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ABSTRACT
Hot standby systems often have to trade safety (i.e., not losing com-
mitted work) and freshness (i.e., having access to recent updates)
for performance. Guaranteeing safety requires synchronous log
shipping that blocks the primary until the log records are durably
replicated in one or multiple backups; maintaining freshness ne-
cessitates fast log replay on backups, but is often defeated by the
dual-copy architecture and serial replay: a backup must generate
the “real” data from the log to make recent updates accessible to
read-only queries.

This paper proposes Query Fresh, a hot standby system that pro-
vides both safety and freshness while maintaining high performance
on the primary. The crux is an append-only storage architecture
used in conjunction with fast networks (e.g., InfiniBand) and byte-
addressable, non-volatile memory (NVRAM). Query Fresh avoids
the dual-copy design and treats the log as the database, enabling
lightweight, parallel log replay that does not block the primary.

Experimental results using the TPC-C benchmark show that under
Query Fresh, backup servers can replay log records faster than they
are generated by the primary server, using one quarter of the avail-
able compute resources. With a 56Gbps network, Query Fresh can
support up to 4–5 synchronous replicas, each of which receives and
replays ∼1.4GB of log records per second, with up to 4–6% over-
head on the primary compared to a standalone server that achieves
620kTPS without replication.
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1. INTRODUCTION
Hot standby is a popular approach to high availability and is em-

ployed by many production database systems [21, 47, 48, 52, 57] .
A typical hot standby system consists of a single primary server
(“the primary”) that processes read/write transactions, and one or
more backup servers (“backups” or “secondaries”). The primary
periodically ships log records to backups, which continuously re-
play log records. Log shipping can be configured as synchronous
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to guarantee strong safety [20] : transactions are not committed
until their log records are persisted in all (or a majority of) nodes.
Synchronous log shipping ensures that if the primary fails, a backup
can take over as the new primary without losing committed work.
In addition to replaying log records, backups can serve read-only
transactions, improving resource utilization and performance.

1.1 The Freshness Gap
The ability to serve read-only transactions on backups while

maintaining strong safety guarantees is a salient feature of log ship-
ping: modern database servers are high-end machines that constitute
non-trivial parts of the total cost of ownership, and offloading read-
only transactions to backups can significantly increase hardware
utilization and read-only throughput. Despite their popularity and
usefulness, existing hot standby solutions often exhibit stale data
access: queries on backups can only use a potentially much earlier
snapshot of the primary database, as updates and new additions of
data are not reflected on backups very quickly [68] .

The reason for the freshness gap is two-fold. First, without logical
log shipping and deterministic execution [39, 58, 69] , the primary
must continuously transfer large amounts of log records to backups,
demanding high network bandwidth that traditional network often
lacks. This is particularly true for modern main-memory database
engines [16, 29, 32, 33, 61] that can easily produce 10–20Gb of log
data per second (see details in Section 4). Such log rate is well
beyond the bandwidth of ordinary 10Gbps networks. To support
strong safety, log shipping must be synchronous, and the primary
must wait for acknowledgement from backups on persisting log
records. This puts network and storage I/O on the critical path,
making the primary I/O bound.

However, the more important, fundamental reason is inefficient
log replay in existing systems. These systems rely on the dual-copy
architecture and permanently store data twice: in the log and the
“real” database. Log records must be fully replayed before new
updates can be queried in backups, involving non-trivial data move-
ments and index manipulations. Moreover, in many systems log
replay is single-threaded [48, 68] , although it is commonplace for
the primary to generate log records with multiple threads concur-
rently. It is unlikely for backups to easily catch up with the primary
and provide fresh data access to read-only transactions.

1.2 Query Fresh
This paper proposes Query Fresh, a hot standby solution that

provides both safety guarantees and fresh data access on backups
while maintaining high performance. The key to realizing this is an
append-only storage architecture that is built on modern hardware
and allows fast log data transfer and lightweight, parallel log replay.

Modern hardware. Query Fresh utilizes high-speed networks
(such as InfiniBand) and byte-addressable, non-volatile memory
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(NVRAM) to alleviate the staleness caused by slow network and
storage I/O. Recent fast networks provide high bandwidth and low
latency, and allow fast remote direct memory access (RDMA). Cou-
pled with fast NVRAM devices such as Intel 3D XPoint [14] and
NVDIMMs [1, 63] , the primary ships log records directly from its
log buffer to NVRAM-backed log buffers in backups. Log records
are instantly persisted once they reach NVRAM, without explicit
access to the (expensive) storage stack. Moreover, Query fresh takes
advantage of RDMA’s asynchronous nature to hide the latency of
data transfer and persistence behind forward processing, moving I/O
out of the critical path with simpler implementation. Log data can
be gradually de-staged in background to other bulk storage devices
such as flash memory and disks when the log buffer is full.

Lightweight, parallel log replay. Fast network and NVRAM do
not mitigate staleness due to inefficient log replay, caused by the tra-
ditional dual-copy architecture. Instead of maintaining two durable
copies, Query Fresh employs append-only storage and keeps the log
as the only durable copy of data, i.e., the log is the database [32] .
This is made possible by redo-only logging: the log only contains
actual data generated by committed transactions. Redo-only logging
is common in modern main-memory database engines [32, 33, 61]
and we design Query Fresh based on it. With the log as the database,
worker threads access data through indirection arrays [12, 36, 55]
where each entry maps a (logical) record identifier (RID) to the
record’s physical location (in memory or storage, i.e., the log). In-
direction arrays are purely in-memory, but can be checkpointed for
faster recovery. Indexes map keys to RIDs, instead of physical point-
ers. Updates can be reflected in the database by simply updating
indirection arrays, without updating indexes.

The combination of append-only storage and indirection allows
us to build a lightweight, parallel replay scheme without excessive
data copying or index manipulations. Replay becomes as simple as
scanning the log buffer, and setting up the indirection arrays. This
process is inexpensive and faster than forward processing on the
primary, guaranteeing backups can catch up with the primary with-
out exhausting all compute resources. This improves freshness and
frees up more resources to run read-only transactions on backups.

Evaluation results using TPC-C [60] show that with 56Gbps
InfiniBand, before the network is saturated, Query Fresh can support
up to 4–5 synchronous backups, each of which receives ∼1.4GB of
log data from the primary, whose throughput does not drop by more
than 6% over a standalone server without replication (620kTPS). Our
evaluation also shows that backups are able to finish replaying 16MB
of log records in ∼12ms using around one quarter of the compute
resources, leaving more resources for read-only transactions.

1.3 Contributions and Paper Organization
Our first contribution is an efficient log shipping scheme that

takes advantage of NVRAM and the asynchronous nature of RDMA
to easily keep network I/O and replay out of the critical path. We
also highlight caveats for using RDMA over NVRAM for safe
persistence. Second, we propose to utilize append-only storage for
log shipping and replay. Third, we devise a lightweight, parallel
replay scheme for backups to keep up with the primary with fewer
resources than the primary needs for forward processing.

Query Fresh is integrated with ERMIA [32] , a recent open-
source, main-memory database engine. Our implementation is
available at: https://github.com/ermia-db/ermia.

The ideas of append-only storage and indirection have been used
in other systems [3, 7, 12, 32, 35, 36, 55] . Our focus is utilizing
them to speed up log replay and improve freshness. Previously,
we have given the abstract idea [65] ; this paper details the design,
implementation, and evaluation of such a system, Query Fresh.

Log records Network

Read/write transactions

Data

Log records

Data

Read-only transactions

Primary server Backup server

Figure 1: A typical dual-node hot standby system using log ship-
ping. The primary persists and ships log records through the network
to the backup, which replays the log and serves read-only queries.

Next, we cover background in Section 2. Section 3 describes the
design of Query Fresh, followed by evaluation in Section 4. We
summarize related work in Section 5 and conclude in Section 6.

2. BACKGROUND
In this section, we begin by defining the type of systems we focus

on. Then we introduce the basics of fast networks and RDMA, and
discuss issues related to using RDMA over NVRAM.

2.1 System Model and Assumptions
Hot standby systems. We focus on hot standby systems based

on log shipping. Figure 1 shows a dual-node example. Such a
system consists of a single primary server that accepts both reads
and writes, and one or multiple backup servers. Backups accept log
records transferred from the primary and replay them continuously.
To increase hardware utilization and throughput, backups can also
process read-only transactions, however, a backup never accepts
writes. In dual-copy systems, log replay is necessary to transform
log records into “real” database records that can be queried by read-
only transactions. If the primary fails, a backup will take over and
become the new primary after replaying all log records. A new node
can join the cluster as a backup by requesting a recent checkpoint
and the log records generated after the checkpoint from the primary.

Safety guarantees. The original concept of safety guarantees
were given for dual-node pairs. Depending on whether the primary
involves the backup at commit time, a dual-node system can be
1-safe, 2-safe, or very safe, as defined by Gray and Reuter [20] :

Definition 1. 1-safe: transactions commit as soon as their log
records are durably stored at the primary.

Definition 2. 2-safe: transactions are not committed until their log
records have been persisted at both the primary and backup. If the
backup is down, the transaction can commit after persisting log
records at the primary.

Definition 3. Very safe: same as 2-safe, except that it does not
allow transactions to commit if the backup is down.

Under 1-safe, log records are shipped in the background with-
out involving the backup on the commit path (asynchronous log
shipping). Therefore, the primary exhibits performance similar to a
single-node system’s. Besides providing high primary performance,
1-safe can also be useful for reasons such as preventing human errors
from propagating to all servers [52] . However, log records that are
not yet shipped to the taking-over backup may appear to be lost,
although it was “committed” on the then-active primary. In contrast,
very safe and 2-safe involve the backup on the commit path, by not
committing a transaction until its log records are persisted in the
primary and backup. This often reduces primary performance, but
provides stronger safety guarantees than 1-safe because it avoids
losing committed work.
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Although these definitions were originally given for dual-node
pairs, we can easily extend them to systems with more nodes, by
requiring log records be persisted in all backups upon commit in
Definitions 2 and 3. Moreover, one could also make Definition 2
more strict (or relax Definition 3) to allow transactions to commit if
a majority of nodes have persisted the log [13, 62, 48] .

In this paper, we say that a system guarantees strong safety if it is
2-safe, very-safe or follows the above extended definitions for multi-
node systems. Providing strong safety requires synchronous log
shipping, i.e., transferring log records to backups and ensuring they
are persisted in all or a majority of nodes upon commit. Efficiently
supporting synchronous log shipping is one of the goals of this
paper. Our design is applicable to both traditional dual-node pairs
and quorum based systems [13, 62] . In this paper, we target cases
where the primary must persist log records in all backups.

Logging. Transactions generates log records that describe changes
to the database. Each log record is represented by a global, monoton-
ically increasing log sequence number (LSN). Logging can be phys-
ical, logical, or a combination of both (physiological logging) [46] .
Physical logging stores before and after images, whereas logical
logging stores only the necessary information (e.g., the operation
and input) needed for re-constructing the new data. Physiological
logging uses physical logging for redo, and uses logical logging for
undo. It is also attractive to use logical logging for redo and log
shipping because logical logging generates much less log data, thus
needs lower network bandwidth. However, achieving fast replay
then requires non-trivial effort to implement deterministic execu-
tion on backups [39, 51, 58, 68] . Deterministic execution is tightly
integrated with concurrency control; a replay scheme that works
for two-phase locking might not work for snapshot isolation [39] .
Many schemes only support stored procedures, and certain appli-
cations (e.g., data-dependent operations) cannot be supported. For
simplicity, many systems use serial replay for logical logging [48] .

Modern main-memory database systems often use redo-only phys-
ical logging [32, 33, 61] that does not store before images in the
log. During forward processing, a transaction holds its log records
locally and does not store them in the log buffer until the transaction
successfully pre-commits. So the log contains only data generated
by committed transactions. Recovery becomes a single redo pass,
without analysis and undo in ARIES [46] . We build Query Fresh
for main-memory systems that use redo-only physical logging.

2.2 Fast Networks and RDMA
High-speed network interconnects were mostly used by high-

performance computing systems, but are now becoming cost effec-
tive and being adopted by database systems. Despite the differences
in their underlying technologies, these interconnects all provide high
bandwidth and low latency, and support fast RDMA, making the
network no longer the slowest part of a distributed system [9] .

Network interconnects. Two major kinds of fast networks are
InfiniBand and Converged Ethernet. InfiniBand is a switched fabric
network that can be used both within and among nodes. Today’s
InfiniBand already provides bandwidth that is close to that of a single
memory channel [22, 25] , and the aggregate bandwidth of multiple
NICs can reach the memory bandwidth of a single server [70] , e.g.,
FDR 4× gives 56Gbps bandwidth, the data rate of the upcoming
HDR 4× is 200Gbps [22] . We expect the trend to continue.

InfiniBand’s low latency features can be layered on top of Eth-
ernet to implement RDMA over Converged Ethernet (RoCE) [11] .
RoCE provides competitive performance, e.g., some products sup-
port 100Gbps link speed [42] . RoCE can be implemented in soft-
ware or hardware. Software RoCE is compatible with any standard
Ethernet, but is not as performant as the hardware-accelerated ones.

RDMA. RDMA allows nodes in a cluster to access each other’s
designated memory areas, without having to go through multiple
layers in the OS kernel, avoiding unnecessary data copying and
context switches between the user and kernel spaces which are
normally unavoidable using the TCP/IP stack. RDMA is also non-
blocking: posting an RDMA operation does not block the caller.
The caller instead should explicitly check for completion of the
posted work requests, e.g., by polling the completion queue.

RDMA exhibits a “verbs” interface [41] that is completely dif-
ferent from TCP/IP sockets. Peers communicate with each other by
posting verbs (work requests) to queue pairs (similar to sockets in
TCP/IP). A queue pair consists of a send and a receive work queue.
There are two types of verbs: channel semantic (SEND and RECV)
and memory semantic (READ, WRITE, and atomics). Channel
semantic verbs need coordination with the remote CPU (a RECV
must be posted for each remote SEND). Memory semantic verbs
operate directly on remote memory without involving the remote
CPU. In addition, RDMA Write with Immediate allows the sender
to accompany the payload with an immediate value (e.g., to carry
metadata). The only difference compared to RDMA Write is that
the receiving end should post a receive request to obtain the imme-
diate value [41] . Query Fresh uses RDMA Write and RDMA Write
Immediate for log shipping.

2.3 RDMA over NVRAM
NVRAM can be attached to the memory bus and accessed re-

motely through RDMA. However, a completed RDMA write request
does not indicate that data is written in remote NVRAM. Rather, it
only guarantees that the data has arrived at the remote side, although
the data might be cached by the remote NIC or CPU, instead of
being stored in NVRAM due to techniques such as Intel Data Direct
I/O (DDIO) [23] . As a result, data visibility and durability are
decoupled: data is visible on the remote side once it is out of the I/O
controller and arrives at the CPU cache; data will only get written
to memory when it is evicted from CPU cache [23] .

There are two stop-gap solutions, the “appliance” and “general-
purpose server” methods [17] . The former requires turning off
DDIO and enabling non-allocating writes in the BIOS. Each RDMA
Write should be followed by an RDMA Read for the remote node
to force data to NVRAM. The use of non-allocating writes and
RDMA Read adds additional overheads. The remote node needs
no additional operation. The required BIOS changes make it less
ideal in environments such as the cloud. The general-purpose server
method requires no BIOS change, but the remote side needs to
explicitly issue the CLFLUSH or CLWB instruction followed by a store
fence for persistence and correct ordering [24] .

The general-purpose server method can incur 50% higher latency
than the appliance method [17] . Both methods need at least two
round trips for data durability. Simply pushing data to the remote
site does not guarantee persistence [71] . Nevertheless, the general-
purpose server method should give us worst-case performance; we
quantify its overhead in Section 4. We expect RDMA protocol
changes for NVRAM [56] to be the ultimate solution.

3. QUERY FRESH
Query Fresh consists of a synchronous log shipping mechanism

that exploits RDMA and NVRAM, an append-only storage archi-
tecture with indirection designed for log shipping, and a parallel,
lightweight log replay scheme that utilizes append-only storage to
allow backups to keep up with the primary. Like other hot standby
systems, the primary server in Query Fresh executes read/write
transactions and ships log records to backups when needed. It uses
a background daemon to listen to new backups requesting to join
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the cluster and sets up a connection for each backup server. During
connection setup, the daemon registers the log buffers in both the
primary and backups to conduct RDMA. Memory registration is a
one-time operation that does not affect forward processing.

Several database systems employ group or pipelined commit [26]
to keep I/O out of the critical path and issue large sequential writes
to storage for better performance. In these systems, worker threads
submit processed transactions to a commit daemon and continue
to serve the next request. A transaction’s commit result is not
returned to the client until its log records are persisted. Log flushes
are typically issued by request, timeout, or when the log buffer’s
occupied space exceeds a threshold (e.g., 50% full). Query Fresh
piggybacks on the commit daemon and ships log records whenever a
log flush or group commit happens. This way, we take advantage of
RDMA’s asynchronous nature to overlap network and local I/O, as
well as forward processing, hiding most of the cost of data transfer.

Query Fresh uses two key techniques to accelerate log replay on
backups: (1) replay pipelining that moves log replay (mostly) out of
the critical path and (2) a parallel, lightweight scheme that uses our
append-only storage and indirection, to reduce the amount of work
done by replay threads, making log replay itself faster.

In the rest of this section, we first describe how Query Fresh
utilizes RDMA and NVRAM for log shipping. Then we cover how
replay pipelining works. We then introduce the append-only storage
architecture designed for log shipping and fast log replay, followed
by a comparison with other popular approaches.

3.1 RDMA and NVRAM based Log Shipping
In Query Fresh, log shipping is synchronous and largely a memory-

only operation that does not involve the storage stack, thanks to
RDMA and NVRAM. For backups, we place the log buffer in
NVRAM and register it to perform RDMA operations. The primary,
however, does not have to be equipped with NVRAM, unless it
needs to re-join later as a backup (e.g., after failover).

Transferring log data. Query Fresh takes advantage of RDMA’s
non-blocking nature to efficiently overlap the process of persisting
log records locally with network I/O. Figure 2(a) illustrates how we
ship log records. Upon group commit or log flush, the primary first
issues an RDMA Write with Immediate request (one per backup) to
store log records in each backup’s NVRAM log buffer, with the size
of the data being shipped as the immediate value (step 1). Since we
use RDMA Write with Immediate to ship log records, the backup
needs to post a receive request to retrieve the immediate value. After
sending the RDMA request, the primary flushes the log locally
and/or to shared or local storage if NVRAM is not in place for the
primary. Otherwise it suffices to persist data in NVRAM using CLWB
(followed by a store fence), and log records can be de-staged in the
background [64] . Meanwhile, the network I/O initialized in step 1
will happen in parallel with log flush. Once the log is persisted
locally, the primary starts to poll the result for the write posted for
each backup (part of step 3), to ensure that the write request is sent
and its completion event is consumed so that the RDMA library’s
internal data structure (libibverbs in our implementation) is kept
in its correct status. We find the polling overhead is negligible.

Ensuring persistence. Returning from the polling operation in
step 3 only indicates that the write request has been successfully
sent; there is no guarantee on when the data will be persisted in the
backup, even with NVRAM log buffer on backups (discussed in
Section 2.3). If the general-purpose server method is employed, the
primary should explicitly wait for acknowledgement from backups
to ensure log records are received and persisted on backups. Our
current implementation of the general-purpose server method uses
RDMA Write (by the backup) and atomic read (by the primary) for

2b. Local log flush

2a. Network I/O

Filled Free
1. Post write 3. Persist

Time

Free Free

Newly filledSpace freed up

Before 
shipping:

After 
shipping:

(a) I/O time breakdown (b) Log buffer status

Figure 2: RDMA-based log shipping (primary server). (a) Steps to
ship a batch of log records from the log buffer. Network I/O (2a)
overlaps with local I/O (2b). Step 3 ensures durability on the remote
side. (b) Using multi-buffering to reduce log buffer wait time.

acknowledgement. The primary exports for each backup a status
word that can be remotely written using RDMA Write and spins on
it for a “persisted” signal, which is written by the backup after it
persisted the data. Upon receiving acknowledgement, the primary
commits all transactions covered by the just-shipped log records.

Two approaches could be used to remove/reduce the spinning on
the “persisted” signal. The first approach is to rely on large battery
arrays which provide de-facto persistence across the memory bus.
They are being adopted by data centers [30] . Backups could directly
acknowledge the primary—or even skip it—as data is “persisted”
implicitly. The other approach reduces spinning, by allowing the
primary to return before backups acknowledge, and check for per-
sistence before reusing the log buffer space, e.g., before sending
the next batch. Until getting acknowledgement, the primary does
not commit the transactions covered by the shipped log records.
This approach trades commit latency for throughput, so it is not
recommended if low commit latency is desired.

To persist the received log records, backups issue CLWB and a
store fence while the primary is waiting in step 3 of Figure 2(a).
The speed of persisting data in NVRAM is determined by memory
bandwidth; a single flusher thread could make the system NVRAM-
traffic bound. To reduce persistence latency, we introduce a persist-
upon-replay approach that piggybacks on multiple replay threads to
divide the work. As Section 3.4.2 describes, each log replay thread
is responsible for redoing log records stored in one part of the log
buffer. Before starting replay, each replay thread first issues CLWB
and store fence to persist its share of log records. The log shipping
daemon then acknowledges the primary once all replay threads have
finished persisting their share of log data.

Guaranteeing strong safety. Our log shipping design follows
the definitions of strong safety in Section 2.1. Transactions are never
committed if their log records are not durably replicated across all
or a majority of nodes in the cluster. Hence, Query Fresh provides
strong safety. Note that log replay does not affect safety guarantees:
a safe system only needs to ensure log records are properly persisted
to not lose committed work; whether the log records are quickly
replayed has more impact on data freshness, not safety guarantees.

Discussion. Overlapping network and storage I/O is not new and
can be done with TCP/IP, but often requires extra implementation
efforts. RDMA’s asynchronous nature makes it possible to easily
piggyback on the existing commit daemon. RDMA also provides
superior performance with kernel bypassing. An inherent limitation
of RDMA Write/with Immediate is that these operations are only
available under unicast [41] , limiting the number of backups that
can be kept synchronous. For example, in theory a 56Gbps network
can keep up to seven synchronous backups, if the primary’s log
rate is 1GB/s. The number will likely become lower with necessary
overheads (e.g., acknowledgements). Section 4 shows this effect.
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3.2 Replay Pipelining
Maintaining fresh data access requires the read view on backups

does not fall much behind the primary’s. A straightforward solution
is synchronous log replay that ensures replay is finished before
sending persistence acknowledgment to the primary. Although it
guarantees absolute freshness, i.e., the primary and backup always
exhibit exactly the same read view, synchronous replay significantly
slows down the primary with replay on the critical path.

We solve this problem by replay pipelining. The key is to overlap
log replay with forward processing without lagging behind. After
persisting log records locally using CLWB, instead of waiting for
replay to finish, the backup acknowledges immediately (if needed).
Meanwhile, the backup notifies its own log flusher to de-stage the
received log records from NVRAM to storage. Without waiting
for the flush to finish, the backup starts immediately to replay log
records by notifying its replay threads, each of which scans part of
the log buffer. As a result, the replay of batch i is “hidden” behind
forward processing that generates batch i+1. This way, log replay is
kept out of the critical path as long as replay is fast enough to finish
before the next batch of log records arrives.

For replay pipelining to work, the primary and backup need to
coordinate with each other on when a batch of log records can be
shipped: the backup must ensure the log buffer space to be used
for accepting new data is available, i.e., replayed and de-staged to
storage. We solve this problem with a ReadyToReceive status on
the status word exported by the primary. Before sending a batch
of log records, the primary waits for the backup’s status to become
ReadyToReceive, which is posted by the backup using RDMA
Write after it has replayed and de-staged the previous batch.

Replay pipelining works nicely with multi-buffering, a widely
used technique to reduce log buffer wait time. As Figure 2(b) shows,
while the commit daemon is shipping a batch of log records, worker
threads may insert to the other half of the log buffer. With multi-
buffering, the log buffer space is essentially divided into multiple
ranges, allowing the backup to accept new log data while replaying
a previous batch. For each range, we maintain an “end LSN”. If
a range’s end LSN is no greater than the most recently persisted
and replayed batch’s LSN, then the range is available for new data.
The backup could issue ReadyToReceive and accept new data as
soon as it finds that the next range is free, allowing batch i+1 to
flow in while batch i is being replayed. Alternatively, the backup
could delay the issuing until each current batch is replayed for better
freshness. Compared to synchronous replay, replay pipelining could
reduce freshness because commit does not guarantee immediate vis-
ibility on backups. As we show in Section 4, such effect is minimal
and replay pipelining achieves much higher primary performance.

Replay pipelining moves log replay out of the critical path, but
does not accelerate replay itself, which directly affects data freshness
and determines if log replay will block the primary. Next, we show
how we utilize append-only storage to accelerate log replay. We
start with a review on append-only storage. Readers already familiar
with it can skim and fast forward to Section 3.4.

3.3 Basic Append-Only Storage
The ideas of append-only storage and indirection are not new and

have been employed in many systems [3, 7, 32, 35, 36, 55] . We
first review how it works for single-node systems, and then extend
the design for log shipping and fast log replay.

With append-only storage, data is never overwritten; updates
to the database are always appended to the end of the log. Each
record is associated with an RID that is logical and never changes.
Transactions access data through another level of indirection that
maps RIDs to the record’s physical location. Indirection can be

Primary index

Secondary indexes

RID Where?

0

1

…

A single indirection 
array per table

Logical pointer

V2 V1

Virtual memory pointer

V2 V1

Persistent log

…

In-memory:

Figure 3: Append-only storage with indirection on single-node
systems. Each table employs an indirection array indexed by RIDs.
Indexes map keys to RIDs; updates only modify the RID entry in
the indirection array, no index operations are needed.

used by both single and multi-version systems; we base our work on
ERMIA [32] (a multi-version system) and employ its append-only
design.1 As Figure 3 shows, each table is accompanied with an
indirection array. Each entry in the indirection array is an 8-byte
word, excluding the “RID” field shown in Figure 3, which is an
index into the array and only shown for clarity. The indirection array
entry could point to the in-memory version or contain an offset into
the log; a later access can use approaches such as anti-caching [15]
to load the version to memory and replace the entry with a pointer to
the in-memory record. Our current implementation reserves a lower
bit in the indirection array entry to differentiate virtual memory
pointers and offsets into the durable log [32] .

With indirection, indexes map keys to RIDs, instead of the records’
physical locations. All indexes (primary and secondary) on the same
table point to the same set of RIDs. RIDs are local to their “home”
indirection array, and allocated upon inserts. We assign each in-
direction array (i.e., logical table) a unique file ID (FID), and the
combination of FID and RID uniquely identifies a database record.
FIDs are maintained in exactly the same way as RIDs; a special
“catalog” indirection array maps FIDs to indirection arrays. Each
index stores a pointer to the underlying indirection array (or simply
the FID). Worker threads can query an index first for the RID, then
consult the table’s indirection array to access the record.

The benefit of employing append-only storage with indirection
is two-fold. First, updates that do not alter key fields require no
index operations: all they need to do is to obtain the RID (e.g., by
traversing an index) and modify the indirection array entry to point
to the new version (e.g., by using a compare-and-swap instruction
or latching the version chain). This is especially beneficial if a table
employs multiple secondary indexes, as without indirection arrays
the updater will have to make the key in every index point to the
new version. Second, thanks to the adoption of redo-only physical
logging, recovery becomes as simple as setting up indirection arrays
while scanning the log records, without generating “real” records
(unless otherwise required) like in systems without indirection.

3.4 Append-Only Storage for Log Shipping
Query Fresh employs indirection in both primary and backup

servers, but follows a slightly different design to support lightweight,
parallel log replay, concurrent read-only queries, and failover.

3.4.1 Making Replay Lightweight
The design in Section 3.3 has the potential of reducing the amount

of work of replay down to its minimum: replay threads simply store
the physical location of each log record (which is the actual data

1Query Fresh is also applicable to other systems, as long as they
can be equipped with indirection arrays for data access and more
importantly, fast log replay.
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tuple) in the indirection array. However, blindly applying this tech-
nique could significantly hurt read performance: an indirection array
entry usually points to a list of in-memory versions, and replacing
the pointer with a log offset in fact forcibly evicts the in-memory
versions, because after replay, new readers will not be able to see
them and thus must reload versions from storage. Moreover, addi-
tional tracking is needed to avoid leaking memory by recycling the
in-memory versions once they are not needed by existing readers.

To solve this problem, for each table we employ an additional
replay array which only stores the latest physical, permanent address
of the record. Figure 4 describes the detailed design. The data array
still holds pointers to all in-memory records (or possibly pointers to
the durable log after recovery). Replay threads simply parse the log
in NVRAM and store each version’s physical address in the replay
array. Log replay threads never incarnate versions by loading data
from storage or NVRAM to main memory. This way, we reduce
the amount of work that must be done by log replay to its minimum
while still maintaining high read performance. For inserts, the replay
threads must also insert the key-RID pairs to indexes. This method
works for any index. An alternative is to also use indirection arrays
for index nodes, so that index node updates are logged and replayed
in the same way we handle database records. Indexes such as the
Bw-tree [36] will fit in this approach more easily. After the log data
is persisted globally (in NVRAM or storage) and replayed, the (new
or updated) records become visible to read-only transactions being
run by threads that are not dedicated for log replay. Since the latest
updates are all only reflected on replay arrays, readers must also
examine them when trying to find suitable versions to access.

3.4.2 Parallelizing Log Replay
In Query Fresh we employ on the backup multiple threads to

replay the log received from the primary. Besides reducing the
amount of work that needs to be done for each record by employing
the replay arrays, another important aspect is to reduce the amount
of data that must be examined by each thread. We achieve this by
assigning each replay thread part of the log buffer to scan and replay.
For this to work, in addition to the log buffer data, the primary also
sends metadata that describes the logical partitions of the shipped
data for each replay thread to follow. Note that blindly assigning
each thread an equal portion of the log to replay is not feasible: log
records are of variable sizes, so we must ensure replay threads can
locate the right log record in its partition to begin replaying.

The partitioning information is generated by the primary during
forward processing. We logically divide the log buffer space into a
predefined number (n) of partitions of equal size. Whenever a log
buffer allocation crosses a partition boundary, the primary records
the allocation’s end log record offset. The primary sends such
metadata using RDMA Write with Immediate whenever it ships log
records. Upon receiving the log data and metadata, the backup will
employ multiple threads to replay the log records in parallel, using
the metadata. Note that we do not have to employ n threads on the
backup for replay; each thread can replay multiple partitions. In
addition, as we have described in Section 3.1, these replay threads
can also issue CLWB and store fence instructions in parallel to persist
log data before start replaying, amortizing the cost of persistence.

3.4.3 Coordination of Readers
Backups must guarantee consistent read access. Versions created

by the same transaction (on the primary) must not be visible to read-
only transactions (on backups) before all of them are successfully
replayed and persisted globally, i.e., installed in the replay arrays
and durably stored in NVRAM or storage of all or a majority of
nodes. Ensuring read-only transactions only see globally persisted
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Figure 4: Append-only storage with indirection for log shipping.
An additional replay array that is indexed by the same RIDs as the
data array, stores the latest physical address of each record.

data guarantees correctness if the primary fails: multiple backups
in the cluster could replay and persist locally in different speeds, so
without proper visibility control, read-only transactions on the faster
nodes could see uncommitted data if the primary crashes before
receiving acknowledgement from all backup nodes.

We use LSNs to control read visibility, which is a common ap-
proach in multi-version systems. Here we describe the approach in
ERMIA [32] , which Query Fresh is based on; other systems might
use different approaches but the general principle is similar. When
entering pre-commit, the transaction acquires a globally unique
commit timestamp and reserves log buffer space by atomically in-
crementing a shared counter by the size of its log records, using the
atomic fetch-and-add (FAA) instruction.2 The FAA’s return value
indicates the transaction’s commit order and its log records’ starting
offset in the durable log. For each record we use its location in the
physical log, as its commit stamp. All the log records generated by
the same transaction are co-located in the log and a record with a
larger LSN is guaranteed to be stored in the later part of the log.

To control read visibility in backups, in each backup we maintain
two additional LSNs: (1) the “replayed LSN” which is the end offset
in the durable log of the most recently replayed log record, and (2)
the “persistent LSN” which indicates the end durable log offset
of the most recently persisted log record. A read-only transaction
on the backup starts by taking the “read view LSN”, which is the
smaller of the visible and persistent LSNs as its begin timestamp b.
It accesses versions with the maximum commit LSN that is smaller
than b, and skips other versions. This way, a read-only transaction
always reads a consistent snapshots of the database. During replay
we install versions and bump the replayed LSN only after we have
replayed all the log records for the same transaction. The persistent
LSN is updated by the primary using RDMA Write after receiving
acknowledgements from all backups. Thus, read-only transactions
on backups will never see uncommitted data.

With a begin timestamp and target RID (obtained after querying
the index or by a full-table scan), a read-only transaction on the
backup starts by examining the target table’s data array. If the head
version is already newer than the transaction’s begin timestamp, the
transaction will continue to traverse the version chain to find the

2This instruction atomically increments the given memory word and
returns the value stored in the word right before the increment [24] .
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proper version to read. However, if the head version is visible to the
querying transaction (i.e., its commit stamp is smaller than the begin
timestamp), the transaction will have to examine further the replay
array in case a newer version is visible. Since a record’s physical
position in the log also reflects the global order of the transaction
that generated it, when probing the replay array, the transaction
directly compares its begin timestamp with the RID entry value. If
the RID entry’s value is larger than the LSN of the head version
on the data array, then we continue to follow the physical address
recorded by the RID entry to instantiate the latest version—no matter
if it is visible to the querying thread or not—and continue to load
older versions for the RID until we hit a visible version or the latest
version represented by the data array (whichever is younger). Then,
the querying thread will try to install this “sub-chain” of versions to
the version chain on the data array and read the correct version, and
retry the whole read operation if the installation failed (e.g., because
another thread acted faster doing the same operation).

When loading versions, worker threads opportunistically read
from the NVRAM-backed log buffer for better performance. It
verifies that data read is still valid by checking the LSN range
currently being represented by the log buffer. If the LSN range does
not contain the read data’s range, we read from storage.

3.4.4 Failover and Catch-up
All nodes (the primary and backups) in Query Fresh use exactly

the same binary. If the primary is down, a backup (previously desig-
nated or elected [34]) will take over and become the new primary.
This failover process involves both the new primary and other back-
ups. First, the new primary needs to finish replaying the last batch
of log records received from the old primary (if there is any). At
the same time, it switches to the “primary” mode by notifying all
other backups about the take-over. Then, the other backups will
re-establish connections to the new primary and obtain the latest log
data from it. Once all the remaining nodes are ready, the new pri-
mary can start processing read/write transactions. The new primary
can continue to finish processing the read-only transaction requests
received while it was a backup, and use the previously log replay
threads for read/write transactions. When all the “old” read-only
transactions are finished, the primary can employ all its threads for
read/write transactions. This allows the user to run long, or even
mission critical read-only queries without worrying about impact
by failover. Replay arrays are the primary home for new updates
on backups. Thus, when a backup takes over and starts to process
read/write transactions, it must also consult the replay arrays as if it
still were a backup server if the data array’s head version is visible
(following the steps described in Section 3.4.3). However, we do not
expect this to become a major problem, as the read-only transactions
that ran when the primary was a backup server should have already
loaded most recent versions from storage/NVRAM to DRAM.

When the failed primary comes back online, it joins the cluster
as a backup by connecting to the current primary. The process fol-
lows the same procedure as a new backup server wanting to join
the cluster would follow. After connected to the primary, the new
backup starts to accept and replay log records as if it already caught
up with the primary using the replay techniques we proposed, but
postpones the update of its replayed LSN to ensure correct read
visibility. At the same time, the backup in another thread obtains
from the primary a recent checkpoint plus the log records gener-
ated after the checkpoint was taken, but before the first batch of
log records received from the primary since the connection is es-
tablished; we call this data “catch-up records”. Alternatively, the
backup could read catch-up records from shared storage if data is
stored there. The replay of catch-up records and “live” log records
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Figure 5: Relative merits of hot standby solutions. (a) Synchronous
log shipping sacrifices performance and freshness in a slow net-
work. (b) Asynchronous log shipping trades safety for perfor-
mance. (c) Logical logging reduces network traffic, but is tightly
coupled with concurrency control and trades utilization for freshness.
(d) Query Fresh strikes a balance on all aspects.

shipped synchronously from the primary are replayed concurrently.
If a recent checkpoint is available, or in the case of a re-joining
primary, the new backup can start processing read-only transaction
once the checkpoint is recovered or the node is recovered and syn-
chronized with the new primary, respectively. The data might be
stale depending on how old/new the checkpoint is and/or how long
the node has been offline. We also parallelize the replay of catch-up
records. This can be done in various ways and is orthogonal to the
design choices of Query Fresh. In our current implementation, we
logically partition the checkpoint and log files by RID. Each thread
only replays its own partition. Recall that our replay mechanism
only stores the location of the latest record in replay arrays, so the
replay of catch-up records must not update the replay array entry if
a newer one is already there.

Note that the size of the catch-up records is fixed, because once
connected the new backup starts to accept new log records syn-
chronously and keep up with the primary. As a result, the new
backup is guaranteed to catch up with the primary eventually. Once
the catch-up records are all replayed, the backup can update its
replayed LSN and declare it has caught up with the primary.

3.5 Discussion
Figure 5 reasons about the relative merits of Query Fresh and

three other popular approaches, by examining how well or badly
each design satisfies various design goals. In the figure, we place
properties of interested as dots and use the relative distance between
blue and grey dots to represent the overhead. Dotted lines connect
the ideal cases, while solid lines connect the real cases. Figure 5(a)
summarizes our previous discussion on synchronous log shipping in
a slow network: the primary is often bound by network I/O, despite
its strong safety guarantees. To avoid being network bound, as
Figure 5(b) shows, log records are often shipped asynchronously
and a transaction is allowed to commit locally in the primary without
ensuring the log records are durable also in backups. Asynchronous
log shipping gives neither safety nor freshness, although it does not
block the primary. Backups have to serve read-only queries with
stale data that is a potentially much earlier snapshot of the primary
database. Committed work whose log records are not yet shipped
when the primary fails could be lost, so inconsistencies might arise
after a stale secondary took over.

Logical log shipping and deterministic execution [39, 58, 69] , as
shown in Figure 5(c), replicate the operations to perform, instead of
results (i.e., physical data) of the operations. This approach saves
network bandwidth, but falls short on other aspects. First, many
deterministic execution schemes only support stored procedures.
Applications that use data-dependent operations may not work. Sec-
ond, as Section 4 shows, the amount of compute resources needed
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for replay on the backup is similar to that needed on the primary,
leaving less resource for read-only transactions. Third, it requires
careful handling of any randomness that might arise during transac-
tion processing for correct log replay, such as random numbers and
lock acquisition sequence, and all the work must be redone from
scratch at each backup. The problem becomes even worse for multi-
version concurrency control, under which commit order and serial
order could be different. Replaying the log (i.e., based on commit
order) might cause the primary and backup to diverge; a scheme
that works for single-version 2PL might not work for snapshot iso-
lation [39] . Solving this problem needs tight integration with the
underlying concurrency control mechanism. As Figure 5(d) shows,
Query Fresh strikes a balance among all the properties of interest,
using modern hardware for high primary performance and strong
safety guarantees, and using append-only storage with indirection
for fast replay, fresh data access, and high resource utilization.

4. EVALUATION
This section empirically evaluates Query Fresh and compares it

with traditional approaches, and confirms the following:

• With RDMA over fast network and NVRAM, Query Fresh main-
tains high performance for the primary server;

• The append-only architecture and replay strategy allow backups
to keep up with the primary with little overhead;

• Query Fresh gives better freshness for read-only queries on backup
servers compared to traditional approaches.

4.1 Implementation
We implemented Query Fresh in ERMIA [32] , an open-source

main-memory database engine designed for modern hardware. We
augmented ERMIA with our lightweight replay and indirection tech-
niques for log shipping. Each replay array uses exactly the same
data structure as in original ERMIA. Therefore, with the replay
arrays, the memory space needed by indirection is doubled. How-
ever, given the abundant memory space in modern main-memory
database servers, we expect such addition to be acceptable. For ex-
ample, since indirection array entry is 8-byte long, a million-record
table would require around 16MB additional memory space (8MB
for the data and replay arrays, respectively).

For indexes, we use Masstree [40] in ERMIA and all accesses are
done through indexes. Our current implementation does not employ
indirection for the index itself. Log replay only needs to insert new
keys to the index(es) for inserts; for updates we setup indirection
arrays, and do not touch indexes. In our experiments, we did not
find manipulating indexes only for inserts to be a bottleneck.

4.2 Hardware
Testbed. We run experiments on the Apt cluster [53] testbed, an

open platform for reproducible research. We use eight dual-socket
nodes, each of which is equipped with two 8-core Intel Xeon E5-
2650 v2 processors clocked at 2.6GHz (16 physical cores in total)
and with 20MB cache. Each node has 64GB of main memory, a
Mellanox MT27500 ConnextX-3 NIC and an Intel X520 Ethernet
NIC. All nodes are connected to a 10Gbps Ethernet network and a
56Gbps FDR 4× InfiniBand network.

NVRAM emulation. The only DIMM form-factor NVRAM
available on the market is NVDIMM [1, 63] that exhibits exactly
the same performance characteristics as DRAM at runtime.3 There

3Truly NVRAM products (e.g., Intel 3D XPoint [14] ) are available,
but are only offered in PCIe interface as of this writing.

is also a current trend in data centers to use battery arrays for persis-
tence [30] . So we use DRAM in our experiments.

We show results for (1) the ideal case which assumes batteries in
data centers or future RDMA protocol enhancement that guarantees
NVRAM persistence, and (2) variants that employ the general-
purpose server method for NVRAM persistence. In the ideal variant,
backups acknowledge the primary right after receiving data without
additional work. We test two variants of the general-purpose server
method, denoted as “CLFLUSH” and “CLWB-EMU”. The former
uses the CLFLUSH instruction to persist log data. CLFLUSH will evict
cachelines and impose non-trivial overhead. We only show these
numbers for reference as lower-bound performance. Compared to
CLFLUSH, the CLWB instruction does not evict the cacheline during
write-back. CLWB is not available in existing processors, so we
emulate its latency by busy-spinning. We calibrate the number of
cycles for spinning as the number of cycles needed to write the same
amount of data using non-temporal store (MOVNTI), which do not
pollute the cache [24] . Our emulation is best-effort; we expect the
actual CLWB instruction to perform better. For the experiments that
follow, we use the ideal variant unless specified otherwise.

4.3 Experimental Setup
Workloads. On the primary server, we run the full transaction

mix of the TPC-C [60] benchmark to test transactional read/write
workloads. We fix the number of warehouses to the number of
concurrent threads and give each thread a “home” warehouse. A
major advantage of hot-standby solutions is the ability to serve
read-only transactions to backup servers. Since the full TPC-C mix
is a read-write workload, we run TPC-C’s read-only transactions
(Stock-Level and Order-Status, 1:1 breakdown) on backup servers.

System settings. To focus on evaluating the impact of network
and system architecture, we keep all data memory-resident using
tmpfs. Log data is still flushed through the storage interface. For all
experiments we set the log buffer size to 16MB and ship the log at
group commit boundaries. Each run lasts for 10 seconds, and is re-
peated for three times; we report the averages. Like most (physical)
log shipping mechanisms, concurrency control and replication are
not tightly coupled in Query Fresh. Our experiments use snapshot
isolation; other isolation levels are transparently supported by Query
Fresh, so we do not repeat experiments for them here.

Variants. We compare Query Fresh with other approaches de-
scribed in Section 3.5 using end-to-end experiments. Then we
conduct detailed experiments for Query Fresh to show the impact
of individual design decisions; the details are described later. We
compare four variants in end-to-end experiments:

• Sync: Traditional synchronous log shipping; log records are
shipped upon group commit, and transactions are not considered
committed until log records are made durable in all replicas.

• Async: Asynchronous log shipping that commits transactions
regardless log persistence status on backup nodes.

• Logical: Logical log shipping that sends over the network only
commands and parameters, instead of physical log records; log
records are batched and shipped synchronously as in Sync.

• Query Fresh: Synchronous log shipping with modern hardware
and append-only storage architecture.

All variants are implemented ERMIA for fair comparison. For
Logical, we use command logging [39] , an extreme case of logical
logging that generates only one log record per transaction. It re-
quires all transactions must be stored procedures. A log record only
contains the unique ID of the stored procedure and other necessary
parameters. We choose command logging for its small logging foot-
print (thus reduced network traffic). However, it does not support
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correct replay of cross-partition transactions in multi-version sys-
tems (see Section 3.5 for details) [39] . Studying how to guarantee
correctness for command logging in multi-version systems is a sep-
arate issue and out of the scope of this paper. Nevertheless, we can
still use it to measure the impact of log data size on performance,
by slightly deviating from the TPC-C specification and restricting
each worker to always access data associated with its home ware-
house, i.e., no remote transactions. The benchmark may perform
slightly better due to lack of conflicts, but it keeps the key benefit of
command logging, which is the focus of our experiments.

Unless specified otherwise, we use four threads for log replay, and
on backups threads that are not dedicated to log replay run read-only
queries. Except Query Fresh, log replay is in the background and
versions are fully instantiated without using replay arrays; Query
Fresh uses replay pipelining. We run Sync, Async, and Logical with
TCP/IP in the 10Gbps Ethernet network, and run Query Fresh in the
56Gbps InfiniBand network. This way, we show the impact of both
system architecture and network on performance. To quantify the
impact of individual design decisions, e.g., effect of the append-only
architecture and replay policies, we run additional experiments using
Query Fresh that turn on and off features (e.g., replay pipelining).

4.4 Network Bandwidth and Log Data Rate
We first calibrate our expectations by comparing the performance

of a standalone server and a dual-node cluster. We focus on mea-
suring the impact of network bandwidth and log data rate, i.e., how
much bandwidth is needed for synchronous log shipping so that net-
work is not a bottleneck. To achieve this, we turn off log replay and
do not impose NVRAM delays. The backup does not run transac-
tions; it only receives and persists log records. We then extrapolate
the expected scalability of Query Fresh and other approaches, and
compare our expectations with experimental results later.

Table 1 lists the throughput of a standalone server and its log rate.
The standalone system scales and generates up to 1.42GB/s of log
records. Such log rate well exceeds the bandwidth of a 10Gbps
Ethernet. The 56Gbps InfiniBand network should in theory support
up to five synchronous backups. As Section 3.1 explains, this is
an inherent limitation of unicast. The log rate grows roughly at
the same speed as the amount of parallelism grows. Since network
bandwidth will likely be in the same ballpark with memory band-
width [22] , we estimate for larger servers, it is viable to at least
have 1–2 synchronous backups. More backups can be added in a
hierarchical architecture that is already widely in use today.

As the table shows, RDMA-based log shipping does not slow
down the primary much, with 4–6% overhead over the standalone
server. With 10Gbps Ethernet, the primary could perform up to
∼43% slower (16 threads). This indicates that 10Gbps Ethernet
is unable to support any synchronous replica without significantly
lowering the primary’s performance. This experiment verifies the
importance of network bandwidth for physical log shipping. Com-
pared to TCP/IP, we do not observe significant performance gain
from RDMA’s kernel bypassing, either. This is largely because
both interconnects are able to sustain high performance with bulk
data transfer, which is usually the case for physical log shipping.
However, the prospect of having safe RDMA over NVRAM (with
protocol extensions) will likely make RDMA the preferred choice.
Next, we expand our experiments to more (up to eight) nodes.

4.5 End-to-End Comparisons
Section 3.5 qualitatively compares related approaches. Now we

compare them quantitatively. We focus on measuring (1) primary
performance, (2) backup freshness, (3) resource utilization, and
(4) implementation efforts in term of lines of code (LoC).

Table 1: Throughput and log data rate of a standalone server, vs.
the primary’s throughput in a dual-node cluster under 56Gbps In-
finiBand RDMA and 10Gbps Ethernet TCP/IP.

Number of Standalone Log size RDMA TCP/IP
threads (kTPS) (MB/s) (kTPS) (kTPS)

1 53.82 108.21 51.65 50.66
2 99.11 198.83 93.86 92.84
4 191.95 383.23 180.99 176.80
8 346.34 694.83 326.17 294.54

16 624.74 1456.62 586.80 336.20
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Figure 6: Primary throughput. Sync bottlenecks on the network.
Query Fresh supports up to 4–5 synchronous replicas. Async and
Logical keep high performance but sacrifices safety and has limited
applicability/resource utilization, respectively.

Primary performance. We first measure the impact of the way
(logical vs. physical) and timing (before vs. after committing lo-
cally) of log shipping. Figure 6 shows the throughput of the primary
server under different approaches. As the figure shows, Query Fresh
can support up to five synchronous backups while maintaining high
performance for the primary. Once the log rate comes close to the
network bandwidth (with five backups), primary throughput starts to
drop. Sync bottlenecks on the network and cannot support any syn-
chronous backups without significantly slowing down the primary.
These results match our expectation in Section 4.4.

Async keeps high primary throughput regardless of the number of
backups, because transactions are committed locally in the primary,
before log records are sent to backups. Thus, it is possible to lose
committed work and sacrifices both safety and freshness. Logical
also preserves high primary performance across the x-axis in Fig-
ure 6, because command logging significantly reduces log data size,
making it easy to support a large number of synchronous backups
before saturating the network. However, it also exhibits various
drawbacks as we have discussed in Section 3.5.

Freshness and utilization. Now we compare backup freshness
and resource utilization of different approaches using two nodes;
we obtained similar results with more nodes, so they are not shown
here for brevity. We represent resource utilization by the percentage
of CPU cores dedicated to read-only transactions. Freshness is
measured by comparing the read view LSNs on the primary and
backup. We synchronize the clock in each node with the same
source, and take a snapshot of the read view LSN on each node
every 20ms. We define the backup’s freshness score at a given
time point as b

p
× 100%, where b and p are the read view LSN

of the backup and primary, respectively. For example, if at time t
the primary has a read view of 100, and the backup has finished
replaying the log up to LSN 80, the freshness score will be 80%. A
higher score indicates transactions can access a more recent snapshot
of the database. Ideally, we can match the times between nodes and
calculate freshness scores precisely. But it is difficult to obtain read
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Figure 7: Backup freshness under 75% resource utilization (12
workers, 4 replay threads). Query Fresh keeps up with the primary
(≥ 99% freshness). Others must trade utilization for more freshness.

view LSNs on two nodes at the exact same time. So for calculation,
we take the LSN at the nearest 500ms boundaries. This allows us to
estimate freshness scores more easily.

Figure 7 shows the results. We also give the number of replay
threads used for each variant (e.g., Sync with four replay threads is
denote as “Sync/4”). Query Fresh keeps up with the primary and
provides over 99% of freshness using four replay threads, i.e., it
never lags behind more than 1% of the primary’s read view. This
shows the effectiveness of Query Fresh’s append-only architecture
and indirection, which allow very lightweight, parallel replay. Al-
though Logical never bottlenecks on shipping the log, it cannot reach
the same level of freshness of Query Fresh using fewer resources
(four replay threads) than the primary (16 threads). To keep up with
the primary, Logical must employ a similar number of threads as the
primary solely for log replay (re-execution). As the figure shows,
Logical/16 barely keeps up with the primary, but leaves no thread
for read-only transactions with zero utilization.

Under Sync/4 and Async/4, replay cannot keep up with the log
rate. The backup then falls behind the primary with a growing gap.
During replay each version is fully instantiated, which is much more
heavyweight than Query Fresh’s replay mechanism. Sync shows
better freshness than Logical and Async despite its low primary
throughput (Figure 6). This is because the primary constantly blocks
on network I/O waiting for log records to be delivered, which slows
down forward processing. For the same reason, adding more replay
threads in Sync and Async did not help much: there is not that much
log data available for more replay threads to consume.

The above experiments fix the number of replay threads for all
variants to four, thus fixing resource utilization for backups at 75%
(with the remaining 12 threads as transaction workers). Only Query
Fresh is able to sustain high freshness with 75% of utilization. Other
approaches must trade utilization if more freshness is needed.

Implementation effort. Based on ERMIA, whose source code
has more than 70kLoC, the core implementation of Query Fresh took
around 1300LoC. The number for TCP-based physical log shipping
(Sync and Async) is ∼800LoC. Because the only difference between
Sync and Async is whether log replay happens in background, their
code differs very little, so we do not separate them here. The extra
∼500LoC in Query Fresh are for implementing functionality related
to log replay and data arrays. Our implementation of Logical took
∼330LoC, but it is not a complete implementation that guarantees
correct replay for cross-partition transactions. We expect a complete
implementation for Logical will need much more code tightly inte-
grated with concurrency control and the application, whereas Query
Fresh requires no change to concurrency control or the application.

Summary. These results show that Query Fresh strikes a balance
among primary performance, freshness, and resource utilization. It
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Figure 8: Throughput of the primary (top) and backups (bottom).
Replay pipelining maintains high primary throughput by “hiding”
log replay behind forward processing.

also keeps the easy-to-implement feature of log shipping, and does
not require any change in the application. Next, we explore how
each design decision impacts Query Fresh’s behavior.

4.6 Effect of Replay Policy
We first explore the effectiveness of replay pipelining, by com-

paring it with synchronous replay described in Section 3.2. Fig-
ure 8(top) plots the primary’s throughput. “NoReplay” denotes the
variant where replay is disabled and reflects the amount of back
pressure put on the primary by synchronous backups. Similar to
what we have seen in the end-to-end experiments, after saturating
the network (4–5 backups) throughput starts to drop significantly.
Pipelined replay behaves similarly to NoReplay, because the over-
head of log replay is hidden behind forward processing and is out of
the critical path. However, synchronous replay does not scale after
two backups with log replay on the critical path.

Figure 8(bottom) shows the corresponding aggregate throughput
of backups. Each backup employs all of its physical threads. In
NoReplay, all the 16 threads in each backup are used to run read-
only transactions. Due to the lack of log replay and because we
start with a warm database that has all records in memory, reading a
version involves no I/O. Thus, NoReplay gives an upper bound on
how fast read-only transactions can run on backups. Synchronous
uses eight threads for log replay, while the number for Pipelined is
four. Compared to Synchronous, Pipelined is left with more threads
for read-only queries, thus achieving higher throughput.

As Figure 9(top) shows, Pipelined needs no more than four
threads to keep up with the primary (after four backups network
bandwidth becomes a scarcity). With 1–2 backups, Synchronous
needs roughly half of the resources for log replay to keep up, as
Figure 9(bottom) shows. Since Synchronous and Pipelined perform
exactly the same amount of work for log replay, this experiment
shows the importance of moving replay out of the critical path.

4.7 Effect of Indirection
Pipelined replay employs indirection, so log replay does not

actually instantiate “real” versions. Now we quantify its effect
by comparing with a variant that fully replays the log (denoted as
“FullReplay”). FullReplay is exactly the same as Pipelined except
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Figure 9: Throughput of the primary under pipelined (top) and
synchronous replay policies.

that replay threads instantiate each version from the log record and
install it on the data arrays, without using replay arrays. FullReplay
employs multiple threads and can avoid replaying log records whose
successors have already been replayed and installed on the data
array. Figure 10 reflects the amount of back-pressure each variant
could put on the primary. Both Query Fresh and FullReplay employ
our pipelined log replay design. We use four replay threads and
dedicate the remaining threads to read-only transactions. Compared
to Query Fresh, FullReplay imposes significant overhead as it needs
to fully instantiate versions,4 making log replay a major bottleneck.

4.8 Bootstrapping
Now we measure the time needed to start a new backup, including

the time for recovering from a recent checkpoint and replaying the
log generated afterward. The primary first generates a checkpoint
after started, and then starts processing transactions for five seconds.
Then we start a new backup and measure the time needed to finish
checkpoint recovery and replay. The new backup uses 16 threads
for checkpoint recovery. Once it is done, it uses eight, four, and four
threads for replaying catch-up log records, pipelined log replay, and
running read-only transactions, respectively. The checkpoint size
is 1.8GB, and the log data size is ∼6GB. Checkpoint recovery took
5.8 seconds, and replaying all the remaining catch-up log records
took 24.21 seconds. So in total it took ∼30 seconds for the backup
to replay and catch up with the primary. To replay catch-up records,
the threads have to load data from storage. So it is slower than
replay pipelining which scans the log buffer directly. Moreover, our
current implementation stores the whole checkpoint and log data in
two separate files. Although we parallelize the replay process, using
multiple threads to operate on the same file concurrently incurs
severe bottleneck in the file system [43] . We expect an optimized
implementation will be able to achieve even shorter catch-up time.

4.9 Commit Latency
Synchronous log shipping often greatly increase commit latency

on the primary in a slow network. This is avoided in Query Fresh by
overlapping log shipping with local I/O and replay pipelining. We

4We use a NUMA-aware allocator in ERMIA [32] . Our profiling
results show that memory allocation is not a bottleneck.
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hides network I/O and replay behind local I/O on the primary.

collect the primary’s commit latency numbers for two Query Fresh
variants using pipelined and synchronous replay, with a varying
number of replay threads (denoted as “Pipelined/4” and so on). The
group commit boundary is set to 4MB, i.e., log shipping is triggered
whenever 4MB of new log data is generated. Other events (e.g.,
commit queue full or timeout) could also trigger log shipping, but
we found the system is most sensitive to log data size.

Figure 11 shows the results. As a baseline, the commit latency
of the standalone case (no replication) is 3.38ms. Synchronous
replay exhibits ∼1.04–4.74× higher latency, even before saturating
the network (four backups). With replay pipelining, Query Fresh
exhibits at most 1.16× of the standalone latency before the network
is saturated. Once the network is saturated (≥ 5 backups), however,
all variants starts to add non-negligible latency on the commit path.

4.10 Persistence Delay
Now we quantify the impact of delays caused by persisting log

records on backups using pipelined replay. We compare three types
of variants: a variant that adds no delay (denoted as “Ideal”), a
variant that does not use NVRAM (“No-NVRAM”) and four other
variants that impose NVRAM delays. No-NVRAM assumes DRAM
log buffer. Both Ideal and No-NVRAM use four replay threads,
leaving 12 for read-only queries. For the remaining four variants,
we use CLFLUSH/CLWB-EMU and vary the number of replay threads
between four and eight (denoted as “CLFLUSH/4” and so on);
persist-upon-replay is enabled to spread the work of persisting the
log records to multiple threads.

Figure 12(top) shows primary’s throughput. Ideal maintains high
throughput with 1–5 backups. With four and more backups, network
gradually becomes the bottleneck. Since CLWB-EMU does not
evict cachelines, both CLWB-EMU variants achieve performance
that is close to Ideal’s with up to four backups. With five and
more backups, CLWB-EMU performs up to 9% slower than Ideal.
CLFLUSH/8 incurs ∼5–26% overhead over Ideal, due to the cache
misses caused by CLFLUSH during log replay. With fewer replay
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Figure 12: Throughput of the primary (top) and backups (bottom)
with varying NVRAM delays.

threads, CLFLUSH/4 could add as much as 42% overhead on Ideal.
These results show that data persistence is the bottleneck, rather
than log replay, as we have shown that four threads are enough for
pipelined replay to keep up with the primary.

Figure 12(bottom) shows the read-only transactions’ aggregate
throughput on backups. Despite CLFLUSH/4 shows much lower
primary performance than CLWB-EMU/4, it gave higher backup
throughput, because slower replay reduces the chance of a transac-
tion seeing a newer version posted on the replay arrays. More reads
can be directly served through the data arrays without having to read
versions in the “gap” between the replay and data arrays from stor-
age. However, read-only transactions will access stale data. Variants
with eight replay threads (CLFLUSH/8 and CLWB-EMU/8) exhibit
lower backup throughput, due to the reduced number of threads for
read-only transactions and higher chance for readers to have to load
versions from storage since replay is faster.

5. RELATED WORK
Primary-backup replication. Many production systems imple-

ment log shipping [21, 47, 48, 52, 57, 62] . KuaFu [68] enables par-
allel log replay by tracking dependencies. SHADOW systems [31]
offload log shipping and other jobs to the storage layer in the
cloud, reducing data duplication. Amazon Aurora [62] also offloads
redo processing to the storage layer, to reduce network load. Re-
musDB [44] provides high availability at the virtualization layer, re-
quiring little or no change to the database engine. Another approach
is deterministic execution [58, 59] and logical log shipping [39] . A
concurrent effort by Qin et al. [51] proposes a replay scheme for
serializable multi-versioned systems. The scheme inherits all the
benefits of logical log shipping and expands deterministic replay to
multi-version systems, but is tightly coupled with concurrency con-
trol and only supports stored procedures. BatchDB [38] supports
hybrid workloads using dedicated OLTP and OLAP components
that operate on the same or separate nodes. It uses logical logging
for OLTP and propagates updates explicitly to the OLAP node.

Utilizing fast networks. The use of fast networks are being ac-
tively studied in key-value stores [27, 45] and database engines.
Rödiger et al. [54] design a distributed query engine, tackling prob-
lems associated with TCP/IP. Barthels et al. [5] use RDMA to

distribute and partition data efficiently for in-memory hash join. Liu
et al. [37] employ RDMA to devise efficient data shuffling opera-
tors. DrTM+R [10] combines hardware transactional memory and
RDMA to handle distributed transactions. Binnig et al. [9] sug-
gest a redesign of distributed databases using RDMA, and propose
the network-attached memory (NAM) architecture that logically
decouples compute and storage. NAM-DB [70] is a NAM-based
distributed database engine. It uses snapshot isolation and mitigates
the timestamp bottleneck using vector clocks. FaRM [18] is a more
general platform that exposes memory as a shared address space.
FaSST [28] uses two-sided RDMA for fast RPC, as using a large
number of queue pairs under one-sided RDMA can limit scalability.

Append-only storage. Distributed shared logs also abstract stor-
age to be append-only, but assumes a different model. CORFU [3]
organizes flash chips as a global, shared log, on top of which trans-
actions execute optimistically [6, 7, 8] . Tango [4] provides mecha-
nisms to build in-memory data structures backed by a shared log.

Many main-memory systems use direct memory pointers [33, 61] ,
instead of RIDs. File systems such as BPFS [12] also use indirec-
tion. Several recent studies note the usefulness of indirection in
main-memory environments [66] . The Bw-Tree [36] uses indirec-
tion to aid the build of lock free B+-tree operations. Sadoghi et
al. [55] use indirection and store RIDs in indexes to reduce index
maintenance cost. ERMIA [32] adopts the same philosophy for
easier logging, recovery and low index maintenance cost.

Logging/recovery and NVRAM. Much recent work focuses on
accelerating recovery. Graefe proposes on-demand per-page redo
for faster recovery [19] . PACMAN [67] uses static analysis to obtain
application-specific information and speed up recovery. Adaptive
logging [69] combines physical and logical logging to reduce re-
covery time. FPTree [49] is a hybrid index that only keeps leaf
nodes in NVRAM. Several recent designs leverage NVRAM for
better logging/recovery, such as alleviating the centralized logging
bottleneck [64] and providing near-instant recovery [2, 50] .

6. CONCLUSION
Hot standby systems often exhibit a freshness gap between the

primary and backup servers, for two reasons. First, network can
easily be a bottleneck, limiting the speed of log shipping and making
most backups operate in asynchronous mode, especially so for mod-
ern main-memory OLTP engines. Second, the traditional dual-copy
architecture stores data in two permanent places: the log and the
“real” database, mandating (expensive) log replay before data can
become accessible to read-only transactions on backups.

We propose Query Fresh to solve these problems with modern
hardware and software architecture re-design. Query Fresh lever-
ages RDMA over fast network and NVRAM for fast log shipping,
and employs append-only storage with indirection for lightweight,
parallel log replay. The result is a hot standby system that pro-
vides strong safety, freshness, and high resource utilization. Our
evaluation using an 8-node cluster shows that with 56Gbps Infini-
Band, Query Fresh supports up to 4–5 synchronous backups without
significantly lowering the primary’s performance.
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