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ABSTRACT

Machine learning (ML) over relational data is a booming
area of data management. While there is a lot of work on
scalable and fast ML systems, little work has addressed the
pains of sourcing data for ML tasks. Real-world relational
databases typically have many tables (often, dozens) and
data scientists often struggle to even obtain all tables for
joins before ML. In this context, Kumar et al. showed re-
cently that key-foreign key dependencies (KFKDs) between
tables often lets us avoid such joins without significantly
affecting prediction accuracy–an idea they called “avoiding
joins safely.” While initially controversial, this idea has since
been used by multiple companies to reduce the burden of
data sourcing for ML. But their work applied only to lin-
ear classifiers. In this work, we verify if their results hold
for three popular high-capacity classifiers: decision trees,
non-linear SVMs, and ANNs. We conduct an extensive ex-
perimental study using both real-world datasets and simu-
lations to analyze the effects of avoiding KFK joins on such
models. Our results show that these high-capacity classi-
fiers are surprisingly and counter-intuitively more robust to
avoiding KFK joins compared to linear classifiers, refuting
an intuition from the prior work’s analysis. We explain this
behavior intuitively and identify open questions at the in-
tersection of data management and ML theoretical research.
All of our code and datasets are available for download from
http://cseweb.ucsd.edu/~arunkk/hamlet.
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1. INTRODUCTION
The data management community has long studied how

to integrate ML with data systems [18, 12, 53]), how to
scale ML [6, 32], and how to use database ideas to improve
ML tasks [26, 27]. However, little work has tackled the
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pains of sourcing data for ML tasks in the first place, es-
pecially, how fundamental data properties affect end-to-end
ML workflows [5]. In particular, applications often have
many tables connected by database dependencies such as
key-foreign key dependencies (KFKDs) [37]. Thus, given an
ML task, data scientists almost always join multiple tables
to obtain more features [29]. But conversations with data
scientists at many enterprise and Web companies revealed
that even this simple process of procuring tables is often
painful in practice, since different tables are often “owned”
by different teams with different access restrictions. This
slows down the ML analytics lifecycle [23]. Recent reports
of Google’s production ML systems also show that features
that yield marginal benefits incur high “technical debt” that
decreases code mangeability and increases costs [42, 35].
In this context, Kumar et al. [30] showed that one can of-

ten omit an entire table by exploiting KFKDs in the schema
(“avoid the join”), but do so without significantly reducing
ML accuracy (“safely”). The basis for this dramatic capa-
bility is that a KFK join creates a functional dependency
(FD) between the foreign key and the features brought in
by the join, which we call “foreign features.”1

Example (based on [30]). Consider a common classi-
fication task: predicting customer churn. The data scien-
tist starts with the main table for training (simplified for
exposition): Customers (CustomerID, Churn, Gender, Age,
Employer). Churn is the target, while Gender, Age, and
Employer are features. So far, this is a standard classifica-
tion task. She then notices the table Employers (Employer,

State, Revenue) in her database with extra features about
customers’ employers. Customers.Employer is thus a foreign
key feature connecting these tables. She joins the tables to
bring in the foreign features (about employers) because she
has a hunch that customers employed by rich companies in
coastal states might be less likely to churn. She then tries
various classifiers, e.g., logistic regression or decision trees.
Using learning theory, [30] revealed a dichotomy in how

safe it is to avoid a KFK join, which we summarize next. Es-
sentially, ML error has two main components, bias and vari-
ance; informally, bias quantifies how complex the ML model
is, while variance quantifies how tied the trained model is
to the given training dataset [44]. Intuitively, more complex
models have lower bias and higher variance; this is known
as the bias-variance trade-off. Cases with high-variance are
colloquially called overfitting [33]. Avoiding a KFK join

1While KFKDs are not the same as FDs [45], assuming fea-
tures have “closed” domains, they behave essentially as FDs
in the output of the join [30].
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is unlikely to raise the bias but likely to raise the variance,
since foreign keys typically have larger domains than foreign
features. In simple terms, avoiding joins might cause extra
overfitting. But this extra overfitting subsides with more
training examples, a behavior that was formally quantified
using the powerful ML notion of VC dimension, which indi-
cates the complexity of an ML model. Using this notion, [30]
defined a new quantity, the tuple ratio, which is the ratio of
the numbers of tuples of the tables being joined (customers
and employers in our example). As the tuple ratio goes up,
it becomes safer to avoid the join. Users can then config-
ure a VC dimension-specific threshold based on their error
tolerance. For simple classifiers with VC dimensions linear
in the number of features (e.g., logistic regression and Naive
Bayes), this threshold is as low as 20. This idea was empir-
ically validated with multiple real-world datasets.

While initially controversial, the idea of avoiding joins
safely has been adopted by many data scientists, includ-
ing at Facebook, LogicBlox, and MakeMyTrip [1]. Since the
tuple ratio only needs the foreign table’s cardinality rather
than the table itself, data scientists can easily decide if they
want to avoid the join or procure the extra table. However,
the results in [30] had a major caveat–they applied only to
linear classifiers. In fact, their VC dimension-based analysis
suggested that the tuple ratio thresholds might be too high
for high-capacity non-linear classifiers, potentially rendering
this idea inapplicable to such classifiers in practice.

In this paper, we perform a comprehensive empirical and
simulation study and analysis to verify (or refute) the appli-
cability of the idea of avoiding joins safely to three popular
“high-capacity” (i.e., with large or even infinite VC dimen-
sions) classifiers: decision trees, SVMs, and ANNs.

Such complex classifiers are known to be prone to over-
fitting [33]. Thus, the natural expectation is that avoiding
a KFK join might cause more overfitting and raise the tu-
ple ratio threshold compared to linear models (i.e., � 20).
Surprisingly, our results show the exact opposite! We start
by rerunning the experiments from [30] for such models; we
also generalize the problem slightly to allow non-categorical
features. Irrespective of which model is used, the same set of
joins usually turn out to be safe to avoid. Furthermore, on
the datasets that had joins that were not safe to avoid, the
decrease in accuracy caused by avoiding said joins (unsafely)
was lower for the high-capacity classifiers. In other words,
our work refutes an intuition from the VC dimension-based
analysis of [30] and shows that these popular high-capacity
classifiers are counter-intuitively comparably or more robust
to avoiding KFK joins than linear classifiers, not less.

To understand the above surprising behavior in depth, we
conduct a Monte Carlo-style simulation study to stress test
how safe it is to avoid a join. We use decision trees, since
they were the most robust to avoiding joins. We generate
data for a two-table KFK join and embed various “true”
distributions for the target. This includes a known “worst-
case” scenario for avoiding joins for linear classifiers (i.e.,
errors blow up) [30]. We vary different properties of the
data and the true distribution: numbers of features and
training examples, noise, foreign key domain size, and skew.
In very few cases does avoiding the join cause the error to
rise beyond 1%. Indeed, the only scenario with much higher
overfitting was when the tuple ratio was less than 3; this
scenario arose in only 1 of the 7 real datasets. These results
are in stark contrast to the results for linear classifiers.

Our counter-intuitive results raise new research questions
at the intersection of data management and ML theory.
There is a need to formalize the effects of KFKDs/FDs on
the behavior of decision trees, SVMs, and ANNs. As a first
step, we analyze and intuitively explain the behavior of de-
cision trees and SVMs. Other open questions include the
implications of more general database dependencies on the
behavior of such models and the implications of all database
dependencies for other ML tasks such as regression and clus-
tering. We believe that solving these fundamental questions
could lead to new ML analytics systems functionalities that
make it easier to use ML for data analytics.
Finally, we observed two new practical bottlenecks caused

by foreign key features, especially for decision trees. First,
the sheer size of their domains makes it hard to interpret and
visualize the trees. Second, some foreign key values may not
have any training examples even if they are known to be in
the domain. We adapt standard techniques to resolve these
bottlenecks and verify their effectiveness empirically.

Overall, the contributions of this paper are as follows:

• To the best of our knowledge, this is the first pa-
per to analyze the effects of avoiding KFK joins on
three popular high-capacity classifiers: decision trees,
SVMs, and ANNs. We present a comprehensive em-
pirical study that refutes an intuition from prior work
and shows that these classifiers are counter-intuitively
more robust to avoiding joins than linear classifiers.

• We conduct an in-depth simulation study with a deci-
sion tree to assess the effects of various data properties
on how safe it is to avoid a KFK join.

• We present an intuitive analysis to explain the behav-
ior of decision trees and SVMs when joins are avoided.
We identify open questions for research at the inter-
section of data management and ML theory.

• We resolve two new practical bottlenecks with foreign
key features by adapting standard techniques.

Outline. Section 2 presents the notation, background, as-
sumptions, and scope. Section 3 presents results on the real
data. Section 4 presents the simulation study. Section 5
presents our analysis of the results and identifies open ques-
tions. Section 6 verifies the techniques to make foreign key
features more practical. We discuss related prior work in
Section 7 and conclude in Section 8.

2. PRELIMINARIES AND BACKGROUND

2.1 Notation
We focus on the standard star schema KFK join setting,

which is ubiquitous in many applications, including retail,
insurance, Web security, and recommendation systems [37,
30, 29]. The fact table, which has the target variable, is de-
noted S. It has the schema S(SID, Y,XS , FK1, . . . , FKq).
A dimension table is denoted Ri (i = 1 to q) and it has the
schema Ri(RIDi,XRi

). Y is the target variable (class la-
bel), XS and XRi

are vectors (sequences) of features, RIDi

is the primary key of Ri, while FKi is a foreign key fea-
ture that refers to Ri. We call XS home features and
XRi

foreign features. Let T be the output of the star join
that constructs the full training dataset by concatenating
the features from all base tables. In general, its schema is
T(SID, Y,XS , FK1, . . . , FKq,XR1

, . . . ,XRq ). In contrast
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to our setting, traditional ML formulations do not distin-
guish between home features, foreign keys, and foreign fea-
tures. The number of tuples in S (resp. Ri) is denoted nS

(resp. nRi
); the number of features in XS (resp. XRi

) is
denoted dS (resp. dRi

). Without loss of generality, we as-
sume that the join is not selective, which means nS is also
the number of tuples in T. DFKi

denotes the domain of FKi

and by definition, |DFKi
| = nRi

. We call nS

nRi

the tuple ratio

for Ri. If q = 1 (only one foreign table), we drop the sub-
script in the notation and use R, FK , and nR; for simplicity
of exposition, we will assume q = 1 and use this notation.

2.2 Background: ML Terms and Concepts
We intuitively explain the ML terms, concepts, models,

and theory relevant to this work and refer the interested
reader to [17, 33, 44] for a deeper background.

Basics. We focus on classification models, which need a
training dataset with labeled examples to learn the param-
eters of the model. Examples include logistic regression,
support vector machines (SVMs), decision trees, and artifi-
cial neural networks (ANNs). Most ML models assume that
the examples are independently and identically distributed
(IID) samples from an underlying (hidden) data distribu-
tion.2 A trained model’s prediction error (or accuracy) is
measured using a test dataset not used for training. Pop-
ular testing methodologies include holdout validation and
(nested) k-fold cross-validation (CV). In the former, the la-
beled dataset is split three-ways: one for training, one for
validation (say, to tune hyper-parameters), and one for final
testing. In the latter, the labeled dataset is partitioned into
k folds, with k−1 folds used for training (and validation) and
the last fold used for testing; k error estimates are obtained
by cycling through each fold for testing and averaged.

Models. Logistic regression and linear SVM classify ex-
amples using a hyperplane; thus, they are called linear clas-
sifiers. Naive Bayes models the probability of the label by
estimating the conditional probability distribution of each
feature and multiplying them all; it can be viewed as a lin-
ear classifier [33]. 1-NN simply picks the training example
nearest to a given example for prediction. Kernel SVM im-
plicitly transforms feature vectors to a different representa-
tion and obtains the so-called “support vectors,” which are
examples that help separate classes. An ANN applies mul-
tiple layers of complex non-linear transformations to feature
vectors to separate the classes. Finally, a decision tree learns
a disjunction of conjunctive predicates to predict classes.

Theory. The set of prediction functions learnable by a
model is called its hypothesis space. The test error has three
components: bias (approximation error), variance (estima-
tion error), and noise [44]. Informally, bias quantifies the
error of a hypothetical “best” function in the hypothesis
space; it is related to the capacity of a model (how many
prediction functions it can represent), while variance quan-
tifies the error of the actual prediction function obtained af-
ter training relative to the hypothetical best function. Typ-
ically, a more complex model (say, with more parameters)
has a lower bias but higher variance; this is the bias-variance
trade-off. A classifier’s capacity can be quantified using the
Vapnik-Chervonenkis (VC) Dimension [44]. Intuitively, the

2Complex models known as statistical relational models
avoid the IID assumption and handle correlated exam-
ples [15]. Such models are beyond the scope of this paper.

VC dimension is the largest number of training examples the
model can classify perfectly regardless of the training label
distribution–a capability called “shattering.” For example,
logistic regression in 2 dimensions (features) can shatter at
most 3 examples due to the “XOR problem” [47]. In general,
given d features, its VC dimension is d + 1. Decision trees,
RBF-SVMs, and ANNs typically have large (even infinite)
VC dimensions [44]; we call such models high-capacity clas-
sifiers. High-capacity classifiers often tend to have higher
variance than simpler linear models (with VC dimensions
linear in d), an issue colloquially called overfitting.

Feature Selection. Feature selection methods are meta-
algorithms that are almost always used with an ML algo-
rithm to improve accuracy and/or interpretability. There
are three main types: (1) Wrappers: Also called subset se-
lection, these methods use the ML algorithm as a black-box
to search through different feature subsets and pick the one
with the lowest error. Since optimal subset selection is NP-
Hard, various heuristic wrappers are popular in practice,
including sequential greedy search [16]. (2) Filters: These
methods assign a score to each feature (e.g., correlation co-
efficient) and the top k features are selected. (3) Embedded :
These methods “wire” feature selection into the ML algo-
rithm, e.g., L1 or L2 regularization for logistic regression.
Typically, feature selection alters the bias-variance balance
by tolerating a small increase in bias for a larger decrease in
variance and thus, reducing errors overall.

2.3 Background: Avoiding KFK Joins Safely
It was shown in [30] that the FD FK → XR has an inter-

esting and surprising implication for the bias-variance trade-
off: avoiding the KFK join (i.e., omitting XR) is unlikely
to increase the bias because the hypothesis space of almost
any classifier does not shrink when XR is avoided, but in
the context feature selection, avoiding the join could result
in much higher variance. The latter is because |DFK | is usu-
ally much larger than the domains of the features in XR.
For instance, State in our example only has 50 values but
Employer could have millions. This dichotomy led to the
idea of avoiding joins safely : avoid it only if the variance is
unlikely to increase much. To enable this, [30] introduced a
simple decision rule with a user-settable threshold based on
their error tolerance. The decision rule adapts a standard
bound on variance from the ML literature that grows with
the VC dimension and shrinks with nS and it was simplified
for linear models to enable thresholding directly on the tu-
ple ratio (nS/|DFK |). Thus, as the tuple ratio goes up, there
will be less overfitting, since there are more training exam-
ples relative to the model’s capacity. For linear classifiers, a
threshold of 20 ensured the extra overfitting was marginal.
But since high-capacity classifiers are usually more prone
to overfitting, this approach suggests that the tuple ratio
threshold might have to be higher for such classifiers.

2.4 Assumptions and Scope
For the sake of tractability, we adopt some assumptions

from [30], but also drop some others to generalize the prob-
lem. In particular, we drop the assumption that all features
are categorical (finite discrete set); we allow numeric fea-
tures. We focus on classification and retain the assumption
that FK is not a (primary) key in S; otherwise, it will not
be “generalizable,” i.e., all future examples will have values
never seen before. In our example, CustomerID is not gener-
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Table 1: Dataset statistics. q is the number of di-
mension tables. nS is the total number of labeled
examples; since we use nested cross-validation, the
tuple ratio listed is 0.6×nS/nR. N/A means that di-
mension table can never be avoided, since its foreign
key feature is not generalizable.� � � � � � � � � � � 	 � 
 � � � � � 	 � 
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alizable but the foreign key Employer is. We also retain the
assumption that all feature domains are fully known dur-
ing training; this is a standard assumptions in ML [33, 30].
Handling unseen feature values is called the “cold start”
issue in ML [40]. In practice, cold start is often resolved
by temporarily mapping new values to a known “Others”
placeholder. As ML models are periodically retrained, fea-
ture domains are expanded with such new information. In
particular, we assume DFK is the same as the set of R.RID
values (new FKi values are mapped to “Others”). Our goal
is not to create new ML or feature selection algorithms, nor
is to ascertain which algorithm yields the best accuracy or
runtime. We aim to expose and analyze how KFKDs/FDs
enable us to dramatically discard foreign features a priori
when learning some popular high-capacity classifiers.

3. EMPIRICAL STUDY WITH REAL DATA
We present results for 10 classifiers, including 7 high-

capacity ones (CART decision tree with gini, information
gain, and gain ratio; SVM with RBF and quadratic kernels;
multi-layer perceptron ANN; 1-nearest neighbor), and 3 lin-
ear classifiers (Naive Bayes with backward selection, logis-
tic regression with L1 regularization, and linear SVM). We
also tried a few other feature selection techniques for the
linear classifiers: Naive Bayes with forward selection and fil-
ter methods and logistic regression L2 regularization. Since
these additional linear classifiers did not provide any new
insights, we omit them due to space constraints.

3.1 Datasets
We take the seven real datasets from [30]; these are origi-

nally from Kaggle, GroupLens, openflights.org, mtg.upf.
edu/node/1671, and last.fm. Two datasets have binary
targets (Flights and Expedia); the others have multi-class
ordinal targets. However, to generalize the scope of the
problem studied, we retain numeric features rather than dis-
cretize them as in [30]. The dataset statistics are provided in
Table 1. We briefly describe the task for each dataset and
explain what the foreign features are. More details about

their schemas, including the list of all features are already
in the public domain (listed in [30]). All of our datasets,
scripts, and code are available for download on our project
webpage3 to make reproducibility easier.

Walmart : predict if department-wise sales will be high
using past sales (fact table) joined with stores and weath-
er/economic indicators.

Flights: predict if a route is codeshared by using other
routes (fact table) joined with airlines, source, and destina-
tion airports.

Yelp: predict if a business will be rated highly using past
ratings (fact table) joined with users and businesses.

MovieLens: predict if a movie will be rated highly using
past ratings (fact table) joined with users and movies.

Expedia: predict if a hotel will be ranked highly using
past search listings (fact table) joined with hotels and search
events; one foreign key, viz., the search ID, has an “open”
domain, i.e., past values will not be seen in the future, which
makes it unusable as a feature.

LastFM : predict if a song will be played often using past
play information (fact table) joined with users and artists.

Books: predict if a book will be rated highly using past
ratings (fact table) joined with readers and books.

3.2 Methodology
We perform 10-fold nested cross-validation, with a ran-

dom third of the examples in the training folds being used for
validation during feature selection and/or hyper-parameter
tuning). We compare two approaches for each classifier:
JoinAll, which uses all features from all base tables (the
current widespread practice), and NoJoin, which avoids all
foreign features a priori (the approach we study). For ad-
ditional insights, we also include a third approach for deci-
sion trees: NoFK, which uses all features except the foreign
keys. We used the popular R packages “rpart” for the de-
cision trees (but for gain ratio, we used “CORElearn”) and
“e1071” for the SVMs. For the ANNs, we used the popular
Python library Keras on TensorFlow. For Naive Bayes, we
used the code from [30], while for logistic regression with
L1 regularization, we used the popular R package “glmnet”.
We used a standard grid search for hyper-parameter tuning,
with the grids described in detail below.

Decision Trees: There are two hyper-parameters to tune:
minsplit and cp. minsplit is the number of observations that
must exist in a node for a split to be attempted. Any split
that does not improve the fit by a factor of cp is pruned off.
The grid is set as follows: minsplit ∈ {1, 10, 100, 103} and
cp ∈ {10−4, 10−3, 0.01, 0.1, 0}

RBF-SVM : There are two hyper-parameters: C and γ.
C controls the cost of misclassification. γ > 0 controls the
bandwidth in the Gaussian kernel; given points xi and xj ,
k(xi, xj) = exp(−γ·‖xi − xj‖

2). The grid is set as follows: C
∈ {10−1, 1, 10, 100, 103} and γ ∈ {10−4, 10−3, 0.01, 0.1, 1, 10}.
On Movies and Expedia, we perform an extra fine tuning
step with γ ∈ {2−7, 2−6, . . . , 23} to improve accuracy.

Quadratic-SVM : We tune the same hyper-parameters C
and γ for the polynomial kernel of degree 2: k(xi, xj) =
(−γ xT

i · xj)
degree. We use the same grid as RBF-SVM.

3http://cseweb.ucsd.edu/~arunkk/hamlet

369



Table 2: 10-fold CV errors for the decision trees and 1-NN. We compare the accuracy of JoinAll and NoJoin

within each model. For Expedia and Flights, we use the zero-one error; for the other datasets, we use the
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Table 3: 10-fold CV errors of the SVMs, ANN, Naive Bayes, and logistic regression from the same experiments
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Linear-SVM : We tune the C hyper-parameter for the lin-
ear kernel: k(xi, xj) = xT

i · xj , C ∈ {10−1, 1, 10, 100, 103}.

ANN : The multi-layer perceptron architecture comprises
of 2 hidden units with 256 and 64 neurons respectively. Rec-
tified linear unit (ReLU) is used as the activation function.
In order to allow penalties on layer parameters, we do L2

regularization, with the regularization parameter tuned us-
ing the following grid axis: {10−4, 10−3, 10−2}. We choose
the popular Adam stochastic gradient optimization algo-
rithm [24] with the learning rate tuned using the following
grid axis: {10−3, 10−2, 10−1}. The other hyper-parameters
of the Adam algorithm used the default values.

Logistic Regression: The glmnet package performs auto-
matic hyper-parameter tuning for the L1 regularizer, as well
as the optimization algorithm. However, it has three param-
eters to specify a desired convergence threshold and a limit
on the execution time: nlambda, which we set to 100, maxit,
which we set to 10000, and thresh, which we set to 0.001.

Tables 2 and 3 present the 10-fold cross-validation errors
of all models on all datasets.

3.3 Results

Accuracy

Our first and most important observation is that for almost
all the datasets (Yelp being the exception) and for all three

split criteria, the error of the decision tree is comparable
(a gap of within 0.01) between NoJoin and JoinAll. The
trend is virtually the same for the RBF-SVM and ANN as
well. We also observe that the trend is almost the same
for the linear models, albeit less robustly so. Thus, regard-
less of whether our classifier is linear or higher capacity,
the relative behavior of NoJoin vis-a-vis JoinAll is virtually
the same. These results represent our key counter-intuitive
finding: joins are no less safe to avoid with the high-capacity
classifiers than with the linear classifiers. The absolute er-
rors of the high-capacity classifiers is mostly lower than the
linear models; this is expected but orthogonal to our focus.
Interestingly, on Yelp, in which both joins are known to be
not safe to avoid for linear models [30], NoJoin correctly sees
a large rise in error against JoinAll–almost 0.07 for Naive
Bayes. But the rise is smaller for some high-capacity clas-
sifiers, e.g., RBF-SVM, Gini decision tree, and ANN all see
a rise less than 0.03. Thus, these high-capacity classifiers
are counter-intuitively more robust than linear classifiers to
avoiding joins.
We also see that NoFK often has much higher errors than

JoinAll and NoJoin. Thus, foreign key features are useful
even for high-capacity classifiers; it is known for linear classi-
fiers that dropping foreign keys causes bias to shoot up [30].
Interestingly, on Yelp, which has very low tuple ratios, NoFK
has much lower errors than JoinAll and NoJoin.
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Table 4: Robustness results for discarding individual
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Flights : NoR1 : 0.1387 NoR2 : 0.1392 NoR3 : 0.1404

NoR1, R2 : 0.1377 NoR1, R3 : 0.1379 NoR2, R3 : 0.1426

To understand the above results more deeply, we conduct
a “robustness” experiment by discarding dimension tables
one at a time: Table 4 presents these results for the Gini
decision tree. We see that the errors with dropping dimen-
sion tables one (or even two) at a time are all still within
0.01 of NoJoin in all cases, except for Yelp. Even on Yelp,
the error increases significantly only when R2 (users table)
is dropped, not R1. As Table 1 shows, the tuple ratio for
R2 is only 3, while that for R1 is 11.2. Interestingly, the
tuple ratio is similarly low (3) for R2 in Books but NoJoin
error is not much higher. Thus, the tuple ratio is only a
conservative indicator: it can tell if an error is likely to rise
but the error may not actually rise in some cases. Almost
every other dimension table can safely be discarded. The
results were similar for ANN on Yelp and for the RBF-SVM
on Yelp, LastFM, and Books; we skip these for brevity.

Overall, out of 14 dimension tables across the 7 datasets,
we are able to safely avoid (with a tolerance of 0.01) 13 for
decision trees and ANN with a tuple ratio threshold of about
3. For RBF-SVM, we were able to safely avoid 11 dimension
tables with a tuple ratio threshold being of about 6. These
are in stark contrast to the more modest results reported
with the linear classifiers in [30]: only 7 of the dimension
tables could be safely avoided, that too with a tuple ratio
threshold of 20. Thus, we see that the decision trees and
ANN need six times fewer training examples and the RBF-
SVM needs three times fewer training examples than linear
classifiers to avoid significant extra overfitting when avoid-
ing KFK joins. These results are counter-intuitive because
such complex classifiers are known to need more (not less)
training examples to avoid extra overfitting.

For an interesting comparison that we use later in Section
5, we also show the results for 1-NN (from “RWeka” in R)
in Table 2. Surprisingly, this “braindead” classifier has sig-
nificantly lower errors with NoJoin than JoinAll for most
datasets! We discuss this behavior further in Section 5.

Hypothesis Tests. The cross-validation errors suggest
that NoJoin is not significantly worse than JoinAll for most
datasets, especially those with high tuple ratios. We now
validate if the error differences are indeed statistically sig-
nificant for a given error tolerance. We perform a one-tailed
t-test with the ten folds’ asymmetric error differences be-
tween NoJoin and JoinAll for each model on each dataset.
We set the tolerance (ε) to both 0 and 0.01. The null hy-
pothesis is that the error difference is not significantly higher
than ε. Figure 5 lists the number of models for which the
null hypothesis was not rejected for the standard α = 0.05
confidence level and the recently recommended stricter level
of α = 0.005 [2]. We see that except on Yelp, which has
very low tuple ratios, NoJoin is not statistically significantly
worse than JoinAll for most models (both linear and higher

Table 5: Results of the hypothesis tests., - . - / 0 . 0 1 / 2 3 0 1 / 2 3 4 3 56 7 8 9 8 : 6 7 8 9 8 8 : 6 7 8 9 8 : 6 7 8 9 8 8 :; < 1 0 = > - ? @ 5 3 5 3A B C > 0 / D D 5 3 5 3E F G H I I J KL - M N - O . P D 5 3 5 3Q - / . R A S T U UV B B W / T P 5 3 5 3R M > X Y . / Z S 5 3 5 3
capacity), especially for ε = 0.01 but also for ε = 0 in many
cases. For example, logistic regression on Movies and Yelp
has p-values of 0.97 and 0.000026 respectively for ε = 0.01.
Since the p-value for Movies is greater than the α levels, the
null hypothesis is retained. But for Yelp, the null hypothesis
is rejected as the p-value is far below the α levels. Due to
space constraints, we skip the other p-values here but have
released all the detailed results on our project webpage.

Runtimes

A key benefit of avoiding joins safely is that ML runtimes
(including feature selection) could be significantly lowered
for linear models [30]. We now check if this holds for high-
capacity classifiers as well by comparing the end-to-end exe-
cution times (training, validation with grid search, and test-
ing). Due to space constraints, we only report Gini metric
for decision trees and RBF kernel for SVMs; these were also
the most robust to avoiding joins. All experiments (except
for ANN) were run on CloudLab [39]; we use a custom Open-
Stack profile running Ubuntu 14.10 with 40 Intel Xeon cores
and 160GB of RAM. The ANN experiments were run on a
commodity laptop with Nvidia GeForce GTX 1050 GPU,
16GB RAM and Windows 10. We used R version 3.2.2 and
TensorFlow version 1.1.0. Figure 1 presents the results.
For the high-capacity classifiers, we saw an average speedup

of about 2x for NoJoin over JoinAll. The highest speedup
was on the Movies: 3.6x for the decision tree and 6.2x
for the RBF-SVM. As for the ANN, LastFM reported the
largest speedup of 2.5x. The speedup for the linear classi-
fiers were more significant, e.g., over 80x for Naive Bayes
on on Movies and and about 20x for logistic regression on
LastFM. These results corroborate the orders of magnitude
speedup reported in [30].

4. IN-DEPTH SIMULATION STUDY
We now dive deeper into the behavior of the decision trees

using a simulation study in which we vary the underlying
“true” data distribution and sampling datasets of different
dimensions. We focus on a two-table join for simplicity.
We use the decision tree, since it exhibited the maximum
robustness to avoiding KFK joins on the real data. Our
study comprehensively “stress tests” this robustness. Note
that our methodology is generic enough to be applicable to
any other classifier too, since we only use generic notions of
error and net variance as defined in [30].

Setup and Data Synthesis. There is one dimension table
R (q = 1), and all of XS , XR, and Y are boolean (do-
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Figure 1: End-to-end runtimes on the real-world datasets: Walmart (W), Expedia (E), Flights (F), Yelp (Y),
Movies (M), LastFM (L) and Books (B).

main size 2). We control the “true” distribution P (Y,X)
and sample labeled examples in an IID manner from it. We
study two different scenarios for what features are used to
(probabilistically) determine Y : OneXr and XSXR. These sce-
narios represent opposite extremes for how likely the (test)
error is likely to shoot up when XR is discarded and FK
is used as a representative [30]. In OneXr, a lone feature
Xr ∈ XR determines Y ; the rest of XR and XS are random
noise (but note that FK will not be noise because it func-
tionally determines Xr). In XSXR, all features in XS and XR

determine Y . Intuitively, OneXr is the worst-case scenario
for discarding XR because Xr is typically far more succinct
than FK, which we expect to translate to less possibility of
overfitting with NoJoin. Note that if we use FK directly in
P , XR can be more easily discarded because FK conveys
more information anyway; so, we skip such a scenario.

The following data parameters are varied one at a time:
number of training examples (nS), size of foreign key domain
(|DFK | = nR), number of features in XR (dR), and number
of features in XS (dS). We also sample nS

4
examples each

for the validation set (for hyper-parameter tuning) and the
holdout test set (final indicator of error). We generate 100
different training datasets and measure the average test er-
ror and average net variance (as defined in [10]) based on
the different models obtained from these 100 runs.

4.1 Scenario OneXr
The “true” distribution is set as follows: P (Y = 0|Xr =

0) = P (Y = 1|Xr = 1) = p, where p is called the probabil-
ity skew parameter that controls the noise (also called Bayes
error [17]). The exact procedure for sampling examples is as
follows: (1) Construct tuples of R by sampling XR values
randomly (each feature value is an independent coin toss).
(2) Construct the tuples of S by sampling XS values ran-
domly (independent coin tosses). (3) Assign FK values to
S tuples uniformly randomly from DFK . (4) Assign Y val-
ues to S tuples by looking up into their respective Xr value

(implicit join on FK = RID) and sampling from the above
conditional distribution.
We compare JoinAll, NoJoin, and NoFK ; we include NoFK

for a lower bound on errors, since we know FK does not di-
rectly determine Y (although indirectly it does).4 Figure 2
presents the results for the test errors for varying each rele-
vant data and distribution parameter, one at a time.
Interestingly, regardless of the parameter varied, in almost

all cases, NoJoin and JoinAll have almost identical errors
(close to the Bayes error)! From inspecting the actual de-
cision trees learned in these two settings, we found that in
almost all cases, FK was used repeatedly for partitioning;
seldom was a feature fromXR, includingXr, used. This sug-
gests that FK can indeed act as a good representative of XR

even in this extreme case. In contrast to these results, [30]
found that for linear models, the errors of NoJoin shot up
compared to JoinAll (a gap of nearly 0.05) as the tuple ra-
tio starts falling below 20. In stark contrast, as Figure 2(B)
shows, even for a tuple ratio of just 3, NoJoin and JoinAll
have similar errors with the decision tree. This corroborates
the results seen for the decision tree on the real datasets
(Table 2). When nS becomes very low or when |DFK | be-
comes very high, the absolute errors of JoinAll and NoJoin
increase compared to NoFK. This suggests that when the
tuple ratio is very low, NoFK is perhaps worth trying too.
This is similar to the behavior seen on Yelp. Overall, NoJoin
exhibits similar behavior as JoinAll in most cases.

We also ran this scenario for the RBF-SVM (and 1-NN);
the trends were similar, except for the value of the tuple ratio
at which NoJoin deviates from JoinAll. Figure 3 presents
the results for the experiment in which we increase |DFK | =
nR, while fixing everything else, similar to Figure 2(B) for
the decision tree. We see that for the RBF-SVM, the error

4In general though, NoFK could have much higher errors
if FK is part of the true distribution; indeed, NoFK had
much higher errors on many real datasets (Table 2).
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Figure 2: Simulation results for Scenario OneXr. For all plots except (E), we fix p = 0.1. Note that nR ≡ |DFK |.
(A) Vary nS, while fixing (nR, dS , dR) = (40, 4, 4). (B) Vary nR, while fixing (nS , dS , dR) = (1000, 4, 4). (C) Vary
dS, while fixing (nS , nR, dR) = (1000, 40, 4). (D) Vary dR, while fixing (nR, dS , dR) = (1000, 40, 4). (E) Vary p,
while fixing (nS , nR, dS , dR) = (1000, 40, 4, 4). (F) Vary |DXr |, while fixing (nS , nR, dS , dR) = (1000, 40, 4, 4); all other
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Figure 3: Scenario OneXr simulations with the same
setup as Figure 2(B), except for (A) 1-NN and (B)
RBF-SVM.

deviates when the tuple ratio falls below roughly 6. This cor-
roborates its behavior on the real datasets (Table 3). The
1-NN, as expected, is far less stable and the deviation starts
even at a tuple ratio of 100. As Figure 4 confirms, the devi-
ation in error for the RBF-SVM is due to the net variance,
which helps quantify the extra overfitting. This is akin to
the extra overfitting reported in [30] using the plots of the
net variance. Intriguingly, the 1-NN sees its net variance ex-
hibit non-monotonic behavior; this is likely an artifact of its
unstable behavior, since fewer and fewer training examples
will match on FK as nR keeps rising.

Finally, we also ran this scenario with a skew in P (FK),
which makes it less safe to avoid the join for linear classi-
fiers [30]. But our simulations with a decision tree show that
it is robust even to foreign key skew in terms of how safe it
is to avoid the join. Due to space constraints, we present
these results in the technical report [43].

4.2 Scenario XSXR
Unlike OneXr, we now create a true distribution that maps

X ≡ [XS ,XR] to Y without any noise (Bayes error). The
exact procedure for sampling examples is as follows: (1)
Construct a true probability table (TPT) with entries for all
possible values of [XS ,XR] and assign a random probability
to each entry such that the total probability is 1. (2) For
each entry in the TPT, pick a Y value randomly and append
the TPT entry; this ensures H(Y |X) = 0. (3) Marginalize
the TPT to obtain P (XR) and from it, sample nR = DFK

tuples for R along with an associated sequential RID value.
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Figure 4: Average net variance in the scenario OneXr

for (A) 1-NN and (B) RBF-SVM.

(4) In the original TPT, push the probability of each entry
to 0 if its XR values did not get picked for R in step 3. (5)
Renormalize the TPT so that the total probability is 1 and
sample nS examples (Y values do not change) and construct
S. (6) For each tuple in S, pick its FK value uniformly
randomly from the subset of RID values that map to its
XR value inR (an implicit join). We again compare JoinAll,
NoJoin, and NoFK. Figure 5 presents the results.
Once again, we see that NoJoin and JoinAll exhibit sim-

ilar errors in almost all cases, with the largest gap being
0.017 in Figure 5(C). Interestingly, even when the tuple ra-
tio is close to 1, the gap between NoJoin and JoinAll does
not widen much. Figure 5(B)) shows that as |DFK | in-
creases, NoFK remains at low overall errors, unlike both
JoinAll and NoJoin. But as we increase dR or dS , the gap
between JoinAll/NoJoin and NoFK narrows because even
NoFK does not have enough training examples. Of course,
all gaps virtually disappear as the number of training ex-
amples increases, as shown by Figure 5(A). Overall, NoJoin
again exhibits similar behavior as JoinAll.

4.3 Scenario RepOneXr
We now present results for a new simulation scenario that

is a slight twist on OneXr: the tuples of R are constructed
by replicating the value of Xr sampled for a tuple to create
all the other features in XR. That is, XR of an example is
just the same value repeated dR times. Note that the FD
FK → XR implies there are at least as many unique FK
values as XR values. Thus, by increasing |DFK | relative
to dR, we hope to increase the chance of the model getting
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Figure 5: Simulation results for Scenario XSXR. The parameter values varied/fixed are the same as in Figure 2
(A)-(D).
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Figure 6: Scenario RepOneXr simulations for deci-
sion tree. (A) Vary dR while fixing (nS , nR, dS) =
(1000, 40, 4). (B) Vary dR while fixing (nS , nR, dS) =
(1000, 200, 4). ïð ñ òï ó ô ò õ ò ò ò õö ÷ø ùú ûüýþ ÿÿ�ÿ �ö ÷ø ùú ûüýþ ÿÿ�ÿ � � � � � � � 	 	 � 
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Figure 7: Scenario RepOneXr simulations with same
setup as Figure 6, except for RBF-SVM.

“confused” with NoJoin. Our goal is to see if this widens
the gap between JoinAll and NoJoin.

Figure 6 presents the results for the two experiments on
decision trees where (A) has a high tuple ratio of 25 and
(B) has a low tuple ratio of 5. Once again, JoinAll and
NoJoin exhibit similar errors in both the cases. The same
experiment’s results with RBF-SVM and 1-NN are shown
in Figure 7) and Figure 8 respectively. For the RBF-SVM,
NoJoin has higher errors at the tuple ratio of 5 but not 25,
while for the 1-NN, NoJoin has higher errors in both cases.

5. ANALYSIS AND OPEN QUESTIONS

5.1 Explaining the Results
We now intuitively explain the surprising behavior of de-

cision trees and RBF-SVMs with NoJoin vis-a-vis JoinAll.
We first ask: Does NoJoin compromise the “generalization
error”? The generalization error is the difference of the test
and train errors. Tables 6 and 7 list the train errors (aver-
aged across the 10 folds). JoinAll and NoJoin are remark-
ably close for the decision trees (except for Yelp, of course).
The absolute generalization errors are often high, e.g., train
error is almost 0 on Flights with RBF-SVMs but test errors
are about 0.08, but this is orthogonal to our focus–we only
note that NoJoin does not increase this generalization er-
ror significantly. The same is true for all the decision trees.
Thus, avoiding the KFK joins safely did not significantly
affect the generalization errors the high-capacity classifiers.

Returning to 1-NN, Table 2 showed that it has similar er-
rors as RBF-SVM on some datasets. We now explain why
this comparison is useful: RBF-SVM behaves similar to 1-
NN in some cases when FK is used (both JoinAll and No-
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Figure 8: Scenario RepOneXr simulations with same
setup as Figure 6, except for 1-NN.

Join). But this does not necessarily hurt its test accuracy.
Note that FK is represented using the standard one-hot
encoding for RBF-SVM and 1-NN. So, FK can contribute
to a maximum distance of 2 in a (squared) Euclidean dis-
tance between two examples xi and xj . But since XR is
functionally dependent on FK, if xi.FK = xj .FK, then
xi.XR = xj .XR. So, if xi.FK = xj .FK, the only contrib-
utor to the distance is XS . But in many of the datasets,
since XS is empty (dS = 0), FK becomes the sole deter-
miner of the distances for NoJoin. This is akin to sheer
memorization of a feature’s large domain. Since we operate
on features with finite domains, test examples will also have
FK from that domain. Thus, memorizing FK does not
hurt generalization. While this seems similar to how deep
neural networks excel at sheer memorization but still offer
good test accuracy [52], the models in our setting are not
necessarily memorizing all features but rather only FK. A
similar explanation holds for the decision tree. If XS is not
empty, then it will likely play a major role in the distance
computations and our setting becomes more similar to the
traditional single-table learning setting (no FDs).
We now explain why NoJoin deviates from JoinAll when

the tuple ratio is very low for RBF-SVM. Even if xi.FK 6=
xj .FK, it is possible that xi.XR = xj .XR. Suppose the
“true” distribution is captured by XR (as in OneXr). If the
tuple ratio is very low, there might be many FK values but
the number of distinct XR values might still be small. In
this case, given xi, RBF-SVM (and 1-NN) is more likely
to pick an xj that minimizes the distances on XR, thus,
potentially yielding lower errors. But since NoJoin does
not have access to XR, it can only use XS and FK. So,
if XS is mostly noise, the possibility of the model getting
“confused” increases. To see why, if there are few other ex-
amples that share xi.FK, matching on XS becomes more
important. Thus, a non-match on FK becomes more likely,
which means a non-match on the implicit XR becomes more
likely, which in turns makes higher errors more likely. But
if there are more examples that share xi.FK, then a match
on FK is more likely. Thus, as the tuple ratio increases,
the gap between NoJoin and JoinAll decreases, as Figure 3
showed. Internally, RBF-SVM seems more robust to such
chance mismatches, since it learns a higher-level relationship
between all features compared to 1-NN. Thus, RBF-SVM is
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Table 6: Training errors for the same experiments as Table 2. Bold font marks the cases where the error of
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Table 7: Training errors for the same experiments as Table 3. Bold font marks the cases where the error of
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more robust to avoiding joins at lower tuples ratios com-
pared to 1-NN.

Finally, the decision tree’s internal feature selection and
partitioning seems to make it robust to noise from many
features. Suppose again the “true” distribution is similar to
OneXr. Since FK already encodes all information that XR

provides, the tree almost always uses FK in its partition-
ing, often multiple times. This is not necessarily “bad” for
test accuracy because test examples share DFK . But when
the tuple ratio is extremely low, the chance of XS “confus-
ing” the tree against the information FK provides goes up,
potentially leading to higher errors with NoJoin. JoinAll es-
capes such a confusion due to XR. If XS is empty, then FK
will almost surely be used for partitioning. But with very
few training examples per FK value, the chance of sending
it to a wrong partition goes up, leading to higher errors. It
turns out that even with just 3 or 4 training examples per
FK value, such issues get mitigated. Thus, decision trees
seem even more robust to avoiding joins.

5.2 Open Research Questions
While our analysis intuitively explains the behavior of de-

cision trees and RBF-SVMs, there are many open questions
for research. Is it possible to quantify the probability of
wrong partitioning with a decision tree as a function of the
data properties? Is it possible to quantify the probability
of mismatched examples being picked by RBF-SVM? Why
does the theory of VC dimension predict the opposite of the

observed behavior with these models? How do we quan-
tify their generalization if memorization is allowable and
what forms of memorization are allowed? Answering these
questions would provide deeper insights into the effects of
KFKDs/FDs on such classifiers. It could also yield more
formal mechanisms to characterize when avoiding joins is
feasible beyond just looking at tuple ratios.
There are database dependencies more general than FDs:

embedded multi-valued dependencies and join dependen-
cies [45]. How do these dependencies among features af-
fect ML models? There are also conditional FDs, which
satisfy FD-like constraints among subsets of rows [45]; how
do such data properties affect ML models? Finally, Arm-
strong’s axioms imply that foreign features can be divided
into arbitrary subsets before being avoided; this opens up a
new trade-off space between avoiding XR and using it XR.
How do we quantify this trade-off and exploit it? Answer-
ing these questions would open up new connections between
data management and ML theory and potentially enable
new functionalities for ML analytics systems.

6. MAKING FK FEATURES PRACTICAL
We now discuss two key practical issues caused by a large

|DFK | and study how standard techniques can be adapted to
resolve them. Unlike prior work on handling large-domain
regular features [8], foreign key features are distinct, since
they have coarser-grained side information available in for-
eign features, which can be exploited.

375



ü ý þÿ � � �ü ý þ �ÿ � � � � þ � � �� ���� 	� ���� 
 � �  � � � � � � � �� ý ü �� � ÿ �� ý þ� � � � � þ � � �� � � � � �� �  ! " # � $ % �&
Figure 9: Domain compression. (A) Flights. (B)
Yelp.

6.1 Foreign Key Domain Compression
While foreign key features are clearly often useful for ac-

curacy, they could make interpretability difficult. For exam-
ple, it is hard to visualize a decision tree that uses a foreign
key feature with 1000s of values. Thus, we consider a simple
technique from the ML literature to mitigate this issue: lossy
compression. Essentially, FK with domain DFK is recoded
as [m] (where m = |DFK |). Given a user-specified positive
integer “budget” l � m, we want a mapping f : [m] → [l].

A standard unsupervised method to construct f is the
random hashing trick [48], i.e., randomly map from [m] to
[l]. We also try a simple supervised method based on filter-
based feature selection that we call the Sort-based method.
It preserves more of the information contained in FK about
Y . It is a greedy approach in which we sort DFK based on
H(Y |FK = z), z ∈ DFK , compute the differences among
adjacent pairs of values, and pick the boundaries corre-
sponding to the top l−1 differences (ties broken randomly).
This gives us an l-partition of DFK . The intuition is that
by grouping FK values that have comparable conditional
entropy, H(Y |f(FK)) is unlikely to be much higher than
H(Y |FK). Note that the lower H(Y |FK) is, the more in-
formative FK is to predict Y .
We empirically compare the above two heuristics using

two real datasets for the Gini decision tree with NoJoin.
Our methodology is as follows. We use the training parti-
tion to construct f and then compress FK for the whole
dataset. We then use the validation partition and obtain
cross-validation errors as before. For random hashing, we
report the average across five runs. Figure 9 presents the
results. On Yelp, both Random and Sort-based have com-
parable errors although Sort-based is marginally higher, es-
pecially as l increases. But on Flights, the gap is larger for
some values of l although the gap narrows as the l increases.
The test error with the whole DFK (l = m) for NoJoin
on Flights was 0.14 (see Table 2). Thus, it is surprising
to see an error of only about 0.18 even with such high do-
main compression. Even more surprisingly, the test error
on Yelp goes down after domain compression from 1.31 to
about 1.22. Overall, these results suggest that FK domain
compression, especially with Sort-based, is a promising way
to resolve the large-domain issue rather than dropping FK.

6.2 Foreign Key Smoothing
Another issue caused by a large |DFK | is that some FK

values might not arise in the train set but arise in the test set
or during deployment. This is not the cold start issue, since
all FK values are from within the closed DFK , but rather an
issue of there not being enough labeled examples to cover all
of DFK well. Typically, this issue is handled using smooth-
ing, e.g., Laplacian smoothing for Naive Bayes by adding a
pseudocount of 1 to all frequency counts [33]. While simi-
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Figure 10: Smoothing. (A) Hashing. (B) XR-based.

lar techniques have been studied for probability estimation
using decision trees [36], to the best of our knowledge, this
issue has not been handled in general for classification using
decision trees. In fact, popular decision tree packages in R
simply crash if this issue arises! Note that SVMs, ANNs,
and other numeric feature space-based models do not have
this issue, since they use one-hot encoding of FK.
We consider a simple solution approach: smooth by re-

assigning an FK value not seen during training to an FK
value that was seen. The reassignment can be done in many
ways but for simplicity sake, we consider only two unsuper-
vised methods: random reassignment and distances using
foreign features (XR). Note that the latter is only feasi-
ble in cases where the dimension tables have been procured;
the idea is to use the auxiliary information in XR to smooth
FK rather than just using JoinAll. We smooth using XR

as follows: given a test example with FK not seen during
training, obtain an FK seen during training whose corre-
sponding XR feature vector has the minimum distance with
the given test example’s XR (ties broken randomly). The
distance measure is just a sum of the l0 distance for categor-
ical features (count of pairwise mismatches) and l2 distance
for numeric features (Euclidean distance).
The intuition for XR-based smoothing is that if XR is

part of the “true” distribution, it may yield lower errors
than random smoothing, but if XR is just noise, both meth-
ods become similar. We empirically compare these methods
using the OneXr simulation scenario in which a lone feature
Xr ∈ XR determines the target (with some Bayes error).
We introduce a parameter γ that is the ratio of the number
of FK values not seen during training to |DFK |. If γ = 0,
smoothing is not needed; as γ increases, more smoothing is
needed. Figure 10 presents the results. We see that XR-
based smoothing yields much lower test errors for both No-
Join and JoinAll. In fact, the smoothed approaches’ errors
are comparable to NoFK and the Bayes error for low values
of γ (< 0.5). As γ gets closer to 1, the errors of XR-based
smoothing also increase but not as much as random smooth-
ing. Overall, these results suggest that one could get “the
best of both worlds” in a way: even if foreign features are
available, rather for using them always as in JoinAll, an of-
ten viable alternative is to use them as side information for
smoothing foreign key features with NoJoin, thus still yield-
ing some of the runtime and usability benefits of NoJoin.

6.3 Discussion and Limitations
Our results confirm that it is often safe to avoid KFK

joins even for popular high-capacity classifiers. Thus, data
scientists can use the tuple ratio rule to easily reduce the
burden of data sourcing for such classifiers too, not just lin-
ear models. We also showed that it is possible to avoid joins
safely regardless of whether features are categorical or nu-
meric. This has a new implication for further theoretical
analysis of our results because the analysis in [30] relied on
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the finiteness of the hypothesis space due to all features be-
ing categorical. But an infinite hypothesis space does not
preclude a finite VC dimension [44]. Extending the theoret-
ical analysis to our more general setting is an open problem.
While we focused on star schemas, our results can be easily
extended to snowflake schemas as well due to the transi-
tivity of FDs. Our results also apply to single-table data
with an acyclic set of FDs, as noted in [30], since a BCNF
decomposition can yield a multi-table scenario.

We recap the limitations and assumptions of our work
to help data scientists apply our idea in the right context.
We focused only on popular classification models but our
results hold for both binary and multi-class targets and both
categorical and numeric features. If a foreign key is not
generalizable (e.g., search ID in Expedia), it cannot be used
directly as a feature and so, its corresponding join should not
be avoided. Finally, we leave it to future work to study the
interplay of our work with cold start techniques and latency
trade-offs during model serving.

7. RELATED WORK
Database Dependencies and ML. Optimizing ML over
joins of multiple tables was studied in [29, 41, 38, 28], but
their goal was primarily to reduce runtimes without affect-
ing ML accuracy. ML over joins was also studied in [50] but
their focus was on devising a new ML algorithm. In contrast,
our work studied the more fundamental question of whether
KFK joins can be avoided safely for ML classifiers. We first
demonstrated the feasibility of avoiding joins safely in [30]
for linear models. In this work, we revisit that idea for high-
capacity classifiers and also empirically verify mechanisms to
make foreign key features more practical. Embedded multi-
valued dependencies (EMVDs) are database dependencies
that are more general than functional dependencies [3]. The
implication of EMVDs for probabilistic conditional indepen-
dence in Bayesian networks was originally described by [34]
and further explored by [49]. However, their use of EMVDs
still requires computations over all features in the data in-
stance. In contrast, avoiding joins safely omits entire sets
of features for complex ML models without performing any
computations on the foreign features. There is a large body
of work on statistical relational learning (SRL) to handle
joins that cause duplicates in the fact table [15]. But as
mentioned before, our work focuses on the regular IID set-
ting for which SRL might be an overkill.

Feature Selection. The ML and data mining communi-
ties have long studied feature selection methods [16]. Our
goal is not to design new feature selection methods nor is
it compare existing ones. Rather, we study if KFKDs/FDs
in the schema let us to avoid entire tables a priori for some
popular high-capacity classifiers, i.e., “short-circuiting” fea-
ture selection using database schema information to reduce
the burden of data sourcing. The trade-off between feature
redundancy and relevancy is well-studied [16, 51, 25]. The
conventional wisdom is that even a feature that is redun-
dant might be highly relevant and thus, unavoidable in the
mix [16]. Our work shows that, perhaps surprisingly, even
highly relevant foreign features can be safely discarded in
many practical classification tasks for many high-capacity
classifiers. There is prior work on exploiting FDs in fea-
ture selection; [46] infers approximate FDs using the dataset
instance and exploits them during feature selection, FO-
CUS [4] is an approach to bias the input and reduce the

number of features, while [7] proposes a measure called con-
sistency to aid in feature subset search. Our work is or-
thogonal to these algorithms because they all still require
computations over all features, while avoiding joins safely
omits foreign features without even looking at them and ob-
viously, without performing any computations on them. To
the best of our knowledge, no feature selection method ex-
hibits such a dramatic capability. Gini and information gain
are known to be biased towards large-domain features in
decision trees [8]. Different approaches have been studied
to resolve this issue [20]. Our work is orthogonal because
we study how KFKDs/FDs enable us to ignore foreign fea-
tures a priori safely. Even with the gain ratio score that is
known to mitigate the bias towards large-domain features,
our main findings stand. Unsupervised dimensionality re-
duction methods such as random hashing and PCA are also
popular [17]. Our foreign key domain compression tech-
niques for decision trees are inspired by such methods.

Data Integration. Integrating data and features from var-
ious sources for ML often requires applying and adapting
data integration techniques [31, 9], e.g., integrating features
from different data types in recommendation systems [21],
sensor fusion [22], dimensionality reduction during feature
fusion [14], and controlling data quality during data fu-
sion [11]. Avoiding joins safely can be seen as one schema-
based mechanism to reduce the integration burden by pre-
dicting a priori if a source table is unlikely to improve accu-
racy. It is an open challenge to devise similar mechanisms
for other types of data sources, say, using other schema con-
straints, ontology information, and sampling. There is also
a growing interest in making data discovery and other forms
of metadata management easier [13, 19]. Our work can be
seen as a mechanism to verify the potential utility of some of
the discovered data sources using their metadata. We hope
our work spurs more research in this direction of exploiting
ideas from data integration and data discovery to reduce the
data sourcing burden for ML tasks.

8. CONCLUSIONS AND FUTURE WORK
It is high time for the data management community to

look beyond just building faster ML systems and help re-
duce the pains of data sourcing for ML. Understanding how
fundamental data properties and schema information can
simplify end-to-end ML workflows is one promising avenue
in this direction. While the idea of avoiding joins safely has
been adopted in practice for linear classifiers, in this com-
prehensive study, we show that it works as well or better
for popular high-capacity classifiers too. This goes against
the intuition that high-capacity classifiers are typically more
prone to overfitting. We hope that our work spurs discus-
sions and new research on simplifying data sourcing for ML.
As for future work, we plan to formally analyze the effects

of KFKDs/FDs on high-capacity classifiers using learning
theory. Other interesting avenues include understanding the
effects of other database dependencies on ML, including re-
gression and clustering models, and designing an automated
“advisor” for data sourcing for ML tasks, especially when
there are heterogeneous data types and sources.
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