
A Distributed Multi-GPU System for Fast Graph Processing

Zhihao Jia
Stanford University

zhihao@cs.stanford.edu

Yongkee Kwon
UT Austin

yongkee.kwon@utexas.edu

Galen Shipman
LANL

gshipman@lanl.gov

Pat McCormick
LANL

pat@lanl.gov

Mattan Erez
UT Austin

mattan.erez@utexas.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

ABSTRACT
We present Lux, a distributed multi-GPU system that achieves
fast graph processing by exploiting the aggregate memory
bandwidth of multiple GPUs and taking advantage of lo-
cality in the memory hierarchy of multi-GPU clusters. Lux
provides two execution models that optimize algorithmic ef-
ficiency and enable important GPU optimizations, respec-
tively. Lux also uses a novel dynamic load balancing strat-
egy that is cheap and achieves good load balance across
GPUs. In addition, we present a performance model that
quantitatively predicts the execution times and automati-
cally selects the runtime configurations for Lux applications.
Experiments show that Lux achieves up to 20× speedup over
state-of-the-art shared memory systems and up to two or-
ders of magnitude speedup over distributed systems.

PVLDB Reference Format:
Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick,
Mattan Erez, and Alex Aiken. A Distributed Multi-GPU System
for Fast Graph Processing. PVLDB, 11(3): 297 - 310, 2017.
DOI: 10.14778/3157794.3157799

1. INTRODUCTION
Because graph applications have a high ratio of irregular

memory accesses to actual computation, graph processing
performance is largely limited by the memory bandwidth
of today’s machines. Prior work (e.g., PowerGraph [22],
GraphX [23], Ligra [37], and Galois [33]) has focused on
designing shared memory or distributed memory graph pro-
cessing frameworks that store the entire graph in DRAM on
a single machine or in the distributed DRAM in a cluster.

GPUs provide much higher memory bandwidth than to-
day’s CPU architectures. Nodes with multiple GPUs are
now ubiquitous in high-performance computing because of
their power efficiency and hardware parallelism. Figure 1 il-
lustrates the architecture of typical multi-GPU nodes, each
of which consists of a host (CPUs) and several GPU de-
vices connected by a PCI-e switch or NVLink [6]. Each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 3
Copyright 2017 VLDB Endowment 2150-8097/17/11... $ 10.00.
DOI: 10.14778/3157794.3157799

CPUs	
DRAM

PCI-e	Switch	/	NVLink	

Network

Compute Node

���

���

GPU1	

Device Memory

Shared
Memory

Zero-Copy Memory

GPUN	

Device Memory

Shared
Memory

CPUs	
DRAM

PCI-e	Switch	/	NVLink	

Compute Node

���

GPU1	

Device Memory

Shared
Memory

Zero-Copy Memory

GPUN	

Device Memory

Shared
Memory

Figure 1: Multi-GPU node architecture.

Random
 Read

Random
 Write

Sequential
 Read

Sequential
 Write

10-1

100

101

102

103

104

B
a
n
d
w

id
th

 (
G

B
/s

)

1.5

0.7

15.0
8.7

3.0 3.0

150.0 163.0

0.2 0.2

1.1 1.2

354.4 432.1 356.5 435.0

DRAM

GPU Device Memory

GPU Shared Memory

GPU Accessing Zero-Copy Memory

Figure 2: Memory bandwidth in a multi-GPU architecture.

GPU is able to directly access its local relatively large de-
vice memory, much smaller and faster shared memory, and a
small pinned area of the host node’s DRAM, called zero-copy
memory. Figure 2 shows the bandwidth of different mem-
ories on a multi-GPU node. Compared to DRAM, a single
GPU’s device memory provides 2-4× more bandwidth for
random access and 10-20× more bandwidth for sequential
access. In addition, GPU shared memory provides 20-50×
more bandwidth for sequential access and 200-600× more
bandwidth for random access.

Despite the high memory bandwidth, there has been lim-
ited work on designing multi-GPU graph processing frame-
works due to the heterogeneity and complex memory hierar-
chy of multi-GPU nodes. Existing graph processing frame-
works for multi-CPU clusters cannot be easily adapted to
multi-GPU clusters for three reasons.

First, native data placement and transfer strategies for
multi-CPU systems do not work for multi-GPU clusters.
Existing CPU-based approaches [37, 33, 22, 31] store the
graph in the DRAM of one or multiple nodes and optimize
data transfers between DRAM. In contrast, in GPU clusters,
there are choices in distributing the graph among GPU de-
vice memory, GPU shared memory, zero-copy memory, and
DRAM on each node. To realize benefits from the aggregate

297

performance of multiple GPUs, it is critical to also take ad-
vantage of the locality in these hierarchical architectures.

Second, current distributed graph processing systems fo-
cus on push-based operations, with each core processing ver-
tices in an active queue and explicitly pushing updates to
its neighbors. Examples include message passing in Pregel,
scatter operations in gather-apply-scatter (GAS) models,
and VertexMaps in Ligra. Although efficient at the algo-
rithmic level, push-based operations interfere with runtime
optimizations important to GPU performance, such as lo-
cally aggregating vertex updates.

Third, we have found that previous approaches for achiev-
ing efficient load balancing for CPUs work poorly for multi-
GPU systems due to architectural differences.

We present Lux, a distributed multi-GPU system that
achieves fast graph processing by exploiting the aggregate
memory bandwidth across a multi-GPU cluster. In Lux, the
entire graph representation is distributed onto the DRAM
and GPU memories of one or multiple nodes. The dis-
tributed graph placement is designed to minimize data trans-
fers within the memory hierarchy. Lux provides both a push
execution model that optimizes algorithmic efficiency and
a pull execution model that enables important GPU opti-
mizations. We find that applications with a large proportion
of active vertices over iterations (e.g., PageRank, collabora-
tive filtering) benefit substantially from the pull execution
model. In addition, we introduce a dynamic graph reparti-
tioning strategy that is simple and inexpensive and achieves
good load balance across GPUs. Finally, we present a per-
formance model that quantitatively predicts the Lux execu-
tion time and automatically selects an execution model for
a given application and input graph.

The main contributions of this paper are as follows:

• We present Lux, a distributed multi-GPU system that
achieves fast graph processing by exploiting locality
and the aggregate memory bandwidth on GPUs.

• We propose two execution models optimizing algorith-
mic efficiency and enabling GPU optimizations.

• We propose a dynamic graph repartitioning strategy
that enables well-balanced workload distribution with
minimal overhead. We show that dynamic repartition-
ing improves performance by up to 50%.

• We present a performance model that provides insight
into choosing the number of nodes and GPUs for the
best possible performance. Our performance model
can select the best configurations in most cases.

• We present an implementation of Lux that outper-
forms state-of-the-art graph processing engines. In
particular, we show that Lux achieves up to 20× speedup
over Ligra, Galois, and Polymer and two orders of mag-
nitude speedup over PowerGraph and GraphX.

2. RELATED WORK
Distributed CPU-based systems. A number of dis-

tributed graph processing frameworks have been proposed.
Pregel [31] is a bulk synchronous message passing frame-
work. Within each iteration, each vertex receives messages
from its neighbors from the previous iteration and sends
messages to its neighbors. PowerGraph [22] decomposes
graph computations into iterative GAS (gather, apply, and
scatter) operations. GraphX [23] adopts the GAS model
from PowerGraph and is built on top of Spark [42]. HSync [35]

achieves fast synchronous graph processing by using an effi-
cient concurrency control scheme. PAGE [36] is a partition
aware engine that monitors the runtime performance charac-
teristics and dynamically adjusts resources. MOCgraph [45]
exploits a message online computing model that processes
messages as long as they arrive.

The above frameworks have proven efficient for distributed
multi-CPU clusters. However, as described in Section 1,
their strategies would not work as well for multi-GPU clus-
ters. Lux differs from previous distributed systems in how
it optimizes data placement and transfers (Section 4), how
it balances workload among different partitions (Section 5),
and how it enables GPU optimizations (Section 7).

Single-node CPU-based systems. Previous work [34,
37, 33] has shown that shared memory CPU-based systems,
by eliminating inter-node communication, are typically much
faster than distributed CPU-based systems. Ligra [37] is a
lightweight CPU-based framework for shared memory. Poly-
mer [43] integrates NUMA support into Ligra’s model. Ga-
lois [33] is designed with a rich set of schedulers and data
structures for irregular computations (especially for graph
processing). The above systems store the entire graph in
the shared CPU memory and let multiple CPU threads co-
operatively process the graph. Directly adopting these ap-
proaches to multi-GPU machines can result in poor per-
formance due to the insufficient bandwidth between CPU
memory and GPU devices (as shown in Figure 2). For ex-
ecutions on a single node, Lux achieves up to 20× speedup
over the shared memory systems. This shows that a single,
unified shared memory is not the fastest possible platform;
again, the difference is in both minimizing data movement
and taking advantage of GPU bandwidth.

GPU-based systems. Recently, GPU-based frameworks
that are specific for a single GPU or a single machine have
been proposed. MapGraph [21] provides a high level API for
writing high performance graph analytics for a single GPU.
CuSha [26] introduces two graph representations: G-shards
and concatenated windows (CW). G-shards are used to al-
low coalesced memory accesses, while CW achieves higher
GPU utilization by grouping edges with good locality into
shards. Gunrock [41] implements a programming abstrac-
tion centered on operations on a vertex or edge frontier.
These approaches are designed with the assumption that all
processing is done on a single GPU.

Groute [14] is an asynchronous model for multiple GPUs
on a single node, designed for irregular computations. Groute
manages computation at the level of individual vertices,
which allows Groute to exactly capture all irregular par-
allelism with no wasted work, but potentially incurs system
overhead because the useful work per vertex is generally
small. Groute uses a ring topology for inter-GPU transfers,
which introduces extra data movement when data is moved
between GPUs not adjacent in the ring ordering.

GTS [27] is a multi-GPU framework that stores mutable
data in device memory while streaming topology data (i.e.,
edges in the graph) to GPUs from DRAM. While able to
process large graphs, GTS has two limitations. First, exe-
cution is apparently limited to a single node. Second, GTS
streams the edge list to GPUs from DRAM, and therefore
performance is bottlenecked by the PCI-e bandwidth.

Medusa [44] simplifies implementation of GPU programs
by providing user-defined APIs and automatically executing
these APIs in parallel on GPUs.

298

interface Program(V, E) {

void init(Vertex v, Vertex vold);

void compute(Vertex v, Vertex uold,

Edge e);

bool update(Vertex v, Vertex vold);

}

Figure 3: All Lux programs must implement the state-less
init, compute and update functions.

3. Lux ABSTRACTION
Lux targets graph applications that can be expressed as

iterative computations: the application iteratively modifies
a subset of the graph and terminates when a convergence
test succeeds. This target is similar to most graph process-
ing frameworks [37, 22, 23, 33]. A directed graph G = (V,E)
has vertices V and directed edges E. Each vertex v ∈ V is
assigned a unique number between 0 and |V |−1. N−(v) de-
notes the set of incoming neighbors of vertex v and deg−(v)
denotes the in-degree of v. Similarly, N+(v) and deg+(v)
denote the out-neighbors and out-degree of v.

Edges and vertices may have application specific proper-
ties. Edge properties are immutable, which helps minimize
data movement, since Lux only needs to move updates to
vertices. We find that this does not restrict the expressive-
ness of Lux; most popular graph algorithms can be expressed
in Lux. Lux provides a transaction-like model, where the
properties of the vertices are read-only in each iteration,
and updates become visible at the end of the iteration.

Computations in Lux are encoded as stateless programs
implementing the Lux interface defined in Figure 3. By im-
plementing the three interface functions, a computation is
explicitly factored into the init, compute, and update func-
tions. Lux provides two different execution models. Sec-
tion 3.1 describes a pull model that optimizes the runtime
performance for GPUs. Section 3.2 describes an alterna-
tive push model that optimizes algorithmic efficiency. We
compare the two models in Section 3.3.

3.1 Pull Model
Algorithm 1 shows pseudocode for the pull model. For

every iteration, the three functions are performed as follows.

Algorithm 1 Pseudocode for generic pull-based execution.

1: while not halt do
2: halt = true . halt is a global variable
3: for all v ∈ V do in parallel
4: init(v, vold)
5: for all u ∈ N−(v) do in parallel
6: compute(v, uold, (u, v))
7: end for
8: if update(v, vold) then
9: halt = false

10: end if
11: end for
12: end while

First, Lux initializes the vertex properties for an itera-
tion by running the init function on every vertex v. The
vertices’ properties from the previous iteration (denoted as
vold) are passed as immutable inputs to init. For the first
iteration, vold is v’s initial value as set by the program.

Second, for an edge (u, v), the compute function takes the
vertex properties of u from the previous iteration and the

define Vertex {rank:float}

void init(Vertex v, Vertex vold) {
v.rank = 0

}

void compute(Vertex v, Vertex uold, Edge e) {

atomicAdd (&v.rank , uold.rank)
}

bool update(Vertex v, Vertex vold) {
v.rank = (1 - d) / |V| + d * v.rank

v.rank = v.rank / deg+(v)

return (|v.rank - vold.rank| > δ)
}

Figure 4: PageRank in the pull model.

define Vertex {rank , delta:float}

void init(Vertex v, Vertex vold) {
v.delta = 0

}

void compute(Vertex v, Vertex uold, Edge e) {

atomicAdd (&v.delta , uold.delta)
}

bool update(Vertex v, Vertex vold) {

v.rank = vold.rank + d * v.delta

v.delta = d * v.delta / deg+(v)
return (|v.delta| > δ)

}

Figure 5: PageRank in the push model.

edge properties of (u, v) as its input and updates the prop-
erties of v. Note that the properties of uold and (u, v) are
immutable in the compute function. The order in which the
compute function processes edges is non-deterministic. Fur-
thermore, the compute function should support concurrent
invocations to allow parallelism in Lux.

Finally, Lux performs the update function on every vertex
v to finalize the computation and commit updates to v at the
end of the iteration. Lux terminates if no vertex properties
are updated in an iteration.

We use PageRank as a demonstration of using the Lux
interface. PageRank computes the relative importance of
webpages by taking as input a graph G = (V,E), a damp-
ing factor 0 ≤ d ≤ 1, and a convergence constraint δ. The
rank property of all vertices is initially 1

|V | . The follow-

ing equation is iteratively applied to all vertices until the
changes to the rank property drop to below δ:

PR(v) =
1− d
|V | + d

∑
u∈N−(v)

PR(u)

deg+(u)
(1)

This leads to a simple implementation for the pull model in
Figure 4. The init function initializes the rank property of
all vertices to 0. For a vertex v, the compute function sums
the rank property of all in-neighbors of v from the previ-
ous iteration; atomic operations guarantee correctness for
concurrent updates. The update function finalizes the com-
putation for every vertex v and returns true if the difference
of v.rank between adjacent iterations is above δ. Execution
terminates when all update functions return false.

3.2 Push Model
In the pull model, every vertex iteratively pulls poten-

tial updates from all its in-neighbors. This gathers updates
to vertex properties and therefore allows GPU-specific op-
timizations, such as locally aggregating updates in GPU
shared memory. Although efficient on GPUs, the pull model
may be inefficient for applications that only update a small
subset of vertices in each iteration. Lux provides an alter-
native push model that improves algorithmic efficiency.

299

Algorithm 2 Pseudocode for generic push-based execution.

1: while F 6= {} do
2: for all v ∈ V do in parallel
3: init(v, vold)
4: end for
5: . synchronize(V)
6: for all u ∈ F do in parallel
7: for all v ∈ N+(u) do in parallel
8: compute(v, uold, (u, v))
9: end for

10: end for
11: . synchronize(V)
12: F = {}
13: for all v ∈ V do in parallel
14: if update(v, vold) then
15: F = F ∪ {v}
16: end if
17: end for
18: end while

The push model requires every vertex to push its updates
when available to its out-neighbors. In the push model, since
only vertices with updates need to push their new value to
out-neighbors, we use a frontier queue to store the collection
of vertices with updates. Our push/pull alternatives are
inspired by the approach taken in [13] to the narrower case
of bottom-up vs. top-down traversal of trees.

Algorithm 2 shows the pseudocode for the push model. A
program needs to initialize the frontier queue F to include
vertices that contain initial updates. The push-based exe-
cution terminates when F becomes empty. Note that the
push model also requires a program to implement the init,
compute, and update functions, providing the same interface
to the program as the pull model. The push model performs
the init and update functions on all vertices for every iter-
ation, which involves the same amount of work as the pull
model. However, the push model only runs compute on an
edge (u, v) if u ∈ F . This substantially reduces the number
of invocations to the compute function when F is small.

For many applications (e.g., shortest path and connected
components), the program can provide an identical imple-
mentation for both the push and pull models and expect
to get the same results at the end of every iteration. For
PageRank, using the push model requires Lux to compute
the delta of the rank property, and an implementation of
PageRank in the push model is shown in Figure 5.

3.3 Comparison
The push model is better positioned to optimize algorith-

mic efficiency since it maintains a frontier queue F and only
performs computation on edges coming from F . However,
the pull model better utilizes GPUs for two reasons.

First, the push model requires two additional synchroniza-
tions in every iteration (shown as synchronize(V) in Algo-
rithm 2). The first synchronization ensures a vertex u ∈ F
cannot push its updates until its out-neighbors N+(u) are
initialized for this iteration. The second synchronization en-
sures a vertex v ∈ V does not finalize and commit the values
of its properties until Lux has run compute on all edges con-
necting to v, otherwise the update function might exclude
some updates to vertices in that iteration.

Second, the pull model enables optimizations such as caching
and locally aggregating updates in GPU shared memory.

M items

N
 u

se
rs

≈ × R P Q

� ruv pu

qv

K elements

(a) matrix-centric

0	

1	

2	

���

u

0	

1	

2	
���

v	
Ruv

p0

p1

pu

q0

q1

qv

(b) graph-centric
Figure 6: Collaborative filtering.

For example, for each vertex v ∈ V , Lux can opportunis-
tically run the compute function on its in-neighbors con-
currently in a single GPU thread block, and all updates
are locally cached and aggregated in GPU shared memory,
which eliminates loads and stores to GPU device memory.
Section 4.3 describes GPU execution in Lux in detail.

We find that for applications with relatively large frontiers
(e.g., PageRank), the pull model has better performance.
However, for applications with rapidly changing frontiers
(e.g., connected components), the push model performs bet-
ter. Section 8.4 provides a quantitative comparison between
the pull and push models.

3.4 Other Algorithms
Besides PageRank, we also use a machine learning algo-

rithm and three graph traversal algorithms to evaluate Lux.
Collaborative filtering is a machine learning algorithm

used by many recommender systems to estimate a user’s
rating for an item based on a set of known (user, item)
ratings. The underlying assumption is that user behaviors
are based on a set of hidden features, and the rating of a
user for an item depends on how well the user’s and item’s
features match. Figure 6a and 6b show matrix-centric and
graph-centric views of collaborative filtering. Given a matrix
R of ratings, the goal of collaborative filtering is to compute
two factors P and Q where each is a dense matrix.

Collaborative filtering is accomplished by incomplete ma-
trix factorization [28]. The problem is shown in Equation 2,
where u and v are indices of users and items, respectively.

min
p,q

∑
(u,v)∈R

(Ruv − pT
uqv)2 + λ||pu||2 + λ||qv||2 (2)

Ruv is the rating of the uth user on the vth item, while pu

and qv are vectors corresponding to each user and item.
Matrix factorization is usually performed by using stochas-

tic gradient descent (SGD) or gradient descent (GD). We
iteratively perform the following operations for all ratings:

euv = Ruv − pT
uqv (3)

p∗u = pu + γ[
∑

(u,v)∈R

euvqv − λpu] (4)

q∗v = qv + γ[
∑

(u,v)∈R

euvpu − λqv] (5)

Connected components labels the vertices in each con-
nected component with a unique ID. One method of com-
puting connected components is to maintain an id property
that is initialized to be the index of each vertex (i.e., v.id
= v). The algorithm iteratively updates the id property
to be the minimum id of all its neighbors. Single-source
shortest path takes a starting vertex and computes the
shortest distance for all vertices using the Bellman-Ford al-
gorithm [19]. Betweenness centrality computes the cen-
trality indices [20] from a single source to all vertices.

300

4. Lux RUNTIME

4.1 System Overview
Lux is a distributed graph processing framework where a

large graph instance is distributed over the aggregate device
memories of multiple GPUs on one or multiple nodes. Fig-
ure 1 shows the architecture of a typical GPU cluster. Two
features are worth noting. First, there are several different
kinds of memory available to the GPU. While all GPU mem-
ories are relatively limited in size compared to CPU nodes,
GPU device memory is the largest (up to 24 GB on current
GPUs). GPU shared memory is substantially faster than
GPU device memory, but extremely limited (up to 96 KB
on current GPUs). Zero-copy memory is slow relative to
GPU device and shared memory but relatively large. Sec-
ond, there is a non-trivial memory hierarchy with locality
at each level. For example, zero-copy memory is visible to
all processors on a node (GPUs and CPUs), making data
movement within a node (i.e., between GPU device memo-
ries on the same node) faster than transfers between nodes.
To actually realize the benefits of the aggregate performance
of multiple GPUs, we find it is critical to exploit the locality
in the memory hierarchy, and specifically to take advantage
of the GPU shared memory and the zero-copy memory.

More specifically, Lux stores the vertex updates in the
zero-copy memory that is shared among all GPUs on a
node. Compared to existing distributed graph processing
frameworks that adopt a shared-nothing worker model (e.g.,
GraphX [23], Giraph [2], Pregel [31], and Groute [14]), this
partially-shared design greatly reduces the amount of mem-
ory needed to store the vertex updates and substantially
reduces the data transfers between different compute nodes.
More subtly, Lux is often able to overlap data movement to
and from the zero-copy memory with other useful work, and
in some cases can enlist CPUs to carry out computations
on the data in zero-copy memory, freeing up GPU cycles
for other tasks. Lux’s use of zero-copy memory and GPU
shared memory is discussed in Section 7.

Lux adopts a model that is transactional at the granular-
ity of iterations. Both the pull and push models defer updat-
ing vertices until the end of every iteration, which guaran-
tees that there is no communication between GPUs within
an iteration, and all data transfers occur between iterations.

Section 4.2 describes how Lux partitions and distributes
input graphs. Section 4.3 and Section 4.4 introduce task
executions and data transfers in Lux, respectively.

4.2 Distributed Graph Placement
Lux always distributes the entire graph onto the device

memories of multiple GPUs when the aggregate GPU mem-
ory is sufficient. When the graph size exceeds the overall
GPU memory capacity, Lux assigns as many edges to each
GPU’s device memory as possible and evenly distributes the
remaining edges to the shared zero-copy memory of each
node. In this section, we focus on how Lux partitions the
graph among all GPUs.

Many distributed graph frameworks such as PowerGraph [22]
and GraphX [23] use a vertex-cut partitioning that optimizes
for inter-node communication by minimizing the number of
edges spanning different partitions. However, we find that
vertex-cut partitioning is impractical for Lux. First, run-
ning vertex-cut partitioning takes too long. For example,
partitioning the Twitter graph [17] of 1.4B edges into 16

Figure 7: Edge partitioning in Lux: a graph is divided into
4 partitions, which are assigned to 4 GPUs on 2 nodes.

partitions takes more than 10 seconds, while for the algo-
rithms we consider processing the graph usually takes less
than a second. Second, because some data is shared among
GPUs through a node’s zero-copy memory, the number of
cross-partition edges is not a good estimate of data transfers.

Lux uses edge partitioning [30], an efficient graph par-
titioning strategy that assigns a roughly equal number of
edges to each partition. Recall that each vertex is assigned
a unique number between 0 and |V | − 1. The partitioning
algorithm decides how these vertices are partitioned among
the device memories of multiple GPUs. In Lux, each parti-
tion holds consecutively numbered vertices, which allows us
to identify each partition by its first and last vertex. Each
partition also includes all the edges that point to vertices in
that partition, and, again, the goal is to balance the number
of edges across partitions, not the number of nodes.

Using edge partitioning allows Lux to take advantage of an
important optimization performed automatically by GPUs.
When multiple GPU threads issue memory references to
consecutive memory addresses, the GPU hardware will au-
tomatically coalesce those references into a single range re-
quest that will be handled more efficiently by the underlying
memory. By limiting the possible graph partitions to ranges
of consecutive vertices, Lux guarantees that GPU kernels
benefit from maximally coalesced accesses, which is key to
maximizing memory bandwidth. Figure 7 shows an example
of edge partitioning in Lux. Assume the set of all edges is
divided into M disjoint partitions Pi, where 1 ≤ i ≤M .

E =

M⋃
i=1

Pi (6)

For each partition Pi, Lux maintains an in-neighbor set
(INS) and an out-neighbor set (ONS) that contain source
and destination vertices for all edges in Pi, respectively.

INS(Pi) = {u|(u, v) ∈ Pi} (7)

ONS(Pi) = {v|(u, v) ∈ Pi} (8)

INS(Pi) determines the set of vertices whose properties are
used as inputs to process the partition Pi. Similarly, ONS(Pi)
includes all vertices that may potentially be updated by pro-
cessing the partition Pi. The in-neighbor and out-neighbor
sets are computed during the partitioning phase and are
used to manage data access for each partition. Note that
when using edge partitioning, ONS(Pi) is exactly the set of
contiguous vertices owned by a partition.

301

Lux performs the initial partitioning at graph loading
time. Before partitioning the graph, Lux computes the in-
degree of each vertex. Lux accepts compressed sparse row
(CSR) format graphs as input and is able to efficiently com-
pute in-degrees of vertices by only loading the row indices
of the graph. Lux then selects the boundary vertex for each
partition that results in balanced partitioning (i.e., such that
each partition has roughly |E|/x edges, where |E| is the
number of edges, and x is the number of GPUs). This edge
partitioning strategy is very efficient: partitioning the Twit-
ter graph with 1.4B edges among 16 GPUs takes 2 ms.

After partitioning, Lux broadcasts the partitioning de-
cision to all GPUs, which can then concurrently load the
graph from a parallel file system. All GPUs store mutable
vertex properties in the shared zero-copy memory, which
can be directly loaded by other GPUs on the same node or
transferred to other nodes via the inter-node network.

4.3 Task Execution
For each iteration, the Lux runtime launches a number of

tasks, each of which performs the pull-based or push-based
execution on a partition. Every GPU task reads the vertex
properties from the shared zero-copy memory and writes the
updates back to the shared zero-copy memory. To optimize
GPU performance, every GPU task initially copies the ver-
tex properties in its in-neighbor set from zero-copy memory
to its device memory. This changes subsequent vertex prop-
erty reads from zero-copy memory access to device memory
access with orders of magnitude better bandwidth.

For pull-based execution, each GPU task is a single
GPU kernel that performs the init, compute, and update

functions. Each thread in the kernel is responsible for a
vertex. Since vertices in a partition have sequential indices,
this enables coalesced memory access to GPU device mem-
ory for both init and update. For compute, non-uniform
degree distributions can impose significant load imbalance
between threads. Lux uses a scan-based gather approach [32]
to resolve the load imbalance by performing a fine-grained
redistribution of edges for each thread block. Scan-based
gathering enlists all threads within a thread block to coop-
eratively perform the compute function on the edges. In the
pull model, since each thread only changes vertex properties
in the same thread block, all updates are locally stored and
aggregated in GPU shared memory, which is much faster
than GPU device memory.

For push-based execution, each GPU task is trans-
lated into three GPU kernels that perform init, compute

and update, respectively. The two GPU kernels for running
init and update use the same approach as the pull model
to achieve load balancing and coalesced memory access to
device memory. For the GPU kernel that performs compute,
each thread is responsible for a vertex in its in-neighbor set
and the same scan-based gather optimization is used. In
the push model, since threads may potentially update any
vertex, all updates go to device memory to eliminate race
conditions and provide deterministic results.

At the end of each iteration, vertex updates are sent back
to the shared zero-copy memory and become visible to sub-
sequent tasks in Lux.

CPU tasks. When the size of an input graph exceeds the
available GPU memory, Lux stores the remaining portion of
the graph in CPU DRAM memory and performs CPU tasks.
Lux guarantees that processing a graph partition on CPUs

gives identical results as running the partition on a GPU. To
perform a task on CPUs, all available CPU cores collectively
execute the init, compute, and update functions and write
the vertex updates back to the shared zero-copy memory.
The largest graph used in our evaluation has 33.8 billion
edges and still fits in the GPU memories on a single node,
therefore this feature was not used in the experiments.

4.4 Data Transfers
Lux transfers vertex property updates between different

nodes to guarantee that the updates are visible to subse-
quent tasks that use those vertex properties as inputs.

On each node, Lux maintains an update set (UDS) to mon-
itor the set of vertices whose properties need to be fetched
from remote nodes. Recall that INS(Pi) is the set of vertices
whose properties are read by partition Pi. ONS(Pi) denotes
the set of vertices whose updates are computed by partition
Pi. Therefore,

⋃
Pi∈Nj

{INS(Pi)} and
⋃

Pi∈Nj
{ONS(Pi)}

contain all vertices that are used as inputs and updated
locally on node Nj . The difference of the two unions is the
set of vertices that are used as input on node Nj and whose
properties need to be fetched from a remote node.

UDS(Nj) =
⋃

Pi∈Nj

INS(Pi)−
⋃

Pi∈Nj

ONS(Pi) (9)

Figure 7 depicts the INS, ONS and UDS of a graph partition.
The update sets are computed together with in-neighbor and
out-neighbor sets at partitioning time and are broadcast to
all nodes in Lux, which then use the update sets to schedule
data transfers. At the end of every iteration, each compute
node locally collects vertex updates and sends a vertex’s up-
date to remote nodes whose update set includes that vertex.

5. LOAD BALANCING
Most graph processing systems perform load balancing

statically, as a preprocessing step. For example, Pregel [31]
and Giraph [2] use vertex partitioning, assigning the same
number of vertices to each partition through a hash func-
tion. GraphLab [30] and PGX.D [25] exploit edge parti-
tioning as described in Section 4.2. In addition, Giraph [2]
supports dynamic load balancing through over partitioning,
while Presto [39] achieves balanced workload by dynami-
cally merging and sub-dividing partitions. There is also
work [40] that generates theoretically optimal repartition-
ing by assuming the cost to process each vertex is known.

We have found that dynamic load balancing is beneficial
for Lux applications. Edge partitioning can achieve effi-
cient load balancing for graphs with uniform degree distri-
butions but can also behave poorly for power-law graphs.
Vertex partitioning is inefficient for most graphs. Over-
partitioning (e.g., Pregel) and sub-dividing partitions (e.g.,
Presto) are undesirable for Lux because, unlike CPU-based
systems that keep all partitions in shared memory, moving
partitions among GPU device memories is very expensive.

We use edge partitioning in Section 4.2 to generate an ini-
tial partitioning and then use a fast dynamic repartitioning
approach that achieves efficient load balancing by monitor-
ing runtime performance and recomputing the partitioning
if a workload imbalance is detected. Dynamic repartitioning
includes a global repartitioning phase that balances workload
among multiple nodes and a local repartitioning phase that
balances workload among multiple GPUs on a node.

302

0.0 0.2 0.4 0.6 0.8 1.0

Iteration = 1

0.00

0.25

0.50

0.75

1.00

E
st

im
a
te

s
o
f

f

0.0 0.2 0.4 0.6 0.8 1.0

Iteration = 2
0.0 0.2 0.4 0.6 0.8 1.0

Iteration = 3

Figure 8: The estimates of f over three iterations. The
blue squares indicate the actual execution times, while the
red circles indicate the split points returned for a partition-
ing among 4 GPUs at the end of each iteration.

Recall that in edge partitioning, each partition holds con-
secutively numbered vertices and includes all edges pointing
to those vertices. Therefore, the goal of the partitioning is
to select M − 1 pivot vertices to identify M partitions. Our
dynamic repartitioning is based on two assumptions:

1. For each vertex vi there exists a weight wi proportional
to the time required to process vi.

2. For each partition, the execution time is approximately
the sum of its vertices’ weights.

We assume the weights wi are normalized to sum to 1
and define a partial sum function f(x) =

∑x
i=0 wi. f(x) is

monotonic and ranges from 0 to f(|V | − 1) = 1.
Given f , it is easy to pick M vertices v1, . . . , vM such

that f(vi) ≈ i/M , thereby creating M partitions with equal
amounts of work. However, initially we know only the trivial
endpoints of f , and thus we must estimate the value of points
in between. To estimate the value f(y) between two known
points x1 and x2, we interpolate between f(x1) and f(x2)
using the assumption that the cost of a vertex is proportional
to its number of in-edges. At the end of each iteration, Lux
observes the actual runtime cost of all current partitions,
adding known points to f and thus reducing the amount of
interpolation required to calculate updated split points.

Figure 8 gives an example of load balancing a graph with
uniform in-degree over three iterations. In the first iteration
the vertices are split equally among four partitions (since
all nodes have the same in-degree and are thus estimated to
have the same runtime cost) using three split points at 25%,
50% and 75% of the vertices. However, in this example it
turns out that the first two partitions take much longer than
the other two to process, as shown in the observed execution
times for iteration 1 (shown as the blue squares in the graph
for the start of iteration 2). Using this information new split
points are selected for iteration 2. By the start of iteration
3 we can see that the estimates (the red circles) are already
quite close to the observed execution times.

Dynamic repartitioning consists of the following steps:
Step 1. At the end of an iteration, Lux collects the execution

time ti of every partition Pi, updates the estimate of
f , and computes a new partitioning.

Step 2. For each node Nj , Lux collects the average execution
time t(Nj) = avgPi∈Nj

{ti} and computes ∆gain(G) =

max{t(Nj)}− avg{t(Nj)}, which estimates the poten-
tial execution time improvement by performing a global
repartitioning. Lux also computes ∆cost(G), which
measures the time to transfer subgraphs across differ-
ent nodes and is estimated as the size of inter-node
data transfers divided by the network bandwidth.

Lux compares ∆cost(G) with ∆gain(G). A factor α

is applied to amortize the one-time repartitioning cost
over an expected number of future iterations. More

CPUs	

GPU1	

Device Memory

Zero-Copy Memory

PCI-e	Switch	/	NVLink	
① load

GPU2	

Device Memory

② compute

③ update

④ inter-node xfer

Network

Figure 9: Data flow for one iteration.

formally, when α∆cost(G) < ∆gain(G), Lux triggers

a global repartitioning and goes to Step 3. Otherwise,
Lux concludes that a global repartitioning is not ben-
eficial and goes to Step 4.

Step 3. (Global repartitioning) Lux launches an inter-node copy
request for each subgraph that needs to be moved
between different nodes in the global repartitioning.
Upon receiving new subgraphs, each node updates its
UDS by scanning the INS for the subgraphs. After a
global repartitioning, a local repartitioning is always
needed, and the execution goes to Step 5.

Step 4. In the case a global repartitioning is not performed,
Lux analyzes whether a local repartitioning is benefi-
cial. For each node Nj , Lux computes ∆gain(Nj) =

maxPi∈Nj{ti}−avgPi∈Nj
{ti}, which estimates the po-

tential improvement for performing a local repartition-
ing on node Nj . Lux also computes ∆cost(Nj), which
measures the time for moving subgraphs among mul-
tiple GPUs and is estimated as the amount of data
moved divided by the PCI-e bandwidth.

Lux compares ∆gain(Nj) with ∆cost(Nj). Again, we

apply a factor α to amortize the one-time repartition-
ing cost. If α∆cost(Nj) < ∆gain(Nj), Lux triggers

a local repartitioning on node Nj and goes to Step 5.
Otherwise, Lux concludes that a local repartitioning is
not needed and goes to Step 6.

Step 5. (Local repartitioning) Lux launches an intra-node copy
request for each subgraph that needs to be moved be-
tween different GPUs in the local repartitioning. Lux
then updates the INS and ONS for each partition.

Step 6. Lux concludes the repartitioning and initiates execu-
tion for the next iteration.

We evaluate dynamic repartitioning in Section 8.3 and
show that it achieves balanced workload within a few itera-
tions, while the overhead for computing repartitioning and
updating INS, ONS and UDS is negligible.

6. PERFORMANCE MODEL
In this section we develop a simple performance model

that provides insight into how to improve the performance
of Lux applications in different situations. The performance
model quantitatively predicts the execution times for Lux
applications and automatically selects an execution model
and a runtime configuration for a given application and in-
put graph. We focus on modeling the performance for a sin-
gle iteration, which is divided into four steps (as shown in
Figure 9): load, compute, update, and inter-node transfers.
The machine architecture is parameterized by the number of
nodes x and the number of GPUs per node y; Lux partitions
the graph into x × y partitions, each of which is processed
on one GPU. Sections 6.1 and 6.2 introduce our model for
pull and push-based execution, respectively.

303

Elapsed Time (seconds)
0

4

8

A
g
g
re

g
a
te

 L
o
a
d

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

GPU0

GPU1

GPU2

GPU3

(a) Multiple GPUs load inputs.

100MB 1GB 10GB
Total Data Size

10

100

1000

Lo
n
g
e
st

 L
o
a
d
in

g
 T

im
e
 (

m
s)

TW(4)
TW(8)

TW(16)

YH(16)

GH(16)

RM(4)
RM(8)

RM(16)

(b) Load time.
Figure 10: Modeling load time. Annotations indicate
graph abbreviations, with the number of partitions in paren-
theses. The graph statistics are available in Table 2.

6.1 Pull-Based Execution
Load time. In the first step of each iteration, each GPU

loads the vertices in its INS from zero-copy memory into
GPU device memory. We assume that different GPUs on
the same node initiate loading at roughly the same time
and therefore share the bandwidth on the PCI-e switch or
NVLink. Figure 10a gives an example where multiple GPUs
concurrently load input vertices on a compute node. The
height and width of the rectangle are the aggregate load
throughput and elapsed load time, respectively. Therefore,
the area of the rectangle is the total amount of data loaded
into the GPUs. Assuming a constant load rate γl, which
is limited by the PCI-e or NVLink bandwidth, the longest
load time is proportional to the total amount of data loaded.
Recall that INS(Pi) is the set of input vertices for the ith

partition. The amount of data loaded on node Nj is |Tv| ×∑
Pi∈Nj

|INS(Pi)|, where |Tv| is a constant indicating the

size of each vertex. Therefore, the longest load time is

Tload = max
1≤j≤x

γl|Tv|
∑

Pi∈Nj

|INS(Pi)| (10)

≈ γl|Tv|
∑

1≤i≤x×y

|INS(Pi)|/x (11)

The last approximation assumes that all nodes have similar
amounts of input, which is consistent with our experience.

Figure 10b shows the relationship between the longest
load time and the total amount of data loaded for execu-
tions with various graphs and numbers of GPUs. We have
found that γl is independent of y (the number of GPUs on a
node) and the graph size, and only depends on the underly-
ing hardware. For a particular machine, γl can be estimated
by running a few small and medium sized graphs.

Compute time. In the pull model, Lux processes the
compute function for all edges, as shown in Algorithm 1.
Therefore, the total compute time for each iteration is pro-
portional to the total number of edges in the graph (i.e.,
|E|). Figure 11a shows the relation between |E| and the
total compute time for different graph algorithms. The re-
sults show that, for a given graph algorithm, the total com-
pute time for each iteration is proportional to the graph size
and is insensitive to the graph type or the number of parti-
tions. In addition, the model assumes perfect load balancing
among partitions, since the dynamic repartitioning strategy
in Section 5 achieves balanced partitions in a few iterations.
Therefore, the compute time on each GPU is

Tcompute = γc|E|/(x× y) (12)

where γc is the slope of the line in Figure 11a.

108 109 1010 1011

Total Number of Edges

102

103

104

C
o
m

p
u
te

 T
im

e
 (

m
s)

IN(1)

TW(4)

UK(16)

GS(32)

NF(16)

YH(16)

IN(1)

TW(4)
RM(8)

UK(4)

GS(16)

IN(1)

UK(8)

GS(16)

IN(1)

TW(4)
RM(8)

GS(16)

PR

CF

CC

SSSP

BC

(a) The pull model.

107 108 109 1010 1011

Total Number of Edges

101

102

103

104

105

C
o
m

p
u
te

 T
im

e
 (

m
s)

IN(1)

TW(4)
RM(8)

GS(16)

NF(16)

YH(16)

HW(1)

IN(1)

TW(4)
UK(8)

GS(16)

HW(1)

IN(1)

TW(4)
RM(8)

GS(16)

HW(1)

IN(1)

TW(4)
UK(4)

GS(16)

PR

CF

CC

SSSP

BC

(b) The push model.
Figure 11: Per-iteration compute time (log-log scale).

100MB 1GB 10GB
Amount of Data Transferred

10

100

1000

In
te

r-
n
o
d
e
 T

ra
n
sf

e
r

T
im

e
 (

m
s)

TW(x=2)

TW(x=4)
UK(x=2)

UK(x=4)

GS(x=2)

GS(x=4)

Figure 12: Inter-node transfer time (log-log scale). x indi-
cates the number of nodes.

Update time. At the end of each iteration, Lux moves
vertex updates from GPU device memory back to zero-copy
memory to make updates visible to other GPUs before the
next iteration. In the pull model, Lux is able to overlap
the update time with the compute time by sending updates
directly to zero-copy memory as long as all in-edges of a
vertex have been processed. Therefore, we omit the update
time in the pull model.

Inter-node transfer time. Before starting the next iter-
ation, each node collects updates to vertices in its update set
(UDS) from remote nodes, so that the updates are visible
to its local GPUs in the next iteration. Inter-node trans-
fer time is proportional to the total amount of data being
transferred. Figure 12 shows the relation between the inter-
node transfer time and the amount of data transferred. For
a node Nj , the amount of data received in every iteration
is (|Tv| × |UDS(Nj)|), where Tv is the size of each vertex.
Therefore, we model the inter-node transfer time as

Txfer = γx|Tv|
∑

1≤j≤x

|UDS(Nj)| (13)

6.2 Push-Based Execution
Load time. In the push model, Lux overlaps data trans-

fers to the GPU device memory with the compute kernels by
processing the out-edges of a vertex as long as it is available
on the GPU. This hides load time in the push model.

Compute time. In the push model, Lux only processes
vertices in a frontier queue, as shown in Algorithm 2. The
per-iteration compute time varies as the frontier queue changes.
We average the execution time for the compute kernels over
iterations and use that to model the compute time. To avoid
the long-tail effects in some graphs, we only collect itera-
tions during which the percentage of vertices that are in the
frontier queue is above a threshold, which is set to 0.05 in
our experiments. Figure 11b shows the relationship between
the graph size and the average computation time for each
iteration in the push-based executions. Similar to the pull
model, we use a linear relation to model the graph size and
per-iteration total compute time in the push model.

Tcompute = γ∗c|E|/(x× y) (14)

304

Device Memory

1	 2	 3	 4	 5	 6	 7	 8	

2	 3	 8	
Device Memory

1	 6	 7	

Shared Zero-Copy Memory

(a) GPU kernel approach.

1	 2	 3	 4	 5	 6	 7	 8	

2	 3	 8	 1	 6	 7	

Shared Zero-Copy Memory

2	 3	 8	 1	 6	 7	

Device Memory Device Memory

(b) CPU core approach.
Figure 13: Different approaches for loading input data.

Update time. In the push model, Lux moves vertex up-
dates from the GPU device memory to the shared zero-copy
memory. In all our experiments, we have found that the up-
date time is usually at least two orders of magnitude shorter
than the compute time in the push model. Therefore, we ig-
nore the update time in the push model.

Inter-node transfer time. Since the inter-node transfer
patterns are identical in both the push and pull models, we
use equation 13 for predicting the inter-node transfer time.

Table 1 summarizes our model for pull- and push-based
execution. The performance model requires some graph
properties as input, including INS and UDS. However, for
a given graph, its INS and UDS are orthogonal to any graph
algorithms or the underlying machine environments and only
depends on the number of partitions on each node (i.e., y)
and the number of nodes (i.e., x). Therefore, we only need to
compute the sizes of INS and UDS once for different x and
y and attach the numbers as additional graph properties.
All future performance predictions can reuse the numbers
without any additional analysis of the graph.

In addition to explicitly selecting an execution model and
a runtime configuration by applications, Lux can automat-
ically choose these parameters based on the performance
model. Given an input graph and an algorithm, Lux com-
putes the estimated per-iteration execution time with dif-
ferent configurations (i.e., x and y) for both pull and push-
based execution models and chooses the execution model
and configuration with the best estimated execution time.

7. IMPLEMENTATION
We implement Lux in Legion [12, 38], a high-performance

parallel runtime for distributed heterogeneous architectures.
Lux uses Legion’s infrastructure for placing data in specific
memories, launching tasks onto either GPUs or CPUs, and
automatic support for data movement and coherence. Le-
gion’s abstractions enable us to easily experiment with vari-
ous strategies and explore both the push- and pull-based ex-
ecution models and different approaches to optimizing each.
With Legion, it is also simple to retarget Lux to a new gen-
eration of GPUs or a different family of accelerators.

We list additional optimizations in our implementation
that help achieve good performance.

Loading input data. Lux implements two different ap-
proaches for loading input data into GPUs, as shown in Fig-
ure 13. The GPU kernel approach launches one kernel on
each GPU that copies vertices in the INS from the shared
zero-copy memory to the device memory. The data copies
are performed by GPUs with direct memory access, and no
CPU cores are involved. Figure 13b shows the CPU core
approach, which decouples the loading into two hops. The
first hop gathers vertices in the INS in the shared zero-copy
memory by collaboratively using all available CPU cores.
The second hop performs simple bulk data transfers to the
GPUs. The two hops are pipelined by synchronizing the
CPU data gathering with the GPU bulk data transfers.

(a) Individual processing. (b) Cooperative processing.
Figure 14: Different approaches for processing graphs.

The two approaches differ in which processors perform
the data gathering. We have found that the GPU kernel
approach consistently outperforms the CPU core approach,
reducing the load time by 50%. Therefore, in the pull model,
Lux uses the GPU kernel approach since Lux cannot overlap
loading with computation. However, in the push model, the
GPU kernel approach launches additional kernels to GPUs,
which prevents the GPUs from fully overlapping the input
loading with the graph processing. Therefore, in the push
model, Lux uses the CPU core approach that only launches
bulk copies to the GPUs. In this case, Lux pipelines the
data gathering performed by the CPU cores, the bulk data
transfers performed by the GPU copy engines, and the graph
processing performed by the GPU kernel engines.

Coalesced memory access. Achieving coalesced ac-
cesses to the device memory is critical for high GPU perfor-
mance. Lux stores vertex properties in the array-of-structs
layout in the device memory to coalesce accesses to the prop-
erties associated with the same vertex. This layout is bene-
ficial for machine learning and data mining algorithms that
assign a vector of data elements to each vertex. For exam-
ple, in collaborative filtering, a vector of length K is defined
as the property for each vertex (see Figure 6).

One straightforward approach to process these algorithms
is to map the compute function for each edge to a GPU
thread, so that different threads can individually process
the graph, as shown in Figure 14a. However, this prevents
coalesced accesses since threads in the same warp are per-
forming strided access to device memory. A second approach
is to use K (i.e., the vector length) threads in a warp to co-
operatively perform the compute function for each edge, as
shown in Figure 14b. This approach allows coalesced ac-
cesses in each warp but requires additional synchronization
between cooperative threads processing the same edge.

Both approaches show some inefficiency for processing
graphs with large vertex properties. For collaborative fil-
tering, neither even matches the performance of state-of-
the-art CPU-based approaches. We propose a novel hy-
brid approach that combines the previous two approaches
to achieve coalesced accesses to device memory while not re-
quiring additional synchronization. In the hybrid approach,
we first use cooperative threads to copy the vectors to GPU
shared memory and then use individual threads to perform
the compute function for every edge. The first step guar-
antees coalesced accesses to device memory. The second
step eliminates additional synchronization, and there is no
penalty for strided access in shared memory. As a result, our
implementation for collaborative filtering achieves up to 10×
speedup compared with state-of-the-art CPU approaches.

Cache optimizations. Lux integrates a number of cache
optimizations. First, as described in Section 4.3, Lux caches
the input vertices in GPU device memory, which reduces
zero-copy memory accesses. Second, Lux opportunistically
caches vertex loads/updates in GPU shared memory when
possible to further reduce reads/writes to device memory.
For example, in the pull model, a vertex’s in-edges are grouped
and processed by the same thread block, therefore Lux caches
and locally aggregates the updates in GPU shared memory.
This eliminates any direct updates to device memory.

305

Table 1: Modeling per-iteration execution time for both pull-based and push-based executions.
load time compute time update time inter-node xfer time

Tpull(x, y) γl|Tv|
∑

1≤i≤x×y |INS(Pi)|/x γc|E|/(x× y) 0 γx|Tv|
∑

1≤j≤x |UDS(Nj)|
Tpush(x, y) 0 γ∗c|E|/(x× y) 0 γx|Tv|

∑
1≤j≤x |UDS(Nj)|

Table 2: Graph inputs used in the experiments.
Abbr. Input Num. Vertices Num. Directed Edges

KR Kronecker 2,097,152 33,554,432
HW Hollywood 1,139,905 57,515,616
IN Indochina 7,414,866 194,109,311

TW Twitter 41,652,230 1,468,365,182
RM RMAT27 134,217,728 2,147,483,648
UK UK2007 105,896,555 3,738,733,648
GS GSH2015 988,490,691 33,877,399,152
AM Amazon 3,376,972 11,676,082
ML MovieLens 424,338 48,808,192
NF NetFlix 497,959 200,961,014
YH Yahoo Music 1,959,915 1,399,280,452

8. EVALUATION
The input graphs used in our experiments are shown in

Table 2. HW is a graph of movie actors, where each vertex
corresponds to an actor, and each edge indicates two actors
have appeared together in a movie. KR [29] and RM [18]
are power-law synthetic graphs for modeling social networks.
TW is a graph of the Twitter social network [17]. IN, UK
and GS are webpage graphs from Indochina, .uk and .eu
domains, respectively [16, 17]. Note that GS contains 33.8
billion edges, which is around 3 times larger than the largest
real-world graph we have seen in previous papers [10].

We use PageRank (PR), connected components (CC), single-
source shortest path (SSSP), betweenness centrality (BC),
and collaborative filtering (CF) as the benchmark algorithms
in the evaluation. CF requires weighted bipartite graphs
that represent the ratings matrix. We use four real-world
bipartite graphs in the experiments. AM is the product
dataset from the Amazon online shopping website [1]. ML
describes movie ratings from MovieLens [24]. NF is the
training dataset for the Netflix Prize competition [15]. YH
is the ratings dataset for Yahoo! Music [11].

We tested all graph processing frameworks on all of the
benchmarks and experimented with multiple parameter set-
tings to identify the settings with the best performance for
each system. All shared memory frameworks (i.e., Ligra,
Galois, and Polymer) were evaluated on a Lonestar5 [5]
node with four Intel 12-core E7-4860 Xeon processors (with
hyper-threading) and 1TB main memory. All other exper-
iments were performed on the XStream GPU cluster [9].
Each XStream node is equipped with two Intel 10-core E5-
2680 Xeon processors, 256 GB main memory, and eight
NVIDIA Tesla K80. Each Tesla K80 has two GPUs with
12GB device memory and 48KB shared memory on each
GPU. Nodes are connected over Mellanox FDR Infiniband
with 7GB/s links. In the evaluation, Lux uses the pull model
for PR and CF and the push model for CC, SSSP, and BC,
except in Section 8.4, which performs a comparison between
the two execution models in Lux.

8.1 Single GPU Results
First, we evaluate the GPU kernels in Lux by compar-

ing Lux with state-of-the-art GPU-based graph frameworks.
Due to the small device memory on a single GPU, we limited
these experiments to graphs that can fit in a single GPU.

Figure 15 shows the comparison results among CuSha,
MapGraph, Groute, and Lux. Both CuSha and MapGraph
can only process graphs that fit in a single GPU device mem-

Table 3: The cost for a Lonestar5 CPU and an XStream
GPU machine, as well as their cost efficiency. The cost
efficiency is calculated by dividing the runtime performance
(i.e., iterations per second) by machine prices.

Machines Lonestar5
XStream XStream XStream
(4GPUs) (8GPUs) (16GPUs)

Machine Prices (as of May 2017)
CPUs [4, 3] 15352 3446 3446 3446
DRAM [8] 12784 2552 2552 2552
GPUs [7] 0 20000 40000 80000

Total 28136 25998 45998 85998

Cost Efficiency (higher is better)
PR (TW) 0.20 0.84 0.64 0.45
CC (TW) 0.18 0.26 0.21 0.14

SSSP(TW) 0.14 0.25 0.20 0.10
BC(TW) 0.14 0.30 0.18 0.10
CF (NF) 0.85 1.07 0.68 0.58

ory. We were not able to run CuSha on NF and MapGraph
on IN and NF due to out of device memory errors.

For PR, CC, SSSP, and BC, we expect that Lux would be
slightly slower than the other frameworks, since it writes the
vertex property updates back to the zero-copy memory be-
tween iterations, while CuSha, MapGraph, and Groute keep
all changes in the GPU device memory. However, for these
graphs, the data transfer time is usually within a millisec-
ond due to coalesced memory accesses in Lux. As a result,
Lux is competitive with the other systems that are designed
to optimize single GPU performance.

For CF, we expect that Lux would be faster, since Lux
is optimized for large vertex properties, as described in Sec-
tion 7. Figure 15 shows that Lux achieves 1.5-5× speedup
compared to the other frameworks.

8.2 Multi-CPU and Multi-GPU Results
We compare the performance of Lux with state-of-the-

art multi-CPU and multi-GPU frameworks. Previous ef-
forts [34, 37, 33] show that shared memory multi-CPU frame-
works are typically much faster than distributed multi-CPU
systems because they avoid inter-node communication. We
compared Lux with Ligra, Galois, and Polymer, which are
considered to offer the best graph processing performance for
shared memory. In addition, we also compared against two
popular distributed CPU-based frameworks, PowerGraph
and GraphX. The experiments for PowerGraph and GraphX
are performed using 16 nodes, each of which has 20 CPU
cores and 240GB memory. Finally, we compared Lux with
Groute and Medusa, both of which provide effective graph
processing performance for multiple GPUs on a single node.
The experiments for Groute and Medusa are performed on
a single XStream node with 16 GPUs. We do not perform a
comparison with GTS because the GTS implementation is
not available to run experiments.

Figure 16 shows the comparison results. For all systems,
we try different configurations and report the best attain-
able performance. As a result, the reported numbers are
often better than the numbers in the original papers. For
example, the performance of Ligra in this paper is around
2× better than [37]. Our GraphX executions achieve 6×
better performance than [23]. Figure 17 shows Lux’s perfor-

306

HW KR IN
PR (1 iteration)

0

50

100

150

200

E
la

p
se

d
 t

im
e
 (

m
s)

43

75

153

28

114

O
.O

.M

60

110

211

46

82

160

HW KR IN
CC

0

500

1000

1500

2000

2500

300 360

2150

360

630

O
.O

.M280
366

1530

310 340

1795

HW KR IN
SSSP

0

50

100

150

200

250

300

350

400

102

50

379

50

104

O
.O

.M35
53

105

26
45

121

HW KR IN
BC

0

20

40

60

80

100

120

140

160

47 51

148

44

73

O
.O

.M

35

53

110

33

50

123

AM ML NF
CF (1 iteration)

0

500

1000

1500

2000

2500

3000

3500

4000

340

1080

O
.O

.M

197
442

O
.O

.M370

1749

3996

71
297

1350

CuSha MapGraph Groute Lux

Figure 15: Performance comparison on a single GPU (lower is better).

TW RM UK GS
PR (1 iteration)

0

2

4

6

8

10

E
la

p
se

d
 t

im
e
 (

m
s)

1.04

3.64

1.24

15

5.00 5.23 5.40

O
.O

.M
8.48

15 12

O
.O

.M

2.95
3.46

5.15

O
.O

.M

0.26 0.34 0.51

3.20

TW RM UK GS
CC

0

2

4

6

8

10

2.00

4.29
3.67

2939 42 94

O
.O

.M

22 22 44

O
.O

.M

1.38

2.20
1.90

O
.O

.M0.85
1.40

0.90

9.10

TW RM UK GS
SSSP

0

2

4

6

8

10

1.33

2.56 2.81

O
.O

.M

20 28 41

O
.O

.M

7.60

15 12

O
.O

.M

2.50

3.80

2.10

O
.O

.M1.06

1.98

1.05

11

TW RM UK GS
BC

0

2

4

6

8

10

3.75 3.84

7.39

O
.O

.M

29 39 55

O
.O

.M

11 13 16

O
.O

.M

2.75

4.10

1.70

O
.O

.M

1.16

2.07

1.09

13

NF YH
CF (1 iteration)

0

2

4

6

8

10

0.42

3.59

5.30

24

O
.O

.M

O
.O

.M

4.07

20

0.20
0.57

Best of (Ligra, Galois, Polymer) Best of (PowerGraph, GraphX) Medusa Groute Lux

Figure 16: The execution time for different graph processing frameworks (lower is better).

TW RM UK GS
PR (1 iteration)

0

2

4

6

8

10

12

14

E
la

p
se

d
 t

im
e
 (

m
s)

TW RM UK GS
CC

0

5

10

15

20

25

30

TW RM UK GS
SSSP

0

2

4

6

8

10

12

14

TW RM UK GS
BC

0

5

10

15

20

NF YH
CF (1 iteration)

0

1

2

3

4

5

Best performance achieved by other frameworks

Configurations chosen by the Lux performance model

Lux (x=1, y=4)

Lux (x=1, y=8)

Lux (x=1, y=16)

Lux (x=2, y=16)

Lux (x=4, y=16)

Figure 17: The execution time for different Lux configurations (lower is better). x and y indicate the number of nodes and
the number of GPUs on each node.

mance with different configurations. The GS graph requires
the combined memories of at least 12 GPUs, and therefore
we omit its performance numbers for 4 and 8 GPUs. For
each input graph and algorithm, the figure also shows the
configuration selected by the Lux performance model, which
chooses the optimal configuration in most cases.

Compared to Ligra, Galois, and Polymer, Lux achieves
1.3-7× speedup for the five algorithms. Lux achieves most
of its performance speedup by exploiting the aggregate GPU
memory bandwidth. The shared memory systems eliminate
the cost of data transfers and graph partitioning by process-
ing the entire graph in shared CPU memory; thus, because
Lux incurs some cost for these operations that cannot always
be overlapped with computation, Lux’s compute phase must
be much faster than that of the shared memory systems to
improve overall performance. In our experiments, Lux re-
duces compute time by up to 30× (see Figure 20).

Figure 16 shows that a system design that exploits avail-
able bandwidth and the memory hierarchy in a distributed
memory architecture can achieve much better absolute per-
formance than pure shared memory systems on a single
node. This comparison, however, does not take into ac-
count the disparity in raw computational power and cost of
a multi-GPU node versus one with CPUs only. Table 3 nor-
malizes performance by cost, comparing the efficiency per
dollar of Lux and shared memory frameworks on a single
node. The cost efficiency is calculated by dividing perfor-
mance (number of iterations per second) by machine cost.
For the CPU-based approaches, we use the best performance
numbers of Ligra, Galois and Polymer. Higher cost efficiency
indicates that the system achieves better performance with

the same machine cost. Table 3 shows that Lux achieves
cost efficiency on a par with CPU-based systems for CC,
SSSP, BC, and CF, and has better cost efficiency for PR.

Compared to PowerGraph and GraphX, Lux achieves or-
ders of magnitude speedup in most cases. Besides using the
aggregate GPU bandwidth to accelerate computation, Lux
also benefits from exploiting the hierarchical structure of
the memory in multi-node multi-GPU machines; in partic-
ular by using shared zero-copy memory to minimize inter-
node data transfers. As an example of an alternative design,
GraphX adopts a shared-nothing worker model and requires
more inter-node communication [23].

Compared to Medusa and Groute, Lux achieves 1.5-2.5×
speedup for CC, SSSP, and BC and 10-20× speedup for PR
and CF. This is because both Medusa and Groute process
individual vertices separately, which improves load balance
but may potentially miss opportunities for coalesced mem-
ory accesses and increase runtime overhead when processing
large graphs on multiple GPUs.

8.3 Load Balancing
Figure 18 shows how Lux’s repartitioning approach achieves

dynamic load balancing. We also use a local repartition-
ing approach that only balances workload among different
GPUs on a single node as a baseline. For both approaches,
the repartitioning cost is decomposed into two parts. The
first part (shown as the almost-immeasurable yellow bars
in Figure 18) is computing a new repartitioning based on
the execution times in previous iterations. The second part
(shown as the pink bars) is the graph migration cost, which
involves moving subgraphs among different GPUs on the

307

1 2 3 4 5 6

Iterations

0

100

200

300

400

500
R

u
n
 t

im
e
 (

m
s)

PR on TW with 1 node (16 GPUs)

1 2 3 4 5 6

Iterations

0

1000

2000

3000

4000

5000

6000

7000

R
u
n
 t

im
e
 (

m
s)

PR on GS with 4 nodes (16 GPUs per node)

Per-iteration Runtime (Lux Repartitioning)

Per-iteration Runtime (Local Repartitioning)

Per-iteration Runtime (w/o Repartitioning)

Graph Migration Time (Lux Repartitioning)

Graph Migration Time (Local Repartitioning)

Lux Repartitioning Time

Local Repartitioning Time

Figure 18: Performance comparison for different dynamic
repartitioning approaches. The horizontal line shows the
expected per-iteration run time with perfect load balancing.

1 2 3 4 5 6 7 8 9 10
Iteration

200

250

300

350

400

450

500

550

600

R
u
n
 t

im
e
 (

m
s)

Push

Pull

(a) PR.

1 2 3 4 5 6 7 8 9 10
Iteration

0

50

100

150

200

250

300

350
R

u
n
 t

im
e
 (

m
s)

Push

Pull

(b) CC.
Figure 19: Per iteration runtime on TW with 16 GPUs.

same node (for both approaches) and moving subgraphs
among different nodes (for Lux’s repartitioning approach).

For the single-node execution, both approaches behave
identically and reduce the application’s per-iteration run
time by 43% after a few iterations. For the multi-node exe-
cution, the Lux repartitioning approach and the local repar-
titioning approach reduce the application’s per-iteration run
time by 51% and 47%, respectively. However, in the first
few iterations, the Lux repartitioning approach suffers 2×
more graph migration cost compared to the local reparti-
tioning approach. This is because Lux’s repartitioning ap-
proach also balances workload across different nodes and
therefore introduces additional cost for migrating subgraphs.
For both executions, the overhead for computing a reparti-
tioning is negligible compared to the application’s run time,
and the graph migration cost decreases dramatically and
approaches zero after a few iterations.

8.4 Pull vs. Push
Figure 19 shows a comparison between Lux’s pull and

push execution models. The performance gap between the
pull and push models is significant in our experiments, which
we illustrate using PR and CC. For PR, the pull model con-
sistently outperforms the push model, which is due to a
number of optimizations integrated in Lux. For CC, the
pull model performs better for the first few iterations when
most of the vertices are active. However, the push model be-
comes more efficient when the values for most vertices have
converged and those vertices remain inactive.

8.5 Performance Model
Figure 20 shows the results of our performance model for

the pull and push-based executions. For the real executions,
we collect the load/compute time of each GPU task and
the inter-node transfer time of each compute node. In Fig-
ure 20, we plot the average load, compute, and inter-node
transfer times. The remaining wall-clock execution time is
attributed to workload imbalance among different partitions
and nodes. Since our performance model assumes balanced
partitions, the workload imbalance overhead is not part of
the performance model.

0.0

0.3

0.6
TW

0.0

0.4

0.8
UK

x=1, y=4 x=1, y=8 x=1, y=16 x=2, y=16 x=4, y=16

Configurations

0

2

4
GS

R
u
n
 t

im
e
 p

e
r

it
e
ra

ti
o
n
 (

se
co

n
d
s)

Real: load time

Real: compute time

Real: xfer time

Real: workload imbalance

Model: load time

Model: compute time

Model: xfer time

(a) Pull-based executions (PR).

0

1

2
TW

0

1

2
UK

x=1, y=4 x=1, y=8 x=1, y=16 x=2, y=16 x=4, y=16

Configurations

0

7

14
GSR

u
n
 t

im
e
 (

se
co

n
d
s)

Real: compute time

Real: xfer time

Real: workload imbalance

Model: compute time

Model: xfer time

(b) Push-based executions (CC).
Figure 20: Performance model for different executions.

Our performance model is better for predicting pull-based
than push-based execution. For predictions of the load and
compute time in the pull-based execution, the relative errors
are less than 20% in most cases. Moreover, the workload
imbalance is insignificant in the pull-based execution, which
makes our performance model a practical tool for estimat-
ing the performance of different executions and choosing an
efficient configuration for a given input graph and algorithm.

The prediction for the push-based execution is not as ac-
curate as the pull-based execution. The main challenge is
the changing frontier queue over iterations, which amplifies
workload imbalance among different partitions and makes
execution time less predictable.

9. CONCLUSION
We have presented Lux, a distributed multi-GPU system.

Lux provides two execution models that are beneficial for
different graph applications. A dynamic graph repartition-
ing mechanism achieves good load balancing among multiple
GPUs, while the performance model provides insight into
improving Lux’s performance. Our evaluation shows that
Lux outperforms state-of-the-art graph processing systems.

Acknowledgement
This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nu-
clear Security Administration, as well as a grant from the
National Science Foundation CCF-1160904. This research
is based partially upon work supported by the Department
of Energy, Office of Science, Office of Advanced Scientific
Computing Research under Award Number DE-SC0008111
and by the Department of Energy National Nuclear Security
Administration under Award Number DE-NA0002373-1.

We thank Christopher R. Aberger, Mingyu Gao, Samuel
Grossman, and the anonymous reviewers for their feedback.
We also thank the Ligra and Galois authors for their assis-
tance with the experiments.

308

10. REFERENCES
[1] Amazon ratings network dataset. http://konect.

uni-koblenz.de/networks/amazon-ratings.

[2] Apache giraph. http://http://giraph.apache.org/.

[3] Intel Xeon Processor E5-2680 v2.
http://ark.intel.com/products/75277/

Intel-Xeon-Processor-E5-2680-v2.

[4] Intel Xeon Processor E7-4860 v2.
https://ark.intel.com/products/75249/

Intel-Xeon-Processor-E7-4860-v2.

[5] Lonestar 5 user guide. https:
//portal.tacc.utexas.edu/user-guides/lonestar5.

[6] NVIDIA NVLink high-speed interconnect.
http://www.nvidia.com/object/nvlink.html.

[7] NVidia Tesla K80. http://www.anandtech.com/show/
8729/nvidia-launches-tesla-k80-gk210-gpu.

[8] Server Memory Prices.
https://memory.net/memory-prices/.

[9] XStream Cray CS-Storm compute cluster.
http://xstream.stanford.edu/.

[10] Yahoo! Altavista web page hyperlink connectivity
graph. http://webscope.sandbox.yahoo.com/
catalog.php?datatype=g.

[11] Yahoo! music user ratings of songs with artist, album,
and genre meta information. "https://webscope.
sandbox.yahoo.com/catalog.php?datatype=r".

[12] Michael Bauer, Sean Treichler, Elliott Slaughter, and
Alex Aiken. Legion: Expressing locality and
independence with logical regions. In Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12,
2012.

[13] Scott Beamer, Krste Asanović, and David Patterson.
Direction-optimizing breadth-first search. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, 2012.

[14] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and
Keshav Pingali. Groute: An asynchronous multi-GPU
programming model for irregular computations. In
Proceedings of the 22Nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
2017.

[15] James Bennett, Stan Lanning, et al. The Netflix Prize.
In Proceedings of KDD cup and workshop, 2007.

[16] Paolo Boldi, Marco Rosa, Massimo Santini, and
Sebastiano Vigna. Layered label propagation: A
multiresolution coordinate-free ordering for
compressing social networks. In Proceedings of the 20th
international conference on World Wide Web, 2011.

[17] Paolo Boldi and Sebastiano Vigna. The WebGraph
framework I: Compression techniques. In Proc. of the
Thirteenth International World Wide Web Conference
(WWW 2004), 2004.

[18] Deepayan Chakrabarti, Yiping Zhan, and Christos
Faloutsos. R-MAT: A recursive model for graph
mining. In SDM, 2004.

[19] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest,
and Charles E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[20] Linton C Freeman. A set of measures of centrality
based on betweenness. Sociometry, 1977.

[21] Zhisong Fu, Michael Personick, and Bryan Thompson.
MapGraph: A high level API for fast development of
high performance graph analytics on GPUs. In
Proceedings of Workshop on GRAph Data
Management Experiences and Systems, GRADES’14,
2014.

[22] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph:
Distributed graph-parallel computation on natural
graphs. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’12, 2012.

[23] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, Michael J. Franklin, and Ion
Stoica. GraphX: Graph processing in a distributed
dataflow framework. In Proceedings of the 11th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, 2014.

[24] F. Maxwell Harper and Joseph A. Konstan. The
MovieLens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), 2015.

[25] Sungpack Hong, Siegfried Depner, Thomas Manhardt,
Jan Van Der Lugt, Merijn Verstraaten, and Hassan
Chafi. PGX.D: A fast distributed graph processing
engine. In Proceedings of the International Conference
for High Performance Computing, Networking,
Storage and Analysis, SC ’15, 2015.

[26] Farzad Khorasani, Keval Vora, Rajiv Gupta, and
Laxmi N. Bhuyan. CuSha: Vertex-centric graph
processing on GPUs. In Proceedings of the 23rd
International Symposium on High-performance
Parallel and Distributed Computing, HPDC ’14, 2014.

[27] Min-Soo Kim, Kyuhyeon An, Himchan Park,
Hyunseok Seo, and Jinwook Kim. GTS: A fast and
scalable graph processing method based on streaming
topology to GPUs. In Proceedings of the 2016
International Conference on Management of Data,
SIGMOD ’16, 2016.

[28] Yehuda Koren, Robert Bell, and Chris Volinsky.
Matrix factorization techniques for recommender
systems. Computer, 42(8), 2009.

[29] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg,
Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks.
Journal of Machine Learning Research, 11(Feb), 2010.

[30] Yucheng Low, Danny Bickson, Joseph Gonzalez,
Carlos Guestrin, Aapo Kyrola, and Joseph M.
Hellerstein. Distributed GraphLab: A framework for
machine learning and data mining in the cloud.
PVLDB, 5(8):716–727, 2012.

[31] Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’10, 2010.

[32] Duane Merrill, Michael Garland, and Andrew
Grimshaw. Scalable gpu graph traversal. In
Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’12, 2012.

309

[33] Donald Nguyen, Andrew Lenharth, and Keshav
Pingali. A lightweight infrastructure for graph
analytics. In Proceedings of ACM Symposium on
Operating Systems Principles, SOSP ’13, 2013.

[34] Nadathur Satish, Narayanan Sundaram, Md.
Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park,
M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin,
and Pradeep Dubey. Navigating the maze of graph
analytics frameworks using massive graph datasets. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
2014.

[35] Zechao Shang, Feifei Li, Jeffrey Xu Yu, Zhiwei Zhang,
and Hong Cheng. Graph analytics through
fine-grained parallelism. SIGMOD ’16, 2016.

[36] Yingxia Shao, Junjie Yao, Bin Cui, and Lin Ma.
PAGE: A partition aware graph computation engine.
In Proceedings of the 22Nd ACM International
Conference on Information & Knowledge
Management, CIKM ’13, 2013.

[37] Julian Shun and Guy E. Blelloch. Ligra: A lightweight
graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’13, 2013.

[38] Sean Treichler, Michael Bauer, and Alex Aiken.
Realm: An event-based low-level runtime for
distributed memory architectures. In Proceedings of
the 23rd International Conference on Parallel
Architectures and Compilation, PACT ’14, 2014.

[39] Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy,
Alvin AuYoung, and Robert S. Schreiber. Presto:
Distributed machine learning and graph processing

with sparse matrices. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys
’13, 2013.

[40] Clément Vuchener and Aurélien Esnard. Dynamic
load-balancing with variable number of processors
based on graph repartitioning. In High Performance
Computing (HiPC), 2012 19th International
Conference on, 2012.

[41] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D. Owens.
Gunrock: A high-performance graph processing
library on the GPU. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, 2015.

[42] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
NSDI’12, San Jose, CA, 2008.

[43] Kaiyuan Zhang, Rong Chen, and Haibo Chen.
NUMA-aware graph-structured analytics. In
Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP’15, 2015.

[44] Jianlong Zhong and Bingsheng He. Medusa: Simplified
graph processing on GPUs. IEEE Transactions on
Parallel and Distributed Systems, 25(6), 2014.

[45] Chang Zhou, Jun Gao, Binbin Sun, and Jeffrey Xu
Yu. MOCgraph: Scalable distributed graph processing
using message online computing. PVLDB,
8(4):377–388, 2014.

310

