits.

6.4.1 Complex Networks
We start our investigation by comparing HL techniques

to PHL and IS-L.

Compared to PHL. To our surprise, even though PHL is
specifically designed for road networks with highway struc-
ture, its query performance is competitive to other HL tech-
niques. PHL can be considered as a multi-hops hub label-
ing [5], which utilizes intermediate paths as index to effi-
ciently answer pairwise distance queries. Query processing
of both PHL and HL techniques requires merge-join process-
ing over sorted label. However, PHL requires two-layer join
operation: firstly join by path hub and secondly join by en-
try vertices to retrieve relative distances on the path. When
paths in complex networks are generally short, PHL cannot
benefit from fast skipping in the first-layer join due to large
number of path hubs. Hence 2-hop SHP outperforms PHL.
Compared to SHP, PHL on average spends 8 times more
indexing time with on average 50% larger index size. Also,
another limitation of PHL is that it can only be applied to
undirected graphs.

Compared to IS-L. IS-L can be considered as a combina-
tion method of graph traversal and hub labeling for complex
networks[21]. It builds partial hub labeling to assist graph
traversal. The level parameter balances indexing cost (in-
dexing time and index size) and query performance. Hence
with proper parameter, IS-L can be fast in indexing time
with small index size (e.g., in TRECTWT10G). However,
the graph traversal on complex network is expensive due to
high density. Hence SHP, SHP+BP and SHP+HLC consis-
tently outperform IS-L in terms of response time.

In summary, HL techniques exhibit efficient indexing,
competitive index size and superior query performance com-
pared to other techniques on complex networks.

454

6.4.2 Road Networks
We continue our investigation by comparing HL tech-

niques to CH, AH, TNR and PHL on road networks.

Indexing time. We firstly study the relative performance
on indexing time. Overall, CH, SHP and PHL are the most
efficient methods with least indexing time while SHP and
PHL are superior on small road networks and CH scales
better on larger instances. Efficiency of SHP and PHL comes
from their identification of important paths in road networks
with few overhead. The efficiency of CH comes from its
linear-time shortcutting processing in degree-bounded road
networks with highway dimension [23, 4].

Distance query. The most efficient methods are PHL
and SHP. The lengths of paths in road networks are gener-
ally long so that first-layer join in PHL contains only a few
path hubs. Thus PHL can benefit from fast skipping in the
first-layer join when compared to 2-hop hub labeling, e.g.,
SHP. We also observe that TNR is at high query efficiency
since it imposes grids on road networks and utilizes pair-
wise index to directly retrieve distances between grids [10,
38], avoiding long-distance graph traversal. SHP+HLC is
slightly slower than TNR, followed by AH and CH who are
the least efficient methods in distance query since they in-
volve extensive graph traversals [38, 40].

Path query. For the performance of path query, we ob-
serve quite different relative performance since all methods
are required to partly traverse on the graph for path re-
trieval. Except TNR who incurs much slower path query
response time, relative performance of other techniques are
close to each other. Both SHP and PHL achieve faster path
query response time in smaller road networks. However, CH
and AH have better scalability in larger instances. In con-
trast to distance query, 2-hop SHP outperforms PHL in path
query. Both methods requires O(|L̄| · |S̄P |) time for path re-
trieval and they can both benefit from early termination in
each sorted label sets during their predecessor backtracking
processing. However, SHP have better locality than PHL
since the latter requires two-layer scans on two sets (path
hubs and entry vertices) in predecessor checking. Path query
of both CH and AH consists of graph traversals and shortcut
unpacking [38, 40]. The shortcut unpacking processing only
requires O(|S̄P |) constant time unpacking operations. And
in generally the query of AH involves faster graph traver-
sal and less shortcut unpacking operations than CH [40],
providing AH the best scalability on path query among all
techniques.

Index size. For index size, original HL techniques, e.g.,
SHP and PHL are around an order of magnitude larger than
CH, TNR and AH who elaborate their designs for road net-
works with highway dimension. Although HLC cannot sup-
port path query application, it can greatly reduce the index
size of HL techniques, making its storage very competitive
even compared to the most lightweight CH, but still with an
order of magnitude faster distance query efficiency than it.

Overall, for indexing time, distance and path query per-
formance, HL techniques, e.g., SHP can be considered as
the all-round skyline solution for road networks in all scale.
With HLC compression optimization, HL techniques can
achieve very lightweight index size but still offer efficient
query performance.

6.4.3 Summary
HL techniques (e.g., SHP) can consistently achieve almost

the best query performance for both distance and path query
in both network types. With HLC optimization, the index
size of HL techniques can be greatly reduced but they can
still retain much higher query performance. Another impor-
tant property of HL techniques is that they are widely ap-
plicable to all types of graphs with consistent performance.

7. CONCLUSION
We give our overall recommendation in Table 5. We rec-

ommend the top-3 methods according to their preference
probability on three application scenarios (cf. Section 6.3.4),
including distance queries on complex networks, distance
queries on road networks, and path queries on road net-
works. We consider SHP, DHP, BHP, their optimized ver-
sions, and other competitors listed in Table 3 and 4 in the
overall recommendation.

Complex networks. With the fast indexing time and
good response time, SHP is the most recommended method
for distance queries on complex networks. In addition, the
runner-up method is SHP+HLCM, that is recommended
when the index space is a concern. BHP is ranked at the
third position which indicates the importance of finding a
good vertex ordering.

Road networks. For distance queries, HL techniques are
highly recommended since they support the distance query
without any network traversal. Also, SHP+HLC is recom-
mended when the size is a concern in the system. For path
queries, the query response time of HL increases since it
unavoidably traverses the labels in order to return a path.
Thereby, CH becomes the most recommended method due
to its fast construction cost and almost negligible size over-
head. SHP is the runner-up method due to its robustness
in all three performance factors.

Special cases. For distance queries on unweighted com-
plex networks, HL techniques with fast label construction
(e.g., SHP+BP, BHP+BP and DHP+BP) exhibit the best
all-round performance. For distance queries on undirected
road networks, PHL is the most recommended solution as it
is specifically designed for this special case.

Hardness in implementation. Another important cri-
teria of choosing a HL technique is the difficulty of its im-
plementation. We rank the methods according to our effort
put in the source codes. Among all implemented methods,
DHP and SHP are the easiest ones which require only a few
hundred lines of codes while other methods (e.g., BHP and
PHL), they normally require a few thousand or more lines
with a complex work flow.

Graph updates. In this work, we have conducted a com-
prehensive experimental study of HL techniques on static
graphs. However, graphs in emerging applications may be
updated over time. One solution is to incrementally main-
tain the index [7, 33] subject to the graph changes. How-
ever, we do not recommend to maintain the index incremen-
tally as a small portion of updates (∼ 10%) may be already
longer than the time of index re-construction. To handle
dynamic updates on the graph, we follow Delling et al. [17]
and recommend to periodically rebuild the index. SHP is
the preferable solution for periodic re-construction due to
its lightweight construction process.

455

Graph Name
Indexing Time (s) Index Size (MB)

HL Competitors HL Competitors
C

o
m

p
le

x

SHP
SHP SHP

PHL IS-L SHP
SHP SHP

PHL IS-L
+BP +HLC +BP +HLC

D
ir

ec
te

d

GNUTELLA 18.5 18.4 28.8 - 1723 184 285 77 - 536
SLASHDOT 31.2 3.3 44.7 - 7877 236 181 127 - 3572

NOTREDAME 1.94 3.4 4.3 - 1109 80 685 24.9 - 561
DBLP 4882 2506 6226 - - 17300 13221 7383 - -

WIKI-POLISH 2760 1328 3543 - 8951 8740 8034 4592 - 1199
TRECTWT10G 61.8 77 102 - 53.2 1496 4378 138 - 141

WIKITALK 212 36.6 263 - 115 2331 4834 466 - 120
FLICKR 3839 1955 5047 - 5339 17351 15186 5592 - 915

INDOCHINA 1214 966 1465 - - 12378 26180 2016 - -
UK2002 22322 - - - - 169750 - - - -

U
n

d
ir

.

CATDOG 383 183 458 4119 6369 824 946 561 1422 404
COM-DBLP 162 66.9 223 1572 5173 1121 789 379 1743 43169
SKITTER 874 261 1111 8811 1153 4188 3060 1631 6773 445

YOUTUBE 761 278 784 3820 2809 4311 4736 1361 4212 845
HOLLYWOOD 15648 7566 19090 - - 20961 16548 10035 - -

R
o
a
d

SHP N/A
SHP

PHL CH TNR AH SHP N/A
SHP

PHL CH TNR AH
+HLC +HLC

U
n

d
ir

ec
te

d

BAY 4.6 - 10.4 5.3 16.5 54.6 166 177 - 24.2 116 15.6 561 52.6
FLA 22.4 - 46.9 29.3 37.2 109 503 710 - 73 521 51.5 296 166
CAL 44.8 - 90.7 60.3 65 243 787 1349 - 143 1045 91.5 1154 307

E 128 - 249 169 147 482 1826 3360 - 275 2469 171 902 565
W 212 - 420 327 225 885 2724 5550 - 565 4603 300 2227 994

CTR 978 - 1801 1070 729 2680 7291 16902 - 1114 12288 671 4048 2179
USA 1432 - 2710 1725 1049 3685 12808 29548 - 1871 22528 1142 3149 3747

Table 3: Indexing time and index size

Graph Name
Response Time (µs)

HL Competitors

C
o
m

p
le

x
(D

is
ta

n
ce

)

SHP
SHP SHP

PHL IS-L
+BP +HLC

D
ir

ec
te

d

GNUT. 2.83 3.67 9.96 - 27.7
SLAS. 1.84 0.47 4.86 - 68.4
NOTR. 0.38 0.47 0.99 - 7.3
DBLP 8.31 7.6 40.67 - -

WIKI-P. 4.12 3.62 15.2 - 8484
TRECT. 1.15 1.52 13.4 - 1182
WIKI. 1.45 0.47 3.13 - 202

FLICKR 5.46 5.07 19.3 - 24116
INDO. 1.54 2.09 4.03 - -

UK2002 6.54 - - - -

U
n
d
ir

.

CATDOG 1.73 1.36 5.13 2.3 13942
COM. 4.08 3.15 19.6 6.3 491
SKIT. 2.97 1.82 12.21 4.13 922.8

YOUT. 1.78 1.3 5.93 2.2 644.2
HOLLY. 21.1 21.1 71.3 - -

R
o
a
d

(D
is

ta
n
ce

) SHP N/A
SHP

PHL CH TNR AH
+HLC

U
n
d
ir

ec
te

d

BAY 0.53 - 3.23 0.4 31.5 1.84 21
FLA 0.66 - 4.12 0.58 33.6 2.4 29
CAL 0.74 - 4.86 0.63 36.7 2.25 30

E 0.93 - 6.12 0.71 75.1 3.8 59
W 1.11 - 6.3 0.71 60.6 2.8 47.5

CTR 1.14 - 8.2 0.86 104 3.7 71
USA 1.2 - 8.74 0.89 142 5.15 79

R
o
a
d

(P
a
th

)

U
n
d
ir

ec
te

d

BAY 19.6 - - 28.3 70.4 204 53
FLA 42.9 - - 82.7 122 619 102
CAL 74.4 - - 157 124 674 109

E 125 - - 195 334 1538 241
W 220 - - 384 358 1861 274

CTR 446 - - 596 473 2736 311
USA 626 - - 805 716 3671 407

Table 4: Response time

Acknowledgments
This work was partially supported by MYRG-2016-00182-
FST from the UMAC RC, 61502548 from NSFC, GRF
152196/16E from the Hong Kong RGC.

Distance Queries
Type Top-3 list

Complex SHP61% ≺ SHP+HLCM29% ≺ BHP6%

Road SHP48% ≺ SHP+HLC30% ≺ CH16%

Path Queries
Type Top-3 list
Road CH83% ≺ SHP15% ≺ BHP1%

Table 5: Top-3 methods by preference probability

8. REFERENCES
[1] http://degroup.cis.umac.mo/sspexp.

[2] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In SEA, pages 230–241. 2011.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. Hierarchical hub labelings for shortest paths.
In ESA, pages 24–35. 2012.

[4] I. Abraham, A. Fiat, A. V. Goldberg, and R. F.
Werneck. Highway dimension, shortest paths, and
provably efficient algorithms. In SODA, pages
782–793, 2010.

[5] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and
Y. Kawata. Fast shortest-path distance queries on
road networks by pruned highway labeling. In
ALENEX, pages 147–154, 2014.

[6] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact
shortest-path distance queries on large networks by
pruned landmark labeling. In SIGMOD, pages
349–360, 2013.

[7] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and
historical shortest-path distance queries on large
evolving networks by pruned landmark labeling. In
WWW, pages 237–248, 2014.

[8] M. Babenko, A. V. Goldberg, H. Kaplan,
R. Savchenko, and M. Weller. On the complexity of

456

hub labeling. In MFCS, pages 62–74, 2015.

[9] H. Bast, D. Delling, A. Goldberg,
M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in
transportation networks. arXiv preprint
arXiv:1504.05140, 2015.

[10] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast
routing in road networks with transit nodes. Science,
316(5824):566–566, 2007.

[11] R. Bauer and D. Delling. Sharc: Fast and robust
unidirectional routing. JEA, 14:4, 2009.

[12] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker,
D. Schultes, and D. Wagner. Combining hierarchical
and goal-directed speed-up techniques for dijkstra’s
algorithm. JEA, 15:2–3, 2010.

[13] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW, 2004.

[14] U. Brandes and C. Pich. Centrality estimation in large
networks. International Journal of Bifurcation and
Chaos, 17(07):2303–2318, 2007.

[15] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.
SICOMP, 32(5):1338–1355, 2003.

[16] D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Robust exact distance queries on massive
networks. Microsoft Research, USA, Tech. Rep, 2,
2014.

[17] D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Customizable route planning in road
networks. Transportation Science, 2015.

[18] D. Delling, A. V. Goldberg, and R. F. Werneck. Hub
label compression. In SEA, pages 18–29. 2013.

[19] C. Demetrescu, A. Goldberg, and D. Johnson. 9th
dimacs implementation challenge–shortest paths.
American Mathematical Society, 2006.

[20] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numer. Math., 1(1):269–271, Dec. 1959.

[21] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong.
Is-label: an independent-set based labeling scheme for
point-to-point distance querying. PVLDB,
6(6):457–468, 2013.

[22] R. Geisberger, P. Sanders, and D. Schultes. Better
approximation of betweenness centrality. In ALENEX,
pages 90–100, 2008.

[23] R. Geisberger, P. Sanders, D. Schultes, and
D. Delling. Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In
WEA, pages 319–333. 2008.

[24] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A search meets graph theory. In SODA,
pages 156–165, 2005.

[25] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach

for a*: Shortest path algorithms with preprocessing.
In The Shortest Path Problem, pages 93–140, 2006.

[26] R. J. Gutman. Reach-based routing: A new approach
to shortest path algorithms optimized for road
networks. ALENEX/ANALC, 4:100–111, 2004.

[27] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal
basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[28] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu.
Hop doubling label indexing for point-to-point
distance querying on scale-free networks. PVLDB,
7(12):1203–1214, 2014.

[29] R. Jin, N. Ruan, Y. Xiang, and V. Lee. A
highway-centric labeling approach for answering
distance queries on large sparse graphs. In SIGMOD,
pages 445–456, 2012.

[30] J. Kunegis. Konect: the koblenz network collection. In
WWW, pages 1343–1350, 2013.

[31] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[32] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis.
Fast shortest path distance estimation in large
networks. In CIKM, pages 867–876, 2009.

[33] Y. Qin, Q. Z. Sheng, and W. E. Zhang. Sief:
Efficiently answering distance queries for failure prone
graphs. In EDBT, pages 145–156, 2015.

[34] P. Sanders and D. Schultes. Engineering highway
hierarchies. In ESA, pages 804–816, 2006.

[35] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. JACM,
51(6):993–1024, 2004.

[36] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B.
Golgher, D. d. C. Reis, and B. Ribeiro-Neto. Efficient
search ranking in social networks. In CIKM, pages
563–572, 2007.

[37] F. Wei. Tedi: efficient shortest path query answering
on graphs. In SIGMOD, pages 99–110, 2010.

[38] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and
S. Zhou. Shortest path and distance queries on road
networks: An experimental evaluation. PVLDB,
5(5):406–417, 2012.

[39] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida. Fast
and scalable reachability queries on graphs by pruned
labeling with landmarks and paths. In CIKM, pages
1601–1606, 2013.

[40] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and
S. Zhou. Shortest path and distance queries on road
networks: towards bridging theory and practice. In

SIGMOD, pages 857–868, 2013.

457

