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ABSTRACT
Several wavelet synopsis construction algorithms were pre-
viously proposed based on dynamic programming for unre-
stricted Haar wavelet synopses as well as Haar+ synopses.
However, they find an optimal synopsis for every incoming
value in each node of a coe�cient tree, even if di↵erent in-
coming values share an identical optimal synopsis. To allevi-
ate the limitation, we present novel algorithms, which keep
only a minimal set of the distinct optimal synopses in each
node of the tree, for the error-bounded synopsis problem.
Furthermore, we propose the methods to restrict coe�cient
values to be considered to compute the optimal synopses in
each node. In addition, by partitioning all optimal synopses
in each node into a set of groups, such that every group can
be represented by a compact representation, we significantly
improve the performance of the proposed algorithms.
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1. INTRODUCTION
Synopsis structures are widely used for approximate query

answering to handle big data. Among various synopsis struc-
tures, the variants of Haar wavelet synopses have been used
widely in diverse applications such as image processing [20,
24], OLAP/DSS systems [21, 27], time-series mining [2],
query optimization [21, 22], approximate query answering [7,
12] and stream data processing [3, 7].

Since Haar wavelet synopses minimizing L2-error su↵er
from wide variance and severe bias in the quality of approx-
imations [4], dynamic programming algorithms [5, 6, 8, 9] to
minimize L1-error have been investigated. Such algorithms
consider restricted Haar wavelet synopses consisting of the
Haar wavelet coe�cients only. To improve the quality of
approximations, unrestricted Haar wavelet synopses [10, 11,
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16, 26], whose coe�cients can take any real value, have been
studied. In addition, the Haar+ tree [16] extends the Haar
tree structure and achieves the highest quality among un-
restricted Haar wavelet synopses. The existing algorithms
focus on the space-bounded synopsis problem whose goal is
to minimize error measures satisfying a space budget. Re-
cently, the algorithms [17, 18, 23] for the error-bounded syn-
opsis problem to find a space-optimal synopsis, which is a
synopsis with the minimum size satisfying a maximum error
threshold, are proposed and utilized to solve e�ciently the
space-bounded synopsis problem. Thus, we develop e�cient
algorithms to find a space-optimal Haar+ synopsis for the
error-bounded synopsis problem. For ease of presentation,
we mainly present our algorithms to obtain a space-optimal
unrestricted Haar wavelet synopsis and then describe how
to extend them for the space of Haar+ synopses.
The state-of-the-art algorithms [17, 18] consider only mul-

tiples of a resolution step � as the coe�cient values since it is
impractical to enumerate every real value. A space-optimal
synopsis by taking the multiples of � rather than any real
value is called a space-�-optimal synopsis. In the rest of the
paper, if a synopsis is space-�-optimal, we simply say that
it is optimal whenever the context is clear.
In the state-of-the-art algorithms [17, 18], a table Ei is

kept in each node ci of a coe�cient tree. An entry Ei[v]
stores the minimum size of a synopsis satisfying the error
bound ✏ for an incoming value v where v is computed by
the coe�cients of ci’s ancestor nodes. Since there are many
incoming values v to ci, we need to maintain a large number
of entries Ei[v], even if the space-optimal synopses for dif-
ferent incoming values could be identical. Thus, to compute
space-optimal synopses for ci, we examine a lot of entry pairs
E2i[v] and E2i+1[v] which store the sizes of optimal synopses
in ci’s left and right child nodes, respectively.
To alleviate the limitation of the state-of-the-art algo-

rithms [17, 18], we propose the algorithm OptExt-EB for un-
restricted Haar wavelet synopses to solve the error-bounded
synopsis problem. Our algorithm OptExt-EB keeps only a
minimal set of the synopses each of which is optimal for an
incoming value in each node ci. For each optimal synopsis,
we annotate it with its canonical error range which allows
us to compute the error of the synopsis for every incoming
value to ci. Then, we compute a set of the optimal syn-
opses in ci by examining only the distinct pairs of optimal
synopses in ci’s left and right child nodes, respectively.
We observe that the optimal synopses in a node ci, which

are constructed from a pair of synopses in its child nodes by
varying ci’s values, have the property that their canonical
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error ranges have the same length and are shifted by � from
each other. Thus, we can represent all optimal synopses in
ci by a set of such sets, called extended synopses, and de-
note each extended synopsis by its compact representation.
Then, for a pair of extended synopses SL and SR in c2i
and c2i+1 respectively, we show that the optimal synopses,
which are produced from every pair of synopses in SL and
SR respectively, form an extended synopsis whose compact
representation can be computed directly with O(1) time.

Among various synopsis structures, since a Haar+ tree
is known as the most e↵ective wavelet-inspired structure,
MinHaarSpace-HP [18] was previously developed to find an
optimal Haar+ synopsis satisfying an error bound. Thus,
we also develop OptExtHP-EB by extending OptExt-EB to
search the space of Haar+ synopses. As a resolution step
� decreases, although the quality of an optimal synopsis is
enhanced, the execution times of both MinHaarSpace and
MinHaarSpace-HP in [18] increase quadratically. On the con-
trary, our OptExt-EB and OptExtHP-EB have the desirable
property that their execution times are less a↵ected by �.
By utilizing the notion of extended synopses, our algorithms
speed up the execution times up to orders of magnitude com-
pared to the state-of-the-art algorithms.

By conducting performance study with both synthetic and
real-life data sets, we demonstrate that our OptExtHP-EB to
find an optimal Haar+ synopsis is the best performer com-
pared to MinHaarSpace-HP [18] and OptExt-EB for the error-
bounded synopsis problem. In addition, we show that the
indirect algorithm [18] by invoking MinHaarSpace-HP with
binary search to solve the space-bounded synopsis problem
becomes much faster by utilizing our OptExtHP-EB instead.

2. RELATED WORK
The research on constructing wavelet synopses has a long

and rich history. Since the quality of wavelet synopsis algo-
rithms to minimize the overall root-mean squared error (i.e.,
L2-error) usually varies widely [4], the algorithms minimiz-
ing the maximum-error (e.g., L1-error) are proposed in [5,
8]. To construct optimal wavelet synopses, two problems
have been studied. The space-bounded synopsis problem
finds an error-optimal synopsis minimizing some error mea-
sures for a given space budget. On the other hand, the error-
bounded synopsis problem discovers a space-optimal synopsis
with the smallest size satisfying a given error bound.
The space-bounded synopsis problem is studied in [5, 6, 8,

9, 13, 15]. Some algorithms [5, 13, 15] find an error-optimal
restricted Haar wavelet synopsis consisting of Haar wavelet
coe�cients only. The other class of algorithms [10, 11, 16,
26] discovers an error-optimal unrestricted Haar wavelet syn-
opsis whose coe�cient values take any real value but take
only multiples of a resolution step � to delimit the domain of
coe�cient values. The unrestricted wavelet algorithms lead
to higher quality than restricted wavelet algorithms [10, 11,
16, 26]. The wavelet synopses based on a refined wavelet-
inspired data structure, called a Haar+ tree, is shown to be
more accurate than the other unrestricted wavelet synopses
[16, 18]. A simplified variant of the Haar+ tree, called the
compact hierarchical histogram (CHH), is introduced in [17,
26]. The concept of winning intervals used in our algorithms
was previously investigated in [14, 17].
Karras et al. [17, 18] propose the state-of-the-art Haar+

synopsis algorithm to minimize the weighted maximum er-
ror for the error-bounded synopsis problem and show that
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Figure 1: A coe�cient tree and a synopsis

the space-bounded synopsis problem can be more e�ciently
solved indirectly by utilizing the algorithm. The algorithms
are proposed in [25] to find an unrestricted wavelet synopsis
whose size is close to that of a space-optimal synopsis for
the error-bounded synopsis problem. However, since these
algorithms do not generate the synopsis with the smallest
size satisfying the error bound, they cannot be utilized to
solve indirectly the space-bounded synopsis problem.

3. PRELIMINARY
3.1 The Error-bounded Synopsis Problem
A coe�cient tree is a hierarchical structure [12] where each

internal (i.e., coe�cient) node and leaf node are associated
with a wavelet coe�cient and a data value, respectively. We
refer to each leaf node and its data value, as dj . When a
coe�cient with a value x is selected in a node ci, we represent
it by ci:x. Every internal node ci except the root node c0
has two child nodes c2i and c2i+1. Let T be the coe�cient
tree obtained from a data vector d=hd0, . . . , dN -1i and Ti

be the subtree of T rooted at ci. We denote the sets of all
internal nodes (i.e., coe�cients) and all leaf nodes (i.e., data
values) in Ti as coe↵(Ti) and data(Ti), respectively.
For a coe�cient tree T , when the coe�cient in the root

node has the overall average value of data in data(T0) and
the coe�cient in every other node ci has the half of the dif-
ference between the averages of data values in data(T2i) and
data(T2i+1) respectively, T becomes a Haar wavelet coe�-
cient tree. Figure 1(a) shows an example of a coe�cient
tree for a data vector d=h16, 8, 8, 10, -4, 4, 2, 6i. Let A be a
subset of the ancestor nodes of ci in T . Then, the incoming
value v to ci is calculated as v=

P
c
k

:x2A signik ·x where
signik=-1 if ci appears in T2k+1; otherwise, signik=1.
Given a coe�cient subtree Ti, the set of non-zero coe�-

cients is called a synopsis of Ti (or Ti-synopsis). When a
synopsis s has no coe�cient in ci, the incoming values v` to
c2i and vr to c2i+1 are v. On the contrary, when a coe�cient
ci:x appears in a synopsis s, the incoming values v` to c2i and
vr to c2i+1 become v+x and v�x. Given a T0-synopsis s, the
incoming value to dj computed from the ancestor nodes of
dj appearing in s becomes the reconstructed value of dj . For
example, for the synopsis s={c0:6, c1:3, c4:4, c6:-4} of the co-
e�cient tree T in Figure 1(b), since the incoming value to
d4 is 6�3+(-4)=-1, the reconstructed value of d4 is -1.

Definition 3.1.: For a coe�cient subtree Ti, we define

(1) d̂j(Ti, s, v) is the reconstructed value of dj2data(Ti)
for the incoming value v to ci with a synopsis s.

(2) FT
i

,s(v)=maxd
j

2data(T
i

)|dj�d̂j(Ti,s,v)| is the error fun-
ction to compute the maximum absolute error of a
synopsis s with data(Ti) for the incoming value v to ci.
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Figure 2: The tables stored in each node by MinHaarSpace when ✏=3 and �=1

Example 3.2.: Consider a synopsis s={c0:6,c1:3,c4:4,
c6:-4} in Figure 1(b). Since the incoming value to c1 is 6
and the coe�cient value 3 is chosen in c1, the incoming val-
ues to c2 and c3 are 9 and 3, respectively. Since c2 and c5
are not chosen in s, the incoming values to d2 and d3 are 9.
Thus, d̂2(T, s, 0)= d̂3(T, s, 0)=9 and we get FT5,s(0)=1.

Definition 3.3. : Given a data vector d and an error
bound ✏, the error-bounded synopsis problem is to find a syn-
opsis s of the coe�cient tree for d such that (1) the maxi-
mum absolute error (i.e., maxd

j

2data(T0) |dj�d̂j(T0, s, 0)|) is
at most ✏ and (2) the number of coe�cients in s is mini-
mized. When there are several such synopses, the one with
the minimum error is selected.

We next review the MinHaarSpace algorithm [18] which
is the state-of-the-art to find an optimal unrestricted Haar
wavelet synopsis for the error-bounded synopsis problem.

3.2 The MinHaarSpace Algorithm
Let vHi be the incoming value to a node ci when every an-

cestor node cj of ci has its Haar wavelet coe�cient value xH
j

in a coe�cient tree T . The incoming values and coe�cient
values in a node ci can be restricted as follows.

Lemma 3.4.: [18] For a Ti-synopsis s satisfying an error
bound ✏, let v be the incoming value to ci computed by only
s’ coe�cients appearing in ci’s ancestor nodes. Then, the
incoming value v is always located in [vHi �✏, vHi +✏]. In ad-
dition, if the synopsis s has a coe�cient value xi in ci, the
value xi always lies in [xH

i �(✏�|v�vHi |), xH
i +(✏�|v�vHi |)].

Since MinHaarSpace considers the � multiples for coe�-
cient values in ci, by Lemma 3.4, the candidate incoming
value set IV(i) consists of every multiple of � in [vHi �✏, vHi +✏]
and the candidate coe�cient value set CV(i, v) consists of ev-
ery multiple of � in [xH

i �(✏�|v�vHi |), xH
i +(✏�|v�vHi |)].

For an incoming value v to ci, MinHaarSpace finds a Ti-
synopsis with the minimum error among all Ti-synopses with
the minimum size satisfying the error bound ✏. It utilizes
Ei[v] and Fi[v] to store the minimum size and the minimum
error of the synopsis discovered, respectively. Due to lack of
space, we only provide the recursive equation of Ei[v]. Given
a data vector d=hd0, . . . , dN -1i, we compute Ei[v] with ev-
ery incoming value v in IV(i) as follows.

When ci is an internal node (0 < i < N):

E

i

[v] = min

8
<

:

min
x2CV(i,v)

{E2i[v+x]+E2i+1[v�x]+1} . (1)

E2i[v]+E2i+1[v] (2)

(a) If the coe�cient value x is selected in ci, since the
incoming values to c2i and c2i+1 become v+x and v�x,
we obtain Equation (1).

(b) If no coe�cient is chosen, since the incoming values to
c2i and c2i+1 are v, we get Equation (2).

When ci is the root node (i = 0): Since the root node has
a single child node c1, E0[0]= min(E1[0], min

x2CV(0,0)
E1[x]+1).

When ci is a leaf node d(i�N) (i � N): If |v�d(i�N)|✏,
Ei[v]=0. Otherwise, Ei[v]=1.

Note that MinHaarSpace takes O(N(✏/�)2) time since it
considers only the multiples of � for coe�cient values in ci.

Example 3.5.: For a data vector d=h16, 8, 8, 10, -4, 4, 2, 6i
with the coe�cient tree T in Figure 1, we show how to com-
pute E3[v] in the node c3 with an error bound ✏=3 and a res-
olution step �=1. From Lemma 3.4, IV(3)={-1, 0, 1, 2, 3, 4, 5}
and CV(3, 2)={-5, -4, -3, -2, -1, 0, 1} for the incoming value
22IV(3). By Equations (1)-(2), E3[2]= min(E6[2]+E7[2],
minx2CV(3,2){E6[2+x]+E7[2�x]+1})=2. We provide the val-
ues of Ei[v]s and Fi[v]s in Figure 2. We also show an opti-
mal synopsis for each incoming value v in Figure 2, although
MinHaarSpace does not store the optimal synopses.

The space-bounded synopsis problem: We can solve
the space-bounded synopsis problem more e�ciently by us-
ing the error-bounded synopsis algorithm [18] rather than
directly computing an error-optimal synopsis. The indi-
rect algorithm IndirectHaar [18] computes an error-optimal
synopsis by invoking MinHaarSpace repeatedly with binary
search on the error value. It takesO(N(✏/�)2(log ✏⇤+ logN))
time where ✏⇤ is the minimal error in the required space B.

4. THE OUTLINE OF OUR ALGORITHM
In this section, we present an overview and pseudocode

of our proposed algorithm OptExt-EB to compute a space-
optimal unrestricted Haar wavelet synopsis.

4.1 An Overview of How OptExt-EB works
MinHaarSpace[18] stores Ei[v] and Fi[v] in each node ci,

even if di↵erent incoming values share an identical Ti-synopsis.
For instance, in Figure 2, when ✏=3 and �=1, although the
synopsis s7,1 in c7 is optimal for the incoming values 3, 4
and 5, it stores E7[v] and F7[v] individually for v=3, 4, 5.

Representing by distinct synopses: To alleviate the
ine�ciency of MinHaarSpace [18], we store the size and error
function of each distinct synopsis only once for the incoming
values where the synopsis is optimal. With the error func-
tion for a Ti-synopsis, we compute its maximum absolute
error for any incoming value v. For the tables stored by
MinHaarSpace in Figure 2, our new representations of the
tables are shown in Figure 3(a). For example, the size 0 and
error function FT7,s7,1(v) of the synopsis s7,1 are kept for
the incoming value interval [3, 5] only once in the node c7.
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(b) Representing by extended synopses in each node

Figure 3: An example of how our proposed algorithm OptExt-EB works when ✏=3 and �=1

Representing by extended synopses: Consider the
optimal synopses s3,2, s3,3 and s3,4, whose error functions
are FT3,s3,2(v), FT3,s3,3(v) and FT3,s3,4(v) respectively, for
the node c3 in Figure 3(a). The synopses have the same size
2 and are constructed from the same pair of s6,1 and s7,1 by
varying the coe�cient value in c3 from -3 to -1 with resolu-
tion step �=1. Although the constructed synopses are dis-
tinct synopses, we show later that FT3,s3,4(v)=FT3,s3,3(v��)
=FT3,s3,2(v�2�) in Example 5.12. Thus, we represent the
three synopses by an extended synopsis which can be de-
noted by a compact representation of the synopsis size (i.e.,
the number of selected coe�cients), a single error function
and the group size (i.e., the number of the represented syn-
opses). For the stored tables in Figure 3(a), the extended
synopses stored by OptExt-EB are shown in Figure 3(b). For
instance, the extended synopsis S3,2 representing the syn-
opses s3,2, s3,3 and s3,4 is represented by the synopsis size
2, a single error function FT3,s3,2(v), and the group size 3.

We show later that the synopses, which are obtained by
pruning the useless synopses from the synopses constructed
from a pair of extended synopses, form an extended synop-
sis as well as its compact representation is constructed in
O(1) time. Since a single synopsis is a special case of an
extended synopsis, our OptExt-EB simply represents the op-
timal synopses stored in each node ci by a set of extended
synopses, called a Ti-optimal extended synopsis set. By using
Ti-optimal extended synopsis sets, our proposed OptExt-EB
becomes much faster than MinHaarSpace.

4.2 The Pseudocode of OptExt-EB
The pseudocode of OptExt-EB is presented in Figure 4.

For each coe�cient node ci, it computes a Ti-optimal ex-
tended synopsis set from a pair of a T2i-optimal extended

Procedure OptExt-EB(i)
Input: the coe�cient node id i of a subtree T

i

1. if i � N then O
i

= ; // for a leaf node
2. else if 0 < i < N then // for an internal node
3. O2i = OptExt-EB(2i); O2i+1 =OptExt-EB(2i+1);
4. hm2i,M2ii=GetSizes(O2i); hm2i+1,M2i+1i=GetSizes(O2i+1);
5. for b=m2i+m2i+1 to M2i+M2i+1+1
6. D

c

(i,b) = ExtSynCoef(O2i,O2i+1, b) // c

i

is selected

7. D

;
(i,b) = ExtSynNoCoef(O2i,O2i+1, b) // c

i

is not chosen

8. D(i,b) = RequiredSet(Dc

(i,b) [ D

;
(i,b))

9. hO(i,b), Ub

i = StrictOptSet(D(i,b), Ub�1)
10. if U

b

=IV(i) then break

11. else // for the root node
12. O1 = OptExt-EB(1); O0 = OptExtRoot(O1)
13. return O

i

=
S

b

O(i,b)

Figure 4: The pseudocode of OptExt-EB

synopsis set and a T2i+1-optimal extended synopsis set in a
bottom up fashion as follows.

(1) When ci is a leaf node (i.e., i � N): Since coe↵(Ti)
is empty, OptExt-EB returns the empty set (line 1).

(2) When ci is an internal node (i.e., 1i<N): To
compute a Ti-optimal extended synopsis set Oi, OptExt-EB
first calculates a T2i-optimal extended synopsis set O2i and a
T2i+1-optimal extended synopsis set O2i+1 (line 3). It next
finds the smallest and largest synopsis sizes m2i and M2i

(respectively, m2i+1 and M2i+1) of the extended synopses
in O2i (respectively, O2i+1) by invoking GetSizes (line 4).
When a Ti-extended synopsis s is constructed from a pair of
extended synopses in O2i and O2i+1 respectively, the small-
est (respectively, largest) synopsis size of s is m2i+m2i+1

(respectively, M2i+M2i+1+1). Let O(i,b) be a T(i,b)-strictly
optimal extended synopsis set, which is the set of all ex-
tended synopses with synopsis size b in Oi. Then, the for
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Table 1: Notations

Notations Description

CER(T
i

, s) the T

i

-CER of a T

i

-synopsis s

S

C

i

(s
L

, s

R

) the T

i

-constructed coef (resp., nocoef) synopsis
(resp., set constructed from a T2i-synopsis s

L

and
S

NC

i

(s
L

, s

R

)) a T2i+1-synopsis s

R

S

C

i

(S
L

, S

R

) the T

i

-constructed coef (resp., nocoef) synopsis
(resp., set constructed from a T2i-extended synopsis
S

NC

i

(S
L

, S

R

)) S

L

and a T2i+1-extended synopsis S

R

I

W

(s, S) the winning interval of a T

i

-synopsis s (resp., a
(resp., T

i

-extended synopsis S) wrt a T

i

-synopsis set
I

W

(S, S
E

)) S (resp., a T

i

-extended synopsis set S
E

)

loop (lines 5-9) generates each T(i,b)-strictly optimal extended
synopsis set O(i,b) one by one starting the index b from
(m2i+m2i+1) to (M2i+M2i+1+1).

To compute O(i,b), the procedure ExtSynCoef (respec-
tively, ExtSynNoCoef) calculates the set Dc

(i,b) (respectively,

D;
(i,b)), which is the set of the extended synopses with syn-

opsis size b generated from every pair of extended synopses
in O2i and O2i+1 respectively, when a coe�cient (respec-
tively, no coe�cient) is selected in ci (lines 6-7). Based on
the properties of extended synopses to be explored later,
OptExt-EB removes the extended synopses, which cannot be
optimal in ci, from Dc

(i,b)[D;
(i,b) by invoking the procedures

RequiredSet and StrictOptSet (lines 8-9).
The procedure RequiredSet generates D(i,b) by pruning

the useless extended synopses among the b-sized extended
synopses from Dc

(i,b)[D;
(i,b). Let Ub be the set of incoming

values whose optimal synopses exist in a T(i,b0)-strictly opti-
mal extended synopsis set O(i,b0) with b0b. For an incoming
value to ci, if there exists a b0-sized synopsis satisfying an er-
ror bound ✏, since a b-sized synopsis with b>b0 is not optimal
by Definition 3.3. Thus, the procedure StrictOptSet com-
putes O(i,b) by removing such useless synopses from D(i,b)

by examining Ub�1, and returns O(i,b) and Ub.
After computing O(i,b), if Ub=IV(i), since there is an opti-

mal synopsis for every incoming value to ci, we do not need
to compute O(i,b00) with b00>b (line 10). Thus, we stop the
for loop and union every O(i,b) to compute Oi (line 13).

(3) When ci is the root node (i.e., i=0): We first call
OptExt-EB(1) to obtain a T1-optimal extended synopsis set
O1. Then, OptExt-EB computes an optimal synopsis by in-
voking OptExtRoot with O1 (line 12).

More detailed descriptions of the procedures invoked by
OptExt-EB are presented in Section 6.2.

5. EXTENDED SYNOPSES
We introduce an extended synopsis to denote a set of the

same sized synopses whose error functions are �-shifted from
each other. The notations to be used are in Table 1. Due
to the lack of space, we omit the proofs in the rest of the
paper. The proofs can be found in our technical report [19].

5.1 Properties of Synopses
We first provide the error function FT

i

,s(v) of a Ti-synopsis
s with its properties. We next show how to obtain the error
function of a Ti-synopsis s and how to limit the coe�cient
values in each node ci when the Ti-synopsis s is constructed
from a pair of a T2i-synopsis sL and a T2i+1-synopsis sR.

Error functions of synopses: The canonical error range
of a Ti-synopsis s is used to define the error function FT

i

,s(v).

Definition 5.1. : For a Ti-synopsis s and an incoming
value v to ci, emin(Ti, s, v) and emax(Ti, s, v) are the mini-
mum and maximum signed errors of all data values dj in
data(Ti), respectively. That is,

emin(Ti, s, v)= mind
j

2data(T
i

)(dj�d̂j(Ti, s, v)),

emax(Ti, s, v)= maxd
j

2data(T
i

)(dj�d̂j(Ti, s, v)).

Moreover, [emin(Ti, s, 0), emax(Ti, s, 0)] is the Ti-canonical er-
ror range (abbreviated by Ti-CER) of s, denoted by CER(Ti, s).

Since emin(Ti, s, v)dj�d̂j(Ti, s, v)emax(Ti, s, v), the max-
imum absolute error defined in Definition 3.1 is the larger of
|emin(Ti, s, v)| and |emax(Ti, s, v)|. Because an incoming value
v to a node ci contributes positively to the reconstructed
value of every dj in data(Ti), d̂j(Ti, s, v)= d̂j(Ti, s, 0)+v re-
sulting in that emin(Ti, s, v)=emin(Ti, s, 0)�v and emax(Ti, s, v)
=emax(Ti, s, 0)�v. Thus, we can compute FT

i

,s(v) as follows.

Proposition 5.2.: For a Ti-synopsis s with CER(Ti, s)=
[emin, emax], FT

i

,s(v)= max(|emin�v|, |emax�v|).

By Proposition 5.2, for a Ti-synopsis s, we obtain FT
i

,s(v)
for every incoming value v to ci from CER(Ti, s) only, even
if we do not compute the reconstructed value of every data
in data(Ti) with the selected coe�cient values in s. Thus,
when a Ti-synopsis s is optimal for several incoming values
to ci, we store its Ti-CER only in each coe�cient node ci.

Example 5.3.: For a coe�cient node c7, consider the syn-
opsis s7,1 in Figure 3(a). The subtree T7 has two leaf nodes
d6 and d7. Since d6�d̂6(T7, s7,1, 0)=2 and d7�d̂7(T7, s7,1, 0)
=6, the T7-CER of s7,1 is [2, 6]. Then, FT7,s7,2(3) becomes 3
(= max(|2�3|, |6�3|)) by Proposition 5.2.

The error function of a constructed synopsis: When
a Ti-synopsis s is constructed from a pair of a T2i-synopsis
sL and a T2i+1-synopsis sR, CER(Ti, s) can be computed from
CER(T2i, sL) and CER(T2i+1, sR) in O(1) time as follows.

Lemma 5.4.: When a Ti-synopsis s is constructed from
a pair of a T2i-synopsis sL and a T2i+1-synopsis sR with
CER(T2i, sL) = [eL,min, eL,max] and CER(T2i+1, sR) = [eR,min,
eR,max], we have CER(Ti, s)=[emin, emax] where

• When a coe�cient value x is selected in ci,
emin= min(e

L,min�x, e

R,min+x), emax= max(e
L,max�x, e

R,max+x) .

• When no coe�cient is selected in ci,
emin= min(e

L,min, eR,min), emax= max(e
L,max, eR,max) .

Example 5.5.: Consider the T3-synopsis s3,2 in the coef-
ficient node c3 in Figure 3(a). The T3-synopsis s3,2 is con-
structed from the pair of a T6-synopsis s6,1 and a T7-synopsis
s7,1, whose CER(T6, s6,1)=[0, 0] and CER(T7, s7,1)=[2, 6] re-
spectively, with the coe�cient value -3 in c3. By Lemma 5.4,
the T3-CER of the synopsis s3,2 becomes [-1, 3].

Properties of error functions: To discard useless syn-
opses which cannot contribute to generate optimal synopses,
we devise the following proposition, definition and lemma.

Proposition 5.6.: For a Ti-synopsis s whose Ti-CER is
[emin, emax], we have FT

i

,s(v)✏ for every v in [emax�✏, emin+✏].
In addition, if emax�emin>2✏, we get FT

i

,s(v)>✏ for every v.

By Proposition 5.6, if the Ti-CER’s length of a Ti-synopsis
s is larger than 2✏, we can safely prune the Ti-synopsis s.

Definition 5.7.: For Ti-synopses s and s0 whose Ti-CERs
are [emin, emax] and [e0min, e

0
max] respectively, if e0minemin and

emaxe0max, we say the Ti-CER of s0 contains that of s.
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Figure 5: CERs of s6,1 and s7,1 shifted by coe�cients

Lemma 5.8.: If the Ti-CER of a Ti-synopsis s is contained
by that of another Ti-synopsis s0, FT

i

,s(v)FT
i

,s0(v) for all
incoming values v to ci.

Based on Lemma 5.8, for a pair of the same sized Ti-
synopses s and s0, if CER(Ti, s

0) contains CER(Ti, s), we can
further prune s0 even if the Ti-CER length of s0 is at most 2✏.

Restricting the coe�cient values: Consider the T3-
CERs of the T3-synopses constructed from a T6-synopsis s6,1
and a T7-synopsis s7,1 with a coe�cient value x in [-1,1].
As shown in Figure 5, when x is smaller than -3 (e.g., x=-4),
the T3-CER of the constructed T3-synopsis always contains
that of the constructed T3-synopsis with x=-3. Similarly,
the T3-CER of the constructed T3-synopsis with x>-1 (e.g.,
x=0) also always contains that of the T3-synopsis with x=-1.
Thus, by Lemma 5.8, we only consider the coe�cient values
in [-3, -1]. Based on the observation, we obtain the following.

Lemma 5.9. : Consider a T2i-synopsis sL and a T2i+1-
synopsis sR with CER(T2i, sL)=[eL,min, eL,max] and CER(T2i+1,
sR)=[eR,min, eR,max]. When a Ti-synopsis s is constructed
from sL and sR with coe�cient value x in ci, it is su�cient
to consider x only in [min(amin, amax),max(amin, amax)] where
amin=(eL,min�eR,min)/2 and amax=(eL,max�eR,max)/2.

Similar to MinHaarSpace [18], we consider only the mul-
tiples of � for coe�cient values. By Lemma 5.9, we define
the candidate coe�cient value set to be used in Lemma 5.11
and to define a Ti-constructed coef synopsis set later.

Definition 5.10.: Consider a T2i-synopsis sL and a T2i+1-
synopsis sR with CER(T2i, sL)=[eL,min, eL,max] and CER(T2i+1,
sR)=[eR,min, eR,max]. Let amin=(eL,min�eR,min)/2 and amax=
(eL,max�eR,max)/2. The candidate coe�cient value set
Ci(sL, sR) is {xs+j·� | 0j<m} where m=(xe�xs)/�+1,
xs=dmin(amin, amax)/�e·� and xe=bmax(amin, amax)/�c·�.

For two ranges [emin, emax] and [e0min, e
0
max], if e

0
min=emin+j·�

and e0max=emax+j·�, we say [e0min, e
0
max] is shifted by j·� from

[emin, emax]. By restricting the coe�cient values in Ci(sL, sR),
we obtain the following property of constructed synopses.

Lemma 5.11. : Consider a pair of Ti-synopses s and s0

constructed from a T2i-synopsis sL and a T2i+1-synopsis sR
with the coe�cient values x and x+j·� in Ci(sL, sR), respec-
tively. Let [emin, emax] and [e0min, e

0
max] be the Ti-CERs of s and

s0, respectively. Then, if the length of CER(T2i, sL) is at most
(respectively, larger than) that of CER(T2i+1, sR), [e

0
min, e

0
max]

is shifted by j·� (respectively, by -j·�) from [emin, emax].

Since FT
i

,s(v)= max(|emin�v|, |emax�v|) by Proposition 5.2
where [emin, emax]=CER(Ti, s), the error function of a synopsis
s0 is shifted from that of s by j·� (i.e., FT

i

,s0(v)=FT
i

,s(v�j·�)),
if the Ti-CER of s0 is shifted from that of s by j·�.

Example 5.12.: For a T6-synopsis s6,1 and a T7-synopsis
s7,1 whose Ti-CERs are [0, 0] and [2, 6] respectively in Fig-
ure 3(a), C3(s6,1, s7,1)={-3, -2, -1} with �=1. By Lemma 5.9,
the synopses s3,2, s3,3 and s3,4 are constructed from the syn-
opses s6,1 and s7,1 with values -3, -2 and -1, respectively. As
Lemma 5.11 states, the T3-CERs of s3,3 and s3,4 are shifted
from that of s3,2 by � and 2� respectively in Figure 3(a).

5.2 Properties of Extended Synopses
For a pair of a T2i-synopsis sL and a T2i+1-synopsis sR, the

Ti-constructed coef synopsis set, denoted by SC
i (sL, sR),

is {s1, . . . , s|C
i

(s
L

,s
R

)|} where every Ti-synopsis sj is con-
structed from sL and sR with the j-th coe�cient (respec-
tively, (|Ci(sL, sR)|+1�j)-th coe�cient) in Ci(sL, sR), if the
length of CER(T2i, sL) is at most (respectively, larger than)
that of CER(T2i+1, sR). In addition, the Ti-constructed no-
coef synopsis set, denoted by SNC

i (sL, sR), is {s} where s
is constructed from sL and sR without selecting any coe�-
cient in ci. Note that the synopsis set {s3,2, s3,3, s3,4}, which
constructed from a pair of s6,1 and s7,1 in Example 5.12, is
the Ti-constructed coef synopsis set of s6,1 and s7,1.
To denote a set of Ti-synopses whose Ti-CERs are shifted

by � from each other, we introduce an extended synopsis.

Definition 5.13.: A Ti-CER set P={p1, . . . , pm} is called
an extended Ti-CER set if every pj is shifted from p1 by
(j�1)·�. For a Ti-synopsis set S, its Ti-CER set is the set of
the Ti-CERs of all synopses in S. A Ti-synopsis set is called
a Ti-extended synopsis (or simply extended synopsis)
if (1) its Ti-CER set forms an extended Ti-CER set and (2)
the sizes of all its synopses are the same. For an extended
synopsis S={s1, . . . , sm}, its head and tail synopses are
s1 and sm, respectively. In addition, its head (respectively,
tail) Ti-CER is the Ti-CER of s1 (respectively, sm).

Since the Ti-CERs of the synopses in a Ti-extended synopsis
S are shifted from each other by �, we can obtain the Ti-
CERs of all synopses in S from that of its head synopsis.
Thus, instead of keeping the Ti-CER of every synopsis in S,
we denote compactly an Ti-extended synopsis S by its head
Ti-CER, its synopsis size and its group size only.

Example 5.14.: Consider SC
3 (s6,1, s7,1) of s6,1 and s7,1 in

Figure 3(a). The group size of SC
3 (s6,1, s7,1) is |C3(s6,1,s7,1)|

=3 by Definition 5.10 and the head T3-CER of SC
3 (s6,1, s7,1),

is [-1, 3] as shown in Example 5.5.

We generalize the notions of Ti-constructed coef and no-
coef synopsis sets for extended synopses as follows.

Definition 5.15.: For a pair of a T2i-extended synopsis
SL and a T2i+1-extended synopsis SR, the Ti-constructed
coef synopsis set, denoted by SC

i (SL, SR), is S
C
i (SL, SR)=S

s
L

2S
L

,s
R

2S
R

SC
i (sL, sR). In addition, the Ti-constructed

nocoef synopsis set, denoted by SNC
i (SL, SR), is S

NC
i (SL,

SR)=
S

s
L

2S
L

,s
R

2S
R

SNC
i (sL, sR).

5.3 Computing Required Synopsis Sets
Given a set S of Ti-synopses with the same size, to find

every synopsis in S which is optimal for an incoming value
to ci, we define a required synopsis set of S below.

Definition 5.16.: For a Ti-synopsis set S whose synopsis
sizes are the same, let P be the set of all distinct Ti-CERs
of the synopses in S. The required Ti-CER set of S in Ti,
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…
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Figure 6: Synopses built from extended synopses

denoted by Preq(Ti, S)={[e1,min, e1,max], . . . , [em,min, em,max]},
is the maximal subset of P such that (1) ej,min<ej+1,min (with
1j<m), (2) ej,max�ej,min2✏ and (3) every [ej,min, ej,max]
does not contain any other Ti-CER in P . Let SP (pj , S) be
the set of every synopsis s2S such that its Ti-CER is a pj .
Then, a required synopsis set of S is {s1, . . . , s|P

req

(S)|}
where sj2SP (pj , S) with the j-th pj in Preq(Ti, S).

Example 5.17.: For T1-constructed coef synopsis set SC
1 (

S2,1, S3,2)={s1,1, . . . , s1,9} in Figure 6(a), since CER(T1, s1,1)
=[3, 7], CER(T1, s1,j)=[4, 8] with 2j5 and CER (T1, s1,j)
= [5, 9] with 6j9, the required Ti-CER set of SC

1 (S2,1, S3,2)
is {[3, 7], [4, 8], [5, 9]} with ✏=3. Thus, a required synopsis
set of SC

1 (S2,1, S3,2) has a single synopsis from {s1,1}, {s1,2,
. . . , s1,5} and {s1,6, . . . , s1,9} respectively.

We next show that a required synopsis set of a Ti-synopsis
set S contains every optimal synopsis appearing in S.

Lemma 5.18.: For a Ti-synopsis set S with the same syn-
opsis size, if S has an optimal synopsis s for an incoming
value v to ci, every required synopsis set of S contains a
Ti-synopsis s0 such that FT

i

,s0(v)=FT
i

,s(v).

To compute the optimal Ti-synopses, we need only re-
quired synopsis sets of SC

i (SL, SR) and SNC
i (SL, SR) by

Lemma 5.18. We will show that the required synopsis set
also forms an extended synopsis, and present how to com-
pute its compact representation in O(1) time.

(a)Arequired synopsis set ofSC
i (SL,SR): If we blindly

union all Ti-constructed coef synopsis sets SC
i (sL,sR) for ev-

ery pair of synopses sL2SL and sR2SR, there exist many
Ti-synopses whose Ti-CERs are the same (i.e., their error
functions are the same too). However, we need to keep only a
single synopsis among them, as illustrated in Example 5.17.
Based on the observation, we obtain the following lemma.

Lemma 5.19.: For a pair of a T2i-extended synopsis SL

and a T2i+1-extended synopsis SR, every required synopsis
set Sreq of SC

i (SL, SR) is a Ti-extended synopsis such that
the head (respectively, tail) Ti-CER of Sreq is the same as
that of SC

i (sL, sR) where sL and sR are SL and SR’s head
(respectively, tail) synopses, respectively.

Example 5.20.: Consider Example 5.17 again. Every re-
quired synopsis set of SC

1 (S2,1, S3,2) is an extended synopsis
whose head T1-CER is [3, 7] which is computed by Lemma 5.4.
By Lemma 5.19, the head T1-CER is computed from the T2-
CER of S2,1’s head synopsis s2,1 and the T3-CER of S3,2’s head
synopsis s3,2 with the smallest value 4 in C1(s2,1, s3,2). Fig-
ure 6(a) shows the T1-CERs of the synopses in SC

i (S2,1, S3,2).
The set {s1,1, s1,2, s1,9} is a required synopsis set of SC

1 (S2,1,
S3,2) computed by Lemma 5.19 and it forms an extended
synopsis S1,1 as illustrated in Figure 6(b).

The smallest (and largest) coe�cient value in Ci(sL, sR)
can be calculated in O(1) time by Definition 5.10. More-
over, the Ti-CER of the Ti-synopsis constructed from a pair
of a T2i-synopsis sL and a T2i+1-synopsis sR with a coe�-
cient value can be computed in O(1) time by Lemma 5.4.
Thus, the head and tail Ti-CERs of a required synopsis set of
SC
i (SL, SR) in Lemma 5.19 can be obtained in O(1) time.
We next consider the case of constructing a required syn-

opsis set of SNC
i (SL, SR).

(b) A required synopsis set of SNC
i (SL, SR): For a

pair of a T2i-extended synopsis SL={sL,1, . . . , sL,n1} and a
T2i+1-extended synopsis SR={sR,1, . . . , sR,n2}, let PL={pL,1,
. . . , pL,n1} be the T2i-CER set of SL and PR={pR,1, . . . , pR,n2}
be the T2i+1-CER set of SR as well as p(pL,j , pR,k) be the
Ti-CER constructed from pL,j and pR,k. We generate a re-
quired synopsis set of SNC

i (SL, SR) di↵erently depending
on whether there exists a containment relationship between
every pair of pL,j2PL and pR,k2PR or not as follows.
Case (b-1): When there is no containment relation-

ship between any pair of pL,j2PL and pR,k2PR, the Ti-CER
pclosest constructed from the closest pair (i.e., the pair whose
min values are the closest) of a T2i-CER in PL and a T2i+1-
CER in PR is contained by those constructed from every other
pair of pL,j2PL and pR,k2PR. Thus, if the length of pclosest
is at most 2✏, the required Ti-CER set Preq(Ti, S

NC
i (SL, SR))

defined in Definition 5.16 contains a single Ti-CER pclosest
and is trivially an extended synopsis. For instance, in Fig-
ure 7(a), the closest pair in PL={pL,1, pL,2, pL,3} and PR=
{pR,1, pR,2} is (pL,3=[-3, 1], pR,1=[0, 2]). By Lemma 5.4,
the Ti-CER p(pL,3, pR,1) is [-3, 2] and is contained by the
Ti-CER constructed from every other pair of pL,j and pR,k.
Thus, Preq(Ti, S

NC
i (SL, SR)) contains p(pL,3, pR,1) only.

Case (b-2): We next examine the case of when there is
a containment relationship between pairs of pL,j2PL and
pR,k2PR. Without loss of generality, assume that pL,j con-
tains pR,k. It implies that the length of pL,j is at least that
of pR,k. By Lemma 5.4, p(pL,j , pR,k) is the same as pL,j

and (1) pL,j=p(pL,j , pR,k) is contained by p(pL,j , pR,k0) with
1k0n2. Furthermore, (2) p(pL,j , pR,k) is contained by
p(pL,j0 , pR,k) for pL,j0 which does not contain pR,k. Based on
(1) and (2), to compute the required Ti-CER set Preq(Ti, S

NC
i (

SL, SR)), we only need to consider the set P 0
L which is the set

of every p(pL,j , pR,k) such that pL,j2PL contains pR,k2PR.
Since p(pL,j , pR,k)=pL,j , we have P 0

L✓PL. Thus, there is
no containment relationship between any pair of elements
in P 0

L. In other words, P 0
L becomes the required Ti-CER

set Preq(Ti, S
NC
i (SL, SR)). In addition, since PL (respec-

tively, PR) is an extended T2i-CER set (respectively, extended
T2i+1-CER set), when pL,j contains pR,k, pL,j+x also contains
pR,k+x with 1j+xn1 and 1k+xn2. Therefore, P 0

L

is an extended Ti-CER set.
From the cases of (b-1) and (b-2), we obtain the following.
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Figure 7: A required synopsis set of SNC
i (SL, SR)

Lemma 5.21.: For a pair of a T2i-extended synopsis SL

and a T2i+1-extended synopsis SR, every required synopsis
set of the Ti-constructed nocoef synopsis set SNC

i (SL, SR) is
a Ti-extended synopsis satisfying the following properties.

(a) If there is no containment relationship between
any pair of elements in SL’s T2i-CER set and SR’s
T2i+1-CER set: Let sL and sR be the pair of a T2i-syn-
opsis and a T2i+1-synopsis, whose T2i-CER and T2i+1-
CER are the closest, and s be the Ti-synopsis constructed
from sL and sR with no coe�cient in ci. If the Ti-CER
length of s is at most 2✏, every required synopsis set
Sreq of SNC

i (SL, SR) has a single synopsis s. Other-
wise, Sreq=;.

(b) Otherwise: Without loss of generality, assume that
the T2i-CER’s length of a synopsis in SL is at least that
of SR. Let m1 (respectively, m2) be the smallest (re-
spectively, largest) integer such that the T2i-CER of sm1

(respectively, sm2) in SL={s1, . . . , sm} contains that
of a synopsis in SR. The head (respectively, tail) Ti-
CER of every required synopsis set of SNC

i (SL, SR) is
the same as the T2i-CER of sm1 (respectively, sm2).

Example 5.22.: Consider a T2i-extended synopsis SL=
{sL,1, sL,2, sL,3}, whose head and tail T2i-CERs are [-5, 1]
and [-3, 3], and a T2i+1-extended synopsis SR ={sR,1, sR,2},
whose head and tail T2i+1-CERs are [-2, 2] and [-1, 3], in Fig-
ure 7(b). Since pL,2=[-4, 2] has pR,1=[-2, 2] and pL,3=
[-3, 3] has pR,2=[-1, 3], Preq(Ti, S

NC
i (SL, SR)) is {[-4, 2], [-3,

3]} which forms an extended Ti-CER set.

We can check in constant time if there is a containment
relationship between a pair of pL,j2PL and pR,k2PR. In
addition, if there is a pair of pL,j and pR,k with a contain-
ment relationship, the head and tail Ti-CERs of a required
synopsis set f SNC

i (SL, SR) can be obtained in O(1) time.
For instance, when the Ti-CER’s length of SL is larger than
that of SR, the head T2i-CER sL,H of SL is the head Ti-CER
of Sreq if sL,H contains the T2i+1-CER of a synopsis in SR.
Otherwise, we can obtain the first T2i-CER of SL containing
the T2i+1-CER of SR in O(1) time.

6. COMPUTING AN OPTIMAL EXTENDED
SYNOPSIS SET

In this section, given a pair of optimal extended synopsis
sets in c2i and c2i+1 respectively, we show how to generate
an optimal extended synopsis set in a node ci.

6.1 A Required Extended Synopsis Set
We define a required extended synopsis set in each node

ci which is the result of eliminating the synopses in every

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9-6

A required 𝑇𝑖-CER 
set of 𝑆1 ∪ ⋯∪ 𝑆5

𝑃1
𝑃2

𝑃3

𝑃4

A 𝑇𝑖-extended synopsis 
Set S𝐸= 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5

A 𝑇𝑖-extended
synopsis 𝑆1

𝑠1𝑠2𝑠3

𝑠1

A 𝑇𝑖-extended
synopsis 𝑆2

𝑠4𝑠5𝑠6

𝑠4𝑠5𝑠6

𝑠7𝑠8
A 𝑇𝑖-extended

synopsis 𝑆3

𝑠7𝑠8

𝑠9𝑠10𝑠11𝑠12
A 𝑇𝑖-extended

synopsis 𝑆4
𝑠13𝑠14

A 𝑇𝑖-extended
synopsis 𝑆5

𝑠13𝑠14
Figure 8: A required extended synopsis set

generated extended synopsis whose Ti-CERs contain that of
a synopsis in another generated extended synopsis.

Definition 6.1. : A T(i,b)-extended synopsis set is a
set of Ti-extended synopses with the same synopsis size b.
Let SALL(SE) be the set of all synopses represented by each
extended synopsis in a T(i,b)-extended synopsis set SE. Also,
let P1, . . . , Pm be a disjoint partition of the required Ti-CER
set Preq(Ti, SALL(SE)) such that (1) all elements in Pj form
an extended Ti-CER set contained by the Ti-CER set of an ex-
tended synopsis in SE and (2) the minimum error of the first
element in Pj is smaller than that in Pj+1 with 1j<m.
Then, let SP

j

be an extended synopsis in SE whose Ti-CER set
contains Pj and let S0

P
j

be an extended synopsis consisting
of every synopsis in SP

j

whose Ti-CER appears in Pj . Then,
a required extended synopsis set of the T(i,b)-extended
synopsis set SE is the set of every S0

P
j

with 1jm.

Example 6.2.: For an extended synopsis set SE={S1, . . . ,
S5} with their extended Ti-CER sets in Figure 8, SALL(SE) is
{s1, . . . , s14}. Figure 8 shows the required Ti-CER set Preq(Ti,
SALL(SE)) by pruning the X-marked Ti-CERs, based on con-
tainment relationships. Then, Preq(Ti, SALL(SE)) is parti-
tioned into four subsets P1, . . . , P4 each of which forms an
extended Ti-CER set, as in Figure 8. {{s1}, {s4, s5, s6}, {s7,
s8}, {s13, s14}} is a required extended synopsis set of SE.

For a set S of synopses with the same size, we define the
winning interval of a synopsis s in S as the incoming value
interval such that s has the smallest error among all synopses
in S. Note that the concept of winning intervals was previ-
ously investigated for a hierarchical structure, such as CHH
or LH, in [14, 17]. Meanwhile, we compute the winning in-
terval of each synopsis in the synopses constructed in each
node of a coe�cient tree. The following lemma allows us to
calculate the winning interval of every synopsis in S. Note
that vHi is defined in Section 3.2 and used in Lemma 3.4.

Lemma 6.3. : For a synopsis set S with the same-sized
synopses, let Sreq={s1, . . . , sm} be a required synopsis set of
S where CER(Ti, sj)=[ej,min, ej,max]. Also, let (1) mid(s0, s1)=
vHi �✏, (2) mid(sj , sj+1)=(ej,min+ej+1,max)/2 with 1j<m,
and (3) mid(sm, sm+1) =vHi +✏ where [vHi �✏, vHi +✏] is the
candidate incoming value interval in ci by Lemma 3.4. Then,
the synopsis sj has the minimum error for every value v in
[mid(sj-1, sj), mid(sj , sj+1)] among all synopses in S.

To generalize Lemma 6.3 to extended synopsis sets, parti-
tion a required synopsis set Sreq into disjoint subsets S1, . . . ,
Sm, where Sj is an extended synopsis. Let mid(Sj , Sj+1)=
(eTj,min+eHj+1,max)/2 where eHj,max (respectively, eTj,min) is the
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maximum (respectively, minimum) error of Sj ’s head (re-
spectively, tail) Ti-CER. In addition, let mid(S0, S1)=vHi �✏
and mid(Sm, Sm+1)=vHi +✏. Then, by Lemma 6.3, each ex-
tended synopsis Sj has a synopsis with the smallest error
for every value v in [mid(Sj-1, Sj),mid(Sj , Sj+1)]. Thus, we
obtain the following corollary.

Corollary 6.4.: For an extended synopsis set SE with
the same synopsis size, consider a required extended synopsis
set Sreq={S1, . . . , Sm} of SE. Then, each extended synopsis
Sj in Sreq has a synopsis with the smallest error for every
value v in [mid(Sj-1, Sj),mid(Sj , Sj+1)].

By Corollary 6.4, for a required extended synopsis set Sreq

={S1, . . . , Sm}, the winning interval of the extended syn-
opsis Sj with respect to Sreq, denoted by IW (Sj , Sreq), is
[mid(Sj-1, Sj),mid(Sj , Sj+1)].

Example 6.5.: Consider SE’s required extended synopsis
set Sreq={S0

1, S
0
2, S

0
3, S

0
4} where S0

1={s1}, S0
2={s4, s5, s6},

S0
3={s7, s8} and S0

4={s13, s14} in Example 6.2. As shown
in Figure 8, mid(S0

1, S
0
2)=(eT1,min+eH2,max)/2=-4 and mid(S0

2,

S0
3)=(eT2,min+eH3,max)/2=1. Thus, IW (S0

2, Sreq)=[-4, 1].

6.2 An Optimal Extended Synopsis Set
If there exists an extended synopsis with the synopsis size

smaller than b such that its winning interval contains an in-
coming value v to ci, an extended synopsis with the synopsis
size b cannot have an optimal synopsis for v to ci by Def-
inition 3.3. Thus, we eliminate such non-optimal extended
synopses for computing a Ti-extended synopsis set such that
there exists an optimal Ti-synopsis for every incoming value
to ci. We define a Ti-optimal extended synopsis set con-
structed from a pair of a T2i-optimal extended synopsis set
and a T2i+1-optimal extended synopsis set as follows.

Definition 6.6.: Consider a pair of a T2i-extended syn-
opsis set SEL and a T2i+1-extended synopsis set SER.

• Let UC
i (respectively, UNC

i ) be the union of the Ti-
constructed coef (respectively, nocoef ) synopsis set SC

i (
SL, SR) (respectively, S

NC
i (SL, SR)) for all pairs of SL

in SEL and SR in SER. The T(i,b)-extended synop-
sis set constructed from SEL and SER, denoted by
U(i,b)(SEL, SER), is the set of every extended synopsis
with the synopsis size b in UC

i [UNC
i .

• Let S(i,b)={S(i,b),1, . . . , S(i,b),m} be a required extended
synopsis set of U(i,b)(SEL, SER). A T(i,b)-strictly op-
timal extended synopsis set O(i,b) constructed from
SEL and SER is a set of every S(i,b),j whose winning
interval IW (S(i,b),j , S(i,b)) contains a value v that is
not contained by the winning interval of any extended
synopsis in S(i,0)[S(i,1)[ . . . [S(i,b-1).

• A Ti-optimal extended synopsis set constructed from
SEL and SER is the union of the T(i,b)-strictly optimal
extended synopsis sets constructed from SEL and SER

with 0b |coe↵(Ti)|.
To find an optimal synopsis e�ciently, we compute a Ti-

optimal extended synopsis set for every coe�cient node ci by
invoking OptExt-EB (in Section 4.2) which calls the proce-
dures presented below. Let Nb be the number of pairs of ex-
tended synopses hSL, SRi such that SL2O(2i,p), SR2O(2i+1,q)

and p+q=b (i.e., N

b

=
P

b

p=0 |O(2i,p)|·|O(2i+1,b�p)|).

The procedure ExtSynNoCoef: When no coe�cient is
chosen in ci, MinHaarSpace considers the pairs of E2i[v] and
E2i+1[v] to fill Ei[v]. Similarly, we return D;

(i,b), which is
the set of the extended synopses with synopsis size b gen-
erated from every pair of extended synopses in O2i and
O2i+1 respectively without a coe�cient in ci. It is produced
by unioning SNC

i (SL, SR) for every pair of SL2O(2i,p) and
SR2O(2i+1,q) such that IW (SL,O(2i,p)) and IW (SR,O(2i+1,q))
overlap and p+q=b. Thus, ExtSynNoCoef takesO(Nb) time.

The procedure ExtSynCoef: For every pair of extended
synopses SL2O(2i,p) and SR2O(2i+1,q) with p+q=b�1, there
always exist an incoming value v and a coe�cient value x in
ci such that v+x 2 IW (SEL,O(2i,p)) and v�x 2 IW (SER,
O(2i+1,q)). Thus, we return Dc

(i,b), which is the set of the ex-
tended synopses with synopsis size b generated from every
pair of extended synopses in O2i and O2i+1 respectively with
a coe�cient in ci (i.e.,

S
S
L

2O(2i,p),SR

2O(2i+1,b�p�1)
SC
i (SL,

SR)). This procedure requires O(Nb�1) time.

The procedure RequiredSet: It takes a Ti-extended
synopsis set Dc

(i,b)[D;
(i,b) and returns its required extended

synopsis set. We first obtain SE={S1, . . . , Sm} fromDc
(i,b)[

D;
(i,b) by sorting the elements in Dc

(i,b)[D;
(i,b) in increas-

ing order of the minimum errors of their head Ti-CERs. For
each extended synopsis Sj2SE , we next examine every ex-
tended synopsis Sk2SE with j<k until the maximum error
of Sj ’s tail Ti-CER is at least the minimum error of Sk’s
head Ti-CER. For a pair hSj , Ski, if there is any synopsis
s2Sj (respectively, s02Sk) whose Ti-CER contains that of
s02Sk (respectively, s2Sj), we remove every such synopsis
s (respectively, s0) from Sj (respectively, Sk) in O(1) time.
Since |Dc

(i,b)[D;
(i,b)|=Nb�1+Nb, for each Sj , there may ex-

ist (Nb�1Nb) number of Sks. Thus, the time complexity of
RequiredSet is O((Nb�1+Nb)

2) in the worst case. However,
for each Sj , because SE is sorted by the minimum errors of
Sk’s head Ti-CERs, the number of Sks to be checked is much
smaller than (Nb�1+Nb) in practice. Thus, RequiredSet
takes O((Nb�1+Nb)· log(Nb�1+Nb)) time due to sorting.

The procedure StrictOptSet: From the result D(i,b) of
RequiredSet as well as Ub�1={IW (S,O(i,b0))|S2O(i,b0) and
0b0b�1} which is the union of the winning intervals of
all Ti-extended synopses contained in O(i,0)[ . . . [O(i,b-1),
StrictOptSet computes a T(i,b)-strictly optimal extended
synopsis set O(i,b). Every Ti-extended synopsis S in D(i,b),
whose IW (S,D(i,b)) contains an incoming value v that is not
contained by Ub�1, is inserted into O(i,b). Finally, StrictOpt-
Set returns O(i,b) and Ub=Ub�1[{IW (S,D(i,b))|S2O(i,b)}.
Since D(i,b) is a required synopsis set of Dc

(i,b)[D;
(i,b), we

have |D(i,b)||Dc
(i,b)[D;

(i,b)|=(Nb�1+Nb). Thus, the time
complexity of StrictOptSet is O(Nb�1+Nb).

The procedure OptExtRoot: It computes a T0-optimal
extended synopsis set O0 from a T1-optimal extended syn-
opsis set O1. Let Bi be the smallest synopsis size of all
extended synopses in a Ti-optimal extended synopsis set Oi.
If there is an extended synopsis S with zero2IW (S,O(1,B1))
in a T(1,B1)-strictly optimal extended synopsis set O(1,B1),
there is an optimal synopsis s; with zero2IW (s;,O(1,B1))
in S. Thus, a T(0,B0)-strictly optimal extended synopsis set
O(0,B0) becomes {s;}. Otherwise (i.e., there is no such an
extended synopsis in O(1,B1)), there is no optimal synopsis
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with the size B1 and we need to find an optimal synop-
sis with the size B1+1 by selecting a coe�cient in the root
node. Thus, we first select an extended synopsis S in O(1,B1)

with the shortest T1-CER length. We next set O(0,B0)={sc0}
where sc0 is the synopsis constructed from S’s head synopsis
with a root coe�cient. OptExtRoot takes O(|O1|) time.

Time complexity of OptExt-EB: To obtain a Ti-optimal
extended synopsis set, we need to calculate every T(i,b)-
strictly optimal extended synopsis set. Furthermore, since
RequiredSet is the slowest among all procedures used in the
for loop of lines 5-9, it takes O((Nb�1+Nb)· log(Nb�1+Nb))
time for an iteration of the for loop. Thus, the for loop

takes O(
P(M2i+M2i+1)+1

b=(m2i+m2i+1)
(Nb�1+Nb)· log(Nb�1+Nb)) time.

Note that
P

b Nb= |O2i|·|O2i+1| because every pair of ex-
tended synopses in O2i and O2i+1 respectively is examined
exactly once by each ExtSynCoef and ExtSynNoCoef during
the course of OptExt-EB. Thus, OptExt-EB takes O(|O2i|·
|O2i+1|· log(|O2i|·|O2i+1|) time to compute a Ti-optimal ex-
tended synopsis set, and the overall time complexity of our
OptExt-EB is O(N ·|O2i|·|O2i+1|· log(|O2i|·|O2i+1|)) where N
is the number of nodes in the coe�cient tree T .
Let m be the maximum number of extended synopses in

every Oi. The running time of OptExt-EB isO(N ·m2· logm).
Because m⌧d2✏/�e in practice (See the experiments in Sec-
tion 8.1), where d2✏/�e is the size of the candidate incom-
ing value set IV(i), the running time of OptExt-EB is much
smaller than that of MinHaarSpace (i.e., O(N(✏/�)2)).

7. EXTENDING TO HAAR+ SYNOPSES
In this section, we describe how to apply our techniques

to a Haar+ tree. The root node of a Haar+ tree has a single
coe�cient whose value contributes positively to all data val-
ues. The internal nodes of a Haar+ tree correspond to triads
which consist of head, left supplementary and right supple-
mentary coe�cients. A head coe�cient in a triad Ci acts in
exactly the same way as an unrestricted Haar wavelet coe�-
cient. Thus, our techniques can be applied directly for head
coe�cients in Ci. A left (respectively, right) supplementary
coe�cient contributes positively to the data values in its left
(respectively, right) subtree only. We only provide the de-
tails for left supplementary coe�cients since the details for
right supplementary coe�cients are symmetric.
To apply our techniques to the case of when a left supple-

mentary coe�cient is selected, the following lemma is used
to restrict the left coe�cient values in ci and to calculate
the Ti-CER of a Ti-synopsis from a T2i-CER and a T2i+1-CER.

Lemma 7.1. : Consider a T2i-synopsis sL and a T2i+1-
synopsis sR with CER(T2i, sL)=[eL,min, eL,max] and CER(T2i+1,
sR)=[eR,min, eR,max]. To construct a Ti-synopsis s from sL
and sR with a left supplementary coe�cient value x in ci, it
is su�cient to consider x in [min(aL

min, a
L
max), max(aL

min, a
L
max)]

where aL
min=eL,min�eR,min and aL

max=eL,max�eR,max. Further-
more, for a left supplementary coe�cient value x in ci, the
Ti-CER of s is [min(eL,min�x, eR,min),max(eL,max�x, eR,max)].

Since we consider only the multiples of � for coe�cient
values, we define the candidate left supplementary coe�cient
value set and Ti-constructed left coef synopsis set.

Definition 7.2.: Consider a T2i-synopsis sL and a T2i+1-
synopsis sR with CER(T2i, sL)=[eL,min, eL,max] and CER(T2i+1,
sR)=[eR,min, eR,max]. Let amin=eL,min�eR,min and amax=eL,max

�eR,max. The candidate left supplementary coe�cient

Table 2: Implemented algorithms

Algorithms Description

Error-bounded synopsis problem
OptExt-EB Our unrestricted wavelet synopsis algorithm
OptExtHP-EB Our algorithm for Haar+ synopses
MinHaarSpace The state-of-the-art [18] for unrestricted wavelets
MinHaarSpace-HP The state-of-the-art [18] for Haar+ synopses

Space-bounded synopsis problem
IndirectExt The indirect algorithm based on OptExt-EB
IndirectExt-HP The indirect algorithm utilizing OptExtHP-EB
IndirectHaar The indirect algorithm [18] using MinHaarSpace
IndirectHaar-HP The indirect algorithm [18] with MinHaarSpace-HP

value set CLi (sL, sR) is {xs+j·� | 0j<m} with m=(xe�
xs)/�+1 where xs= dmin(amin, amax)/�e·� and xe=bmax(amin,
amax)/�c·�. Furthermore, the Ti-constructed left coef syn-
opsis set, denoted by SLC

i (sL, sR), is {s1, . . . , s|CL
i

(s
L

,s
R

)|}
where each Ti-synopsis sj is constructed from sL and sR
with the j-th coe�cient in CLi (sL, sR). In addition, for a
pair of a T2i-extended synopsis SL and a T2i+1-extended
synopsis SR, the Ti-constructed left coef synopsis set isS

s
L

2S
L

,s
R

2S
R

SLC
i (sL, sR) which is denoted by SLC

i (SL, SR).

Lemma 7.3.: For a T2i-extended synopsis SL and a T2i+1-
extended synopsis SR, every required synopsis set of a Ti-
constructed left coef synopsis set SLC

i (SL, SR) is a Ti-extended
synopsis such that the head (respectively, tail) Ti-CERs of S
is the same as that of SLC

i (sL, sR) where sL and sR are SL

and SR’s head (respectively, tail) synopses, respectively.

Similarly, we can define the Ti-constructed right coef
synopsis set, denoted by SRC

i (SL, SR). By Lemma 7.3, we
can obtain the required synopsis sets of SLC

i (SL, SR) and
SRC
i (SL, SR) in O(1) time. By utilizing the techniques pre-

sented in Sections 5 and 6, it is straightforward to obtain
OptExtHP-EB extended from OptExt-EB for Haar+ synopses.
Since OptExtHP-EB also exploits extended synopses, the pro-
cedures RequiredSet and StrictOptSet of OptExt-EB are
also utilized in OptExtHP-EB. However, to utilize the proce-
dure ExtSynCoef in OptExt-EB for OptExtHP-EB, we need
to compute T(i,b)-extended synopsis set constructed from
an optimal T2i-extended synopsis set and an optimal T2i+1-
extended synopsis set based on SLC

i (SL, SR) and SRC
i (SL, SR).

The details on how to extend our techniques to Haar+ syn-
opses can be found in our technical report [19].

8. EXPERIMENTS
The tested algorithms are shown in Table 2. We use Javac

1.7 compiler for our implementations. Although we got
the C++ source code of MinHaarSpace-HP used in [18], we
reimplemented MinHaarSpace-HP. We conducted the exper-
iments on the machine with Intel i3 3.3 GHz CPU and 8GB
RAM running Linux. We compare the performance of our
OptExt-EB (respectively, OptExtHP-EB) with MinHaarSpace
(respectively, MinHaarSpace-HP) for unrestricted wavelet (re-
spectively, Haar+) synopses. In addition, we demonstrate
the superiority of our IndirectExt and IndirectExt-HP for
the space-bounded synopsis problem compared with the ex-
isting algorithms IndirectHaar and IndirectHaar-HP [18].
We ran our proposed algorithms ten times and report the
average execution times. Some algorithms which do not ter-
minate within 3 hours are not plotted. The parameters used
in our experiments are summarized in Table 3.
Data sets: We used both synthetic and real-life datasets.

The synthetic dataset was generated with a Zipf distribution
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Figure 9: Varying the error bound ratio " for the error-bounded synopsis problem
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Figure 10: Varying the resolution step � for the error-bounded synopsis problem

in the domain [0,M0] varying the data size n and the skew-
ness ↵. The real-life datasets are WC [1] and TM datasets
(http://kdd.ics.uci.edu). WC dataset contains the request
frequency of 98 World Cup Web sitefrom Apr. 30 to Jul. 26
in 1998. TM dataset has the sea surface temperatures mea-
sured from the equatorial Pacific. WC and TM datasets
include 89,997 and 161,072 values whose averages are 9,714
and 26.75 as well as standard deviations are 237,733 and
1.91 with the domains [0, 16777216] and [17.35, 31.26], re-
spectively. WC dataset is far more skewed than TM dataset.
Recall that all algorithms consider the multiples of � for

the coe�cient values. Thus, we varied � from 1 to 10 for
synthetic datasets, 200 to 2000 for WC dataset and 0.0002
to 0.001 for TM dataset. The default value of � for the
synthetic, WC and TM datasets are 1, 1000 and 0.0005, re-
spectively. Since datasets have di↵erent data value domains,
for the error-bounded synopsis algorithms, we used an er-
ror bound ratio "=✏/(M0�m0) instead of an error bound ✏.
The error bound ratio " is varied from 0.02 to 0.1. For the
space-bounded synopsis problem, we used the space bound
ratio �=B/n by a similar reason where B is a space bound
and varied the space bound ratio � from 0.01 to 0.05.

8.1 The Error-bounded Synopsis Problem
Varying the error bound ratio ": Figure 9 shows

the experiment results varying " on the synthetic, WC and
TM datasets. For each node ci, MinHaarSpace computes
Ei[v] and Fi[v] for every incoming value v in [vHi �✏, vHi +✏]
as mentioned in Section 3.2 and the range grows with in-
creasing an error bound ✏. Thus, the execution times of
MinHaarSpace increase over all datasets with incrementing
an error bound ratio ". In contrast, the performance of
OptExt-EB is less a↵ected by changing an error bound ratio
" since OptExt-EB keeps a Ti-optimal extended synopsis set
in each node ci and represents it as a set of Ti-extended syn-
opses by their compact representations (i.e., the head Ti-CER
and the group size). Furthermore, the compact representa-

Table 3: Parameters for synthetic datasets

Parameter Range Default

Resolution step (�) 1, 2, 3, . . . , 9, 10 1
Data size (n) 218 ⇠ 221 218

Domain of data values ([m0,M0]) [0, 8192 ⇠ 65536] [0,16384]
Skewness (↵) 0.125 ⇠ 8 1

tion of each Ti-extended synopsis in a Ti-optimal extended
synopsis set is computed from those in a T2i-optimal ex-
tended synopsis set and T2i+1-optimal extended synopsis set
in O(1) time. Thus, OptExt-EB is superior to MinHaarSpace
over all datasets with varying ". Similarly, in the Haar+

case, OptExtHP-EB is much faster than MinHaarSpace-HP.
As shown in Figure 9, MinHaarSpace-HP is slower than

MinHaarSpace. The reason is that the time complexity of
MinHaarSpace (i.e., O(N(✏/�)2)) is smaller than that of
MinHaarSpace-HP (i.e., O(N((�+✏)/�)2)) where �=M0�
m0. To see how many entries are stored in each level of the
tree T0, we show the average numbers of entries Ei[v]s kept
in a node of the top-3 levels ` of the tree by MinHaarSpace-HP
and MinHaarSpace for WC dataset in Table 4.
Meanwhile, OptExtHP-EB is faster than OptExt-EB. Since

each node of a Haar+ tree has more opportunity to select a
left or right supplementary coe�cient, OptExtHP-EB is likely
to generate an extended synopsis covering a wider winning
interval. Thus, the number of extended synopses stored by
OptExtHP-EB tends to be smaller than that by OptExt-EB.
We report the average numbers of extended synopses stored
in a node of the top-3 levels ` of the trees by both algorithms
for WC dataset in Table 4. Note that the numbers of entries
stored by the traditional algorithms are much larger than
those by our algorithms. In addition, for the default value
of ✏ on WC dataset, we found that the sizes of the optimal
synopses generated by OptExtHP-EB and MinHaarSpace-HP
are 126, while those of OptExt-EB and MinHaarSpace are
229. Thus, OptExtHP-EB is the best performer since it is the
fastest and finds the smallest synopsis.
We also compare the memory usages of the implemented

algorithms onWC dataset. The memory usages of OptExtHp-
EB, OptExt-EB, MinHaarSpace-HP and MinHaarSpace are 9,
52, 552 and 76 KBs, respectively. Note that the memory
usages of our algorithms are smaller than those of the tra-
ditional algorithms. The reason is that the numbers of en-

Table 4: Statistics for WC dataset

`

# for �=1000 (# for �=500)
# of extended synopses # of computed entries E

i

[v]s
OptExtHP-EB OptExt-EB MinHaarSpace-HP MinHaarSpace

0 18 (18) 160 (225) 18120 (36239) 1341 (2683)
1 10.5 (10.5) 111 (156.5) 9731.5 (19462) 1341 (2683)
2 7.8 (8.3) 76 (107) 5707.8(11414.5) 1341.5(2683.3)
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Figure 11: Varying n, M0 and ↵ on synthetic datasets for the error-bounded synopsis problem
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Figure 12: Varying the space bound ratio � for the space-bounded synopsis problem

tries stored by our algorithms are much smaller than those
by the traditional algorithms as shown in Table 4, even
though a single Ti-extended synopsis used in OptExt-EB
or OptExtHP-EB requires more memory than an entry (i.e.,
Ei[v] or Fi[v]) used in MinHaarSpace or MinHaarSpace-HP.

Varying the resolution step �: We report the experi-
ment result with varying � in Figure 10. MinHaarSpace and
MinHaarSpace-HP become slower with decreasing � since the
numbers of incoming values and coe�cient values to be con-
sidered increase in each node. When � becomes half, the
numbers of stored entries Ei[v] in each node by both al-
gorithms [18] are doubled. (See Table 4.) Meanwhile, in
OptExt-EB and OptExtHP-EB, although the number of syn-
opses in a extended synopsis increases with decreasing �, we
represent it by a single representation regardless of �. Thus,
the numbers of extended synopses stored in each level by our
proposed algorithms change much less than the traditional
algorithms, as shown in Table 4, and OptExt-EB as well as
OptExtHP-EB tend to be slightly slower with decreasing �.

Varying n, M0 and ↵: We experimented with the syn-
thetic datasets generated by varying the size n, maximum
data value M0 and skewness ↵ of the Zipfian distribution.
The execution times of the algorithms varying n, M0 and ↵
are plotted in Figure 11(a), (b) and (c), respectively. Similar
to the experiments with varying " or �, our OptExt-EB (re-
spectively, OptExtHP-EB) performs better than MinHaarSpace
(respectively, MinHaarSpace-HP) with varying n, as shown
in Figure 11(a), due to the use of the compact representa-
tions of extended synopses. Furthermore, as shown in Fig-
ure 11(b), increasing M0 has a similar e↵ect of decreasing
� since the number of incoming values to be considered for
each node also becomes larger with growing M0.

We reported the result with varying the skewness ↵ of the
Zipfian distribution in Figure 11(c). The higher ↵, the more
skewed the data and the number of values belonging to the
long tail grows. As values in the long tail are less frequent,
the more such values there are and the less burdensome it
is to represent them. Since we can represent the values in
the long tail e↵ectively with less coe�cients, all algorithms
become faster with higher ↵. Moreover, as the skewness ↵
decreases, the gap of execution times between OptExt-EB
and OptExtHP-EB widens. In short, OptExtHP-EB outper-
forms all the other algorithms regardless of the skewness.

8.2 The Space-bounded Synopsis Problem
To see the performance of the indirect algorithms, we var-

ied the space bound ratio � and report the execution times in
Figure 12. Since IndirectHaar (respectively, IndirectHaar-
HP) invokes MinHaarSpace (respectively, MinHaarSpace-HP)
repeatedly, they did not finish within three hours with the
default � values. Thus, we use 10, 5000 and 0.005 as the
values of � for the synthetic, WC and TM datasets, re-
spectively. Note that the direct algorithm computing an
error-optimal Haar+ synopsis is faster than that calculat-
ing an error-optimal unrestricted Haar wavelet synopsis [16].
But, for the indirect algorithms, IndirectHaar is faster than
IndirectHaar-HP, as shown in Figure 12. As we expected,
IndirectExt-HP is the best performer for the space-bounded
synopsis problem among all indirect algorithms.

9. CONCLUSION
We proposed the dynamic programming algorithms for

the error-bounded synopsis problem based on unrestricted
wavelet synopses and Haar+ synopses. Our algorithms store
a distinct set of optimal synopses and restrict the coe�cient
values to consider in each node. By partitioning all optimal
synopses in each node into a set of extended synopses and
representing each synopsis by its compact representation, we
improve the performance of our algorithms significantly. By
experiments on synthetic and real-life datasets, we demon-
strate that our OptExtHP-EB (respectively, IndirectExt-HP)
is the best performer for the error-bounded synopsis (re-
spectively, the space-bounded synopsis) problem. We plan
to study how to generalize our algorithms to handle the
weighted maximum error as future work.
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