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ABSTRACT
For decades, RDBMSs have supported declarative SQL as
well as imperative functions and procedures as ways for users
to express data processing tasks. While the evaluation of
declarative SQL has received a lot of attention resulting in
highly sophisticated techniques, the evaluation of imperative
programs has remained näıve and highly inefficient. Impera-
tive programs offer several benefits over SQL and hence are
often preferred and widely used. But unfortunately, their
abysmal performance discourages, and even prohibits their
use in many situations. We address this important problem
that has hitherto received little attention.

We present Froid, an extensible framework for optimiz-
ing imperative programs in relational databases. Froid’s
novel approach automatically transforms entire User De-
fined Functions (UDFs) into relational algebraic expressions,
and embeds them into the calling SQL query. This form is
now amenable to cost-based optimization and results in ef-
ficient, set-oriented, parallel plans as opposed to inefficient,
iterative, serial execution of UDFs. Froid’s approach addi-
tionally brings the benefits of many compiler optimizations
to UDFs with no additional implementation effort. We de-
scribe the design of Froid and present our experimental eval-
uation that demonstrates performance improvements of up
to multiple orders of magnitude on real workloads.
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1. INTRODUCTION
SQL is arguably one of the key reasons for the popular-

ity of relational databases today. SQL’s declarative way of
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expressing intent has on one hand provided high-level ab-
stractions for data processing, while on the other hand, has
enabled the growth of sophisticated query evaluation tech-
niques and highly efficient ways to process data.

Despite the expressive power of declarative SQL, almost
all RDBMSs support procedural extensions that allow users
to write programs in various languages (such as Transact-
SQL, C#, Java and R) using imperative constructs such
as variable assignments, conditional branching, and loops.
These extensions are quite widely used. For instance, we
note that there are of the order of tens of millions of Transact-
SQL (T-SQL) UDFs in use today in the Microsoft Azure
SQL Database service, with billions of daily invocations.

UDFs and procedures offer many advantages over stan-
dard SQL. (a) They are an elegant way to achieve modular-
ity and code reuse across SQL queries, (b) some computa-
tions (such as complex business rules and ML algorithms)
are easier to express in imperative form, (c) they allow users
to express intent using a mix of simple SQL and imperative
code, as opposed to complex SQL queries, thereby improv-
ing readability and maintainability. These benefits are not
limited to RDBMSs, as evidenced by the fact that many
popular BigData systems also support UDFs.

Unfortunately, the above benefits come at a huge perfor-
mance penalty, due to the fact that UDFs are evaluated
in a highly inefficient manner. It is a known fact amongst
practitioners that UDFs are “evil” when it comes to perfor-
mance considerations [35, 28]. In fact, users are advised by
experts to avoid UDFs for performance reasons. The inter-
net is replete with articles and discussions that call out the
performance overheads of UDFs [34, 36, 37, 24, 25]. This is
true for all popular RDBMSs, commercial and open source.

UDFs encourage good programming practices and pro-
vide a powerful abstraction, and hence are very attractive
to users. But the poor performance of UDFs due to näıve
execution strategies discourages their use. The root cause
of poor performance of UDFs can be attributed to what is
known as the ‘impedance mismatch’ between two distinct
programming paradigms at play – the declarative paradigm
of SQL, and the imperative paradigm of procedural code.
Reconciling this mismatch is crucial in order to address this
problem, and forms the crux of our paper.

We present Froid, an extensible optimization framework
for imperative code in relational databases. The goal of
Froid is to enable developers to use the abstractions of UDFs
and procedures without compromising on performance. Froid
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achieves this goal using a novel technique to automatically
convert imperative programs into equivalent relational alge-
braic forms whenever possible. Froid models blocks of im-
perative code as relational expressions, and systematically
combines them into a single expression using the Apply [14]
operator, thereby enabling the query optimizer to choose
efficient set-oriented, parallel query plans.

Further, we demonstrate how Froid’s relational algebraic
transformations can be used to arrive at the same result
as that of applying compiler optimizations (such as dead
code elimination, program slicing and constant folding) to
imperative code. Although Froid’s current focus is T-SQL
UDFs, the underlying technique is language-agnostic, and
therefore extending it to other imperative languages is quite
straightforward, as we show in this paper.

There have been some recent works that aim to convert
fragments of database application code into SQL in order
to improve performance [12, 4]. However, to the best of our
knowledge, Froid is the first framework that can optimize
imperative programs in a relational database by transform-
ing them into relational expressions. While Froid is built
into Microsoft SQL Server, its underlying techniques can be
integrated into any RDBMS.

We make the following contributions in this paper.

1. We describe the unique challenges in optimization of
imperative code executing in relational databases, and
analyze the reasons for their poor performance.

2. We describe the novel techniques underlying Froid, an
extensible framework to optimize UDFs in Microsoft
SQL Server. We show how Froid integrates with the
query processing lifecycle and leverages existing sub-
query optimization techniques to transform inefficient,
iterative, serial UDF execution strategies into highly
efficient, set-oriented, parallel plans.

3. We show how several compiler optimizations such as
dead code elimination, dynamic slicing, constant prop-
agation and folding can be expressed as relational al-
gebraic transformations and simplifications that arrive
at the same end result. Thereby, Froid brings these
additional benefits to UDFs with no extra effort.

4. We discuss the design and implementation of Froid,
and present an experimental evaluation on several real
world customer workloads, showing significant benefits
in performance and resource utilization.

The rest of the paper is organized as follows. Section 2
gives the background. Sections 3, 4, 5 and 6 describe Froid
and its techniques. Design details are discussed in Section 7
followed by an evaluation in Section 8. We discuss related
work in Section 9 and conclude in Section 10.

2. BACKGROUND
In this section, we provide some background regarding

the way imperative code is currently evaluated in Microsoft
SQL Server and analyze the reasons for their poor perfor-
mance. SQL Server primarily supports imperative code in
two forms: UDFs and Stored Procedures (SPs). UDFs can-
not modify the database state whereas SPs can. UDFs and
SPs can be implemented in either T-SQL or Common Lan-
guage Runtime (CLR). T-SQL expands on the SQL stan-
dard to include imperative constructs, various utility func-
tions, etc. CLR integration allows UDFs and SPs to be

create function total_price(@key int)
returns char(50) as
begin

declare @price float, @rate float;
declare @pref_currency char(3);
declare @default_currency char(3) = 'USD';

select @price = sum(o_totalprice) from orders
where o_custkey = @key;

select @pref_currency = currency
from customer_prefs
where custkey = @key;

if(@pref_currency <> @default_currency)
begin

select @rate =
xchg_rate(@default_currency,@pref_currency);

set @price = @price * @rate;
end
return str(@price) + @pref_currency;

end

create function xchg_rate(@from char(3), @to char(3))
returns float as
begin

return (select rate from dbo.xchg
where from_cur = @from and to_cur = @to);

end
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Figure 1: Example T-SQL User defined functions

written in any .NET framework language such as C# [5].
UDFs can be further classified into two types. Functions
that return a single value are referred to as scalar UDFs,
and those that return a set of rows are referred to as Table
Valued Functions (TVFs). SQL Server also supports inline
TVFs, which are single-statement TVFs analogous to pa-
rameterized views [13]. In this paper we focus primarily on
Scalar T-SQL UDFs. Extensions to support other impera-
tive languages are discussed in Section 7.3.

2.1 Scalar UDF Example
In SQL Server, UDFs are created using the CREATE

FUNCTION statement [13] as shown in Figure 1. The func-
tion total price accepts a customer key, and returns the total
price of all the orders made by that customer. It computes
the price in the preferred currency of the customer by look-
ing up the currency code from the customer prefs table and
performs currency conversion if necessary. It calls another
UDF xchg rate, that retrieves the exchange rate between the
two currencies. Finally it converts the price to a string, ap-
pends the currency code and returns it. Consider a simple
query that invokes this UDF.

select c name, dbo.total price(c custkey)
from customer ;

For each customer, the above query displays the name,
and the total price of all orders made by that customer. We
will use this simple query and the UDFs in Figure 1 as an
example to illustrate our techniques in this paper.

2.2 UDF Evaluation in SQL Server
We now describe the life cycle of an SQL query that in-

cludes a UDF. At the outset we note that this is a simplified
description with a focus on how UDFs are evaluated cur-
rently. We refer the reader to [8, 2, 14] for details.

Parsing, Binding and Normalization: The query first
goes through syntactic validation, and is parsed into a tree
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Figure 2: Query plan for the query in Section 2.1

representation. This tree undergoes binding, which includes
validating referenced objects and loading metadata. Type
derivation, view substitution and optimizations such as con-
stant folding are also performed. Then, the tree is normal-
ized, wherein most common forms of sub-queries are turned
into some join variant. A scalar UDF that appears in a
query is parsed and bound as a UDF operator. The param-
eters and return type are validated, and metadata is loaded.
The UDF definition is not analyzed at this stage.

Cost-based Optimization: Once the query is parsed and
normalized, the query optimizer performs cost-based opti-
mization based on cardinality and cost estimates. Execu-
tion alternatives are generated using transformation rules,
and the plan with the cheapest estimated cost is selected
for execution. SQL Server’s cost-based optimizer follows
the design of the Volcano optimizer [16]. SQL Server reuses
query plans for queries and UDFs by caching chosen plans.
A cache entry for a UDF can be thought of as an array of
plans, one for each statement in the UDF.

Execution: The execution engine is responsible for execut-
ing the chosen plan efficiently. Relational query execution
invokes a scalar evaluation sub-system for predicates and
scalar computations, including scalar UDFs [10]. The plan
for the simple query in Section 2.1 is shown in Figure 2. For
every tuple that is emitted by the Table Scan operator, the
execution engine calls into the scalar evaluation sub-system
to evaluate the scalar UDF total price.

At this point, the execution context switches to the UDF.
Now, the UDF can be thought of as a batch of statements
submitted to the engine. If the UDF contains SQL queries
(e.g. lines 4 and 5 of Figure 1), the scalar subsystem makes a
recursive call back to the relational execution engine. Once
the current invocation of the UDF completes, the context
switches back to the calling query, and the UDF is invoked
for the next tuple – this process repeats. During the first in-
vocation of the UDF, each statement goes through compila-
tion, and the plan for the UDF is cached. During subsequent
invocations, the cached plan for the UDF is used.

2.3 Drawbacks in UDF Evaluation
We now enumerate the main causes for poor performance

of UDFs. While we describe the reasons in the context
of UDFs in SQL Server, they are mostly true for other
RDBMSs as well, though the finer details may vary.

Iterative invocation: UDFs are invoked in an iterative
manner, once per qualifying tuple. This incurs additional
costs of repeated context switching due to function invo-
cation, and mutual recursion between the scalar evaluation
sub-system and relational execution. Especially, UDFs that
execute SQL queries in their body (which is common in real
workloads) are severely affected.

These iterative plans can be highly inefficient, since queries
within the function body are executed multiple times, once
for each invocation of the UDF. This can be thought of as a
nested loops join along with expensive context switches and
overheads. As a consequence, the number of invocations of
a UDF in a query has a huge impact on its performance.

The query optimizer is rendered helpless here, since it does
not look inside UDF definitions.

Lack of costing: Query optimizers treat UDFs as inex-
pensive black-box operations. During optimization, only
relational operators are costed, while scalar operators are
not. Prior to the introduction of scalar UDFs, other scalar
operators were generally cheap and did not require costing.
A small CPU cost added for a scalar operation was enough.
This inadvertent simplification is a crucial cause of bad plan
choices in cases where scalar operations are arbitrarily ex-
pensive, which is often true for scalar UDFs.

Interpreted execution: As described in Section 2.2, UDFs
are evaluated as a batch of statements that are executed se-
quentially. In other words, UDFs are interpreted statement-
by-statement.

Note that each statement itself is compiled, and the com-
piled plan is cached. Although this caching strategy saves
some time as it avoids recompilations, each statement exe-
cutes in isolation. No cross-statement optimizations are car-
ried out, unlike in compiled languages. Techniques such as
dead code elimination, constant propagation, folding, etc.
have the potential to improve performance of imperative
programs significantly. Näıve evaluation without exploiting
such techniques is bound to impact performance.

Limitation on parallelism: Currently, SQL Server does
not use intra-query parallelism in queries that invoke UDFs.
Methods can be designed to mitigate this limitation, but
they introduce additional challenges, such as picking the
right degree of parallelism for each invocation of the UDF.

For instance, consider a UDF that invokes other SQL
queries, such as the one in Figure 1. Each such query may
itself use parallelism, and therefore, the optimizer has no
way of knowing how to share threads across them, unless it
looks into the UDF and decides the degree of parallelism for
each query within (which could potentially change from one
invocation to another). With nested and recursive UDFs,
this issue becomes even more difficult to manage.

3. THE FROID FRAMEWORK
As mentioned earlier, Froid is an extensible, language-

agnostic framework for optimization of imperative programs
in RDBMSs. The novel techniques behind Froid are able to
overcome all the limitations described above. We now de-
scribe the intuition and high level overview of Froid. Then,
with the help of an example, we walk through the process
of optimizing UDFs in Sections 4 and 5.

3.1 Intuition
Queries that invoke UDFs, such as the one in Section 2.1

can be thought of as queries with complex sub-queries. In
nested sub-queries, the inner query is just another SQL
query (with or without correlation). UDFs on the other
hand, use a mix of imperative language constructs and SQL,
and hence are more complex. A key observation that we
make here is that iterative execution of UDFs is similar to
correlated evaluation of nested sub-queries.

Optimization of sub-queries has received a lot of atten-
tion in the database literature and industry (see Section 9
for details). In fact, many of the popular RDBMSs are able
to transform correlated sub-queries into joins, thereby en-
abling the choice of set-oriented plans instead of iterative
evaluation of sub-queries.
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Figure 3: Overview of the Froid framework

Given these observations, the intuition behind Froid can
be succintly stated as follows. If the entire body of an imper-
ative UDF can be expressed as a single relational expression
R, then any query that invokes this UDF can be transformed
into a query with R as a nested sub-query in place of the
UDF. We term this semantics-preserving transformation as
unnesting or inlining of the UDF into the calling query.

Once we perform this transformation, we can leverage ex-
isting sub-query optimization techniques to get better plans
for queries with UDFs. This transformation forms the crux
of Froid. Note that although we use the term inlining to de-
note this transformation, it is fundamentally different com-
pared to inlining in imperative programming languages.

3.2 The APPLY operator
Froid makes use of the Apply operator while building a

relational expression for UDFs. Specifically, it is used to
combine multiple relational expressions into a single expres-
sion. The Apply operator (A) was originally designed to
model correlated execution of sub-queries algebraically in
SQL Server [14, 10]. It accepts a relational input R and
a parameterized relational expression E(r). For each row
r ∈ R, it evaluates E(r) and emits tuples as a join between
r and E(r). More formally, it is defined as follows [14]:

R A⊗ E =
⋃
r∈R

({r} ⊗ E(r))

where ⊗, known as the join type, is either cross product,
left outer-join, left semijoin or left antijoin. SQL Server’s
query optimizer has a suite of transformation rules for sub-
query decorrelation, which remove the Apply operator and
enable the use of set-oriented relational operations whenever
possible. Details with examples can be found in [14, 10, 31].

3.3 Overview of Approach
For a UDF with a single RETURN statement in its body,

such as the function xchg rate in Figure 1, the transforma-
tion is straightforward. The body of such a UDF is already
a single relational expression, and therefore it can be substi-
tuted easily into the calling context, like view substitution.

Expressing the body of a multi-statement UDF (such as
the function total price in Figure 1) as a single relational ex-
pression is a non-trivial task. Multi-statement UDFs typi-
cally use imperative constructs such as variable declarations,

assignments, conditional branching, and loops. Froid mod-
els individual imperative constructs as relational expressions
and systematically combines them to form one expression.

Figure 3 depicts the high-level approach of Froid, consist-
ing of two phases: UDF algebrization followed by substi-
tution. As a part of binding, the query tree is traversed
and each node is bound, as described in Section 2.2. Dur-
ing binding, if a UDF operator is encountered, the control
is transferred to Froid, and UDF algebrization is initiated.
UDF algebrization involves parsing the statements of the
UDF and constructing an equivalent relational expression
for the entire UDF body (described in Section 4). This re-
sulting expression is then substituted, or embedded in the
query tree of the calling query in place of the UDF operator
(described in Section 5). This query tree with the substi-
tuted UDF expression is bound using the regular binding
process. If references to other (nested) UDF operators are
encountered, the same process is repeated. This transfor-
mation finally results in a bound query tree, which forms
the input to normalization and optimization.

3.4 Supported UDFs and queries
Froid currently supports the following imperative con-

structs in scalar UDFs.

• DECLARE, SET: Variable declaration and assignments.
• SELECT: SQL query with multiple variable assignments.
• IF/ELSE: Branching with arbitrary levels of nesting.
• RETURN: Single or multiple return statements.
• UDF: Nested/recursive function calls.
• Others: Relational operations such as EXISTS, ISNULL.

Table 1 (column 1) shows the supported constructs more
formally. In Table 1, @var and @var1 denote variable names,
expr is any valid T-SQL expression including a scalar sub-
query; prj expr represents a projected column/expression;
sql expr is any SQL query; pred expr is a boolean expres-
sion; t stmt and f stmt are T-SQL statements [33].

Froid’s techniques do not impose any limitations on the
size or depths of UDFs and complexity of queries that invoke
them. The only precondition for our transformations is that
the UDF has to use the supported constructs. However, in
practice, there are certain special cases where we partially
restrict the application of our transformations; they are dis-
cussed in Section 7.2.

4. UDF ALGEBRIZATION
We now describe the first phase of Froid in detail. The

goal here is to build a single relational expression which is
semantically equivalent to the UDF. This involves trans-
forming imperative constructs into equivalent relational ex-
pressions and combining them in a way that strictly adheres
to the procedural intent of the UDF. UDF algebrization con-
sists of the following three steps.

4.1 Construction of Regions
First, each statement in the UDF is parsed and the body

of the UDF is divided into a hierarchy of program regions.
Regions represent structured fragments of programs such as
basic blocks, if-else blocks and loops [17]. Basic blocks are
referred to as sequential regions, if-else blocks are referred
to as conditional regions, and loops are referred to as loop
regions. Regions by definition contain other regions; the
UDF as a whole is also a region.
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Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)

DECLARE {@var data type [= expr]}[, . . . n]; SELECT {expr|null AS var}[, . . . n];

SET {@var = expr}[, . . . n]; SELECT {expr AS var}[, . . . n];

SELECT {@var1 = prj expr1}[, . . . n] FROM sql expr; {SELECT prj expr1 AS var1 FROM sql expr}; [, . . . n]

IF (pred expr) {t stmt; [. . . n]} ELSE {f stmt; [, . . . n]} SELECT CASE WHEN pred expr THEN 1 ELSE 0 END AS pred val;

{SELECT CASE WHEN pred val = 1 THEN t stmt ELSE f stmt; }[. . . n]

RETURN expr; SELECT expr AS returnV al;

Function total price of Figure 1 is a sequential region R0
(lines 1-9). It is in turn composed of three consecutive sub-
regions denoted R1, R2 and R3. R1 is a sequential region
(lines 1-5), R2 is a conditional region (lines 6-8), and R3 is a
sequential region (line 9) as indicated in Figure 1. Regions
can be constructed in a single pass over the UDF body.

4.2 Relational Expressions for Regions
Once regions are constructed, the next step is to construct

a relational expression for each region.

4.2.1 Imperative statements to relational expressions
Froid first constructs relational expressions for individual

imperative statements, and then combines them to form a
single expression for a region. These constructions make use
of the ConstantScan and ComputeScalar operators in SQL
Server [20]. The ConstantScan operator introduces one row
with no column. A ComputeScalar, typically used after a
ConstantScan, adds computed columns to the row.

Variable declarations and assignments: The T-SQL
constructs DECLARE, SET and SELECT fall under this
category. These statements are converted into relational
equivalents by modeling them as projections of computed
columns in relational algebra as shown in Table 1 (rows 1,
2, 3). For example, consider line 3 of Figure 1:

set @default currency = ‘USD’ ;
This is represented in relational form as

select ‘USD’ as default currency.
Observe that program variables are transformed into at-

tributes projected by the relational expression. The RHS
of the assignment could be any scalar expression including
a scalar valued SQL query (when the SELECT construct is
used). In this case, we construct a ScalarSubQuery instead
of ComputeScalar. For example, the assignment statement
in line 4 of Figure 1 is represented in relational form as

select( select sum(o totalprice) from orders
where o custkey = @key) as price .

Variable declarations without initial assignments are con-
sidered as assignments to null or the default values of the
corresponding data types. Note that the DECLARE and
SELECT constructs can assign to one or more variables in a
single statement, but Froid handles them as multiple assign-
ment statements. Modeling them as multiple assignment
statements might lead to RHS expressions being repeated.
However, common sub-expression elimination can remove
such duplication in most cases.

Conditional statements: These are specified using the
IF-ELSE T-SQL construct, consisting of a predicate, a true
block, and a false block. This can be algebrized using SQL
Server’s CASE construct as given in Table 1 (row 4). The
switch-case construct is also internally expressed as IF-ELSE,
and behaves similarly. Consider the following example:

if(@total > 1000)
set @val = ‘high’;

else
set @val = ‘low’;

The above statement is represented in relational form as
select( case when total > 1000 then ‘high’

else ‘low’ end ) as val.
This approach works for simple cases. For complex and

nested conditional blocks, this approach may lead to redun-
dant computations of the predicate thereby violating the
procedural intent of the UDF. Re-evaluating a predicate
multiple times not only goes against our principle of ad-
herence to intent, but it might also hurt performance if the
predicate is expensive to evaluate. Froid addresses this by
assigning the value of the predicate evaluation to an implicit
boolean variable (shown as pred val in row 4 of Table 1).
Subsequently, whenever necessary, it uses the CASE expres-
sion to check the value of this implicit boolean variable.

Return statements: Return statements denote the end
of function execution and provide the value that needs to
be returned from the function. Note that a UDF may have
multiple return statements, one per code path. Froid mod-
els return statements as assignments to an implicit variable
called returnVal (shown in row 5 of Table 1) followed by an
unconditional jump to the end of the UDF. This uncondi-
tional jump means that no statement should be evaluated
once the returnVal has been assigned a valid return value
(note that null could also be a valid return value). Froid
implicitly declares the variable returnVal at the first occur-
rance of a return statement. Any subsequent occurrance of
a return statement is treated as an assignment to returnVal.

Unconditional jumps are modeled using the probe and
pass-through functionality of the Apply operator [10]. The
probe is used to denote whether returnVal has been assigned,
and the pass-through predicate ensures that subsequent op-
erations are executed only if it has not yet been assigned.

Although unconditional jumps could be modeled without
using probe and pass-through, there are disadvantages to
that approach. First, it increases the size and complexity
of the resulting expression. This is because all successor re-
gions of a return statement would need to be wrapped within
a case expression. Second, the introduction of case expres-
sions hinders the applicability of scalar expression folding
and simplification. As we shall describe in Section 6, Froid
brings optimizations such as constant folding and constant
propagation to UDFs. The applicability of these optimiza-
tions would be restricted by the use of case expressions to
model unconditional jumps.

Function invocations: UDFs may invoke other functions,
and may also be recursive. When a UDF invocation state-
ment is encountered, Froid simply retains the UDF operator
as the expression for that UDF. As part of binding, Froid is
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Table 2: Derived tables for regions in function total price.

Region Write-sets (Derived table schema)
R1 DT1 (price float, rate float,

default currency char(3), pref currency char(3))
R2 DT2 (price float, rate float)
R3 DT3 (returnVal char(50))

again invoked for the nested UDF, thereby inlining it. Some
special cases with deeply nested/recursive functions, where
we choose not to optimize are discussed in Section 7.2.

Others: Relational operations such as EXISTS, NOT EX-
ISTS, ISNULL etc. can appear in imperative constructs
such as the predicate of an IF-ELSE block. Froid simply
uses the corresponding relational operators in these cases.
In addition to the above constructs, we have prototyped al-
gebrization of cursor loops. However, from our analysis of
many real world workloads, we found that scalar UDFs with
loops are quite rare (see Section 8). Therefore, we have cur-
rently disabled support for loops and may enable it in future.

4.2.2 Derived table representation
We now show how expressions for individual statements

are combined into a single expression for a region using de-
rived tables. A derived table is a statement-local temporary
table created by a sub-query. Derived tables can be aliased
and referenced just like normal tables. Froid constructs the
expression of each region as a derived table as follows.

Every statement in an imperative program has a read-set
and a write-set, representing sets of variables that are read
from and written to within that statement respectively. Sim-
ilarly, every region R can be seen as a compound statement
that has a read-set and a write-set. Informally, the read-set
of region R is the union of the read-sets of all statements
within R. The write-set of R is the union of the write-set of
all statements within R.

A relational expression that captures the semantics of a
region R has to expose the write-set of R to its subsequent
regions. This is because the variables written to in region R
would be read/modified in subsequent regions of the UDF.
The write-set of region R is therefore used to define the
schema of the relational expression for R. The schema is
defined by treating every variable in the write-set of R as
an attribute. The implicit variable returnVal appears in the
write-set of all regions that have a RETURN statement.

The write-sets of all the regions in function total price
of Figure 1 are given in Table 2. Using the schema, along
with the relational expressions for each statement, we can
construct a relational expression for the entire region R. A
single ConstantScan followed by ComputeScalar operators,
one per variable, results in a derived table with a single tu-
ple. This derived table represents the values of all variables
written to in R. The derived table aliases for regions R1, R2
and R3 are shown as DT1, DT2, and DT3 in Table 2.

4.3 Combining expressions using APPLY
Once we have a relational expression per region, we now

proceed to create a single expression for the entire function.
The relational expression for a region R uses attributes from
its prior regions, and exposes its attributes to subsequent
regions. Therefore, we need a mechanism to connect variable
definitions to their uses and (re-)definitions.

select DT3.returnVal from
(select 'USD' as default_currency, 
(select sum(o_totalprice) from orders 

where o_custkey = @key) as price,
(select currency from customer_prefs

where custkey = @key) as pref_currency) DT1
outer apply
(select

case when DT1.pref_currency <> DT1.default_currency
then DT1.price * xchg_rate(DT1.default_currency, 

DT1.pref_currency)
else DT1.price end as price) DT2

outer apply
(select str(DT2.price) + DT1.pref_currency 

as returnVal) DT3

R1

R2

R3

Figure 4: Relational expression for UDF total price

Froid makes use of the relational Apply operator to sys-
tematically combine region expressions. The derived tables
of each region are combined depending upon the type of the
parent region. For a region R, we denote the corresponding
relational expression as E(R). For the total price function
in Figure 1, E(R1) = DT1, E(R2) = DT2, E(R3) = DT3.

Figure 4 shows the relational expression for the entire
UDF. The dashed boxes in Figure 4 indicate relational ex-
pressions for individual regions R1, R2 and R3. Note that
Froid’s transformations are performed on the relational query
tree structure and not at the SQL language layer. Figure 4
shows an SQL representation for ease of presentation.

The relational expression for a sequential region such as
R0 is constructed using a sequence of Apply operators be-
tween its consecutive sub-regions i.e.,

E(R0) = (E(R1) Ao E(R2)) Ao E(R3)

The SQL form of this equation can be seen in Figure 4. The
Apply operators make the values in DT1 available for use
in DT2, the values in DT1 and DT2 available for DT3, and
so on. We use the outer join type for these Apply operators
(Ao). In the presence of multiple return statements, we
make use of Apply with probe (which internally uses left
semijoin) and pass-through (outer join) [10].

Consider the variable @pref currency as an example. It is
first computed in R1, and hence is an attribute of the derived
table DT1 (as shown in Figure 4). R2 uses this variable, but
does not modify it. Therefore @pref currency is not in the
schema of DT2. All the uses of @pref currency in R2 now re-
fer to it as DT1.pref currency. R3 also uses @pref currency
but does not modify it. The value of @pref currency that
R3 uses comes from R1. Therefore R3 also makes use of
DT1.pref currency in its computation of returnVal.

Observe that the expression in Figure 4 has no reference
to the intermediate variable @rate. As a simplification, we
generate expressions for variables only when they are first
assigned a value, and we expose only those variables that are
live at the end of the region (i.e., used subsequently). The
@rate variable gets eliminated due to these simplifications.
Finally, observe that the only attribute exposed by R0 (the
entire function) is the returnVal attribute. This expression
shown in Figure 4, is a relational expression that returns a
value equal to the return value of the function total price.

4.4 Correctness and Semantics Preservation
We now reason about the correctness of our transforma-

tions, and describe how they preserve the procedural seman-
tics of UDFs. As described earlier, Froid first constructs
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equivalent relational expressions for individual imperative
statements (Section 4.2.1). The correctness of these indi-
vidual transformations directly follows from the semantics
of the imperative construct being modeled, and the defi-
nition of the relational operations used to model it. The
updated values of variables due to assignments are captured
using derived tables consisting of a single tuple of values.

Once individual statements (and regions) are modeled as
single-tuple relations (Section 4.2.2), performing an Apply
operation between these relations results in a single-tuple
relation, by definition. By defining derived table aliases for
these single-tuple relations and using the appropriate aliases,
we ensure that all the data dependencies are preserved. The
relational Apply operator is composable, allowing us to build
up more complex expressions using previously built expres-
sions, while maintaining correctness.

In order to strictly adhere to the procedural intent of the
UDF, Froid ensures that any computation in the relational
equivalent of the UDF occurs only if that computation would
have occurred in the procedural version of the UDF. This is
achieved by (a) using the probe and pass-through extensions
of the Apply operator to ensure that unconditional jumps
are respected, (b) avoiding re-evaluation of predicates by
assigning their results into implicit variables, and (c) using
CASE expressions to model conditional statements.

5. SUBSTITUTION AND OPTIMIZATION
Once we build a single expression for a UDF, the high-level

approach to embed this expression into the calling query is
similar to view substitution, typically done during binding.
Froid replaces the scalar UDF operator in the calling query
with the newly constructed relational expression as a scalar
sub-query. The parameters of the UDF (if any) form the
correlating parameters for the scalar sub-query. At substi-
tution time, references to formal parameters in the function
are replaced by actual parameters from the calling query.

SQL Server has sophisticated optimization techniques for
sub-queries [14], which are then leveraged. In fact, SQL
Server never chooses correlated evaluation for scalar valued
sub-queries [10]. The plan (with Froid enabled) for the query
in Section 2.1 is given in [27]. From the plan, we observe that
the optimizer has (a) inferred the joins between customer,
orders, customer prefs and xchg – all of which were implicit
in the UDF, (b) inferred the appropriate group by operations
and (c) parallelized the entire plan.

Froid overcomes all limitations in UDF evaluation enu-
merated in Section 2.3. First, the optimizer now decorrelates
the scalar sub-query and chooses set-oriented plans avoiding
iterative execution. Second, expensive operations inside the
UDF are now visible to the optimizer, and are hence costed.
Third, the UDF is no longer interpreted since it is now a
single relational expression. Fourth, the limitation on par-
allelism no longer holds since the entire query including the
UDF is now in the same execution context.

In a commercial database with a large user base such as
SQL Server, making intrusive changes to the query optimizer
can have unexpected repercussions and can be extremely
risky. One of the key advantages of Froid’s approach is that
it requires no changes to the query optimizer. It leverages
existing query optimization rules and techniques by trans-
forming the imperative program into a form that the query
optimizer already understands.

6. COMPILER OPTIMIZATIONS
Froid’s approach not only overcomes current drawbacks in

UDF evaluation, but also adds a bonus: with no additional
implementation effort, it brings to UDFs the benefits of sev-
eral optimizations done by an imperative language compiler.
In this section, we point out how some common optimization
techniques for imperative code can be expressed as relational
algebraic transformations and simplifications. As a result,
Froid is able to achieve these additional benefits by lever-
aging existing sophisticated query optimization techniques
present in Microsoft SQL Server.

Using a simple example, Figure 5 illustrates the working
of Froid’s transformations in contrast with compiler opti-
mizations. The function getVal (Figure 5(a)) sets the value
of variable @val based on a predicate. Starting with this
UDF, a few common optimizations done by an imperative
language compiler are shown in Figure 5(b) in three steps.
Starting from the same input UDF, Figure 5(c) shows the
output of Froid’s algebrization. Then, Figure 5(d) shows re-
lational algebraic transformations such as projection-push-
down and apply-removal that Froid uses, to arrive at the
same result as the compiler optimizations in Figure 5(b).

6.1 Dynamic Slicing
Dynamic slicing is a program slicing technique that makes

use of information about a particular execution of a pro-
gram. A dynamic slice for a program contains a subset of
program statements that will be visited in a particular exe-
cution of the program [18, 21]. For a particular invocation of
the UDF in Figure 5(a), only one of its conditional branches
is taken. For example, the dynamic slice for getVal(5000)
is given in Figure 5(b)(i). As we can observe from Fig-
ure 5(d), Froid achieves slicing by evaluating the predicate
(@x > 1000) at compile time and removing the case expres-
sion. In such cases where one or more parameters to a UDF
are compile time constants, Froid simplifies the expression
to use the relevant slice of the UDF by using techniques such
as projection pushdown and scalar expression simplification.

6.2 Constant Folding and Propagation
Constant folding and constant propagation are related op-

timizations used by modern compilers [1, 18]. Constant fold-
ing is the process of recognizing and evaluating constant
expressions at compile time. Constant propagation is the
process of substituting the values of known constants in ex-
pressions at compile time.

SQL Server already performs constant folding within the
scope of a single statement. However, since it does not per-
form cross-statement optimizations, constant propagation is
not possible. This leads to re-evaluation of many expressions
for every invocation of the UDF. Froid enables both constant
propagation and folding for UDFs with no additional effort.
Since the entire UDF is now a single relational expression,
SQL Server’s existing scalar simplification mechanisms sim-
plify the expression. Figure 5(d) shows how the expression is
simplified by evaluating both the predicate (@x > 1000) and
then the string concatenation operation (‘high’ + ‘ value’)
at compile time, after propagating the constant ‘high’.

6.3 Dead Code Elimination
Lines of code that do not affect the result of a program are

called dead code. Dead code includes code that can never
be executed (unreachable code), and code that only affects
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create function getVal(@x int)
returns char(10) as
begin

declare @val char(10);
if(@x > 1000)

set @val = 'high';
else set @val = 'low';
return @val + ' value';

end

begin
declare @val char(10);
set @val = 'high';
return @val + ' value’;
end

(a) Input UDF

(i) Dynamic slicing for getVal(5000)

begin
return 'high value';
end

begin
declare @val char(10);
set @val = 'high';
return 'high value’;
end

(ii) Constant propagation & folding (iii) Dead code elimination

select returnVal from
(select case when @x > 1000 
then 'high' else 'low' end as val) DT1
outer apply
(select DT1.val + ' value' 

as returnVal) DT2

(b) Common optimizations done by an imperative language compiler

(c) Output of FROID’s Algebrization

select returnVal from
(select 'high' as val) DT1
outer apply
(select DT1.val + ' value'

as returnVal) DT2

select returnVal from
(select 'high value'

as returnVal) DT1
select 'high value';

(d) How FROID achieves the same end result as Figure 5(b) using relational algebraic transformations

Figure 5: Compiler optimizations as relational transformations. For ease of presentation, (c) and (d) are shown in SQL;
these are actually transformations on the relational query tree representation.

dead variables (assigned, but never read). As an example,
suppose the following line of code was present in function
total price (Figure 1) between lines 3 and 4:
select @t=count(*) from orders where o custkey=@key

The above line of code assigns the result of a query to a
variable that is never used, and hence it is dead code. In our
experiments, we found many occurrences of dead code. As
UDFs evolve and grow more complex, it becomes hard for
developers to keep track of unused variables and code. Dead
code can also be formed as a consequence of other optimiza-
tions. Dead code elimination is a technique to remove such
code during compilation [1]. Since UDFs are interpreted,
most forms of dead code elimination are not possible.

Now let us consider how Froid handles this. Since the vari-
able @t is in the write-set of R1, it appears as an attribute
of DT1. However, since it is never used, there will be no
reference to DT1.t in the final expression. Since there is an
explicit projection on the returnVal attribute, DT1.t is like
an attribute of a table that is not present in the final projec-
tion list of a query. Such attributes are aggressively removed
by the optimizer using projection pushdown. Thereby, the
entire sub-expression corresponding to the variable @t gets
pruned out, eliminating it from the final expression.

Summary: We showed how Froid uses relational transfor-
mations to arrive at the same end result as that of applying
compiler optimizations on imperative code. One might ar-
gue that compiler optimizations could be implemented for
UDFs without using Froid’s approach. However, that would
only be a partial solution since it does not address inefficien-
cies due to iterative UDF invocation and serial plans.

We conclude this section by highlighting two other as-
pects. First, the semantics of the Apply operator allows the
query optimizer to move and reuse operations as necessary,
while preserving correlation dependencies. This achieves
the outcome of dependency-preserving statement reorderings
and common sub-expression elimination [1], often used by
optimizing compilers. Second, due to the way Froid is de-
signed, these techniques are automatically applied across
nested function invocations, resulting in increased benefits
due to interprocedural optimization.

7. DESIGN AND IMPLEMENTATION
In this section, we discuss key design choices, trade-offs,

and implementation details of the Froid framework.

7.1 Cost-based Substitution
One of the first questions we faced while designing Froid

was to decide whether inlining of UDFs should be a cost-
based decision. The answer to this question influences the
choice of whether substitution should be performed during
Query Optimization (QO) or during binding.

If inlining has to be a cost-based decision, it has to be
performed during QO. If not, it can be done during bind-
ing. There are trade-offs to both these design alternatives.
One of the main advantages to doing this during binding is
that it is non-intrusive – the QO and other phases of query
processing require no modifications. On the other hand, in-
lining during query optimization has the advantage of con-
sidering the algebrized UDF as an alternative, and making
a cost-based decision of whether to substitute or not.

In Froid, we chose to perform inlining during binding due
to these reasons: (a) Our experiments on real workloads
showed that the inlined version performs better in almost
all cases (see Section 8), questioning the need for cost-based
substitution. (b) It is non-intrusive, requiring no changes to
the query optimizer – this is an important consideration for a
commercial database system, (c) Certain optimizations such
as constant folding are performed during binding. Inlining
during QO would require re-triggering these mechanisms ex-
plicitly, which is not desirable.

7.2 Imposing Constraints
Although Froid improves performance in most cases, there

are extreme cases where it might not be a good idea. Al-
gebrization can increase the size and complexity of the re-
sulting query (see Section 8.1). From our experiments, we
found that transforming a UDF with thousands of lines of
code may not always be desirable as it could lead to a query
tree with tens of thousands of operators. Additionally, note
that the query invoking the UDF might itself be complex as
well (see Section 8.2.4). Optimizing such a huge input tree
makes the job of the query optimizer very hard. The space
of alternatives to consider would increase significantly.

To mitigate this problem, we have implemented a set of
algebraic transformations that simplify the query tree re-
ducing its size when possible. However, in some cases, the
query tree may remain huge even after simplification. This
has an impact on optimization time, and also on the quality
of the plan chosen. Therefore, one of the constraints we im-
posed on Froid is to restrict the size of algebrized query tree.

439



In turn, this restricts the size of UDFs that are algebrized
by Froid. Based on our experiments, we found that except
for a few extreme cases (see Section 8.2.5), imposing this
constraint still resulted in significant performance gains.

Nested and Recursive functions: Froid’s transforma-
tions can result in deep and complex trees (in the case of
deeply nested function calls), or never terminate at all (in
the case of recursive UDFs), if it is not managed appro-
priately. Froid overcomes this problem by controlling the
inlining depth based on the size of the algebrized tree. This
allows algebrization of deeper nestings of smaller UDFs and
shallow nestings of larger UDFs. Note that if there is a deep
nesting of large UDFs (or recursive UDFs), algebrizing a few
levels might still leave UDFs in the query. This still is highly
beneficial in terms of reducing function call overheads and
enabling the choice of set-oriented plans, but it does not
overcome the limitation on parallelism (Section 2.3).

7.3 Supporting additional languages
Relational databases allow UDFs and procedures to be

written in imperative languages other than procedural SQL,
such as C#, Java, R and Python. Although the specific syn-
tax varies across languages, they all provide constructs for
common imperative operations such as variable declarations,
assignments and conditional branching. Froid is an extensi-
ble framework, designed in a way that makes it straightfor-
ward to incrementally add support for more languages and
imperative constructs.

Froid models each imperative construct as a class that
encapsulates the logic for algebrization of that construct.
Therefore, adding support for additional languages only re-
quires (a) plugging in a parser for that language and (b)
providing a language-specific implementation for each sup-
ported construct. The framework itself is agnostic to the
language, and hence remains unchanged. As long as the
UDF is written using supported constructs, Froid will be
able to algebrize them as described in this paper.

Note that while translating from a different language into
SQL, data type semantics need to be taken into account to
ensure correctness. Data type semantics vary across lan-
guages, and translating to SQL might lead to loss of preci-
sion, and sometimes different results.

7.4 Implementation Details
We now briefly discuss some special cases and other im-

plementation details.
Security and Permissions Consider a user that does not
have execute permissions on the UDF, but has select per-
missions on the referenced tables. Such a user will be able to
run an inlined query (since it no longer references the UDF),
even though it should be disallowed. To mitigate this issue,
Froid enlists the UDF for permission checks, even if it was
inlined. Conversely, a user may have execute permission on
the UDF, but no select permissions on the referenced tables.
In this case, by inlining, that user is unable to run the query
even though it should be allowed. Froid handles this similar
to the way view permissions are handled.

Plan cache implications: Consider a case where a user
with administrative privileges runs a query involving this
UDF, and consequently the inlined plan is now cached. Sub-
sequently, if a user without UDF execute permissions but
with select permissions on the underlying tables runs the
same query, the cached plan will run successfully, even though

Table 3: Applicability of Froid on two customer workloads

Workload W1 W2
Total # of scalar UDFs 178 93

# UDFs optimizeable by Froid 151 (85%) 86 (92.5%)
UDF lines of code (avg,min,max) (21,6,113) (26,7,169)

it should not. Another implication is related to managing
metadata version changes and cache invalidation. Consider
the case as described above, where an inlined plan is cached.
Now, if the user alters or drops the UDF, the UDF is changed
or no longer available. Therefore, any query that referred
to this UDF should be removed from the plan cache. Both
these issues are solved by enlisting the UDF in schema and
permission checks, even if it was algebrized.

Type casting and conversions: SQL Server performs
implicit type conversions and casts in many cases when the
datatypes of parameters and return expressions are different
from the declared types. In order to preserve the semantics
as before, Froid explicitly inserts appropriate type casts for
actual parameters and the return value.

Non-deterministic intrinsics: UDFs may invoke certain
non-deterministic functions such as GETDATE(). Inlining
such UDFs might violate the user’s intent since it may in-
voke the intrinsic function once-per-query instead of once-
per-tuple. Therefore, we disable transforming such UDFs.

8. EVALUATION
We now present some results of our evaluation of Froid on

several workloads and configurations. Froid is implemented
in SQL Server 2017 in about 1.5k lines of code. For our
experiments, SQL Server 2017 with Froid was run on Win-
dows Server 2012(R2). The machine was equipped with Intel
Xeon X5650 2.66 Ghz CPU (2 processors, 6 cores each), 96
GB of RAM and SSD-backed storage.

8.1 Applicability of Froid
We have analyzed several customer workloads from Azure

SQL Database to measure the applicability of Froid with its
currently supported constructs. We are primarily interested
in databases that make good use of UDFs and hence, we
considered the top 100 databases in decreasing order of the
number of UDFs present in them. Cumulatively, these 100
databases had 85329 scalar UDFs, out of which Froid was
able to handle 51047 (59.8%). The UDFs that could not be
transformed contained constructs not supported by Froid.
We also found that there are 10526 customer databases with
more than 50 UDFs each, where Froid can inline more than
70% of the UDFs. The sizes of these UDFs range from a
single line to 1000s of lines of code. These numbers clearly
demonstrate the wide applicability of Froid.

In order to give an idea of the kinds of UDFs that are in
these propreitary workloads, we have included a set of UDFs
in Section 9 of our technical report [27]. These UDFs have
been modified to preserve anonymity, while retaining pro-
gram structure. We have randomly chosen two customer
workloads (referred to as W1 and W2) for deeper study
and performance analysis. The UDFs have been used with
no modifications, and there were no workload-specific tech-
niques added to Froid. As summarized in Table 3, Froid is
able to transform a large fraction of UDFs in these work-
loads (85% and 92.5%). As described in Section 7, UDF
algebrization results in larger query trees as input to query
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Figure 8: TPC-H queries using UDFs

create function discount_price(@price float, @disc float)
returns int as
begin

return convert(int, @price * @disc);
end

select o_orderkey, c_name
from orders left outer join customer on o_custkey = c_custkey
where discount_price(o_totalprice, 0.1) > 50000; 

Query:

Figure 9: Example for Section 8.2.6

optimization. The largest case in W2 resulted in more than
300 imperative statements being transformed into a single
expression, having more than 7000 nodes. Note that this
is prior to optimizations described in Section 6. This illus-
trates the complexity of UDFs handled by Froid.

8.2 Performance improvements
We now present a performance evaluation of Froid on

workloads W1 and W2. Since our primary focus is to mea-
sure the performance of UDF evaluation, the queries that
invoke UDFs are kept simple so that UDF execution forms
their main component. Evaluation of complex queries with
UDFs is considered in Section 8.2.4.

8.2.1 Number of UDF invocations
The number of times a UDF is invoked as part of a query

has a significant impact on the overal query performance.
In order to compare the relationship between the number of
UDF invocations and the corresponding performance gains,
we consider a function F1 (which in turn calls another func-
tion F2). F1 and F2 are functions adapted from workload
W1, and their definitions are given in [27]. We use a simple
query to invoke this UDF, of the form

select dbo.F1(T.a, T.b) from T
Since the UDF is invoked for every tuple in T, we can control
the number of UDF invocations by varying the cardinality of
T. Figure 6 shows the results of this experiment conducted
with a warm cache. The x-axis denotes the cardinality of ta-
ble T (and hence the number of UDF invocations), and the
y-axis shows the time taken in seconds, in log scale. Note
that in this experiment, the time shown in the y-axis does
not include query compilation time, since the query plans
were already present in the cache.

We vary the cardinality of T from 10 to 100000. With
Froid disabled, we observe that the time taken grows with
cardinality (the solid line in Figure 6). With Froid enabled,
we see an improvement of one to three orders of magnitude
(the dashed line). The advantages start to be noticeable
right from a cardinality of 10.

8.2.2 Impact of parallelism
As described in this paper, Froid brings the benefits of

set-oriented plans, compiler optimizations, and parallelism
to UDFs. In order to isolate the impact of parallelism from
the rest of the optimizations (since enabling parallelism is
a by-product of Froid’s transformations), we conducted ex-
periments where we enabled Froid but limited the Degree
Of Parallelism (DOP). The dotted line in Figure 6 shows a
result of this experiment. It includes all the optimizations of
Froid, but forces the DOP to 1 using a query hint. For this
particular UDF, SQL Server switches to a parallel plan when
the cardinality of the table is greater than 10000 (indicated
by the dashed line). The key observation we make here is
that even without parallelism, Froid achieves improvements
up to two orders of magnitude.

8.2.3 Compile time overhead
Since Froid is invoked during query compilation, there

could be an increase in compilation time. This increase
is not a concern as it is offset by the performance gains
achieved. To quantify this, we measured the total elapsed
time including compilation and execution by clearing the
plan cache before running queries. This keeps the buffer
pool warm, but the plan cache cold. The results of this ex-
periment on 15 randomly chosen UDFs (sorted in descending
order of elapsed time) of workload W2 are shown in Figure 7.
The y-axis shows total elapsed time which includes compila-
tion and execution. We observe gains of more than an order
of magnitude for all these UDFs. Note that the compilation
time of each of these UDFs is less than 10 seconds.

8.2.4 Complex Analytical Queries With UDFs
In the above experiments, we kept the queries simple so

that the UDF forms the main component. To evaluate Froid
in situations where the queries invoking UDFs are complex,
we considered TPC-H [32] queries, and looked for oppor-
tunities where parts of queries could be expressed using
scalar UDFs. We extracted several UDFs and then mod-
ified the queries to use these UDFs. The UDF definitions
and rewritten queries are given in our technical report [27].
Figure 8 shows the results on a 10GB TPC-H dataset with
warm cache for 6 randomly chosen queries. For each query,
we show the time taken for (a) the original query (with-
out UDFs), (b) the rewritten query with UDFs (with Froid
OFF), and (c) the rewritten query with Froid ON.

Observe that for all queries, Froid leads to improvements
of multiple orders of magnitude (compare (b) vs. (c)). We
also see that in most cases, there is no overhead to using
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Figure 10: Improvement for UDFs in workload W1
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Figure 11: Improvement for UDFs in
workload W2

Table 4: Benefits of Froid on row and column stores (total
elapsed time with cold cache) for the example in Figure 9 .

Configuration Froid OFF Froid ON
Row store 24241 ms 822 ms

Column store 19153 ms 155 ms

UDFs when Froid is enabled (see (a) vs. (c)). These im-
provements are the outcome of all the optimizations that are
enabled by Froid. For some queries (eg. Q5, Q14), there is a
small overhead when compared with original queries. There
are also cases (eg. Q11, Q22) where Froid does slightly bet-
ter than the original. An analysis of query plans revealed
that these are due to small variations in the chosen plan.

8.2.5 Factor of improvement
We now consider the overall performance gains achieved

due to Froid on workloads W1 and W2 (row store), shown in
Figures 10 and 11. The size of table T was fixed at 100,000
rows, and queries were run with warm cache (averaged over
3 runs). In these figures, UDFs are plotted along the x-
axis, ordered by the observed improvement with Froid (in
descending order). The y-axis shows the factor of improve-
ment (in log scale). We observe improvements in the range
of 5x-1000x across both workloads. In total, there were 5
UDFs that showed no improvement or performed slightly
worse due to Froid. One of the main reasons for this was
the presence of complex recursive functions. These can be
handled by appropriately tuning the constraints as described
in Section 7.2. UDFs that invoke expensive TVFs was an-
other reason. Since our implementation currently does not
handle TVFs, such UDFs do not benefit from Froid.

8.2.6 Columnstore indexes
We now present the results of our experiments on col-

umn stores. Column-stores achieve better performance be-
cause of high compression rates, smaller memory footprint,
and batch execution [6]. However, encapsulating aggrega-
tions and certain other operations inside a UDF prevents
the optimizer from using batch mode for those operations.
Froid brings the benefits of batch mode execution to UDFs.
Consider a simple example based on the TPC-H schema as
shown in Figure 9. The results of running this on a TPC-H
1GB database with a cold cache are shown in Table 4.

For this example, without Froid, using a clustered column-
store index (CCI) led to about 20% improvement in perfor-
mance over row store. With Froid, however, we get about
5x improvement in performance by using column store over
row store. Along with other reasons, the fact that the pred-

Table 5: Benefits of Froid with native compilation (total
elapsed time with warm cache) for the UDF in [28].

Configuration Froid OFF Froid ON
Query and UDF interpreted 41729 ms 2056 ms

Interpreted query, native UDF 27376 ms NA
Native query, native UDF 9230 ms 2005 ms

icate and discount computation can now happen in batch
mode contributes to the performance gains.

8.2.7 Natively compiled queries and UDFs
Hekaton, the memory-optimized OLTP engine in SQL

Server performs native compilation of procedures [9], which
allows more efficient query execution than interpreted T-
SQL [22]. Due to its non-intrusive design, Froid seamlessly
integrates with Hekaton and provides additional benefits.
For this expriment, we considered the UDFs (dbo.FarePerMile)
used in an MSDN article about native compilation [28] (UDFs
are reproduced in [27]). We considered a memory optimized
table with 3.5 million rows and 25 columns, with a CCI. The
results of this experiment are shown in Table 5.

First, in the classic mode of interpreted T-SQL, we see
a 20x improvement due to Froid. Next, we natively com-
piled the UDF, but ran the query in interpreted mode. This
results in a 1.5x improvement compared to the fully inter-
preted mode with Froid disabled. Froid is not applicable
here since a compiled module cannot be algebrized.

Finally, we natively compiled both the UDF and the query,
and ran it with and without Froid enabled. With Froid dis-
abled, we see the full benefits of native compilation over
interpreted mode, with a 4.5x improvement. With Froid
enabled, we get the combined benefits of algebrization and
native compilation. Froid first inlines the UDF, and then
the resulting query is natively compiled, giving an addi-
tional 4.6x improvement over native compilation. Although
native compilation makes UDFs faster, the benefits are lim-
ited as the query still invokes the UDF for each tuple. Froid
removes this fundamental limitation and hence combining
Froid with native compilation leads to more gains.

8.3 Resource consumption
In addition to significant performance gains, our tech-

niques offer an additional advantage – they significantly re-
duce the resources consumed by such queries. The reduction
in CPU time due to Froid is shown in Figure 12. Due to lack
of space, we show the results for a randomly chosen subset of
UDFs from workload W2; the results were similar across all
the workloads we evaluated. Observe that Froid reduces the
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Figure 12: CPU time comparison

create function total_price(@key int) returns varchar(100) as
begin
declare @price float;
select @price = sum(o_totalprice) from orders where o_custkey = @key
return convert(varchar(20), @price) + 'USD';

end

Query: select c_custkey, total_price(c_custkey) from customer

Figure 13: Example for I/O measurements

CPU time by 1-3 orders of magnitude for all UDFs. This re-
duction is due to elimination of expensive context-switches
(see Section 2.2), and also due to optimizations such as set-
oriented evaluation, folding and slicing.

Due to the above-mentioned reasons, Froid also reduces
I/O costs. The I/O metric is dependent upon the nature of
operations in the UDF. For UDFs that perform data access,
our transformations will lead to reductions in logical reads
as it avoids repetition of data access for every invocation of
the UDF. Consider a simple UDF such as the one in Fig-
ure 13. With Froid, the query requires about 3300 logical
reads, whereas without Froid, it issued close to 5 million log-
ical reads on a 1GB TPC-H dataset with cold cache. Such
improvements lead to significant cost savings for our cus-
tomers, especially for users of cloud databases, since they
are billed for resources they consume.

9. RELATED WORK
Optimization of SQL queries containing sub-queries is well-

studied. There have been several techniques proposed over
the years [19, 15, 30, 14, 7, 10, 23], and many RDBMSs can
optimize nested sub-queries. Complementarily, there has
been a lot of work spanning multiple decades, on optimiza-
tion of imperative programs in the compilers community [1,
21, 18]. UDFs are similar to nested sub-queries, but contain
imperative constructs. Hence, they lie in the intersection of
these two streams of work; however, they have received little
attention from either community.

Some databases perform sub-program inlining, which ap-
plies only to nested function calls [26]. This technique works
by replacing the call to a function with the function body.
Another technique is to cache function results [29], which is
useful only when there are repeated UDF invocations with
identical parameter values. Unlike Froid, none of these tech-
niques offer a complete solution that addresses all drawbacks
of UDF evaluation listed in Section 2.3.

There have been recent efforts that use programming lan-
guages techniques to optimize database-backed applications.
Cheung et al. [4] consider applications written using object-
relational mapping libraries and transforms fragments of
code into SQL using Query-By-Synthesis (QBS). The goals
of QBS and Froid are similar, but the approaches are entirely
different. QBS is based on program synthesis, whereas Froid
uses a program transformation based approach. Although
QBS is a powerful technique, it is limited in its scalability to

large functions. We have manually analyzed all code frag-
ments used in [4] (given in Appendix A of [4]), and found
that none of those are larger than 100 lines of code. Even
for these small code fragments, QBS suffers from potentially
very long optimization times due to the space-exploration
involved. They use a preset timeout of 10 mins in their ex-
periments. Froid overcomes both these limitations – it can
handle UDFs with 1000s of statements, and can transform
them in less than 10 seconds (see Section 8.2.3).

The StatusQuo system [3] includes (a) a program anal-
ysis that identifies blocks of imperative logic that can be
translated to SQL and (b) a program partitioning method
to move application logic into imperative stored procedures.
The SQL translation in StatusQuo uses QBS[4] to extract
equivalent SQL. The program partitioning is orthogonal to
our work. Once such partitioning is done, the resulting im-
perative procedures can be optimized using Froid.

Emani et al. [12, 11] present a static analysis based ap-
proach with similar goals. and can be adapted to extract
equivalent SQL for UDFs. However, from a prototype im-
plementation, we found that the generated SQL turns out
to be larger and more complex compared to Froid. As dis-
cussed in Section 7.2, we prefer to minimize the size of input
to the optimizer. Simhadri et al. [31] describe a technique
to decorrelate queries in UDFs using extensions to the Ap-
ply operator. Froid’s approach partly borrows its intuition
from this work, but there are some key differences. First,
Froid does not require any new operators or operator ex-
tensions unlike the approach of [31]. Second, their trans-
formation rules are designed to be a part of a cost based
optimizer. Froid, in contrast is designed as a precursor to
query optimization.Third, they do not address vital issues
such as handling multiple return statements and avoiding
redundant computation of predicate expressions, which are
found to be quite common in real workloads.

10. CONCLUSION
While declarative SQL and procedural extensions are both

supported by RDBMSs, their primary focus has been the ef-
ficient evaluation of declarative SQL. Although imperative
UDFs and procedures offer many advantages and are pre-
ferred by many users, their poor performance is a major
concern. Often, using UDFs is discouraged for this reason.

In this paper, we address this important problem using
novel techniques that automatically transform imperative
programs into relational expressions. This enables us to
leverage sophisticated query optimization techniques thereby
resulting in efficient, set-oriented, parallel plans for queries
invoking UDFs. Froid, our extensible, language-agnostic op-
timization framework built into Microsoft SQL Server, not
only overcomes current drawbacks in UDF evaluation, but
also offers the benefits of many compiler optimization tech-
niques with no additional effort. The benefits of our frame-
work are demonstrated by our evaluation on customer work-
loads, showing significant gains. We believe that our work
will enable and encourage wider use of UDFs to build mod-
ular, reusable and maintainable applications without com-
promising performance.
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