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ABSTRACT
Worker Recommendation (WR) is one of the most impor-
tant functions for crowdsourced Q&A services. Specifically,
given a set of tasks to be solved, WR recommends each
task with a certain group of workers, whom are expected to
give timely answers with high qualities. To address the WR
problem, recent studies have introduced a number of rec-
ommendation approaches, which take advantage of workers’
expertises or preferences towards different types of tasks.
However, without a thorough consideration of workers’ char-
acters, such approaches will lead to either inadequate task
fulfillment or inferior answer quality.

In this work, we propose the Triple-factor Aware Worker
Recommendation framework, which collectively considers
workers’ expertises, preferences and activenesses to maxi-
mize the overall production of high quality answers. We con-
struct the Latent Hierarchical Factorization Model, which is
able to infer the tasks’ underlying categories and workers’
latent characters from the historical data; and we propose a
novel parameter inference method, which only requires the
processing of positive instances, giving rise to significantly
higher time efficiency and better inference quality. What’s
more, the sampling-based recommendation algorithm is de-
veloped, such that the near optimal worker recommendation
can be generated for a presented batch of tasks with consid-
erably reduced time consumption. Comprehensive experi-
ments have been carried out using both real and synthetic
datasets, whose results verify the effectiveness and efficiency
of our proposed methods.
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1. INTRODUCTION
Recently a large number of crowdsourced Q&A applica-

tions have come into being, such as Stack Exchange, Yahoo
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Answer, and Quora. As a result, it becomes increasingly
convenient to make use of the crowd’s intelligence. With
the quick growth of crowd’s participation, one of the central
issues in managing crowdsourced Q&A platforms is worker
recommendation, which is to find appropriate workers for
the published tasks and actively ask for their solutions. Tak-
ing Quora as an example, when people are going to publish
their tasks, the platform provides some candidate workers
who are expected to give satisfactory feedbacks, and allows
people to request answers from these workers.

The worker recommendation problem has drawn wide at-
tention and several primary works have been proposed, such
as [27, 33, 16, 35, 29]. Fundamentally, most of the existing
methods treat the worker recommendation as the “expert
finding” problem, where two basic operations are involved.
Firstly, tasks are categorized according to some specific cri-
teria. Secondly, workers are ranked with their expertise (or
authority) to each category of tasks based on their histori-
cal answers. In this way, given a new task, its corresponding
category can be recognized and workers with the top exper-
tise on this category will be recommended for it.

In spite of the existing progress, the worker recommen-
dation problem cannot be effectively addressed only with
workers’ expertise. To facilitate timely acquisition of high
quality answers, the worker recommendation should jointly
consider the following three factors: expertise, prefer-
ence and activeness. The detailed reasons to incorporate
these three factors are given as follows. First of all, the
crowds have diverse skills in different domains. To make
sure the acquired answers are reliable, the recommended
workers must be equipped with enough expertise on the re-
lated areas of the given tasks. Secondly, the crowd’s pref-
erences towards different types of tasks are discrepant. For
example, some people may prefer mathematical problems to
those on classical literature; if tasks on both categories are
available, they will probably choose the mathematical ones
with higher priority. To guarantee workers’ acceptance, the
recommendation should consider the ones who have satisfac-
tory preferences towards the type of presented tasks. Lastly,
the crowd’s activenesses are significantly different from each
other: the enthusiastic workers would probably solve a large
number of tasks within a short period of time, while the pas-
sive ones might only make very little production. For the
sake of timely feedbacks, the recommended workers are de-
sirable to be active in generating new answers. (For better
demonstration of the above three factors, real world data
exploration will be demonstrated in Section 3.)
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In this work, we come up with the Triple-factor Aware
Worker Recommendation framework (referred as TriRec),
where all the aforementioned factors are jointly considered
for the worker recommendation. In TriRec, we construct
the Latent Hierarchical Factorization Model (referred as
LHFM), which categorizes the tasks based on their con-
tents and characterizes the workers with their expertises,
preferences and activenesses. With LHFM, we can directly
identify the category of a newly presented task, and figure
out the workers who will not only complete the given task
with large probabilities, but also be capable of making high
quality answers. In addition to LHFM, we develop the op-
timized worker recommendation strategy for the scenarios
where new tasks are processed in batches. With such a strat-
egy, the overall recommendation effect can be maximized for
a whole batch of presented tasks.

However, the realization of TriRec is non-trivial, where the
following technical challenges have to be conquered. (1) The
answering activities (i.e., which tasks have been answered
by each of the workers) are jointly affected by the workers’
preferences and activenesses. If a task is not answered by
a worker, it could be resulted from either the worker’s non-
interest to the given task, or the limitation of her activeness.
As such, both factors, preference and activeness, are not di-
rectly reflected by the observation data. Meanwhile, the
majority of workers have only answered a small fraction of
tasks in history (e.g., a common worker in Stack Overflow
may produce around a few hundreds answers; while, there
are hundreds of millions tasks ever issued). Therefore, ex-
plicit reasoning of the non-answered tasks will be not only
possibly erroneous, but also severely time consuming. (2)
The optimal worker recommendation, formed as a weighted
bipartite assignment problem, cannot be solved by the con-
ventional approaches in a temporally scalable manner. (e.g.,
Hungarian algorithms or Successive Shortest Paths, whose
time cost could be as expensive as O(|W |2|T |2)). Whereas,
in real applications, large-scale cases might be frequently
confronted. (For example, there are over 6 million regis-
tered workers in Stack Overflow, which will make it almost
impractical to optimally process merely a batch of few hun-
dreds tasks.)

To address the above challenges, we come up with the
following technical mechanisms. (1) LHFM probabilisti-
cally models the answering activities as unified distributions
of workers’ preferences and activenesses. With the maxi-
mization of corresponding posteriori, workers’ preferences
and activenesses can be judiciously learned from the his-
torical observation. Meanwhile, LHFM’s probabilistic for-
mulations avoid explicit reasoning of the negative instances,
and the parameter inference can be conducted with purely
positive instances. (An instance associates with a pair of
task and worker, which is positive if the task is answered by
the worker; otherwise, it is negative.) In this way, poten-
tial errors can be avoided and the inference process will be
greatly accelerated. (2) The optimal worker recommenda-
tion is produced with our sampling-based algorithm. In our
proposed approach, the workers’ suitableness towards each
type of tasks are indexed offline; based on which worker
recommendation can be efficiently produced for the newly
presented tasks through sampling the pre-constructed ta-
ble. In particular, near optimal result (whose expectation
is above 1/4 of the optimal solution) can be obtained with
O(|T|) time complexity.

The major contributions of this work are summarized as
the following points.
• We propose TriRec to maximize the production of high
quality answers in crowdsourced Q&A services, where work-
ers’ expertises, preferences, and activenesses are collectively
considered. To the best of our knowledge, this is the first
work incorporating all these factors.
• We come up with the Latent Hierarchical Factorization
Model (LHFM), which encodes tasks with their semantic
signatures, and characterizes workers with their expertises,
preferences and activenesses. With LHFM, workers’ suit-
ableness towards a given task can be directly acquired.
• Our proposed model avoids explicit reasoning of the nega-
tive instances, which eliminates potential errors and enables
the parameters to be inferred with high efficiency.
• The optimal worker recommendation is produced with the
sampling-based algorithm, which not only considerably re-
duces the time consumption, but also generates the approx-
imation result whose expectation is lower-bounded by 1/4
of the optimal solution.
•We conduct extensive experiments with both real and syn-
thetic datasets, whose results verify our improvement over
the state-of-the-art approaches.

The rest of our paper is organized as follows. We re-
view the related work in Section 2. In Section 3, we explore
the data from crowdsourced Q&A services and demonstrate
the workers’ characters of expertises, preferences and active-
nesses. In Section 4, we introduce the key definitions of this
work. The LHFM and Optimal Worker Recommendation
are discussed in Section 5 and 6, respectively; and the ex-
perimental study is reported in Section 7. Finally, we draw
the conclusion and discuss the future work in Section 8.

2. RELATED WORK
The related works are reviewed from the following two

aspects: Worker Recommendation in Crowdsourced Q&A
services and Crowdsourced Task Allocation.

Worker Recommendation. Worker recommendation
is an important function for Q&A services. A large pro-
portion of the existing works fall into the domain of Expert
Finding (EF for short). Given people’s historical answering
records, EF estimates the workers underlying capabilities of
solving each type of tasks correctly. Representative works
include (but do not limited to) [27, 35, 1, 29]. In particular,
[27] proposes a model to determine the tasks’ latent topics
and to estimate the workers’ expertises over different top-
ics through link analysis; [35] takes the correlation among
tasks’ categories into consideration, and workers’ expertises
are collaboratively estimated with answer records in all the
relevant categories; [1] proposes a semi-supervised coupled
mutual reinforcement framework for simultaneous calcula-
tion of workers’ expertise and answers’ quality; and [29] for-
mulates the expert finding problem as a graph-regularized
matrix factorization process, with workers’ social relation-
ship taken into account. Some of these techniques are also
employed in our estimation of worker expertise, such as la-
tent representations of workers and tasks, and factorization
formulation. What’s more, the techniques for exploration
of auxiliary data (e.g., social relationship) can also be in-
corporated into our framework to further improve the infer-
ence quality. Despite some works on workers’ preferences
estimation, e.g., [26, 15, 30], which employ incremental col-
laborative filtering, latent semantic indexing and content-
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based matrix factorization as the inference strategies, they
are technically similar to the existing studies on expert find-
ing. Because of leaving out the activeness factor, they are
unable to infer the workers’ preferences with high qualities,
which has been theoretically analyzed and experimentally
tested in the previous sections. Most of the existing works
simply focus on one aspect of workers’ characters, rather
than comprehensively considering their expertises, prefer-
ences and activenesses, they are inferior to maximize the
overall production of high quality answers.

Crowdsourced Task Allocation. Task allocation is an
intensively studied issue in crowdsourcing research. For ex-
ample, [10, 4] proposes the offline task assignment strategy
in the spatial scenario; [5] goes beyond the basic settings
(with only spatial and temporal constraints) by considering
the situation where workers are equipped with diversified
skills; besides, [21] develop optimal online strategies to deal
with the cases where workers and tasks are presented in a
streaming fashion. In spite of the fundamentally different
application scenarios, these works also involve the optimal
solution for weighted bipartite assignment problems. How-
ever, all the proposed methods in these works incur running
time of O(|W|ε1 |T|ε2) (ε1, ε2 ≥ 1), which is significantly
above the O(|T|) time consumption in our work, and not
scalable enough to handle the real crowdsourced Q&A ser-
vices where a huge number of workers are presented.

In addition, a number of task allocation works have been
proposed for matching tasks to workers with “right skills”,
such as [32, 31, 11]. Particularly, [32] estimates the work-
ers reliabilities on every specific task, and selects the top-
k tasks for each sequentially arrived worker to achieve the
largest answer quality improvement; [31] utilizes the taxon-
omy of skills to match the tasks with workers of necessary
skills; instead of using a predefined taxonomy, [11] leverages
the knowledge base to analyze tasks skill domains, based on
which tasks are assigned to workers with appropriate skills
so as to gain the maximum ambiguity reduction. Our work
is substantially different from the above ones from the fol-
lowing aspects. Firstly, because of the application to the
crowdsourced Q&A scenario, our optimization goal is the
overall acquisition of timely and qualified answers (measured
in terms of EFP), rather than simply the answers quality.
Secondly, workers expertise has to be captured in a totally
different way because of the application scenario’s differ-
ence. Thirdly, the recommendation for crowdsourced Q&A
services requires effective estimation and utilization of work-
ers’ activeness and preferences; however, neither factors are
crucial for task assignment scenarios (e.g., task allocation in
AMT), thus neglected by the aforementioned methods.

3. DATA EXPLORATION
In this section, we explore the data collected from Stack

Overflow1 to analyze three types of workers’ characters: pref-
erences, expertises and activenesses. The explored dataset
is composed of historical tasks and the scores of workers’
answers towards them. The content of each task is rep-
resented by a bag of keywords (e.g., {c++, polymorphism,
virtual function, dynamic linkage}), and each worker’s score
on a specific task is normalized by the corresponding task’s
maximum score (so that it is confined within [0, 1]).

1
https://stackoverflow.com
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Figure 1: (a), (b): Heat Map and Dots of count@keyword; (c),
(d): Heat Map and Dots of score@keyword.

We aggregate each worker’s (e.g., worker w) associated
records into two values:
• count@keyword, which equals to the count of w’s answered
tasks containing a certain keyword; and
• score@keyword, which equals to the average score of w’s
answered tasks with the corresponding keyword.

We demonstrate the aggregated results from four aspects:
1) workers’ counts on different keywords (reflection of pref-
erence), 2) workers’ average scores on different keywords (re-
flection of expertise), 3) the relationship between workers’
average scores and counts on the common keywords (corre-
lation of preference and expertise), and 4) the distribution of
workers’ annual counts of answers (reflection of activeness).

Counts on keywords. We randomly select 20 workers
who produced over 100 answers within the year of 2016 and
demonstrate their preferences in terms of count@keyword in
Figure 1 (a) and (b). (20 popular keywords are randomly
chosen for the demo of heat map.) In the demonstration
results, only a few blocks in the heat map are deeply colored,
and most of the points’ counts in the dots map are below
10, which reflects that each worker would only make frequent
answers for tasks associated with a small set of keywords.
Besides, the workers’ differences in the heat map indicate
their greatly diversified preferences over different keywords.

Average scores on keywords. We further demonstrate
the workers’ expertises with score@keyword in Figure 1 (c)
and (d). Similar to the observation in (a) and (b), each
worker is only good at tasks associated with a small set of
keywords, whose answers towards such tasks are rated with
comparatively high scores; in addition, workers’ expertises
are significantly diversified across the keywords.

Counts and average scores on common keywords.
In Figure 2 (a), each dot represents the tuple of a worker’s
(count@keyword, score@keyword) to a common keyword.
The averages and standard variances of score@keyword for
different count@keyword are aggregated in Figure 2 (b). Ac-
cording to the presented results, the variation of answers’
counts does not clearly affect the value distributions on
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Figure 3: Distribution of annual counts of answers.

score@keyword, which indicates workers’ expertises and pref-
erences are not necessarily correlated. As a result, both fac-
tors need to be taken into account so as to find the workers
who will not only probably accept a given task, but also be
capable of making qualified answers.

Annual Counts of Answers. We randomly sample 300
workers (from the Top 60,000 ones with the greatest num-
bers of answers), whose annual counts of answers in 2016 are
aggregated in Figure 3. It is observed that workers’ active-
nesses are greatly diversified: most workers made less than
100 answers, while some others may even produce over 400
answers.

Summary. The exploration results reveal that workers
have greatly diversified preferences, expertises and active-
nesses, which significantly affect their choices of tasks, qual-
ity of answers, and frequencies of making new answers. To
guarantee the effectiveness of recommendation, a worker is
desirable to be equipped with satisfactory preference and ex-
pertise for the given tasks, and active in generating new an-
swers. Thus, all these factors need to be precisely captured
and jointly considered within the recommendation strategy.

4. DEFINITION AND INFRASTRUCTURE
Task. Each task is represented by its content, in the

form of Bag-of-Words. Tasks’ contents reflect their underly-
ing categories; e.g., a task with words {polymorphism, vir-
tual function, dynamic linkage} indicates its affiliation with
objective oriented programming. Each task will be recom-
mended with ct different workers, whom will be invited to
give their answers. (ct is referred as the task’s capacity.)

Worker. Each worker w is associated with the histori-
cal data of her answered tasks Tw and scores of her answers
{swt }t∈Tw . For the unification of scale, each score swt is nor-
malized by the maximum score ŝt of the corresponding task
(i.e., swt /ŝt), so that it can be confined within the range
of [0, 1]. From the historical data, the workers’ expertises,
preferences and activenesses are inferred, which will pro-
vide guidance for the future worker recommendation. No-
tice that we only take the workers who have some answering

Optimizer Recommend

History

New

LHFM

Encoding

Characterization

Topics

Characters

EFP Calculation

Optimal Allocation

Figure 4: System Infrastructure.

records in history into consideration, i.e., everyone has an-
swered some tasks in the history. To deal with the newly
registered workers, we may resort to the active exploration
methods (e.g., [9]) to initiatively acquire users’ data; such
an operation can be seamlessly joined with our framework.
In this paper, each worker can be only recommended to a
finite number of tasks, and the maximum is referred as the
worker’s capacity (denoted as cw).

Latent Hierarchical Factorization Model. The La-
tent Hierarchical Factorization Model (LHFM) represents
tasks in the semantic space and characterizes workers with
their latent factors. In particular, each task is mapped into
the latent semantic space based on its content, which pro-
vides a natural indicator of its underlying category; and each
worker is characterized by two latent vectors, representing
her expertise and preference to each type of task, and one
latent scalar, reflecting her activeness level. The tasks’ and
workers’ latent features are tightly-coupled in LHFM, whose
collaborative explanation towards the observation data (i.e.,
answers’ appearances and scores) facilitates more accurate
probabilistic reasoning (as discussed in [24, 23]). What’s
more, the explicit incorporation of workers’ activenesses and
preferences not only provides each individual answers ap-
pearance likelihood, but also judiciously explains a workers
count of answers within a certain period.

Worker Recommendation. As discussed in the Intro-
duction, for a newly presented task, the active workers with
high expertises and preferences are desirable for recommen-
dation. To quantitatively measure a worker’s suitableness
in terms of all these aspects, we come up with Expected
Final Payoff (EFP), whose definition is stated as follows.

Definition1. (EFP) Suppose task t is recommended with
worker w, who will 1) accept and answer task t in a valid
time period with probability pwt ; and 2) the produced answer
will be of quality swt (i.e., normalized score). The expected
final payoff (denoted as EFP(t, w)) of making such a recom-
mendation is pwt ∗ swt .

Apparently, timely answer can be acquired with a large
probability iff. the worker is active and has a strong pref-
erence towards the presented task; and the answer’s quality
will be good iff. the worker is equipped with high expertise.
As such, a large value of expected final payoff indicates the
worker’s satisfaction of all the desired properties, whereby
reflecting her suitableness of being recommended.

When tasks are processed in stream and the FCFS prin-
ciple (first-come, first served) is adopted, the naive top-K
strategy can be directly applied for worker recommendation,
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Table 1: General Notations

Notation Description

T the whole set of tasks for current stage

W the whole set of workers for the current stage.

Wt workers in W who have answered task t.

Tw tasks in T which have been answered by worker w.

ct tasks’ capacity.

cw worker’s capacity.

βi the i-th topic.

θt task t’s latent semantic vector.

zt task t’s underlying topic

ew worker w’s latent expertise vector.

ρw worker w’s latent preference vector.

aw worker w’s activeness scaler.

Ψw worker w’s count of answers.

Iwt worker w’s acceptance of task t.

swt worker w’s score to task t.

EFP(t, w) the EFP of recommending task t with worker w.

where the most appropriate workers will be recommended
to the currently submitted task. While, we still have to find
out the worker recommendation strategy when tasks are pre-
sented and processed in a batch manner. In particular, it
is necessary to figure out how to maximize the overall EFP
for a whole batch of presented tasks. Such a problem is re-
ferred as Optimal Worker Recommendation (OWR). Given
tasks’ and workers’ capacity constraints, together with EFP
between each pair of task and worker, OWR is formed as the
following maximum weighted bipartite assignment problem.

Definition2. (OWR) Given the presented batch of tasks,
the available workers, the capacity constraints and EFP of
each task-worker pair, the optimal worker recommendation
assigns each task with a set of workers, which produces the
maximum total EFP and preserves the capacity feasibility.

System Infrastructure. We demonstrate the system
infrastructure in Figure 4. In particular, the workers’ his-
torical answering records are fully utilized by LHFM, where
latent topics are generated to encode the tasks’ semantics,
and latent characters are estimated to represent the workers
in terms of expertise, preference and activeness. Given a
set of new tasks, the system calculates workers’ suitableness
(i.e., EFP) towards each presented task; by solving the con-
sequent OWR problem, each task gets its recommended set
of workers, which leads to the maximum overall EFP.

We summarize the frequently used notations in Table 1 to
facilitate comprehension.

5. LATENT HIERARCHICAL FACTORIZA-
TION MODEL

LHFM consists of two functional components: 1) the Se-
mantic Encoding module, which encodes a task to its latent
semantic vector based on its content; and 2) the Worker
Characterization module, which characterizes a worker with
her latent vectors of expertise and preference, and the la-
tent scalar of her activeness. With the model’s parameters
inferred from historical data, the expected final payoff can
be calculated for future worker recommendation.

5.1 Probabilistic Formulation
Semantic Encoding. Following the conventional topic

modeling approaches, we adopt K topics (denoted as {βi}K1 )

to represent the underlying categories behind the tasks’ con-
tents2. Each of the topics is a specific distribution over the
vocabulary, indicating every word’s appearance probability.

The content of each task is composed of a small set of
duplicable words. Because of such a “short-text” nature,
we assume that the words of a common task are generated
from one identical topic (e.g., task t is associated with topic
βzt), which is a common practice to deal with short texts
[28]. The index of each task’s associated topic (i.e., zt) is a
hidden variable, whose distribution is specified by its latent
semantic vector θt (i.e., the ith component θt[i] stands for
the probability of zt = i).

Given the topics {βi}K1 and latent semantic vector θt, the
generation probability for task t’s content is presented as:

P ({o}t|{βzt}K1 , θt) =
∏
{o}t

∑K

zt=1
P (o|βzt )P (βzt |θt), (1)

where o is a word in task t’s content. It’s obvious that θt
indicates task t’s underlying categorical information; there-
fore, it can be regarded as t’s latent semantic signature.

Worker Characterization. Each worker w is charac-
terized with her latent factors of activeness aw, preference
ρw and expertise ew; these factors, together with the cor-
responding tasks’ latent semantics, jointly explain the an-
swers’ appearances and scores with the following probabilis-
tic formulations.
• Answers’ Appearances. The workers’ answering records

are partitioned into different time slots (e.g., every month)
and sequentially processed. In each time slot, two pieces
of information are available: 1) the number of answers pro-
duced by each worker (count of answers); 2) the types of
tasks answered by each worker (task selection). Both infor-
mation are probabilistically reasoned as follows.

We model worker w’s answer appearances with two se-
quential steps: Browsing and Selection. Firstly, the worker
browses a total of bw tasks subject to her activeness. Follow-
ing the conventional modeling of counting data [3], we adopt
the Poisson process to capture bw’s value, parameterized of
w’s activeness aw, i.e. Poisson(aw):

P (bw|aw) = (aw)bwe−aw/bw! . (2)

With such a formulation, aw can be interpreted as w’s ex-
pected browsing frequency (e.g., the monthly number of w’s
browsed tasks on average). Secondly, from the browsed
tasks, w makes selection according to her preference (repre-
sented by ρw) towards the type of a presented task (indicated
by θt). In particular, ρw is a K-dimensional weight vector,
reflecting w’s odds of choosing each type of tasks; therefore,
t’s probability of being selected is captured by the Bernoulli
distribution Ber(ρwθt), i.e.,

P (Iwt |ρw, θt) =

{
ρwθt, Iwt = 1,

1− ρwθt, Iwt = 0,
(3)

where the binary variable Iwt equals to 1 if the browsed task
t is selected by w; or 0, otherwise. For the above equation,
a larger product of ρwθt indicates that w will select t with a
higher probability. Finally, being the joint result of Brows-
ing and Selection, the count of answers follows the factorized
Poisson distribution presented in Theorem 1.
2
Selecting the optimal topic number is an open issue, despite HDP

[20] or Perplexity [2]. However, for our problem where parameter
inference is conducted in a supervised way, the optimal K can be
selected as the minimum value leading to the best prediction perfor-
mance [12, 19].
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Figure 5: Graphical Model of LHFM.

Theorem1. Given the worker’s latent activeness aw, latent
preference ρw, and all the tasks’ latent semantics {θt}T , the
count of answers Ψw (i.e., Ψw = |Tw|) follows the Poisson
distribution Poisson(

∑
T awρwθt/|T |):

P (Ψw|Θ) =
1

Ψw!
(

∑
T awρwθt

|T |
)Ψwe−

∑
T awρwθt/|T |, (4)

where Θ is the whole set of parameters aw, ρw, and {θt}T .

Proof. Presented in Section 9.

• Answers’ Scores. The answers’ scores are jointly re-
sulted from the workers’ expertises and the tasks’ categories.
Specifically, worker w’s expertise ew is a K-dimensional vec-
tor, which indicates the comparative quality of w’s answer
towards each type of task. As a result, w’s answer quality
towards a presented task t is reflected by the product of ew
and θt, i.e., ewθt. Being an indicator of the answer’s qual-
ity, the generation of score swt is modeled with the factorized
Gaussian distribution N(ewθt, σ

−1
e ), i.e.,

P (swt |ew, θt) =
1√

2πσ−1
e

e
−σe(swt −ewθt)

2

2 , (5)

where σe serves as the regularization parameter for the fit-
ting loss. Apparently, a large product of ewθt will probably
result in a answer’s high score.

Generative Process. The graphical model of LHFM
is illustrated in Figure 5, where the left part demonstrates
the semantic encoding, and the right part shows the worker
characterization. The hollow circles represent the hidden
variables, and the solid ones stand for the observations.
The parameters in the top row: γ, α, σ1, σ2, σ3 and σe
are the model’s priors. Given our proposed probabilistic
formulations, the generative process for observation data is
presented as follows.
• Semantic Encoding.

Draw each topic in {βj}K : βj ∼ Dir(γ).
Draw each task’s latent semantic vector: θt ∼ Dir(α).
Draw each task’s associated topic w.r.t. its latent seman-
tic vector: zt ∼ Mult(θt).
Draw each word o in task t’s content {o}t w.r.t. its asso-
ciated topic: o ∼ Mult(βzt).
• Worker Characterization.

For each worker w.
Draw activeness scalar, aw ∼ N(0, σ−1

1 ).
Draw preference vector, ρw ∼ N(0, σ−1

2 I).
Draw expertise vector, ew ∼ N(0, σ−1

3 I).
For each time slot.

Draw count of answers, Ψw ∼ Poisson(
∑
T awρwθt
|T | ).

For each task t in Tw.
Draw task selection, Iwt ∼ Ber(ρwθt).
Draw answer score, swt ∼ N(ewθt, σ

−1
e ).

Remarks. For the above generative process, the worker
characterization only involves the positive instances (tasks
that have been answered) associated with each worker; while
explicit reasoning for negative instances (tasks that have not
been answered) is eliminated. Thus, unnecessary time con-
sumption and possible errors caused by explaining the neg-
ative instances can be avoided in the parameter inference.

5.2 Parameter Inference
The log-likelihood of the generative process is derived as:

L = logP (O, I,Ψ,S,Z,θ,β,ρ,a, e|α, γ, σ1, σ2, σ3, σe)

= logP (O|Z,β)P (Z|θ)P (θ|α)P (β|γ) + logP (Ψ|θ,a,ρ)+

logP (I|θ,ρ) + logP (S, |θ, e, σe)+
logP (Z,ρ,a, e|σ1, σ2, σ3)

=LO + LΨ + LI + LS + Lπ .

(6)

The bold symbols represent the sets of homogeneous pa-
rameters, e.g., O: {{o}t}T . LO, LΨ, LI , LS stands for the
latent factors’ log-likelihoods w.r.t. 1) tasks’ contents, 2)
counts of answers, 3) tasks’ selection and 4) answers’ scores,
respectively; and Lπ is priors’ log-likelihood for the workers’
characterized factors.

Given the observations and model’s priors, the values of
latent parameters (Z, θ, β, a, ρ, e) are learned to maxi-
mize the likelihood function in Eq. 6. A Monte Carlo EM
style algorithm [25] is developed for parameter inference. In
particular, the semantic-related parameters (i.e., Z, β, θ)
are inferred through Gibbs sampling (referred as Semantic
Sampling); while, the worker characterization’s factors (i.e.,
θ, ρ, a, e) are estimated with gradient descent (named
as positive-instance Gradient because of the involvement
of purely positive instances). The semantic sampling and
positive-instance gradient are iteratively carried out until
the convergence of the likelihood function.

Semantic Sampling. In this step, we sample the associ-
ated topic of each task through Gibbs sampling. Given the
topics and latent semantics, the full conditional probability
of assigning task t with the k-th topic follows:

P (zt = k|θt,β) =

∏
o∈{o}t θt,k ∗ βk,o∑K

l=1

∏
o∈{o}t θt,l ∗ βl,o

, (7)

where θt,k and βk,o are the k-th and o-th components of the
corresponding vectors. With the topic sampled for task t
(i.e., zt), the topics and latent semantic vector are updated
according to the empirical distributions:

βj,oi =

∑
T Izt=j ∗ |{o|o = oi}t|+ γ∑
T Izt=j ∗ |{o}t|+ γ|O|

,

θt,k =

∑
{o}t βk,o + α∑K

l=1

∑
{o}t βl,o + αK

,

(8)

where O denotes the vocabulary, and the binary indicator
Izt=j equals to 1 if zt = j; or 0, otherwise.

Following the conventional topic modeling processing, the
above topic sampling and update operations will be repeti-
tively carried out for a predefined number of iterations [6].
Then stabilized estimation for all the relevant variables (Z,
β, θ) can be obtained.

Positive-instance Gradient. With the maximization of
LO in semantic sampling, we iteratively adapt the model’s
parameters to maximize the summation of LΨ, LI , LS and
Lπ (denoted as L). We use mini-batch gradient descent to
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Algorithm 1: Parameter Inference

input : O, Ψ, I, S, K, α, γ, σ1, σ2, σ3, σe.
output: β, Z, θ, ρ, a, e.

1 begin
2 repeat
3 Semantic Sampling:
4 • Update β, Z, θ acoording to Eq. 7, 8;
5 Positive-instance Gradient:
6 • for each worker w do
7 for positive instances Tw in each time slot

do
8 Update aw, ρw, ew according to Eq. 11;

9 • for each task do
10 Update θt according to Eq. 12;

11 until a predefined number of iterations;

12 return β, Z, θ, ρ, a, e;

update the parameters’ values. In particular, L’s partial
gradients w.r.t. worker w’s relevant factors are derived as:

∂L
∂aw

=
∂LΨ

∂aw
+
∂Lπ
∂aw

∂L
∂ρw

=
∂LΨ

∂ρw
+
∂LI
∂ρw

+
∂Lπ
∂ρw

∂L
∂ew

=
∂LS
∂ew

+
∂Lπ
∂ew

;

(9)

while L’s partial gradient w.r.t. task t’s latent semantic
vector is derived as follows:

∂L
∂θt

=
∂LΨ

∂θt
+
∂LI
∂θt

+
∂LS
∂θt

, (10)

where Wt represents the workers who have answered task t.
The above gradients’ computation only relies on the infor-

mation about positive instances, i.e., the number of answers
Ψw, the answered tasks Tw, and the answers’ scores {swt }Tw .
As a result, it merely requires O(

∑
W |Tw|) (i.e., the scale of

positive instances) times of derivate calculations for all the
workers and tasks (as presented in Eq. 9, 10).

The parameters are updated according to the derived gra-
dients. We adopt an iterative manner to coordinate the up-
dating process, where a, ρ, and e are firstly adapted with
fixed θ. For each of the workers, the following operations
are carried out for her characterized factors based on Eq. 9:

aw ← aw + η1(
LΨ

∂aw
+
Lπ
∂aw

),

ρw ← ρw + η1(
LΨ

∂ρw
+
LI
∂ρw

+
Lπ
∂ρw

),

ew ← ew + η1(
∂LS
∂ew

+
∂Lπ
∂ew

).

(11)

The update for each worker is recursively carried out until
the convergence to a local maxima. Based on the updated a,
ρ and e, each task’s latent semantic vector is further refined:

θt ← θt + η2(
∂LΨ

∂θt
+
∂LI
∂θt

+
∂LS
∂θt

). (12)

Similarly, the adaptation is repetitively performed until the
convergence to another local maxima.

Monte Carlo EM. The parameter inference is summa-
rized in Alg. 1. As discussed above, the algorithm is per-
formed iteratively: the tasks’ semantic vectors are inferred

with Gibbs sampling (line 3-4), based on which the work-
ers’ characters are updated through gradient descent (line
6-8); the latent semantic vectors are further refined accord-
ing to the updated workers’ characters (line 9-10). While
updating worker w’s characters, the batch of her positive
instances Tw is sequentially presented according to the time
slots. The above operations will be repetitively conducted
for a predefined number of iterations to generate the final
estimation for all the model’s parameters.

In Alg. 1, workers’ preferences are judiciously adjusted
together with their activenesses, without explicit reasoning
of the negative instances. As a result, not only the time
cost is greatly reduced, but more reliable inference can be
produced as well. A toy example is presented as follows to
briefly illustrate the mechanism.

Example1. Given the batch of tasks within a specific time
slot, e.g., T = {t1, ..., t10}. Suppose only t1 is answered
by worker w1; and according to w1’s inferred activeness, she
usually generates approximately one answer within each time
slot. In this situation, w1’s non-answering of {t2, ..., t10}
is probably resulted from the limitation of w1’s activeness,
rather than her preference. Therefore, w1’s preference ρw1

will be increased for the relevant domains of t1, without much
decrement for the related domains of {t2, ..., t10}.

Meanwhile, there is another worker w2, who also answers
t1 in the same time slot. However, w2’s inferred prefer-
ence over {t2, ..., t10} is small, and w2 would usually produce
roughly three answers in each time slot. In this situation,
w2’s non-answering of {t2, ..., t10} is likely to be caused by
w2’s limited preference. As a result, w2’s preference ρw2 will
be decreased for the relevant domains of {t2, ..., t10}, without
much decrement for her activeness.

The time cost of each iteration in Alg. 1 is divided into
two parts. Firstly, the time complexity of semantic sampling
is O(K

∑
T |{o}t|), which is comparable to general topic an-

alyzing approaches3, such as [6]. Secondly, the positive-
instance gradient only requires a time cost of O(K

∑
W |Tw|),

thanks to the purely involvement of positive instances. The
conventional approaches (e.g., [23, 13]) would process both
positive and negative instances, which lead to the time con-
sumption of O(K|W ||T |). Given that |Tw| � |T |, the infer-
ence for workers’ characters is significantly accelerated.

5.3 Expected Final Payoff Estimation
With LHFM’s parameters inferred in Alg. 1, EFP can

be calculated for a given pair of task and worker. First of
all, as a direct deduction from Theorem 1, the probability
of task t’s being answered by worker w within an arbitrary
time period is stated by the following theorem.

Theorem2. For an arbitrary time period τ , task t’s be-
ing answered by worker w follows the Bernoulli distribution
Ber(1− exp(−awρwθt|τ |/|T ||τ0|)), i.e.,

P (Awt |aw, ρw, {θt}T ) =

1− e−
awρwθt|τ|
|T ||τ0| , Awt = 1;

e
− awρwθt|τ||T ||τ0| , Awt = 0;

(13)

where |τ0| is the length of one unit time slot; Aw
t equals to 1

if w answers t; or 0, otherwise.

Proof. Presented in Section 9.

3
Semantic sampling could be safely omitted if there have been topics

constructed from comprehensive corpus [23]

386



Given task t’s content, the latent semantic vector θt can
be firstly determined with Eq. 8. Suppose t is needed to
be solved within time period τ , the probability of t’s being
answered by w (denoted as P{Aw

t (τ) = 1}) is presented as:

P{Awt (τ) = 1} = 1− e−
awρwθt|τ|
|T ||τ0| , (14)

according to the statement of Theorem 2. With the expected
answer quality calculated with Eq. 5, i.e., E{swt } = ewθt,
we can derive the expected final payoff between t and w with
the following equation:

EFP(t, w) = P{Awt (τ) = 1} ∗ E{swt }. (15)

6. OPTIMAL WORKER RECOMMENDA-
TION

Formed as a maximum weighted bipartite assignment prob-
lem, the optimal worker recommendation can be solved with
traditional methods, such as Hungarian or Successive Short-
est Path [14]. Whereas, the time complexity for these meth-
ods could be as high as O(|T |2|W |2), which is temporally im-
practical for large scale problems. Even if we resort to the
simple greedy algorithm for accelerated computation and
put up with its approximation result, it will still require the
running time of O(|T |2|W |).

In this paper, with workers indexed by their characterized
factors, we design a sampling-based algorithm for the recom-
mendation. Briefly, the workers are indexed by a |K| × |W |
matrix, namely Utility Table, which records the workers’
recommendation utilities toward each type of tasks. When
a batch of tasks are presented, we will consecutively sample
their underlying categories (based on their latent semantic
vectors) and candidate workers (based on the Utility Ta-
ble). From the sampled candidates, we recursively gener-
ate the recommendation result through sampling the candi-
dates’ utilities, until all the tasks are recommended with the
required numbers of workers. In this way, we can acquire a
solution with its approximation ratio greater than 1/4 using
merely O(|T |) running time.

6.1 Worker Indexing
We create the |K| × |W | utility table (denoted as U) to

index the workers with their recommendation utilities to-
wards each type of tasks. In particular, we define the set
of standard tasks {t̄1, ..., t̄K}, where t̄k’s semantic vector is
one-hot at the k-th dimension (i.e., θt̄k [i] = 1 iff. i = k; oth-
erwise, θt̄k [i] = 0). The (k, w)-th entry of the utility table
records the EFP of task t̄k and worker w, i.e.,

U(k,w) = EFP(t̄k, w). (16)

6.2 Sampling-based Recommendation
Given a batch of tasks Trec, the worker recommendation

is generated with the following steps.
Type Sampling. Given the content of each task t ∈ Trec,

we extract its latent semantic vector θt based on LHFM’s
semantic encoding module (whose computation follows Eq.
8). With the extraction of latent semantic vectors, we de-
termine each task’s underlying type zt through sampling the
multinomial distribution specified by θt, i.e., zt ∼ Mult(θt).

Candidates Generation. Based on the sampled types
of all the tasks, {zt}Trec , we allocate each task with a candi-
date worker through sampling the utility table. Particularly,

Algorithm 2: Sampling-based Recommendation

input : Trec, U
output: R

1 begin
2 initialize R← {Rt ← ∅}Trec ;
3 for each task t ∈ Trec do
4 extract latent semantic vector θt with Eq. 8;
5 sample type zt with Mult(θt);
6 sample candidate κt with Mult(φzt);

7 T ′rec ← Trec;
8 repeat
9 sample task t for recommendation with Mult(ϕ);

10 add t’s candidate: Rt ← Rt + κt;
11 remove t from T ′rec if count t = ct;
12 suspend κt if count κt = cκt ;
13 re-sample candidates and update K;

14 until T ′rec = ∅;
15 return R;

each worker will be chosen as task t’s candidate, denoted as
κt, with the multinomial distribution specified by vector φzt :

φzt,w =
U(zt, w)∑

w′∈W U(zt, w′)
. (17)

Recommendation Sampling. The worker recommen-
dation is produced by sequentially selecting the candidates
with a looped sampling process. Specifically, given all can-
didates (denoted as K), task t will be sampled to acquire its
candidate κt according to multinomial distribution ϕ, where

ϕt =
U(zt, κt)∑

t′∈Trec
U(zt′ , κt′ )

. (18)

Once task t is sampled, the candidate κt will be added to its
recommendation list; and another worker (other than those
who have been recommended to t) will be selected as the
new candidate for task t.

Due to the capacity constraints, task t will be removed
from Trec once it is recommended with the required number
(i.e., ct) of workers; at the same time, worker w will be
taken out from the current candidates and exempted from
being a candidate any more, if she has been recommended
to the maximum number (i.e., cw) of tasks. Such a sampling
process will be repetitively carried out, until all the tasks are
recommended with the required number of workers.

The worker recommendation process is summarized in
Alg. 2. The tasks’ recommendation lists (R) are initial-
ized to be empty sets (line 2); and in the first for-loop, the
tasks’ types and candidates are sequentially sampled (line
5, 6). In the second loop, the tasks are repetitively selected
through sampling Mult(ϕ), with their candidates added to
R (line 10). The sampled task t and its candidate worker κt
will be removed from further recommendation (line 11, 12)
if their capacity constraints are reached (i.e., count t = ct or
count κt = cκt). Besides, new candidates will be re-sampled
for task t (if it is not removed) and the tasks associated with
κt (if κt is suspended); and K will be updated accordingly
(line 13). The following toy example is presented to illus-
trate the recommendation process.

Example2. Suppose there are two tasks for recommenda-
tion, t1 and t2, each of which requires one worker. With
their extracted semantic vectors, θt1 and θt2 , their categories
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are sampled as zt1 and zt2 ; then, the tasks’ candidates are
sampled according to the zt1 -th and zt2 -th rows of U. Sup-
pose w1 (whose capacity is 1) is selected to be both κt1 and
κt2 . Then, in the 1st round of recommendation sampling, t1
is selected; thus, w1 is recommended to t1; besides, w1 and t1
are exempted from further sampling. Suppose w2 is selected
as t2’s new candidate; and in the 2nd round of recommenda-
tion sampling, since only one task is left, t2 is recommended
with w2. Finally, the recommendation is made as: t1 with
w1, and t2 with w2.

Accelerated Sampling with Alias Method. To re-
duce the sampling cost, the Vose’s Alias method [22] is
adopted. In particular, given an arbitrary multinomial dis-
tribution to be sampled (e.g., Mult(ϕ)), two tables, Alias
and Probabilities, are created as the auxiliary structures to
enable the O(1) sampling. Given a m dimensional distribu-
tion, the structures’ creation requires O(m) time and space
costs. In our sampling-based algorithm, the Utility Table
is static, therefore, its auxiliary structures are constructed
offline, with O(|W|) time and space costs (given K is a con-
stant value); while, the other auxiliary structures (for type
and recommendation sampling) need to be specifically con-
structed for each batch of presented tasks, which will lead
to O(|Trec|) time and space costs at running time. Notice
that the Alias and Probabilities tables of Mult(ϕ) might be
adjusted after K’s being updated (line 13, Alg. 2), it will
merely take O(1) operations since only a constant number
of entries in ϕ need to be adapted.

Efficiency and Effectiveness. Alg. 2 consists of two
looping components, where the first one takes |Trec| repeti-
tions, and the second one incurs

∑
Trec

ct. Given the O(1)
sampling and updating cost within each repetition, the over-
all time complexity is O(|Trec|) (provide that ct is a con-
stant). Together with the time cost for auxiliary structures’
construction, the time cost will still be O(|Trec|).

The major space cost is resulted from the storage of utility
table, tasks’ types and candidates, together their auxiliary
structures for sampling, which equals to O(|W |+ |Trec|).

Alg. 2 is lower-bounded by 1/4 of the optimal solution,
which is formally stated as Theorem 3.

Theorem3. The expected total EFP of sampling-based rec-
ommendation is no less than 1/4 of the optimal result.

Proof. Presented in Section 9.

7. EXPERIMENTAL STUDY
The experimental study is conducted to evaluate the fol-

lowing aspects of our proposed methods: 1) the effect of
worker recommendation with triple-factor awareness, 2) the
effect of parameter inference with only positive instances
(referred as Positive-only Inference), 3) the effect of worker
recommendation using sampling-based algorithm.

7.1 Experiment Settings
Triple-factor Aware Worker Recommendation. The

triple-factor aware worker recommendation is compared with
those single-factor approaches, which are conventionally used
by the existing works (e.g., [15, 17]). In particular, the
baseline methods include Preference-Purely, Expertise-
Purely and Activeness-Purely (Pre, Exp and Act for
short), where workers’ preferences, expertises and active-
nesses are the solely factors considered in recommendation
(i.e., in Pre, workers with the highest preferences will be

recommended to a presented task; while, Exp/Act will rec-
ommend workers with the highest expertises/activenesses).

Following the conventional offline evaluation of recom-
mendation system4 [8, 18], we adopt “Accumulative An-
swer Score” (denoted as Acc) to measure the effective-
ness of triple-factor aware worker recommendation. Such a
metric serves as a joint indicator of answer production and
answer quality. In particular, given each task t’s worker
recommendation Rt, the accumulative answer score (for the
whole set of tasks to be recommended Trec) is calculated as
the sum of answers’ scores:

Acc({Rt}Trec ) =
∑

t∈Trec

∑
w∈Rt

swt . (19)

Some workers may not return their answers; in that case,
the corresponding scores will be set to zero (i.e., swt = 0 if
w’s answer is not returned). The physical meaning of Acc
is easy to comprehend: given a fixed recommendation size,
the algorithm leading to higher Acc indicates better identi-
fication of the desired workers (those who are expected to
make timely and quality answers), thus reflecting its higher
effectiveness for worker recommendation.

In addition, we also use the total number of acquired an-
swers (denoted as #Ans) and the average score of acquired
answers (which equals to Acc

#Ans
) to get a more comprehensive

view of the recommendation result.
Positive-only Inference. The positive-only inference,

which is adopted for worker characterization, is compared
with the traditional binary-class collaborative filtering tech-
nique (denoted as Bcf) [23, 13]. Briefly, Bcf would assign
unit weight (i.e., 1) to the positive instances, and presents
the negative ones with weight δ (0 < δ < 1), making the
negative instances less credible. Besides, instead of process-
ing all the negative instances, Bcf uniformly samples d1/δe
negative instances after processing each positive instance.

To evaluate the positive-only inference’s quality, we adopt
Recall@K, which is a widely used metric for inference qual-
ity of recommender systems (e.g., [23]). In particular, given
workers with the top-K preferences towards task t (RK

t ) and
all the workers who have answered t (Wt), it is defined that:

Recall@K = |RKt ∩Wt|/|Wt|. (20)

A high value of Recall@K means a large proportion of the
recommended workers will give their answers to the pre-
sented task, thus reflecting better inference quality on work-
ers’ preferences and activenesses. Besides, the efficiency of
positive-only inference is evaluated in terms of time cost.
In particular, the overall running time of inferring the work-
ers’ characters is recorded for all the comparison methods.

Sampling-based Recommendation. As a solution for
making the maximum weighted bipartite assignment, the
sampling-based algorithm is compared with: 1) the Mixed
Integer Programming (with Coin OR’s solve5), which gener-
ates the optimal solution, and 2) the greedy method, which
sequentially generates the approximation result with the de-
scending order of the recommendation utilities (i.e., EFP).

We adopt the optimal worker recommendation’s objective,
namely Accumulative EFP (AE for short), to evaluate

4
A recommendation system is considered to be effective if it’s able to

accurately predict the users historical actions in the testing data, e.g.,
movies ratings for movie recommendation, or accumulated answer
score in our work.
5
https://projects.coin-or.org/Cbc
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Figure 6: Experiment I: (a) result on Acc; (b) result on number
of acquired answers; (c) result on average scores.

the effectiveness of sampling-based algorithm. In particular,
given recommendation result {Rt}Trec , AE is computed as:

AE =
∑

t∈Trec

∑
w∈Rt

EFP(t, w). (21)

In addition, we evaluate the efficiency of worker recommen-
dation in terms of time cost, i.e., the time consumption of
allocating all the tasks for the required number of workers.

We use real world data crawled from Stack Overflow for
evaluation, where a total of 67080 tasks and 5547 work-
ers (answers within 2016) are included. Besides, to further
evaluate the performance of sampling-based recommenda-
tion, we create two synthetic datasets of tasks and workers,
where the EFP is simulated with the Uniform distribution
parameterized of 0 and 1: Unif(0, 1), and the Bernoulli dis-
tribution parameterized of 0.05: Ber(0.05), respectively.

7.2 Triple-factor Recommendation Evaluation
We randomly choose 1000 tasks for the evaluation, where

workers with the top-K utilities (i.e., the top-K EFP, pref-
erences, expertises, activenesses for Tri, Pre, Exp and Act,
respectively) are recommended for each task. The experi-
mental results on accumulative answer scores (Acc), total
number of acquired answers (#Ans) and average scores of
acquired answers (Score) are presented in Figure 6.

The superiority of triple-factor aware worker recommen-
dation is reflected in Figure 6 (a), where Tri gives rise to
the highest Acc in each testing group (with K varied from
3 to 15). The reason about its superiority is quite straight-
forward, as Tri finds the workers who are not only probable
to fulfill the given tasks on time, but also able to solve them
correctly; while, all the baseline methods simply emphasize
on one type of workers’ character. Such an explanation can
be further verified through the following observations.

Table 2: Experiment II-1: Recall@K (K = 10, 50, 100) and time
cost comparisons between Positive-only Strategy and Binary-class
Collaborative Filtering, where “δ-x” represents the Bcf with pa-
rameter δ equal to x.

Recall@K Time (s) 

Methods 10 50 100 

Pos 0.1090 0.3386 0.4906 49.48 

δ-0.5  0.0685 0.2391 0.3421 36.46 

δ-0.2  0.0695 0.2457 0.3683 53.16 

δ-0.1  0.0806 0.2597 0.3968 84.15 

δ-0.05  0.0814 0.2649 0.4080 141.60 

δ-0.02  0.0847 0.2705 0.4183 359.90 

Figure 7: Experiment II-2. Time cost for Worker Character-
ization with variant workers’ scales; red, blue and dark red bars
represent settings of 50, 100 and 200 topics.

As demonstrated in Figure 6 (b), Tri leads to the largest
number of acquired answers. Although Pre also tries to max-
imize the acquisition of answers (by recommending tasks
to those workers who have the top preferences), it leaves
out the factor of activeness, thus resulting in slightly lower
#Ans; while Exp and Act’s #Ans are significantly lower due
to their complete neglect of workers’ preferences towards dif-
ferent types of tasks. What’s more, Tri’s average scores are
comparable to those of Exp (which recommends the work-
ers with the top expertises), and considerably higher than
Pre and Act (in Figure 6 (c)). Such a finding implies that
Tri excludes the low-expertise workers, who are unlikely to
produce high quality answers.

7.3 Positive-only Inference Evaluation
Comparison With Bcf. We measure Recall@K for a

total of 1000 randomly chosen tasks and record the time
consumption of worker characterization for all the compar-
ison methods, whose results are presented in Table 2. It
can be observed that Pos (standing for the positive-only in-
ference) generates the largest Recall@K values and incurs
comparatively low time cost (only greater than Bcf δ-0.5).
That is to say, the adoption of Pos leads to the best inference
quality, while preserving high running efficiency.

In addition, Bcf’s inference quality can be improved to
some extent with moderate decrement of δ (as Bcf shows the
highest Recall@K when δ equals to 0.02). This is because a
smaller value of δ will incorporate more training samples (as
Bcf with parameter δ takes 1/δ pseudo negative instances).
However, the decrement of δ will inevitably result in two side
effects: 1) the time consumption will grow considerably as
more training instances need to be processed; 2) the pseudo
negative instances are likely to be erroneous, which prevents
Bcf’s further improvement on inference quality (as Bcf δ-
0.02’s Recall@K is still much lower than that of Pos).

Scalability. We further evaluate Positive-only Inference’s
temporal scalability in terms of time cost with variant work-
ers’ scales. Particularly, workers are sampled through boot-
strapping from the original dataset, whose size ranges from
2000 to 20,000. (In case of possible duplication, any pair
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Figure 8: Experiment III-1. (a), (b): AE (Real) on variant
number of tasks and workers; (c), (d) AE (Uniform) on variant
number of tasks and workers; (e), (f): AE (Bernoulli) on variant
number of tasks and workers.

of duplicated workers will be treated as different entities,
i.e., different workers with the same answering record.) We
select 3 candidate latent topic dimensions and present the
results in Figure 7.

The overall time cost increases linearly with the growth of
workers’ scale, given the fixed topic dimension; besides, the
overall time cost is roughly proportional to the topic dimen-
sion. Both observations are consistent with our theoretical
analysis in Section 5.3. As such, the time cost won’t be too
large given a reasonable scope of workers’ scale. In addition,
two alternative methods can be adopted for further acceler-
ation, in case of large-scale workers are presented. Firstly, as
each worker’s latent characters are updated independently
(as presented in Alg. 1), worker characterization can be
parallel conducted, where each worker’s updating process is
executed by a unique thread (similar manner to [34]). When
adequate computing devices are provided, such an execution
could cut down the time cost by orders. Secondly, because
workers’ characters will probably change steadily, incremen-
tal learning approaches (e.g., [7]) can be applied, which will
omit the cost of inferring workers’ characters all over again.

7.4 Sampling-based Recommendation Evalu-
ation

The experiments are carried out with: (1) variant scales
of tasks (200 to 2000) and a fixed number of workers (2000);
(2) variant scales of workers (200 to 2000) and a fixed num-
ber of tasks (200). Both real and synthetic (Uniform and
Bernoulli) datasets are employed. The resulted AE is re-
ported in Figure 8 and the time cost is shown in Figure 9,
where the following interesting points can be observed.

Firstly, the approximations’ performances are clearly above
their theoretical lower bounds (1/2 for Greedy and 1/4 for
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Figure 9: Experiment III-2. (a), (b): different methods’ time
costs on variant number of tasks and workers; (c), (d): Sample’s
time costs on variant number of tasks and workers.

Sample). A necessary condition for the worst cases of Greedy
and Sample is that all the tasks share a similar group of
favorable workers, where tasks recommended in the initial
stage will probably affect the subsequent ones. However,
such a condition is almost impossible to hold in neither real
nor synthetic settings: in real settings, tasks’ recommenda-
tion utilities (i.e., EFP) are greatly diversified over the work-
ers because of their differences on semantic vectors; while,
in synthetic settings, tasks’ EFP over workers are also sig-
nificantly discrepant owing to their independent generation.

Secondly, Sample’s performance is close to Greedy and the
optimal result (denoted as OPT) on the real (Figure 8 (a),
(b)) and Bernoulli-synthesized (Figure 8 (e), (f)) data. For
both real and Bernoulli-synthesized datasets, a task’s total
recommendation utility (over the whole workers) is densely
concentrated on a small group of “favorable workers”. (Such
a “concentration” property is common in practice, as it is
probable that only a tiny group of workers are highly appro-
priate to be recommended for a specific task.) As a result,
such workers can be selected with significantly higher prob-
abilities, which reduces the performance gap between Sam-
ple and Greedy. However, such a property does not hold on
Uniform-synthesized data, as a task’s generated EFP follows
uniform distribution, thus enjoying greater mutual similar-
ities. As a result, Sample’s performance is comparable to
Greedy and OPT under the real and Bernoulli-synthesized
settings, rather than the Uniform-synthesized setting.

Thirdly, the performance ratio between Sample and Greedy
becomes smaller with the tasks’ scale’s increase (Figure 8
(a), (c), (e)). In Alg 2, Sample randomly selects tasks and
their candidate workers for recommendation with proba-
bilities proportional to the corresponding EFP; meanwhile,
Greedy can be regarded as the deterministic variation of
Sample, as it sequentially makes recommendation with the
descending order of EFP. When there are more tasks be-
ing presented, Sample’s recommendation sampling opera-
tion (line 9, Alg. 2) becomes more randomized; thus, it re-
sembles Greedy less and its resulted AE diverges from that
of Greedy. Despite such a deficiency, Sample’s performance
is still comparable to Greedy and OPT on real data when
tasks’ scale reaches 2000, owing to the “concentration” prop-
erty of real world data discussed in the second point.
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At the same time, the time cost of Sample is considerably
lower than the baselines (shown in Figure 9 (a), (b)); as Sam-
ple only requires O(|T|) rounds of sampling operation, and
each of which can be completed in O(1) with Alias method.
In addition, Sample’s time cost is linear to the tasks’ scale
(Figure 9 (c)), and independent of workers’ scale (Figure
9 (d)), which is consistent our theoretical analysis. Such
a property is desirable for real applications where the rec-
ommendation could involve tremendous number of workers
(e.g., a total of 6 million registered users in Stack Overflow).

7.5 Summary of Experiments
The major findings of the experimental study can be sum-

marized with the following points.
• The triple-factor aware worker recommendation provides
the given tasks with workers who will not only offer timely
answers with large probabilities, but will also be capable of
solving the tasks with high qualities, therefore leading to the
highest total EFP of all the comparison methods.
• The adoption of positive-only inference results in the best
inference quality, while preserving high running efficiency.
• The sampling-based method is able to make near optimal
recommendation under the real world settings, with greatly
smaller time cost. Besides, the sampling-based method shows
satisfactory temporal scalability, as its running time is linear
to the tasks’ scale, and independent of the workers’ scale.

8. CONCLUSION AND FUTURE WORK
In this work, we propose the Triple-factor Aware Worker

Recommendation framework, which comprehensively con-
siders the workers’ expertises, preferences and activenesses
to maximize the production of high quality answers. In this
framework, the LHFM is constructed to accurately estimate
the tasks’ underlying categories and infer the workers’ la-
tent characters. Thanks to the adoption of positive-only
inference, the model’s parameters are learned with higher
efficiency and better quality. Besides, the sampling-based al-
gorithm is proposed to generate the near optimal worker rec-
ommendation in a greatly accelerated and temporally scal-
able way. Extensive experimental studies are carried out on
both real and synthetic datasets, whose results verify the
effectiveness and efficiency of our proposed methods. In the
future work, we will consider TriRec’s adaption to better
fit users’ individualized requests, which will make the sys-
tem more interactive and user-friendly; for example, how
to guarantee the acquisition of qualified answers within a
certain specified time window.

Acknowledgment. The work is supported in part by
the Hong Kong RGC Project 16202215, Science and Tech-
nology Planning Project of Guangdong Province, China, No.
2015B010110006, NSFC Grant No. 6172920161232018, Mi-
crosoft Research Asia Collaborative Grant and NSFC Guang
Dong Grant No. U1301253.

9. APPENDIX
Proof of Theorem 1. According to the discussed prob-

abilistic formulation, we are dealing with the following se-
quential process: 1 ) a total of bw candidates are browsed,
where bw ∼ Poisson(aw); 2 ) the selected candidates will
be finally confirmed through Bernoulli selection Ber(ρwθt).
Since we have a total of |T | tasks, the probability of an ar-
bitrary candidate being confirmed equals to

∑
T ρwθt/|T |.

Now we transform such a process with the following equiv-
alent form. According to the definition of Poisson distri-
bution, the candidates’ generation can be regarded as “M
independent trials with success rate of aw/M (M → ∞)”,
where the probability of bw successful trials is presented as:

P (bw|aw) =
(M
bw

)
(1−

aw

M
)M−bw (

aw

M
)bw . (22)

To get confirmed in the end, a candidate trial also needs to
pass the Bernoulli selection Ber(

∑
T ρwθt/|T |). Because the

candidate generation and the final confirmation are inde-
pendent, therefore, a trial success rate in such a sequential

process is aw
M
∗

∑
T ρwθt
|T | . In other words, the number of

successful trials for the whole sequential process follows:

P (b|aw, ρw, θt, T ) =
(M
bw

)
(1−

U

M
)M−bw (

U

M
)bw , (23)

where U = aw
∑
T ρwθt/|T |. Therefore, the number of an-

swers (i.e., Ψw) follows Poisson(aw
∑
T ρwθt/|T |).

Proof of Theorem 2. The proof is made with the fol-
lowing two steps. Firstly, the incident of “task t’s being
answered by worker w (i.e., Awt = 1) during one unit time
slot τ0” is equivalent to the occurrence of following sequen-
tial events: 1 ) w browses as least one task during one unit
time slot τ0; 2 ) t is within w’s browsed tasks; and 3) t is
accepted by w. As such, “Awt = 1” is the specific instance
of the sequential process discussed in the last proof, where
each trial’s success rate is awρwθt/N and at least one trial
will succeed in the end. Thus, the probability of “Awt = 1”
equals to P (bw ≥ 1|aw/

∑
T ρwθt), which means:

P (Awt = 1|aw, ρw, θt, T ) = 1− e−awρwθt/|T |. (24)

Secondly, given an arbitrary time period τ , it can be verified
that the expected number of browsed tasks within such a

time period will be aw|τ |
|τ0|

. Replacing aw in Eq. 24 with such

a value, we have:

P (Awt = 1|aw, ρw, θt, T ) = 1− e−awρwθt|τ |/|T ||τ0|. (25)

Therefore, Theorem 2 is justified.
Proof of Theorem 3. We sketch the proof with the fol-

lowing three parts. Firstly, given the optimal worker recom-
mendation following the form of weighted bipartite assign-
ment problem (with positive integral capacity constraints),
the greedy solution, which sequentially picks edges with the
descending order of weights, leads to an approximation re-
sult no less than 1/2 of the optimal one. Secondly, Alg.
2 makes recommendation with three sequential randomiza-
tion steps, i.e., type sampling, candidates generation and
recommendation sampling; for an arbitrary pair of task and
worker (e.g., t and w), it is straightforward that the proba-
bility of w’s being recommended to t, denoted as Pt,w, fol-
lows Pt,w ∝ EFP(t, w)2+ε, where ε is a positive number.
Thirdly, in each repetition of the recommendation sampling
(line 9, Alg. 2), the expected EFP of the newly added rec-
ommendation follows:∑

T′rec

EFP(t, κt) ∗ Pt,κt =
∑
T′rec

EFP(t, κt) ∗ EFP(t, κt)2+ε∑
T′rec

EFP(t, κt)2+ε

≥
∑
T′rec

EFP(t, κt) ∗ EFP(t, κt)∑
T′rec

EFP(t, κt)
≥

maxT′rec
EFP(t, κt)

2
.

(26)

i.e., in each repetition, the sampled recommendation’s EFP
is no less than 1/2 of the one selected by the greedy algo-
rithm. Thus, the approximation ratio is above 1/4.
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