
The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Özsu
David R. Cheriton School of Computer Science

University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu,jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT
Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence, there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have; (ii) the graph computations users run; (iii) the types
of graph software users use; and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often very large,
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.

PVLDB Reference Format:
Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M.
Tamer Özsu. The Ubiquity of Large Graphs and Surprising Challenges of
Graph Processing. PVLDB, 11(4): 420 - 431, 2017.
DOI: https://doi.org/10.1145/3164135.3164139

1. INTRODUCTION
Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [3,8,14,35,48,53], RDF engines [38,64,67], linear algebra
software [6,46], visualization software [13,16], query languages [28,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 4
Copyright 2017 VLDB Endowment 2150-8097/17/12... $ 10.00.
DOI: https://doi.org/10.1145/3164135.3164139

52, 55], and distributed graph processing systems [17, 21, 27]. In
the academic literature, a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?
(iv) What are the major challenges users face when processing their

graph data?

Our major findings are as follows:
• Variety: Graphs in practice represent a very wide variety of enti-

ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly, traditional enterprise data comprised
of products, orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

• Ubiquity of Very Large Graphs: Many graphs in practice are
very large, often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

• Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

• Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

• Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as the preva-
lence of machine learning on graph data, e.g., for clustering vertices,
predicting links, and finding influential vertices.

We further reviewed user feedback in the mailing lists, bug re-
ports, and feature requests in the source code repositories of 22
software products between January and September of 2017 with
two goals: (i) to answer several new questions that the participants’
responses raised; and (ii) to identify more specific challenges in
different classes of graph technologies than the ones we could iden-

420

tify in participants’ responses. For some of the questions in our
online survey, we also compared the graph data, computations, and
software used by the participants with those studied in academic
publications. For this, we reviewed 90 papers from 6 conferences
across different academic venues.

In addition to discussing the insights we gained through our study,
we discuss several directions about the future of graph processing.
We hope our study can inform research about real use cases and
important problems in graph processing.

2. METHODOLOGY AND PARTICIPANTS
In this section, we first describe the format of our survey and then
how we recruited the participants. Next we describe the demo-
graphic information of the participants, including the organizations
they come from and their roles in their organizations. Then we
describe our methodology of reviewing academic publications. We
end this section by describing our methodology for reviewing the
user feedback in the mailing lists, bug reports, and feature requests
in the source code repositories of the software products.

2.1 Survey Format
The survey was in the format of an online form. All of the questions
were optional and participants could skip any number of questions.
There were 2 types of questions:

(i) Multiple Choice: There were 3 types of multiple choice ques-
tions: (a) yes-no questions; (b) questions that allowed only
a single choice as a response; and (c) questions that allowed
multiple choices as a response. The participants could use an
Other option when their answers required further explanation
or did not match any of the provided choices. We random-
ized the order of choices in questions about the computations
participants run and the challenges they face.

(ii) Short Answer: For these questions, the participants entered
their responses in a text box.

There were 34 questions grouped into five categories: (i) demo-
graphic questions; (ii) graph datasets; (iii) graph and machine learn-
ing computations; (iv) graph software; and (v) workload breakdown
and major challenges.

2.2 Participant Recruitment
We prepared a list of 22 popular software products for processing
graphs (see Table 1) that had public user mailing lists covering
6 types of technologies: graph database systems, RDF engines,
distributed graph processing systems (DGPSes), graph libraries
to run and compose graph algorithms, visualization software, and
graph query languages.1 Our goal was to be as comprehensive as
possible in recruiting participants from the users of different graph
technologies. However, we acknowledge that this list is incomplete
and does not cover all of the graph software used in practice.

We conducted the survey in April 2017, and used 4 methods to re-
cruit participants from the users of these 22 software products:
• Mailing Lists: We posted the survey to the user mailing lists of

the software in our list.
• Private Emails: Five mailing lists: (i) Neo4j; (ii) OrientDB;

(iii) ArangoDB; (iv) JanusGraph; and (v) NetworkX, allowed us
to send private emails to the users. We sent private emails to 171
users who were active on these mailing lists between February
and April of 2017.

1The linear algebra software we considered, e.g., BLAS [6] and
MATLAB [46], either did not have a public mailing list or their lists
were inactive.

Table 1: Software products used for recruiting participants and the
number of active mailing list users from February to April 2017.

Technology Software # Users

Graph Database
System

ArrangoDB [3] 40

233

Caley [8] 14
DGraph [14] 33
JanusGraph [35] 32
Neo4j [48] 69
OrientDB [53] 45

RDF Engine
Apache Jena [38] 87

115Sparksee [64] 5
Virtuoso [67] 23

Distributed Graph
Processing Engine

Apache Flink (Gelly) [17] 24
39Apache Giraph [21] 8

Apache Spark (GraphX) [27] 7
Query Language Gremlin [28] 82 82

Graph Library

Graph for Scala [22] 4

97

GraphStream [24] 8
Graphtool [25] 28
NetworKit [50] 10
NetworkX [51] 27
SNAP [62] 20

Graph Visualization Cytoscape [13] 93 116Elasticsearch
(X-Pack Graph) [16] 23

Graph Representation Conceptual Graphs [11] 6 6

• Slack Channels: Two of the software products on our list, Neo4j
and Cayley, had Slack channels for their users. We posted the
survey to these channels.

• Twitter: A week after posting our survey to the mailing lists and
Slack channels and sending private emails, we posted a tweet
with a link to our survey to 7 of the 22 software products that
had an official Twitter account. Only Neo4j retweeted our tweet.

Participants that we recruited through different methods shared the
same online link and we could not tell the number of participants
recruited from each method. In particular, we suspect that there
were more users from graph database systems mainly because their
mailing lists contained more active users, as can be seen in Ta-
ble 1. Moreover, 4 of the 5 mailing lists that allowed us to send
private emails and the Slack and Twitter channels belonged to graph
database systems. We note that after posting the survey on Twitter,
we received 12 responses.

In the end, there were 89 participants. Below, we give an overview
of the organizations these participants work in and the role of the
participants in their organizations.

Field of Organizations: We asked the participants which field they
work in. Participants could select multiple options. Table 2 shows
the 12 choices and participants’ responses. In the table, “R” and
“P” indicate researchers and practitioners (defined momentarily),
respectively. In addition to the given choices, using the Other op-
tion, participants indicated 5 other fields: education, energy market,
games and entertainment, investigations and audits, and grassland
management. In total, participants indicated 17 different fields,
demonstrating that graphs are being used in a wide variety of fields.
Throughout the survey, we group the participants into 2 categories:
• Researchers are the 36 participants who indicated at least one

of their fields as research in academia or research in an industry
lab. Some of these participants further selected other choices
as their fields, the most popular of which were information and
technology, government, defense and space, and health care.

421

Table 2: The participants’ fields of work.

Field Total R P
Information & Technology 48 12 36
Research in Academia 31 31 0
Finance 12 2 10
Research in Industry Lab 11 11 0
Government 7 3 4
Healthcare 5 3 2
Defence & Space 4 3 1
Pharmaceutical 3 0 3
Retail & E-Commerce 3 0 3
Transportation 2 0 2
Telecommunications 1 1 0
Insurance 0 0 0
Other 5 2 3

Table 3: Size of the participants’ organizations.

Size Total R P
1 - 10 27 17 10
10 - 100 23 6 17
100 - 1000 14 4 10
1000 - 10000 6 4 2
>10000 15 4 11

• Practitioners are the remaining 53 participants who did not
select research in academia or an industry lab. The top two
fields of practitioners were information and technology and
finance, indicated by 36 and 10 people, respectively.

In the remainder of this paper, we will explicitly indicate when the
responses of the researchers and practitioners to our survey questions
differ significantly. In the absence of an explicit comparison, readers
can assume that both groups’ responses were similar.

Size of Organizations: Table 3 shows the sizes of the organizations
that the participants work in, which ranged from very small organi-
zations with less than 10 employees to very large ones with more
than 10,000 employees.

Role at Work: We asked the participants their roles in their orga-
nizations and gave them the following 4 choices: (i) researcher;
(ii) engineer; (iii) manager; and (iv) data analyst. Participants could
select multiple options. The top 4 roles were engineers, selected by
54, researchers, selected by 48, data analysts, selected by 18, and
managers, selected by 16. The other roles participants indicated
were architect, devops, and student.

2.3 Review of Academic Publications
In order to compare the graph data, computations, and software
academics work on with those that our participants indicated, we
surveyed papers in the proceedings of the following conferences:
VLDB 2014 [34], KDD 2015 [9], ICML 2016 [4], OSDI 2016 [40],
SC 2016 [69], and SOCC 2015 [20]. Our goal in choosing these
conferences was to select papers from a variety of venues where
researchers working on graph processing publish. Specifically, our
list consists of venues in databases, data mining, machine learning,
operating systems, high performance computing, and cloud comput-
ing. For each paper in these proceedings, we first selected the ones
that directly studied a graph computation or were developing graph
processing software. We omitted papers that were not primarily
focused on graph processing, even if they used a graph algorithm as
a subroutine to solve a problem. For example, we omitted a paper

studying a string matching algorithm that uses a graph algorithm as
a subroutine. In the end, we selected 90 papers.

For each of the 90 papers, we identified: (i) the graph datasets
used in experiments; (ii) the graph and machine learning computa-
tions that appeared in the paper; and (iii) the graph software used
in the paper. In our survey, we asked users questions about which
graph and machine learning computations they perform. The choi-
ces we provided in these questions came from the computations
we identified in these publications (see Sections 4.1 and 4.2 and
Appendices A and B for details).

2.4 Review of Emails and Code Repositories
To answer some questions that participants’ responses raised and to
identify more specific challenges users face than the ones we identi-
fied from participants’ responses, we reviewed emails in the mailing
lists of the 22 software products between January and September
of 2017. In addition, 20 of these 22 software products had open
source code repositories. We reviewed the bug reports and feature re-
quests (issues henceforth) in these repositories between January and
September of 2017. We also reviewed the repositories of 2 popular
graph visualization tools: Gephi [19] and Graphviz [26]. For emails
and issues before January 2017, we performed a targeted keyword
search to find more instances of the challenges we identified in the
January-September 2017 review.

In total, we reviewed over 6000 emails and issues. The over-
whelming majority of the emails and issues were routine engineer-
ing tasks, such as users asking how to write a query or developers
asking for integration with another software. The number of emails
and issues that were useful for identifying challenges were 311 in
total. We review these challenges in Section 6.2. Table 20 in the
appendix shows the exact number of emails and issues we reviewed
for each product, and the number of commits in it’s code repository
to give readers a sense of how active these repositories are.

3. GRAPH DATASETS
In this section, we describe the properties of the graph datasets that
the participants work with.

3.1 Real-World Entities Represented
We asked the participants about the real-world entities that their
graphs represent. We provided them with 4 choices and the partici-
pants could select multiple of them.

(i) Humans: e.g., employees, customers, and their interactions.
(ii) Non-Human Entities: e.g., products, transactions, or web pages.

(iii) RDF or Semantic Web.
(iv) Scientific: e.g., chemical molecules or biological proteins.

For the participants who selected non-human entities, we followed
up with a short-answer question asking them to describe what these
are. Participants indicated 52 different kinds of non-human entities,
which we group into 7 broad categories.2 We indicate the acronyms
we use in our tables for each category in parentheses:

(i) Products (NH-P): e.g., products, orders, and transactions.
(ii) Business and Financial Data (NH-B): e.g., business assets,

funds, or bitcoin transfers.
(iii) Web Data (NH-W).
(iv) Geographic Maps (NH-G): e.g., roads, bicycle sharing stations,

or scenic spots.
(v) Digital Data (NH-D): e.g., files and folders or videos and

captions.
2Six entities that the participants mentioned did not fall under any
of our 7 categories, which we list for completeness: call records,
computers, cars, houses, time slots, and specialties.

422

Table 4: Real-world entities represented by the participants’ graphs and studied in publications. Legend for non-human entities: Products
(NH-P), Business and Financial Data (NH-B), Web Data (NH-W), Geographic Maps (NH-G), Digital Data (NH-D), Infrastructure Networks
(NH-I), Knowledge and Textual Data (NH-K).

Category Human RDF Scientific Non-Human NH-P NH-B NH-W NH-G NH-D NH-I NH-K
Total 45 23 15 60 13 11 4 7 5 9 11

R 18 11 9 22 1 6 2 4 1 7 6
P 27 12 6 38 12 5 2 3 4 2 5
A 54 8 11 63 2 8 30 11 0 2 3

Table 5: The sizes of the participants’ graphs.
(a) Number of vertices.

Vertices Total R P
<10K 22 11 11

10K - 100K 22 9 13
100K - 1M 19 7 12
1M - 10M 17 6 11

10M - 100M 20 10 10
>100M 27 10 17

(b) Number of edges.

Edges Total R P
<10K 23 11 12

10K - 100K 22 9 13
100K - 1M 13 3 10
1M - 10M 9 5 4

10M - 100M 21 8 13
100M - 1B 21 8 13

>1B 20 8 12

(c) Total uncompressed bytes.

Size Total R P
<100MB 23 12 11

100MB - 1GB 19 9 10
1GB - 10GB 25 9 16

10GB - 100GB 17 5 12
100GB - 1TB 20 8 12

>1 TB 17 5 12

Table 6: Sizes of organization that have graphs with >1B edges.

Size 1 - 10 10 - 100 100 - 1000 >10000
4 4 7 4

(vi) Infrastructure Networks (NH-I): e.g., oil wells and pipes or
wireless sensor networks.

(vii) Knowledge and Textual Data (NH-K): e.g., keywords, lexicon
terms, words, and definitions.

Table 4 shows the responses. In the table, the number of academic
publications that use each type of graph is listed in the A row. We
highlight 2 interesting observations:
• Variety: Real graphs capture a very wide variety of entities.

Readers may be familiar with entities such as social connections,
infrastructure networks, and geographic maps. However, many
other entities in the participants’ graphs may be less natural to
think of as graphs. These include malware samples and their
relationships, videos and captions, or scenic spots, among others.
This lends credence to the cliché that graphs are everywhere.

• Product Graphs: Products, orders, and transactions were the
most popular non-human entities represented in practitioners’
graphs, indicated by 12 practitioners. This contrasts with their
relative unpopularity among researchers and academics: only
1 researcher and 2 papers used these graphs. Such product-order-
transaction data is traditionally the classic example of enterprise
data that perfectly fits the relational data model. It is interesting
that enterprises represent similar product data as graphs, possibly
because they find value in analyzing connections in such data.

We also note that we expected scientific graphs to be used mainly
by researchers. Surprisingly, scientific graphs are prevalent among
practitioners as well.

3.2 Size
We asked the participants the number of vertices, number of edges,
and total uncompressed size of their graphs. They could select
multiple options. Tables 5a, 5b, and 5c show the responses. As
shown in the tables, graphs of every size, from very small ones with
less than 10K edges to very large ones with more than 1B edges, are
prevalent across both researchers and practitioners. We make one
interesting observation:

• The Ubiquity of Very Large Graphs: A significant number of
participants work with very large graphs. Specifically, 20 partici-
pants (8 researchers and 12 practitioners) indicated using graphs
with more than a billion edges. Moreover, the 20 participants
with graphs with more than one billion edges are from organi-
zations with different scales, ranging from very small to very
large, as shown in Table 6. This refutes the common assumption
that only very large organizations—such as Google [45], Face-
book [10], and Twitter [61] that have web and social network
data—have very large graphs. Finally, we note that these large
graphs represent a variety of entities, including social, scientific,
RDF, product, and digital data,3 indicating that very large graphs
appear in a wide range of domains.

One thing that is not clear from our survey is how much larger the
participants’ graphs are beyond the maximum limits we inquired
about (100 million vertices, 1 billion edges, and 1 TB uncompressed
data). In order to answer this question, we categorized the graph
sizes mentioned in the user emails we reviewed that were beyond
these sizes. Focusing on the number of edges, we found 42 users
with 1-10B-edge graphs, 17 with 10B-100B-edge graphs, and 7
users processing graphs over 100B edges. Two participants also clar-
ified through an email exchange that their graphs contained 4B and
30B edges. As in our survey results, these large graphs represented a
wide range of entities, such as product-order-transaction data, or en-
tities from agriculture and finance. Table 18 in the appendix shows
the exact distribution of sizes we identified.

3.3 Other Questions on Graph Datasets
Topology: We asked the participants whether their graphs were:
(i) directed or undirected; and (ii) simple graphs or multigraphs.
We clarified that multigraphs are those with possibly multiple edges
between two vertices, while simple graphs do not allow multiple
edges between two vertices. Tables 7a and 7b show the responses.

Types of Data Stored on Vertices and Edges: We asked the parti-
cipants whether they stored data on the vertices and edges of their
graphs. All participants except 3 indicated that they do. We asked
3Some participants selected multiple graph sizes and multiple en-
tities, so we cannot perform a direct match of which graph size
corresponds to which entity. The entities we list here are taken from
the participants who selected a single graph size and entity, so we
can directly match the size of the graph to the entity.

423

Table 7: The topology and stored data types of the participants’ graphs.
(a) Directed vs. Undirected

Topology Total R P
Only Directed 63 23 40
Only Undirected 11 6 5
Both 15 7 8

(b) Simple vs. Multigraphs

Topology Total R P
Only Simple Graphs 26 9 17
Only Multigraphs 50 20 30
Both 13 7 6

(c) Data types stored on vertices and edges.

Type Vertices Edges
Total R P Total R P

String 79 31 48 66 24 42
Numeric 63 23 40 59 23 36
Date/Timestamp 56 19 37 49 18 31
Binary 15 8 7 8 4 4

Table 8: Frequency of changes.

Frequency Total R P
Static 40 21 19
Dynamic 55 22 33
Streaming 18 9 9

the types of data they store and gave them 4 choices: (i) string;
(ii) numeric; (iii) date or timestamp; and (iv) binary. Table 7c shows
participants’ responses. Five participants also indicated storing
JSON, lists, and geographic coordinates using the Other option.

Dynamism: We asked the participants how frequently the vertices
and edges of their graphs change, i.e., are added, deleted, or up-
dated. We provided 3 choices with the following explanations:
(i) static: there are no or very infrequent changes; (ii) dynamic:
there are frequent changes, and all changes are stored permanently;
and (iii) streaming: there are very frequent changes and the partici-
pants’ software discards some of the graph after some time. Table 8
shows the responses. Surprisingly 18 participants (9 researchers
and 9 practitioners) indicated having streaming graphs, which repre-
sented at least humans, products, and semantic web data.

4. COMPUTATIONS
In this section, we describe the computations that the participants
perform on their graphs.

4.1 Graph Computations
Our goal in this question was to understand what types of graph
queries and computations, not including machine learning compu-
tations, participants perform on their graphs. We asked a multi-
ple choice question that contained as choices a list of queries and
computations followed by a short answer question that asked for
computations that may not have appeared in the first question as a
choice. In the multiple choice question, instead of asking for a set of
ad-hoc queries and computations, we selected a list of graph queries
and computations that appeared in the publications of the 6 confer-
ences we reviewed (recall Section 2.3), using our best judgment to
categorize similar computations under the same name. We describe
our detailed methodology in Appendix A.

Table 9 shows the 13 choices we provided in the multiple choice
question, the responses we got, and the number of academic publi-
cations that use or study each computation. As shown in the table,
all of the 13 computations are used by both researchers and practi-
tioners. Except for two computations, the popularity of these com-
putations is similar among participants’ responses and academic
publications. The exceptions are neighborhood and reachability
queries, which are respectively used by 51 and 27 participants, but
studied in only 3 publications. Finding connected components ap-
pears to be a very popular and fundamental graph computation—it
is the most popular graph computation overall and also among prac-
titioners. We suspect it is a common pre-processing or cleaning step,
e.g., to remove singleton vertices, across many tasks.

Table 9: Graph computations performed by the participants and
studied in publications.

Computation Total R P A
Finding Connected Components 55 18 37 12
Neighborhood Queries (e.g., finding
2-degree neighbors of a vertex) 51 19 32 3

Finding Short / Shortest Paths 43 18 25 17
Subgraph Matching (e.g., finding all
diamond patterns, SPARQL) 33 14 19 21

Ranking & Centrality Scores (e.g.,
PageRank, Betweenness Centrality) 32 17 15 22

Aggregations (e.g., counting the
number of triangles) 30 10 20 7

Reachability Queries (e.g.,checking
if u is reachable from v) 27 7 20 3

Graph Partitioning 25 13 12 5
Node-similarity (e.g., SimRank) 18 7 11 3
Finding Frequent or Densest
Subgraphs 11 7 4 2

Computing Minimum Spanning Tree 9 5 4 2
Graph Coloring 7 3 4 3
Diameter Estimation 5 2 3 2

A total of 13 participants answered our follow-up short answer
question on other graph queries and computations they run. Exam-
ple answers include queries to create schemas and graphs, custom
bioinformatics algorithms, and finding k-cores in a weighted graph.

4.2 Machine Learning Computations
We next asked participants what kind of machine learning com-
putations they perform on their graphs. Similar to the previous
question, these questions were formulated to identify the machine
learning computations that appeared in the academic publications
we reviewed. We describe our detailed methodology in Appendix B.
We asked the following 2 questions:
• Which machine learning computations do you run on your

graphs? The choices were: clustering, classification, regres-
sion (linear or logistic), graphical model inference, collabora-
tive filtering, stochastic gradient descent, and alternating least
squares.

• Which problems that are commonly solved with machine learn-
ing do you solve using graphs? The choices were: community
detection, recommendation system, link prediction, and influ-
ence maximization.4

Tables 10a and 10b show the responses and the number of academic
publications that use or study each computation. It is clear that

4In the publications, link prediction referred to problems that predict
a missing edge in a graph or data on an existing edge. Influence
maximization referred to finding influential vertices in a graph, e.g.,
those that can bring more vertices to the graph. We did not provide
detailed explanations about the problems to the participants.

424

Table 10: Machine learning computations and problems performed
by the participants and studied in publications.

(a) Machine learning computations.

Computation Total R P A
Clustering 42 22 20 15
Classification 28 10 18 2
Regression (Linear / Logistic) 11 5 6 2
Graphical Model Inference 10 5 5 2
Collaborative Filtering 9 4 5 2
Stochastic Gradient Descent 4 2 2 3
Alternating Least Squares 0 0 0 2

(b) Problems solved by machine learning algorithms.

Computation Total R P A
Community Detection 31 15 16 5
Recommendation System 26 10 16 2
Link Prediction 25 10 15 2
Influence Maximization 14 5 9 2

Table 11: Graph traversals performed by the participants.

Traversal Total R P
Breadth-first-search or variant 19 5 14
Depth-first-search or variant 12 4 8
Both 22 8 14
Neither 20 11 9

machine learning is used very widely in graph processing. Specifi-
cally, 61 participants indicated that they either perform a machine
learning computation or solve a problem using machine learning on
their graphs. Clustering is the most popular computation performed,
while community detection is the most popular problem solved us-
ing machine learning. None of the participants selected alternating
least squares as a computation they perform.

4.3 Other Questions on Computations
Streaming Computations: We asked the participants if they per-
formed incremental or streaming computations on their graphs: 32
participants (16 researchers and 16 practitioners) indicated that they
do. We followed up with a question asking them to describe the
incremental or streaming computations that they perform. A total of
4 participants indicated computing graph or vertex-level statistics
and aggregations; A total of 3 participants indicated incremental or
streaming computation of the following algorithms: approximate
connected components, k-core, and hill climbing. For completeness,
we list the other computations participants mentioned: computing
node or community properties, calculating approximate answers to
simple queries, incremental materialization, incremental enhance-
ment of the knowledge graph, and scheduling.

We note that the 22 software products in Table 1 have limited or
no support for incremental and streaming computations. It would be
interesting to clarify which software the participants use to perform
their streaming and incremental computations.

Traversals: We asked the participants which fundamental traversals,
breadth-first search or depth-first search, they use in their algorithms.
Table 11 shows the responses. Participants commonly use both kinds
of traversals.

5. GRAPH SOFTWARE
We next review the properties of the different graph software that
the participants use.

Table 12: Software for graph queries and computations.

Software Total R P A
Graph Database System (e.g., Neo4j,
OrientDB, TitanDB) 59 20 39 1

Apache Hadoop, Spark, Pig, Hive 29 11 18 2
Apache Tinkerpop (Gremlin) 23 9 14 1
Relational Database Management
System (e.g., MySQL, PostgreSQL) 21 6 15 1

RDF Engine (e.g., Jena, Virtuoso) 16 8 8 1
Distributed Graph Processing
Systems (e.g., Giraph, GraphX) 14 8 6 17

Linear Algebra Library / Software
(e.g., MATLAB, Maple, BLAS) 8 6 2 3

In-Memory Graph Processing
Library (e.g., SNAP, GraphStream) 7 5 2 2

5.1 Software Types
Software for Querying and Performing Computations: We asked
the participants which types of graph software they use to query
and perform computations on their graphs. The choices included 5
types of software from Table 1 as well as distributed data processing
systems (DDPSes), such as Apache Hadoop and Spark, relational
database management systems (RDBMSes), and linear algebra li-
braries and software, such as BLAS and MATLAB. Table 12 shows
the exact choices and responses: 84 participants answered this ques-
tion and each selected 2 or more types of software. We highlight 3
interesting observations:
• Popularity of Graph Database Systems: The most popular choice

was graph database systems. We suspect this is partly due to
their increasing popularity and partly due to the inherent bias in
the participants we recruited—as explained in Section 2.2, more
of them came from users of graph database systems. We did not
ask the participants which specific graph database system they
used.

• Popularity of RDBMSes: 21 participants (6 researchers and 15
practitioners) chose RDBMSes. We consider this number high
given that we did not recruit participants from the mailing lists
of any RDBMS. Interestingly, 16 of these 20 participants also
indicated using graph database systems. From our survey, we
cannot answer what the participants used RDBMSes for. It is
possible that they use an RDBMS as the main transactional
storage and a graph database system for graph-specific tasks
such as traversals.

• Unpopularity of DGPSes: Only 6 practitioners indicated using a
DGPS, such as Giraph, GraphX, and Gelly. This contrasts with
DGPSes’ popularity among academics, where they are the most
popular systems, studied by 17 publications. One can consider
graph database systems as RDBMSes that are specialized for
graphs and DGPSes as DDPSes that are specialized for graphs.
In light of this analogy, we note that there is an opposite trend
in the usage of these groups of systems. While more partici-
pants indicated using graph database systems than RDBMSes,
significantly more participants indicated using DDPSes than
DGPSes.

Software for Non-Querying Tasks: We asked the participants
which types of graph software, possibly an in-house one, they use
for tasks other than querying graphs. Table 13 shows the choices
and the responses. We highlight one interesting observation:
• Importance of Visualization: Visualization software is, by a

large margin, the most popular type of software participants use

425

Table 13: Software used for non-querying tasks.

Software Total R P A
Graph Visualization 55 22 33 1
Build / Extract / Transform 14 8 6 0
Graph Cleaning 5 1 4 0
Synthetic Graph Generator (e.g.,
Graph 500’s graph generator) 4 3 1 13

Specialized Debugger 2 0 2 0

Table 14: Architectures of the software used by participants.

Architecture Total R P
Single Machine Serial 31 17 14
Single Machine Parallel 35 21 14
Distributed 45 17 28

among the 5 choices. This clearly shows that graph visualization
is a very common and important task. As we discuss in Section 6,
participants also indicated visualization as one of their most
important challenges when processing graphs.

5.2 Other Questions on Software
Software Architectures: We asked the participants the architec-
tures of the software products they use for processing graphs. The
choices were single machine serial, single machine parallel, and dis-
tributed. Table 14 shows the responses. Distributed products were
the most popular choice and users’ selections highly correlated with
the size of graphs they have. For example, 29 of the 45 participants
that selected distributed architecture had graphs over 100M edges.

Data Storage in Multiple Formats: We asked the participants
whether or not they store a single graph in multiple formats: 33
participants answered yes and the most popular multiple format
combination was a relational database format and a graph database
format. Appendix C provides the detailed responses.

6. PRACTICAL CHALLENGES
In this section, we first discuss the challenges in graph processing
that the participants identified, followed by a discussion of the
challenges that we identified through our review of user emails and
code repositories of different types of graph technologies.

6.1 Challenges Identified from Survey
We asked the participants 2 questions about the challenges they face
when processing their graphs. First, we asked them to indicate their
top 3 challenges out of 10 choices we provided. Table 15 shows
the choices and the participants’ responses. Second, we asked them
to state their biggest challenge in a short-answer question. Three
major challenges stand out unequivocally from the responses:
• Scalability: The ability to process large graphs is the most press-

ing challenge participants face. Scalability was the most popular
choice in the first question for both researchers and practitioners.
Moreover, it was the most popular answer in the second question
where 13 participants reiterated that scalability is their biggest
challenge. The specific scalability challenges that the partici-
pants mentioned include inefficiencies in loading, updating, and
performing computations, such as traversals, on large graphs.

• Visualization: Perhaps more surprisingly, graph visualization
emerges as one of the top 3 graph processing challenges, as in-
dicated by 39 participants in the first question and 1 participant

in the short-answer question. This is consistent with the parti-
cipants indicating visualization as the most popular non-query
task they perform on their graphs, as discussed in Section 5.1.

• Query Languages and APIs: Query languages and APIs present
another common graph processing challenge, as indicated by
39 participants in the first question and 5 participants in the
short-answer question. The specific challenges mentioned in
the short-answer responses include expressibility of query lan-
guages, compliance with standards, and integration of APIs
with existing systems. For instance, one participant found cur-
rent graph query languages to have poor support for debugging
queries and another participant indicated their difficulty in find-
ing software that complies fully with SPARQL standards.

6.2 Challenges Identified from Review
To go beyond the survey and to understand more specific challenges
users face or new functionalities users want, we studied the user
emails and code repositories of different classes of software. Below,
we categorize the challenges we found on visualization in graph
database systems, RDF engines, DGPSes, and graph libraries, sepa-
rately under Visualization. We also list the challenges we found in
graph database systems and RDF engines related to query languages
separately under Query Languages. The exact counts of emails and
issues we found for each challenge is in Table 19 in the appendix.

Graph Database Systems and RDF Engines:
• High-Degree Vertices: Users want the ability to process very

high-degree vertices in a special way. One common request is to
skip finding paths that go over such vertices either for efficient
querying or because users do not find such paths interesting.

• Hyperedges: Hyperedges are edges between more than 2 ver-
tices, e.g., a family relationship between three individuals. In
graph database systems and RDF engines, there is no native-way
to represent hyperedges. The user discussions include sugges-
tions to simulate hyperedges, such as having a “hyperedge vertex”
and linking the vertices in the hyperedge to this mock vertex.

• Versioning and Historical Analysis: Users want the ability to
store the history of the changes made to the vertices and edges
and query over the different versions of the graph. These re-
quests are made in systems that do not support versioning and
the discussions are on how to add versioning support at the
application layer.

• Schema and Constraints: Users want the ability to define schemas
over their graphs, analogous to DTD and XSD schemas for XML
data [15], usually as a means to define constraints over their data.
Examples include enforcing that the graph is acyclic or that
some vertices always have a certain property.

• Triggers: Users ask for trigger-like capabilities in their graph
database systems. Examples include automatically adding a par-
ticular property to vertices during insertion or creating a backup
of a vertex or an edge in the filesystem during updates. We note
that some systems do support limited trigger functionality, such
as OrientDB’s hooks or Neo4j’s TransactionEventHandler API.

Graph Visualization Software:
• Customizability: One common challenge is to have the ability

to customize the layout and design of the rendered graph, such
as the shape or color of the vertices and edges.

• Layout: Another common challenge is drawing graphs with
certain structures on the screen according to a specific layout
users had in mind. The most common example is drawing
hierarchical graphs, i.e., those in which some vertices are drawn
on top of other vertices in an organizational hierarchy. Other

426

Table 15: The graph processing challenges selected by the participants.

Challenge Total R P
Scalability (i.e., software that can process larger graphs) 45 20 25
Visualization 39 17 22
Query Languages / Programming APIs 39 18 21
Faster graph or machine learning algorithms 35 19 16
Usability (i.e., easier to deploy, configure, and use) 25 10 15
Benchmarks 22 12 10
Extract & Transform 20 6 14
More general purpose graph software (e.g., that can
process offline, online, and streaming computations) 20 9 11

Graph Cleaning 17 7 10
Debugging & Testing 10 2 8

examples include the drawing of star graphs, planar graphs, or a
specialized tree layout, such as a phylogenetic tree [43].

• Dynamic Graph Visualization: Several users want support for
or have challenges in animating the additions, deletions, and
updates in a dynamic graph that is changing over time.

Users also have challenges in rendering large graphs with thousands
or even millions of vertices and edges.

Query Languages: One of the most popular discussions in user
emails of graph database systems and RDF engines was writing
different queries in the query language of the software. In almost
every case, there was a way of satisfying the users’ needs. Below we
list 2 such types of queries that could be interesting to researchers.
• Subqueries: Many users have challenges in the expression or

performance of subqueries, i.e., using a query as part of another
query. The challenges vary across different systems. Some users
want the ability to embed SQL as a subquery in SPARQL. Other
users want the results of a subquery to be a graph that can further
be queried,5 or to use a subquery as a predicate in another query.

• Querying across Multiple Graphs: A common request in graph
database systems and RDF engines is to construct queries that
span multiple graphs, such as using the results of a traversal in
one graph to start traversals in another. This is analogous to
querying over multiple tables by joins in RDBMSes.6

Profiling and debugging slow queries and using indices correctly to
speed up queries are other common topics among users.

DGPSes and Graph Libraries:
• Off-the-Shelf Algorithms: The most common request we found

in DGPSes and graph libraries is the addition of a new algorithm
that users could use off-the-shelf. All of these software products
provide lower-level programming APIs using which users can
compose graph algorithms. A small number of users want en-
hancements to these APIs as well. From our review, it appears
that users of these software products find more value in directly
using an already implemented algorithm than implementing the
algorithms themselves.

• Graph Generators: All of the DGPSes and graph libraries in
our list have modules to generate synthetic graphs. Our review
revealed that users find these graph generators useful, e.g., for
testing algorithms. A common request was the ability to generate
different kinds of synthetic graphs, such as k-regular graphs or
random directed power-law graphs.

5This feature is called composition and is supported in SPARQL but
not in the languages of some graph database systems.
6This functionality is supported in RDF engines but not supported
in some graph database systems.

Table 16: Time spent by the participants on different tasks.

Task 0 - 5 hours 5 - 10 hours >10 hours
Analytics 30 18 23
Testing 40 12 20
Debugging 37 18 15
Maintenance 46 14 13
ETL 44 14 10
Cleaning 52 10 6

• GPU Support: Several users, both in DGPSes and graph li-
braries, want support for running graph algorithms on GPUs.

In every DGPS we reviewed, a common challenge is users’ com-
putations running out of cluster memory or having problems when
using disk. We also note that except for Gelly, every DGPS and
every graph library either have a visualization component or users
have requests to add one, showing the importance of visualization
across users of a range of different graph technologies.

7. WORKLOAD BREAKDOWN
We asked the participants how many hours per week they spend
on 6 graph processing tasks and provided them with 3 choices:
(i) less than 5 hours; (ii) 5 to 10 hours; and (iii) more than 10 hours.
Table 16 shows the choices and ranks the tasks in terms of the
number of participants that selected more than 10 hours first, then 5
to 10 hours, and then less than 5 hours. According to this ranking,
the participants spend the most time in analytics and testing and the
least time on ETL and cleaning.

8. RELATED WORK
To the best of our knowledge, our survey is the first study that has
been conducted across users of a wide spectrum of graph technolo-
gies to understand graph datasets, computations, and software that
is in use, and the challenges users face.

Several surveys in the literature have conducted user studies to
compare the effectiveness of different techniques used to perform a
particular graph processing task, primarily in visualization [7, 31]
and query languages [36, 57, 58]. Additionally, several software
vendors have conducted surveys of their users to understand how
their software is used to process graphs. Some of these surveys are
publicly available [18, 49, 63]. However, these surveys are limited
to studying a specific software product.

There are also numerous surveys in the literature studying dif-
ferent topics related to graph processing. Examples include sur-
veys on query languages for graph database systems and RDF en-
gines [2, 29, 32], graph algorithms [1, 30, 39, 68], graph processing

427

systems [5, 44], and visualization [12, 66]. These surveys do not
study how users use the technologies in practice.

9. CONCLUSION AND FUTURE WORK
Managing and processing graph data is prevalent across a wide
range of fields in research and industry. We surveyed 89 users and
reviewed user emails and code repositories of 22 software products.
The participants’ responses and our review provide useful insights
into the types of graphs users have, the software and computations
users use, and the major challenges users face when processing their
graphs. We hope that these insights will help guide research on
graph processing.

Our study also raises several interesting questions we cannot
answer from our survey and review:
• Benefits of Representing Data as Graphs: We were surprised

to see that many users represent as graphs entities that may
not naturally be thought of as graphs, e.g., videos and captions,
products-orders-transactions, pieces and properties of mechani-
cal engines. What benefit do the participants find in representing
such data as graphs and what benefit do they get from graph
queries and analyses on such data?

• Benefits of Visualization: Visualization appears as the most
popular non-querying task users perform on their graphs. Vi-
sualization can be used at different points in data processing
pipelines, such as data exploration [54], query formulation [56],
or debugging [60]. In our review of emails and code repositories,
we identified use cases that were only on data exploration and
producing visual charts. At what stage of their graph processing
pipelines do the participants use visualization? What benefits do
the users get from visualizing graphs, especially large ones?

• Incremental and Streaming Computations: 32 participants indi-
cated performing incremental or streaming graph computations.
However, their computations were not clear and we did not find
instances of streaming or incremental graph computations in our
review of emails and issues. Which software do users use to
perform their incremental and streaming computations?

We are conducting a follow-up survey consisting of one-on-one
interviews with the users of different graph technologies. We hope to
be able to answer some of the above questions in a future publication.

We conclude with two final remarks. First, we found product-
order-transaction graphs to be the most popular type of graph. Work-
loads that process these product data appear in popular SQL bench-
marks, such as TPC-C [65], and are well studied in research on
relational systems. However, existing graph benchmarks, such as
LDBC [41] and Graph500 [23], do not yet provide workloads and
data to process product graphs. Such benchmarks are great facilita-
tors of research, and the development of benchmarks using product
graphs and workloads would be useful in research.

Second, query languages and APIs emerged as one of the top
challenges in our survey and certainly the most popular discussion
topic in emails and code repositories. These challenges can be
partly mitigated by a collaborative effort to standardize the query
languages of different graph software that satisfy users’ needs. One
such successful effort is the adoption of SPARQL as a standard
for querying RDF data. Similar efforts are ongoing for developing
standard query languages and JDBC-like interfaces [37] for property
graphs, such as the Gremlin language [59], the efforts to standardize
openCypher [52], the discussions in the LDBC community [42],
and a recent ISO Ad hoc group [33], exploring the features that
should go into a standard graph query language.7 There is also
7Personal communication with members of the PGQL [55] team,
who are part of the ISO group.

ongoing effort to develop a standard set of linear algebra operations
for expressing graph algorithms [47].

10. ACKNOWLEDGMENTS
We are grateful to Chen Zou for helping us in using online sur-
vey tools and drafting an early version of this survey. We are also
grateful to Jeremy Chen and Chathura Kankanamge for their valu-
able comments on the survey and help in categorizing the academic
publications, user emails, and issues.

11. REFERENCES
[1] C. C. Aggarwal and H. Wang. Graph Data Management and

Mining: A Survey of Algorithms and Applications, pages
13–68. Springer US, 2010.

[2] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and
D. Vrgoc. Foundations of Modern Graph Query Languages.
CoRR, abs/1610.06264, 2016.

[3] ArrangoDB. https://www.arangodb.com.
[4] M. Balcan and K. Q. Weinberger, editors. Proceedings of the

International Conference on Machine Learning, 2016.
http://jmlr.org/proceedings/papers/v48/.

[5] O. Batarfi, R. E. Shawi, A. G. Fayoumi, R. Nouri, S.-M.-R.
Beheshti, A. Barnawi, and S. Sakr. Large Scale Graph
Processing Systems: Survey and an Experimental Evaluation.
Cluster Computing, 18(3):1189–1213, 2015.

[6] Basic Linear Algebra Subprograms.
http://www.netlib.org/blas.

[7] S. Bridgeman and R. Tamassia. A User Study in Similarity
Measures for Graph Drawing, pages 19–30. Springer Berlin
Heidelberg, 2001.

[8] Caley Graph Database. https://cayley.io.
[9] L. Cao, C. Zhang, T. Joachims, G. I. Webb, D. D.

Margineantu, and G. Williams, editors. Proceedings of the
International Conference on Knowledge Discovery and Data
Mining, 2015.
http://dl.acm.org/citation.cfm?id=2783258.

[10] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One Trillion Edges: Graph Processing at
Facebook-Scale. PVLDB, 8(12):1804–1815, 2015.

[11] Conceptual Graphs. http://conceptualgraphs.org.
[12] W. Cui and H. Qu. A Survey on Graph Visualization. PhD

Qualifying Exam Report, Computer Science Department,
Hong Kong University of Science and Technology, 2007.

[13] Cytoscape. http://www.cytoscape.org.
[14] DGraph. https://dgraph.io.
[15] DTD and XSD XML Schemas.

https://www.w3.org/standards/xml/schema.
[16] Elasticsearch X-Pack Graph.

https://www.elastic.co/products/x-pack/graph.
[17] Apache Flink. https://flink.apache.org.
[18] Apache Flink User Survey 2016. https:

//github.com/dataArtisans/flink-user-survey-2016.
[19] Gephi. https://gephi.org.
[20] S. Ghandeharizadeh, S. Barahmand, M. Balazinska, and M. J.

Freedman, editors. Proceedings of the Symposium on Cloud
Computing, 2015. http://doi.org/10.1145/2806777.

[21] Apache Giraph. https://giraph.apache.org.
[22] Graph for Scala. http://www.scala-graph.org.
[23] Graph 500 Benchmarks. http://graph500.org.
[24] GraphStream. http://graphstream-project.org.

428

https://www.arangodb.com
http://jmlr.org/proceedings/papers/v48/
http://www.netlib.org/blas
https://cayley.io
http://dl.acm.org/citation.cfm?id=2783258
http://conceptualgraphs.org
http://www.cytoscape.org
https://dgraph.io
https://www.w3.org/standards/xml/schema
https://www.elastic.co/products/x-pack/graph
https://flink.apache.org
https://github.com/dataArtisans/flink-user-survey-2016
https://github.com/dataArtisans/flink-user-survey-2016
https://gephi.org
http://doi.org/10.1145/2806777
https://giraph.apache.org
http://www.scala-graph.org
http://graph500.org
http://graphstream-project.org

[25] Graph-tool. https://graph-tool.skewed.de.
[26] Graphviz. https://graphviz.readthedocs.io.
[27] Apache Spark GraphX. https://spark.apache.org/graphx.
[28] Apache TinkerPop. https://tinkerpop.apache.org.
[29] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A

Comparison of RDF Query Languages, pages 502–517.
Springer Berlin Heidelberg, 2004.

[30] I. Herman, G. Melançon, and M. S. Marshall. Graph
Visualization and Navigation in Information Visualization: A
Survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000.

[31] D. Holten and J. J. van Wijk. A User Study on Visualizing
Directed Edges in Graphs. In Proceedings of International
Conference on Human Factors in Computing Systems, pages
2299–2308, 2009.

[32] F. Holzschuher and R. Peinl. Performance of Graph Query
Languages: Comparison of Cypher, Gremlin and Native
Access in Neo4j. In Proceedings of the Joint EDBT/ICDT
Workshops, pages 195–204, 2013.

[33] ISO/IEC Directives, Part 1. http://www.iso.org/sites/
directives/directives.html#toc_marker-16.

[34] H. V. Jagadish and A. Zhou, editors. PVLDB, Volume 7,
2013-2014. http://www.vldb.org/pvldb/vol7.html.

[35] JanusGraph. http://janusgraph.org.
[36] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying

Knowledge Graphs by Example Entity Tuples. CoRR,
abs/1311.2100, 2013.

[37] JDBC. http://www.oracle.com/technetwork/java/
overview-141217.html.

[38] Apache Jena. https://jena.apache.org.
[39] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and

E. Giannopoulou. Ontology Visualization Methods: A Survey.
ACM Computing Surveys, 39(4):10, 2007.

[40] K. Keeton and T. Roscoe, editors. Proceedings of the
Symposium on Operating Systems Design and Implementation,
2016. https://www.usenix.org/conference/osdi16.

[41] LDBC Benchmarks. http://ldbcouncil.org/benchmarks.
[42] LDBC D6.6.4 Standardization Report. http://ldbcouncil.

org/sites/default/files/LDBC_D6.6.4.pdf.
[43] I. Letunic and P. Bork. Interactive Tree Of Life: An Online

Tool for Phylogenetic Tree Display and Annotation.
Bioinformatics, 23(1):127–128, 2006.

[44] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale Distributed
Graph Computing Systems: An Experimental Evaluation.
PVLDB, 8(3):281–292, 2014.

[45] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for
Large-scale Graph Processing. In Proceedings of International
Conference on Management of Data, pages 135–146, 2010.

[46] MATLAB. https://www.mathworks.com.
[47] T. Mattson, D. A. Bader, J. W. Berry, A. Buluç, J. J. Dongarra,

C. Faloutsos, J. Feo, J. R. Gilbert, J. Gonzalez,
B. Hendrickson, J. Kepner, C. E. Leiserson, A. Lumsdaine,
D. A. Padua, S. Poole, S. P. Reinhardt, M. Stonebraker,
S. Wallach, and A. Yoo. Standards for Graph Algorithm
Primitives. In Proceedings of High Performance Extreme
Computing Conference, pages 1–2, 2013.

[48] Neo4j. https://neo4j.com.
[49] The 2016 State of the Graph Report, https:

//neo4j.com/resources/2016-state-of-the-graph.
[50] NetworKit. https://networkit.iti.kit.edu.

[51] NetworkX. https://networkx.github.io.
[52] openCypher. http://www.opencypher.org.
[53] OrientDB. https://orientdb.com.
[54] M. Paradies, M. Rudolf, and W. Lehner. GraphVista:

Interactive Exploration Of Large Graphs. CoRR,
abs/1506.00394, 2015.

[55] PGQL: Property Graph Query Language.
http://pgql-lang.org.

[56] R. Pienta, F. Hohman, A. Tamersoy, A. Endert, S. Navathe,
H. Tong, and D. H. Chau. Visual Graph Query Construction
and Refinement. In Proceedings of International Conference
on Management of Data, pages 1587–1590, 2017.

[57] R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, and
D. H. Chau. VISAGE: Interactive Visual Graph Querying. In
Proceedings of International Working Conference on
Advanced Visual Interfaces, pages 272–279, 2016.

[58] M. Rath, D. Akehurst, C. Borowski, and P. Mäder. Are graph
query languages applicable for requirements traceability
analysis? In Proceedings of International Conference on
Requirements Engineering: Foundation for Software Quality,
2017.

[59] M. A. Rodriguez. The Gremlin Graph Traversal Machine and
Language. CoRR, abs/1508.03843, 2015.

[60] S. Salihoglu, J. Shin, V. Khanna, B. Q. Truong, and J. Widom.
Graft: A Debugging Tool For Apache Giraph. Technical
report, Stanford University, 2014.
http://ilpubs.stanford.edu:8090/1109/.

[61] A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. Lin.
GraphJet: Real-Time Content Recommendations at Twitter.
PVLDB, 9(13):1281–1292, 2016.

[62] SNAP: Standford Network Analysis Project.
https://snap.stanford.edu.

[63] Lightbend Apache Survey 2015. https://info.lightbend.
com/COLL-20XX-Spark-Survey-Report_LP.html.

[64] Sparksee. http://www.sparsity-technologies.com.
[65] The TPC-C benchmark. http://www.tpc.org/tpcc.
[66] C. Vehlow, F. Beck, and D. Weiskopf. Visualizing Group

Structures in Graphs: A Survey. Computer Graphics Forum,
36(6):201–225, 2017.

[67] OpenLink Virtuoso. https://virtuoso.openlinksw.com.
[68] C. Wang and J. Tao. Graphs in Scientific Visualization: A

Survey. Computer Graphics Forum, 36(1):263–287, 2017.
[69] J. West and C. M. Pancake, editors. Proceedings of the

International Conference for High Performance Computing,
Networking, Storage and Analysis, 2016.
https://dl.acm.org/citation.cfm?id=3014904.

APPENDIX
A. CHOICES OF GRAPH COMPUTATIONS
One way to ask this question is to include a short-answer question
that asks “What queries and graph computations do you perform on
your graphs?” However, the terms graph queries and computations
are very general and we thought this version of the question could
be under-specified. We also knew that participants respond less to
short-answer questions, so instead we first asked a multiple choice
question followed by a short answer question for computations that
may not have appeared in the first question as a choice.

In a multiple choice question, it is very challenging to provide
a list of graph queries and computations from which participants
can select, as there is no consensus on what constitutes a graph

429

https://graph-tool.skewed.de
https://graphviz.readthedocs.io
https://spark.apache.org/graphx
https://tinkerpop.apache.org
http://www.iso.org/sites/directives/directives.html#toc_marker-16
http://www.iso.org/sites/directives/directives.html#toc_marker-16
http://www.vldb.org/pvldb/vol7.html
http://janusgraph.org
http://www.oracle.com/technetwork/java/overview-141217.html
http://www.oracle.com/technetwork/java/overview-141217.html
https://jena.apache.org
https://www.usenix.org/conference/osdi16
http://ldbcouncil.org/benchmarks
http://ldbcouncil.org/sites/default/files/LDBC_D6.6.4.pdf
http://ldbcouncil.org/sites/default/files/LDBC_D6.6.4.pdf
https://www.mathworks.com
https://neo4j.com
https://neo4j.com/resources/2016-state-of-the-graph
https://neo4j.com/resources/2016-state-of-the-graph
https://networkit.iti.kit.edu
https://networkx.github.io
http://www.opencypher.org
https://orientdb.com
http://pgql-lang.org
https://snap.stanford.edu
https://info.lightbend.com/COLL-20XX-Spark-Survey-Report_LP.html
https://info.lightbend.com/COLL-20XX-Spark-Survey-Report_LP.html
http://www.sparsity-technologies.com
http://www.tpc.org/tpcc
https://virtuoso.openlinksw.com
https://dl.acm.org/citation.cfm?id=3014904

Table 17: Data storage formats.

Data Storage Format #
Graph Databases 10
Relational Databases 8
RDF Store 5
NoSQL Store (Key-value, HBase) 5
XML / JSON 4
JGF / GML / GraphML 4
CSV / Text files 3
Elasticsearch 3
Binary 2

Table 18: Graph sizes in user emails and issues.
(a) Number of vertices.

Vertices #
100M - 1B 10

1B-10B 17
10B - 100B 1

>100B 2

(b) Number of edges.

Edges #
1B - 10B 42

10B - 100B 17
100B - 500B 6

>500B 1

Table 19: Challenges found in user emails and issues.

Challenge #
Graph DBs and RDF Engines

High-degree Vertices 24
Hyperedges 18
Triggers 18
Versioning and Historical Analysis 14
Schema & Constraints 10

Visualization Software
Layout 31
Customizability 30
Large-graph Visualization 8
Dynamic Graph Visualization 4

Query Languages
Subqueries 7
Querying Across Multiple Graphs 6

DGPS and Graph Libraries
Off-the-shelf Algorithms 41
Graph Generators 7
GPU Support 3

computation, let alone a reasonable taxonomy of graph computa-
tions. We decided to select a list of graph queries and computations
that appeared in the publications of six conferences, as described in
Section 2.3. We use the term graph computation here to refer to a
query, a problem, or an algorithm.

For each of the 90 papers, we identified each graph computation,
if (i) it was directly studied in the paper; or (ii) for papers describing

a software, it was used to evaluate the software. We used our best
judgment to categorize the computations that were variants of each
other or appeared as different names under a single category. For ex-
ample, we identified motif finding, subgraph finding, and subgraph
matching as subgraph matching. When reviewing papers studying
linear algebra operations, e.g., a matrix-vector multiplication, for
solving a graph problem such as BFS traversal, we identified the
graph problem and not the linear algebra operation as a computation.

Finally, for each identified and categorized computation, we
counted the number of papers that study it and selected the ones
that appeared in at least 2 papers. In the end, we provided the
participants with the 13 choices that are shown in Table 9.

B. CHOICES OF MACHINE LEARNING
COMPUTATIONS

Similar to graph computation, machine learning computation is a
very general term. Instead of providing a list of ad-hoc computations
as choices, we reviewed each machine learning computation that ap-
peared in the 90 graph papers we had selected. Specifically, the list
of machine learning computations we identified included the follow-
ing: (i) high-level classes of machine learning techniques, such as
clustering, classification, and regression; (ii) specific algorithms and
techniques, such as stochastic gradient descent and alternating least
squares that can be used as part of multiple higher-level techniques;
and (iii) problems that are commonly solved using a machine learn-
ing technique, such as community detection, link prediction, and
recommendations. We then selected the computations, i.e., high-
level techniques, specific techniques, or problems, that appeared in
at least 2 papers. As in the graph computations question, we used
our best judgment to identify and categorize similar computations
under the same name.

C. STORAGE IN MULTIPLE FORMATS
We asked the 33 participants who said that they store their data in
multiple formats, which formats they use as a short-answer question.
Out of the 33 participants, 25 responded. Their responses contained
explicit data storage formats as well as the internal formats of differ-
ent software. Table 17 shows the number of responses we received
for the main formats. A relational database and a graph database
format combination was the most popular combination. Other com-
binations varied significantly, examples of which include HBase and
Hive, GraphML and CSV, and XML and triplestore.

D. OTHER TABLES
Table 18 shows the sizes of graphs we found in user emails and
issues. Table 19 shows the number of emails and issues we identified
for each specific challenge we discussed in Section 6.2. Table 20
shows the total number of emails and issues we reviewed for each
software product from January to September of 2017. The table
also shows the number of commits in the code repositories of each
software product during the same period.

430

Table 20: The number of emails and issues we reviewed, and the code commits in the repositories of each software product.

Technology Software # Emails # Issues # Commits

Graph Database

ArrangoDB 140 466 5264
Caley 50 57 151
DGraph 175 558 760
JanusGraph 225 308 411
Neo4j 286 243 4467
OrientDB 169 668 918

RDF Engine
Apache Jena 307 126 471
Sparksee 8 NA NA
Virtuoso 72 61 179

Distributed Graph Processing Engine
Apache Flink (Gelly) 34 68 48
Apache Giraph 19 34 23
Apache Spark (GraphX) 23 28 11

Query Language Gremlin 409 206 1285

Graph Library

Graph for Scala 10 12 18
GraphStream 18 26 7
Graphtool 121 66 172
NetworKit 37 30 236
NetworkX 78 148 171
SNAP 57 17 34

Graph Visualization

Cytoscape 388 264 8
Elasticsearch (X-Pack Graph) 50 38 NA
Gephi NA 147 10
Graphviz NA 58 277

Graph Representation Conceptual Graphs 30 NA NA

431

	Introduction
	Methodology and Participants
	Survey Format
	Participant Recruitment
	Review of Academic Publications
	Review of Emails and Code Repositories

	Graph Datasets
	Real-World Entities Represented
	Size
	Other Questions on Graph Datasets

	Computations
	Graph Computations
	Machine Learning Computations
	Other Questions on Computations

	Graph Software
	Software Types
	Other Questions on Software

	Practical Challenges
	Challenges Identified from Survey
	Challenges Identified from Review

	Workload Breakdown
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References
	Choices of Graph Computations
	Choices of Machine Learning Computations
	Storage in Multiple Formats
	Other Tables

