
A Formal Semantics of SQL Queries,

Its Validation, and Applications

Paolo Guagliardo

School of Informatics

University of Edinburgh

pguaglia@inf.ed.ac.uk

Leonid Libkin

School of Informatics

University of Edinburgh

libkin@inf.ed.ac.uk

ABSTRACT
While formal semantics of theoretical languages underlying
SQL have been provided in the past, they all made sim-
plifying assumptions ranging from changes in the syntax to
omitting bag semantics and nulls. This situation is reminis-
cent of what happens in the field of programming languages,
where semantics of formal calculi underlying the main fea-
tures of languages are abundant, but formal semantics of
real languages that people use are few and far between.

We consider the basic class of SQL queries – essentially
SELECT-FROM-WHERE queries with subqueries, set/bag opera-
tions, and nulls – and define a formal semantics for it, with-
out any departures from the real language. This fragment
already requires decisions related to the data model and
handling variable names that are normally disregarded by
simplified semantics. To justify our choice of the semantics,
we validate it experimentally on a large number of randomly
generated queries and databases.

We give two applications of the semantics. One is the first
formal proof of the equivalence of basic SQL and relational
algebra that extends to bag semantics and nulls. The other
application looks at the three-valued logic employed by SQL,
which is universally assumed to be necessary to handle nulls.
We prove however that this is not so, as three-valued logic
does not add expressive power: every SQL query in our frag-
ment can be evaluated under the usual two-valued Boolean
semantics of conditions.

PVLDB Reference Format:

Paolo Guagliardo and Leonid Libkin. A formal semantics of SQL
queries, its validation, and applications. PVLDB, 11(1): �27-
3�, 2017.
DOI: https://doi.org/10.14778/3136610.3136613

1. INTRODUCTION
Providing a formal semantics of a language is a major task

in programming languages research [18, 20, 28]. It enables
one to formally reason about languages, verify the correct-
ness of programs, and it becomes a fundamental tool in de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 1
Copyright 2017 VLDB Endowment 2150-8097/17/09... $ 10.00.
DOI: https://doi.org/10.14778/3136610.3136613

signing language extensions as well as new languages. Given
the complexities of real-life languages, it is very common to
abstract the core of a language by means of a well-behaved
theoretical calculus and study its semantics. Providing the
semantics of a real language, with all of its idiosyncrasies, is
a much harder task. This was done for several languages [1,
14, 19, 27, 31, 32]; the di↵erence is that to describe such a
formal semantics one needs a book, rather than a paper (or
even a second book to explain what the first one said [26]).
When it comes to the main query language used by rela-

tional DBMSs – SQL – we have the Standard [21], but this
cannot serve as a formal semantics on its own, because it is
written in natural language, which is inherently ambiguous.
In fact, it is well known that di↵erent vendors interpret var-
ious aspects of the Standard di↵erently (see, e.g., [4, 22]).
From a practical point of view, a natural language specifi-
cation is harder to implement and maintain, and it does not
lend itself to proper formal reasoning, which is necessary to
derive language equivalences and optimization rules. The
need for a formal semantics of SQL is witnessed by the fact
that there have been several attempts at providing one in
the past [7, 36, 29, 8, 9, 24, 37]. However, as we shall discuss
in more detail in Section 7, all of the approaches found in
the literature deviate significantly from the behavior of the
real SQL language and the way it is used in practice. This
is due to the fact that they make at least one of the follow-
ing simplifying assumptions: set semantics (that is, rows in
tables do not repeat) and absence of null values.
While theoretical work in databases typically views rela-

tions as sets of tuples, SQL tables are bags (a.k.a. multisets)
where the same tuple can occur multiple times. Of course we
can enforce set semantics in SQL by appropriately removing
duplicates, but this is computationally expensive and there-
fore avoided in practice unless really necessary. But the rea-
son for dealing with bags in real life scenarios is not limited
to e�ciency: the number of occurrences of tuples in tables
reflects the actual data distribution, and preserving this in-
formation is crucial in applications where query answers are
further processed to produce relevant data analytics.
As for nulls, we know that data in the real world is far

from perfect: some values may be missing or unavailable due
to faulty sensors, human or software errors, design choices,
or genuine lack of information. Thus, we need to accept the
presence of nulls as a fact of life, and if we want to capture
the meaning of SQL queries in the real world we cannot just
pretend that nulls do not exist.
It is well known that, for handling nulls, SQL uses three

truth values [13]: true (t), false (f), and unknown (u). With

27

9

^ t f u

t t f u
f f f f
u u f u

_ t f u

t t t t
f t f u
u t u u

¬
t f
f t
u u

Figure 1: Truth tables for SQL’s 3VL.

few exceptions, atomic comparisons where one of the argu-
ments is SQL’s null value NULL result in u. Truth values
are propagated through the logical connectives of conjunc-
tion (^), disjunction (_) and negation (¬) using the truth
tables of Kleene logic [6], which are given in Figure 1. As a
matter of fact, SQL mixes this particular three-valued logic
(3VL) with the usual Boolean logic: the WHERE clause is eval-
uated under 3VL, but then f and u are conflated, and only
tuples for which the condition evaluates to t are returned.
Furthermore, it does not apply the same treatment of nulls
uniformly: in set operations like di↵erence and intersection,
two values (including NULL) are considered equal if they are
syntactically the same.

Disregarding these aspects of the SQL language can lead
to wrong equivalences among queries, as the following ex-
ample illustrates.

Example 1. Consider two relations R and S with a single
attribute A, and compute their di↵erence R�S. One option
is to use a NOT IN subquery:

Q1: SELECT DISTINCT R.A FROM R WHERE R.A NOT IN (
SELECT S.A FROM S)

By translating NOT IN into NOT EXISTS, as for example [7,
36] would suggest, we get

Q2: SELECT DISTINCT R.A FROM R WHERE NOT EXISTS (
SELECT * FROM S WHERE S.A = R.A)

And of course SQL also gives us a direct way of writing
the di↵erence query

Q3: SELECT R.A FROM R EXCEPT SELECT S.A FROM S

While these queries are equivalent on databases without
nulls, they are not in the presence of nulls. Indeed, consider
a database D where R = {1, NULL} and S = {NULL}; then
Q1(D) = ?, Q2(D) = {1, NULL} and Q3(D) = {1}.

Thus, queries that database theory would want us to view
as equivalent are hardly equivalent in real life.

The main goal of this paper is to give a formal semantics
of the core of SQL and to provide evidence that it correctly
captures the real behavior of the language. Here we look at
the basic fragment that includes SELECT-FROM-WHERE queries
without aggregation but with correlated subqueries in both
FROM and WHERE, Boolean operations, null values, and dupli-
cate elimination. This is already an expressive fragment (it
captures all relational algebra queries, for instance) and it
illustrates many issues that need to be addressed in defining
a formal semantics – crucially, the variable binding rules.

Once we define the semantics, we need to justify it. How
do we know that it is the right semantics of SQL? Since this
is the first fully formal attempt to specify the basic fragment
of the Standard, there is nothing to rely on to formally prove
correctness. Thus, we believe that the only way to convince
oneself that the proposed semantics really models SQL is
experimental: one needs to implement it, and compare its

behavior with that of a real RDBMS on a very large number
of queries.
But this step is not as easy as it seems: all major RDBMSs

stay very close to the Standard, and yet have subtle di↵er-
ences. Let us illustrate this by an example.

Example 2. One of the standard textbook assumptions of
the relational model is that attributes in tables do not re-
peat. However, SQL makes it very easy to create such tables,
e.g., by writing SELECT R.A, R.A FROM R, where we again
refer to a relation R with attribute A. How about using such
an expression as a subquery? Consider the following query:

SELECT * FROM (SELECT R.A, R.A FROM R) AS T

This will be accepted by PostgreSQL, but it will result in a
compile-time error in some of the commercial RDBMSs. On
the other hand, if the same query is used as a subquery in

SELECT * FROM R WHERE EXISTS
(SELECT * FROM (SELECT R.A, R.A FROM R) AS T)

then suddenly it is fine, even with RDBMSs where the sub-
query alone refused to compile. Thus, not only is * a tricky
feature to model, it also shows that no single semantics will
account for all the existing RDBMSs, even for the core lan-
guage.

Fortunately, di↵erences between real implementations are
minor and well documented. It is easy to adjust the general
semantics to account for little quirks of individual implemen-
tations. Having done so, we are able to provide experimen-
tal validation of the semantics, using two di↵erent RDBMSs,
and two adjustments of the semantics.
We then move to applications of the semantics, concerning

language equivalences and expressiveness. One is to provide,
for the very first time, a formal proof that basic SQL can be
captured by relational algebra (RA). As mentioned earlier,
existing translations [7, 36] used a much simplified model,
and procedural languages employed by RDBMSs go beyond
RA capabilities. Now, with the formal semantics of SQL, we
can formally prove this folklore (but so far unproven) result.
For our second application, we look at SQL’s logic of null

values. It is commonly believed that 3VL is really necessary
to model SQL’s behavior, but using our formal semantics we
show that this is not so: basic SQL queries have the same
expressive power under 3VL and under the usual two-valued
Boolean logic. That is, as far as expressiveness is concerned,
3VL is not needed for SQL, even to handle nulls.

To recap, our main contributions are as follows.
1. We give a formal, rather than natural language, seman-

tics to the basic fragment of SQL (consisting of queries
without aggregation) that accounts for its real-life be-
havior.

2. To justify it as the right semantics of SQL, we experi-
mentally validate it with respect to a very large number
of randomly generated queries to ensure that it always
produces the same results as SQL implementations in
real RDBMSs.

3. We provide a translation from basic SQL into RA and,
using the formal semantics, prove its correctness.

4. We show that, contrary to common belief, three-valued
logic is not necessary to model SQL behavior, even for
handling nulls.

Organization. The data model and the syntax of the basic
SQL fragment are defined in Section 2. The formal seman-
tics is presented in Section 3 and its experimental validation

28

is described in Section 4. The formal proof of equivalence
between basic SQL and RA is in Section 5. Section 6 shows
how to eliminate three-valued logic from SQL. Related work
is discussed in Section 7 and concluding remarks are given
in Section 8.

2. DATA MODEL AND SYNTAX
In this section we describe the data model we use, and the

syntax of the basic fragment of SQL’s query language.
As we all know, an SQL table is made up of rows, which

may occur multiple times, and it is organized into columns,
which have names attached to them. While this looks quite
straightforward, the way column names are handled in SQL
is of paramount importance for providing the semantics of
queries, which is our goal, and it requires a few clarifications.

• Can column names be repeated? For base tables stored
in the database this is not allowed, but it is fairly easy
to write SQL queries that produce tables with repeated
column names. For example, if R is a base table with a
column named A, the query SELECT A,A FROM R out-
puts a table with two columns, both named A.

• What are column names exactly? If we only look at
base tables or at the output of an SQL query, these are
just attribute names. However, we also need to provide
the semantics of subqueries, and each subquery in the
FROM clause is given a name. For example, in the query

SELECT R.A, S.A FROM R, (SELECT A FROM R) AS S

the base tableR and the subquery in FROMmust produce
a table whose columns are named R.A and S.A, which
are pairs of names.

Thus, in general, column names in a table can repeat, and
they can be either names or pairs of names. Towards cap-
turing this, we assume the following two countable infinite
sets:
• N of names, which will serve as names of tables and their

columns, and
• C of data values that, along with NULL, will populate data-

bases.
We refer to the elements of N as names, and to pairs of ele-
ments of N (i.e., elements of N2) as full names, for which we
will use the SQL-like notation N1.N2 rather than (N1, N2).

We can now define the data model. A record is a tuple of
elements of C[{NULL}, and a table of arity k > 0 is a bag of
records of length k. A schema is a set R ⇢ N of (base) table
names, where each R 2 R is associated with a non-empty
tuple `(R) of distinct attribute names from N. A database
D maps each R to a (base) table R

D of arity |`(R)|. We
write R(A1, . . . , An

) to indicate that `(R) = (A1, . . . , An

).

Our goal is to define the semantics of syntactically correct
SQL queries, which have been successfully type-checked and
compiled. Thus, w.l.o.g. we assume that queries are given in
a form where all attribute names are fully annotated with
the name of the table they come from. As an example,
consider a schema with R(A) and T (A,B), and the query

SELECT A, B AS C
FROM R, (SELECT B FROM T) AS U
WHERE A = B

The fully annotated version of this query will be

SELECT R.A AS A, U.B AS C
FROM R AS R, (SELECT T.B AS B FROM T AS T) AS U
WHERE R.A = U.B

In other words, each base table or subquery in FROM is given
an explicit name, and its attributes are then qualified using
that name; moreover, the names of the attributes that will
appear in the output of the query are explicitly listed in the
SELECT clause. In fact, this closely resembles what happens
when compiling SQL queries: RDBMSs add similar annota-
tions to table and attribute names.
Another observation is that if a query compiled success-

fully, there are no type clashes, and thus we can assume that
all comparisons and operations are applied to arguments of
the right types. This explains why we assumed that there is
just one set of data values that includes values of all types.
As already explained, in this paper we fully analyze the

fragment that we call basic SQL. This fragment includes:
• the usual SELECT-FROM-WHERE queries;
• constants and NULLs in the SELECT list, along with (fully

qualified) attribute names;
• NULLs handled according to SQL’s 3-valued logic;
• correlated subqueries in WHERE connected with EXISTS,
IN and their negations;

• correlated subqueries in FROM;
• set and bag semantics of queries;
• operations of union, intersection, and di↵erence (in both

set and bag flavors); and
• arbitrary Boolean combinations of conditions.

Notations and conventions. A term t is either a constant
in C, or NULL, or a full name in N

2. We let t̄ stand for tuples
of terms. We shall adopt the following conventions:

N ranges over names in N.
A ranges over full names (elements of N2).
↵ ranges over tuples of terms.
� ranges over tuples of names.
R ranges over names of base tables in a database.
c ranges over constants (elements of C).

References to tables are denoted by T , which indicates either
a query Q (whose output is indeed a table), or the name of
a base table R. We let ⌧ range over tuples of (references to)
tables.

The syntax of basic SQL is given in Figure 2, where both
queries Q and conditions ✓ are defined by mutual recursion:
queries have conditions in the WHERE clause, and a condition
may involve a query within EXISTS or IN.
Observe that � and �

0 in queries provide explicit names for
the tables in FROM and for the terms in SELECT, respectively.
The fragment we consider is parameterized by a collection

P of predicates on base types. We assume that equality (=)
of values is always available, for all types. Other operations
can be type-specific, such as comparisons < and for inte-
gers, or the lexicographic ordering and LIKE predicates for
strings. All we assume is that there is a well-defined seman-
tics of such predicates for non-null values of base types.

3. FORMAL SEMANTICS
Our goal now is to provide a formal semantics of queries

from the SQL fragment defined in the previous section. Fol-
lowing the standard convention, we denote the semantics of
a query Q by JQK. This is a function that takes a database
D as input and produces the output JQK

D

, which is the table
obtained by executing Q on D. The tuple of names assigned
to the columns of JQK

D

is denoted by `(Q), which is defined

29

⌧ : � := T1 AS N1, . . . , T

k

AS N

k

for ⌧ = (T1, . . . , Tk

), � = (N1, . . . , Nk

), k > 0

↵ : �0 := t1 AS N

0
1, . . . , t

m

AS N

0
k

for ↵ = (t1, . . . , tm), �

0= (N 0
1, . . . , N

0
m

), m > 0

Queries

Q

:= SELECT [DISTINCT] ↵ : �0 FROM ⌧ : � WHERE ✓

| SELECT [DISTINCT] * FROM ⌧ : � WHERE ✓

| Q (UNION | INTERSECT | EXCEPT) [ALL] Q

Conditions

✓

:= TRUE | FALSE | P (t1, . . . , tk), P 2 P
| t IS [NOT] NULL

| t̄ [NOT] IN Q | EXISTS Q

| ✓ AND ✓ | ✓ OR ✓ | NOT ✓

Figure 2: Syntax of basic SQL with a collection of predicates P

`(R) = tuple of names provided by the schema

`(⌧) = `(T1) · · · `(Tk

) for ⌧ = (T1, . . . , Tk

)

`

✓

SELECT [DISTINCT] ↵ : �0

FROM ⌧ : � WHERE ✓

◆

= �

0

`

�

SELECT [DISTINCT] * FROM ⌧ : � WHERE ✓

�

= `(⌧)

`

�

Q1 (UNION | INTERSECT | EXCEPT) [ALL] Q2

�

= `(Q1)

Figure 3: Output attributes of basic SQL queries

inductively on the structure of Q as shown in Figure 3 (con-
catenation of tuples is denoted by juxtaposition). For exam-
ple, for Q = SELECT * FROM R,S on a schema with R(A,B)
and S(A,C), we have `(Q) = `(R) `(S) = (A,B,A,C).

As for JQK, in general it is not enough to assume that the
only input is the database D, since we also need to provide
the semantics of subqueries, which may take parameters. In
conditions of the form t̄ IN Q, for example, the query Q can
refer to full names in t̄, whose values come from elsewhere.
The standard way to account for this in programming se-
mantics [18, 28] is to define an environment ⌘ that provides
values for such parameters. In our case, the parameters are
full names, so ⌘ is a partial map from N

2 to values, that pro-
vides the binding for each pair of table name and attribute
name (e.g., S.B) on which it is defined.

This suggests that the function we need to define is JQK
D,⌘

that takes a databaseD and the bindings of the environment
⌘ and produces the output of Q. Then, for a query without
parameters, we are looking at JQK

D

= JQK
D,?.

This is almost true, but there is one more Boolean input
that needs to be added. The problem with the definitions
of the SQL Standard is that the semantics of queries is not
compositional: that is, semantically, a query can behave dif-
ferently depending on the context in which it occurs. This is
true of queries of the form SELECT *. Normally * means that
all attributes have to be returned, but if such a query occurs
under EXISTS, then * is equivalent to having any constant c
in its place. This could lead to di↵erent behaviors. For ex-
ample, given a base table R with attribute A, the query Q =
SELECT * FROM (SELECT R.A, R.A FROM R) AS T will fail
due to the ambiguity of the reference to R.A,1 but the query
SELECT * FROM R WHERE EXISTS (Q) will work and output

1This is the behavior prescribed by the Standard, but not
all RDBMSs follow it; see Section 4.

R whenever it is nonempty. Thus, the same query Q has
di↵erent semantics depending on the context.
To take into account the two meanings of * in the SELECT

clause of queries, we introduce an additional Boolean input
to JQK. If Q is the outermost query nested inside an EXISTS
condition, this switch is set to 1, otherwise to 0. Then, when
Q is of the form SELECT * . . . , value 1 indicates that * is to
be replaced with an arbitrary constant, and 0 that it must
be expanded into a list of full names (provided by the FROM
clause, as we shall see shortly). Thus, our semantic function
becomes JQK

D,⌘,x

where x is the value of the Boolean switch;
for the top-level query Q, we then take JQK

D

= JQK
D,?,0.

Before providing the formal semantics of SQL queries, we
need to introduce a few notions related to names and their
bindings, and define operations on relations.

Scopes and bindings. Each full name M.N mentioned in
the SELECT or WHERE clause of queries is a reference to some
attribute N in some table M . How are references resolved?
Each SELECT-FROM-WHERE block defines a scope, and scopes
are nested according to the structure of the query. Then, for
each reference M.N , we first look for a match (i.e., a table
M with an attribute N) in the FROM clause of the local scope
where the reference occurs; if a match is not found (which
is the case of parameters), we look at the FROM clause of the
innermost scope in which the current one is nested, and so
on until a match is found (or the query does not compile).
To model the notion of scope, we first define the operation

N.(N1, . . . , Nn

) that prefixes each nameN
i

withN , yielding
the tuple of full names (N.N1, . . . , N.N

m

). For ⌧ = (T1, . . . ,

T

k

) and � = (N1, . . . , Nk

), we then let

`(⌧ : �) = N1.`(T1) · · ·Nk

.`(T
k

)

where again juxtaposition means concatenation of tuples.
We now formalize how the full names in a scope are bound

to the values of a record in order to provide an environment.
Given a tuple of full names Ā = (A1, . . . , Am

) and a record
r̄ = (a1, . . . , am

) of the same length, we define the environ-
ment ⌘

Ā,r̄

that maps each non-repeated element A
i

of Ā to
the corresponding value a

i

of r̄; if A
i

occurs more than once
in Ā, then ⌘

Ā,r̄

is not defined on it (a reference to a repeated
full name is ambiguous).
The following definitions formalize how an environment is

updated w.r.t. a scope and revised with new bindings. Given
an environment ⌘ and a tuple of full names Ā, we denote
by ⌘ * Ā the environment obtained by removing from ⌘ the
bindings for all elements of Ā. That is, ⌘ * Ā is undefined
on every A 2 Ā, and it is otherwise identical to ⌘. Given
two environments ⌘ and ⌘

0, by ⌘; ⌘0 we mean ⌘ overridden

30

JtK
⌘

=

8

>

<

>

:

⌘(A) if t = A

c if t = c 2 C

NULL if t = NULL

J(t1, . . . , tn)K⌘ =
�

Jt1K⌘, . . . , JtnK
⌘

�

Figure 4: Semantics of SQL terms

by ⌘

0. That is, ⌘; ⌘0(A) = ⌘(A) if ⌘ is defined on A and ⌘

0

is not; otherwise ⌘; ⌘0(A) = ⌘

0(A). Finally, we can put all of
the above together and define

⌘

r̄

� Ā =
�

⌘ * Ā

�

; ⌘
Ā,r̄

which updates ⌘ by first unbinding the full names in Ā and
then overriding the result by ⌘

Ā,r̄

.

Operations on tables. To describe the semantics of SQL
queries, we will use some of the standard operations on bags
[3, 16, 23]. We denote by #(r̄, T) the number of occurrences
(multiplicity) of a record r̄ in table T ; if r̄ does not occur in
T , then #(r̄, T) = 0. We also write r̄ 2

k

T for #(r̄, T) = k.
In addition, we use r̄ 2 T to indicate that r̄ 2

k

T for some
k > 0, and r̄ 62 T for r̄ 20 T .

The bag operations [, \ and � are defined as follows:

#(t̄, T1 [T2) = #(t̄, T1) + #(t̄, T2)

#(t̄, T1 \ T2) = min
�#(t̄, T1) ,#(t̄, T2)

�

#(t̄, T1 � T2) = max
�#(t̄, T1)� #(t̄, T2) , 0

�

Cartesian product ⇥ multiplies the number of occurrences
of tuples: that is, #�(t̄1, t̄2), T1 ⇥ T2

�

= #(t̄1, T1) · #(t̄2, T2).
Finally, the duplicate elimination operation " turns a bag
into a set by removing all but one occurrence of each tuple;
formally #(t̄, "(T)) = min

�#(t̄, T) , 1
�

.

Explanation of the semantics
We now explain the key elements of the semantics, presented
in Figures 4–7. The semantic function J·K takes di↵erent in-
puts depending on the syntactic construct under considera-
tion: for queries Q the inputs are a database D, an environ-
ment ⌘ and a Boolean variable x whose value is either 0 or
1; for conditions ✓, the inputs are just the database and the
environment; for terms t, the only input is the environment.

Terms (see Figure 4) The semantics of a term is given by the
environment ⌘: if a term t is a constant or null, it denotes
itself; if it is a full name A, then it denotes ⌘(A). The
semantics of a tuple t̄ of terms is simply the tuple of values
obtained by interpreting each term in t̄.

Queries (see Figure 5) A base table R obviously denotes its
interpretation in the database, i.e., RD. The evaluation of a
SELECT-FROM-WHERE block starts by computing the Cartesian
product of the tables produced by the elements of ⌧ , each
of which is either a base table or the output of a subquery.
When the WHERE ✓ clause is added, the tuples satisfying ✓

are selected from the product. Observe that in this case the
environment changes: when the condition ✓ is evaluated for
a record in the Cartesian product, the environment must be
revised with the bindings for that record, because the scope
of the local FROM clause has precedence over the outer scopes.

For each record in the product that satisfies ✓, the revised
environment is then applied to the SELECT list ↵, which may
also contain parameters, to produce the final output.
As discussed before, if the SELECT list is “*”, the behavior

depends on the context in which the query block occurs; this
is determined by the value of the Boolean switch x, which
is set to 1 only for queries nested in an EXISTS condition.

Conditions (see Figure 6) As already mentioned, SQL op-
erates with three truth values: true t, false f , and unknown
u. The semantics of a condition is one of these truth values.
The expressions TRUE and FALSE denote t and f respectively.
For a k-ary predicate P , defined on non-null values, the se-
mantics is u if one of the arguments is NULL. For equality,
which is always assumed to be among the available predi-
cates, we have that Jt1 = t2KD,⌘

is u if one of Jt1K⌘ or Jt2K⌘
is NULL; if both are elements c1, c2 2 C, then the semantics
is simply the result of the comparison c1 = c2.
The condition t̄ IN Q is the disjunction of all the equalities

t̄ = s̄ for every s̄ in the output of Q, while EXISTS Q tests
for non-emptiness. Note that, among conditions, only the
basic predicates P 2 P and t̄ IN Q can produce the truth
value u; this is then propagated through the connectives ^,
_ and ¬ following the truth tables of SQL’s 3VL (Figure 1),
which corresponds to what is known as the Kleene logic [6].

Operations (see Figure 7) UNION ALL, INTERSECT ALL, and
EXCEPT ALL are the bag operations [, \, and � we described
before. Without the keyword ALL, their set-theoretic version
is used (for di↵erence, duplicate elimination is applied first).

Examples. It is easy to follow the rules of the semantics to
see that the queries Q1–Q3 from the introduction produce
exactly the same results as they should, namely ?, {1, NULL}
and {1} on a database with R = {1, NULL} and S = {NULL}.
As for the queries in Example 2, the first will be rejected

because it will force a SELECT list containing an ambiguous
reference (i.e., a full name that is repeated in the FROM clause
of the scope against which it resolves). On the other hand,
the second will be allowed, because the SELECT * subquery
is nested directly under EXISTS, so * will be replaced by an
arbitrary constant and no ambiguity occurs.
These observations confirm the correctness of the seman-

tics on the small number of examples from the introduction;
in the next section we shall use many more queries for vali-
dating the semantics.

4. EXPERIMENTAL VALIDATION
Now that we have given a formal semantics of basic SQL

queries, how can we be sure that it is correct? The Standard
is written in natural language; this was the motivation to
provide a proper formal specification for the language in the
first place. But what does it even mean that the semantics is
correct? Intuitively, the correctness of the semantics should
entail that it produces the same results as real RDBMSs do.
Of course, proving such a statement formally is infeasible,
which leaves open one route: experimental validation.
Thus, our plan is to experimentally confirm, with a su�-

ciently high degree of confidence, that the formal semantics
from Section 2 is the right one, i.e., agrees with a very large
number of randomly generated SQL queries, on random rela-
tional databases. There is one obstacle though, already dis-
cussed in the introduction. We formalized the description of
the Standard, but all RDBMSs deviate from the Standard,

31

JRK
D,⌘,x

= R

D

J⌧ : �K
D,⌘,x

= JT1KD,⌘,0 ⇥ · · ·⇥ JT
k

K
D,⌘,0 for ⌧ = (T1, . . . , Tk

)

s
FROM ⌧ : �
WHERE ✓

{

D,⌘,x

=

8

<

:

r̄, . . . , r̄

| {z }

k times

�

�

�

�

�

�

r̄ 2
k

J⌧ : �K
D,⌘,0, J✓K

D,⌘

0 = t, ⌘

0 = ⌘

r̄

� `(⌧ : �)

9

=

;

u
v

SELECT ↵ : �0

FROM ⌧ : �
WHERE ✓

}
~

D,⌘,x

=

8

<

:

J↵K
⌘

0
, . . . , J↵K

⌘

0
| {z }

k times

�

�

�

�

�

�

⌘

0 = ⌘

r̄

� `(⌧ : �), r̄ 2
k

s
FROM ⌧ : �
WHERE ✓

{

D,⌘,x

9

=

;

u
v

SELECT *
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,0

=

u
v

SELECT `(⌧ : �) : `(⌧)
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,0u
v

SELECT *
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,1

=

u
v

SELECT c AS N

FROM ⌧ : �
WHERE ✓

}
~

D,⌘,1

for arbitrary c 2 C and N 2 N

s
SELECT DISTINCT ↵ : �0 | *
FROM ⌧ : � WHERE ✓

{

D,⌘,x

= "

 s
SELECT ↵ : �0 | *
FROM ⌧ : � WHERE ✓

{

D,⌘,x

!

Figure 5: Semantics of basic SQL – Queries

JP (t1, . . . , tk)KD,⌘

=

8

>

<

>

:

t if P
�

Jt1K⌘, . . . , JtkK
⌘

�

holds and Jt
i

K
⌘

6= NULL for all i 2 {1, . . . , k}
f if P

�

Jt1K⌘, . . . , JtkK
⌘

�

does not hold and Jt
i

K
⌘

6= NULL for all i 2 {1, . . . , k}
u if Jt

i

K
⌘

= NULL for some i 2 {1, . . . , k}

Jt IS NULLK
D,⌘

=

(

t if JtK
⌘

= NULL

f if JtK
⌘

6= NULL

Jt IS NOT NULLK
D,⌘

= ¬Jt IS NULLK
D,⌘

J(t1, . . . tn) = (t01, . . . , t
0
n

)K
D,⌘

=
n

^

i=1

Jt
i

= t

0
i

K
D,⌘

J(t1, . . . tn) 6= (t01, . . . , t
0
n

)K
D,⌘

=
n

_

i=1

Jt
i

6= t

0
i

K
D,⌘

Jt̄ IN QK
D,⌘

=

8

>

<

>

:

t if 9r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= t

f if 8r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= f

u if @r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= t and 9r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

6= f

Jt̄ NOT IN QK
D,⌘

= ¬Jt̄ IN QK
D,⌘

JEXISTS QK
D,⌘

=

(

t if JQK
D,⌘,1 6= ?

f if JQK
D,⌘,1 = ?

JTRUEK
D,⌘

= t J✓1 AND ✓2KD,⌘

= J✓1KD,⌘

^ J✓2KD,⌘

JNOT ✓K
D,⌘

= ¬J✓K
D,⌘

JFALSEK
D,⌘

= f J✓1 OR ✓2KD,⌘

= J✓1KD,⌘

_ J✓2KD,⌘

Figure 6: Semantics of basic SQL – Conditions

JQ1 UNION ALL Q2KD,⌘,x

= JQ1KD,⌘,0 [JQ2KD,⌘,0 JQ1 UNION Q2KD,⌘,x

= "

�

JQ1 UNION ALL Q2KD,⌘,x

�

JQ1 INTERSECT ALL Q2KD,⌘,x

= JQ1KD,⌘,0 \ JQ2KD,⌘,0 JQ1 INTERSECT Q2KD,⌘,x

= "

�

JQ1 INTERSECT ALL Q2KD,⌘,x

�

JQ1 EXCEPT ALL Q2KD,⌘,x

= JQ1KD,⌘,0 � JQ2KD,⌘,0 JQ1 EXCEPT Q2KD,⌘,x

= "

�

JQ1KD,⌘,0

�

� JQ2KD,⌘,0

Figure 7: Semantics of basic SQL – Operations

32

typically in small but nonetheless significant ways [4, 22].
These necessitate adjusting the semantics we presented to
account for the small di↵erences real systems have with the
Standard.

To give some concrete example, PostgreSQL has chosen to
use compositional semantics of queries: that is, SELECT * be-
haves in the same way regardless of the context in which the
query is used. This means that the extra Boolean switch is
no longer needed and we just need to provide the semantics
JQK

D,⌘

. The rule for SELECT * then simply changes to
u
v

SELECT ⇤
FROM ⌧ : �
WHERE ✓

}
~

D,⌘

=

s
FROM ⌧ : �
WHERE ✓

{

D,⌘

Other systems slightly change the syntax; for example Or-
acle uses MINUS instead of EXCEPT, while MySQL does not
have it altogether. Such syntactic modifications are easy to
account for.

Thus, to experimentally validate the semantics, we need to
provide minor adjustments so that it would capture precisely
what a concrete system implements. Under this understand-
ing, we need to describe the following four components:

1. the correctness criterion;
2. the query generator for the experiments;
3. the implementation of the formal semantics; and
4. the results of the experiments.

Correctness criterion. Once we implement the semantics,
we shall validate it w.r.t. a large number of randomly gener-
ated SQL queries, on random relational databases. By vali-
dating we mean that the semantics coincides with the result
of executing the same query on an RDBMS. By “coincide”
we mean that the table obtained from our implementation
of the semantics and the table obtained as output from the
DBMS have precisely the same number of columns, with the
same names and in the same order, and that they have pre-
cisely the same rows (with the same multiplicities) although
their order is arbitrary.

Query generator. There are well-defined database bench-
marks, like TPC-H [35], but they are designed for analyzing
database performance. Benchmarks use commonly occur-
ring queries (e.g., business support queries in TPC-H), but
they have relatively few of them (22 for TPC-H). In order to
validate the semantics, we need to compare it with the out-
put of DBMSs on a significantly larger number of queries.
While this precludes the use of standard benchmarks, we
can still analyze the structure and features of their queries
and, based on these, generate a large number of queries that
look somewhat like those found in benchmarks.

Towards that goal, we look at the characteristics of the
TPC-H benchmark. There eight base tables in total, but on
average each benchmark query uses only 3.2, and all queries
but one use 6 or fewer. Each query uses relatively few WHERE
conditions per block, in fact only three queries use more than
8 conditions, and no query exceeds 3 levels of nesting.

We implemented a random query generator, which takes
as input a schema, a set of names that can be used as aliases
for attributes and tables, and the following parameters:

• tables = max number of tables (counting repetitions)
mentioned in a well-defined SELECT-FROM-WHERE block,
including nested subqueries;

• nest = max level of nested queries in FROM and WHERE;
• attr = max number of attributes in a SELECT clause;

• cond = max number of atomic conditions in WHERE.
Based on the above observations from TPC-H, we chose the
values table = 6, nest = 3, attr = 3, cond = 8.

Implementation of the semantics. We implemented the
semantics of Figures 4–7 in Python. Note that we only need
this implementation to verify correctness against RDBMSs,
and not for its performance. In fact, we have two slightly dif-
ferent implementations: one that accounts for PostgreSQL’s
compositional semantics, and one for Oracle’s syntax.

Experimental results. We used a fixed schema with base
tables R1, . . . , R8, where each R

i

consists of i+1 attributes.
Since the data type of values is immaterial to our semantics,
to avoid type checking and therefore simplify query gener-
ation, all attributes in the schema are of type int. Using
the query generator described earlier, we generated 100,000
random queries over this schema, and for each of them we
generated a corresponding database instance using the ran-
dom data generator Datafiller [12]. As we are not assessing
performance here, the size of database instances is of sec-
ondary importance; hence, to speed up our implementation
of the semantics (which computes Cartesian products) we
capped the size of each generated base table to 50 rows.
For each query and associated database, we compared the

output of PostgreSQL and Oracle with the output produced
by our implementation of each variant of the semantics. The
results were always the same. In particular, for some queries
involving SELECT * Oracle raised an error due to presence of
ambiguous references; in each of these cases, our implemen-
tation (the variant adjusted for Oracle) also raised an error,
due to the environment being undefined on such ambiguous
references, as expected. Of course, these situations did not
arise for PostgreSQL. This gives us good evidence to state
that the semantics of Figures 4–7 is correct.

To sum up, our experiments validate the semantics of Sec-
tion 3, and allow us to proceed to use this semantics in two
applications that formally prove results about real-life SQL.

5. EQUIVALENCE WITH ALGEBRA
It is a fundamental result of relational database theory

that the expressiveness of the basic declarative query lan-
guage, relational calculus, is the same as that of the basic
procedural query language, relational algebra. First shown
by Codd in 1971 [11], it now belongs to all standard data-
base texts. Relational DBMSs do not use relational calculus
though; rather, they speak SQL. Of course SQL has many
features that go beyond the capabilities of relational calcu-
lus, but its core, called basic SQL here, is based on relational
calculus. The claim of equivalence between relational calcu-
lus and algebra is often extended to include also basic SQL,
but these claims tend to be supported only by a few exam-
ples of translating SQL queries into RA, rather than detailed
translations [2, 33, 15].
Detailed translations of SQL to RA that appeared in the

literature [7, 36] made simplifying assumptions that devi-
ate significantly from the behavior of SQL specified by the
Standard. As already explained in the introduction, typical
simplifications are using set semantics, and omitting nulls
and the three-valued logic associated with them. Thus, one
can legitimately question whether the textbook equivalence
of basic SQL and RA has really been proved.
Of course the main obstacle to having such a proof was

the lack of a formal semantics of SQL accounting for its

33

JRK
D

= R

D

J⇡
�

(E)K
D

=
n

J�K
⌘

ā
`(E)

, . . . , J�K
⌘

ā
`(E)

| {z }

k times

�

�

�

ā 2
k

JEK
D

o

J�
✓

(E)K
D

=
n

ā, . . . , ā

| {z }

k times

�

�

�

ā 2
k

JEK
D

and J✓K
D,⌘

ā
`(E)

= t
o

J⇢
�!�

0(E)K
D

= JEK
D

JE1 op E2KD = JE1KD op JE2KD for op 2 {[,\,�,⇥ }
J"(E)K

D

= "

�

JEK
D

�

JtK
⌘

=

8

>

<

>

:

⌘(t) if t 2 N

c if t = c 2 C

NULL if t = NULL

; J(t1, . . . , tk)K⌘ =
�

Jt1K⌘, . . . , JtkK
⌘

�

JP (t1, . . . , tk)KD,⌘

=

8

>

<

>

:

t if P
�

Jt1K⌘, . . . , JtkK
⌘

�

holds and Jt
i

K
⌘

6= NULL for all i 2 {1, . . . , k}
f if P

�

Jt1K⌘, . . . , JtkK
⌘

�

does not hold and Jt
i

K
⌘

6= NULL for all i 2 {1, . . . , k}
u if Jt

i

K
⌘

= NULL for some i 2 {1, . . . , k}

Jnull(t)K
D,⌘

=

(

t if JtK
⌘

= NULL

f if JtK
⌘

6= NULL

JTRUEK
D,⌘

= t ; JFALSEK
D,⌘

= f ; J✓1 ^ ✓2KD,⌘

= J✓1KD,⌘

^ J✓2KD,⌘

; J✓1 _ ✓2KD,⌘

= J✓1KD,⌘

_ J✓2KD,⌘

; J¬✓K
D,⌘

= ¬J✓K
D,⌘

(under three-valued interpretation of ^,_,¬)

Figure 8: Semantics of relational algebra

real-life, rather than simplified, features. Now that we have
a formal semantics that has been experimentally validated,
we can provide a proof that basic SQL is equivalent to RA.

However, even the basic fragment of SQL as we defined
it has some features that go beyond RA. Indeed, their data
models di↵er slightly (for RA, it is assumed that attributes
cannot repeat [2, 33]), and RA queries simply manipulate
data that already exists in the database, without the abil-
ity to create new data elements. But we shall show that,
once restricted to the same data model without repeating at-
tributes, the expressive power of data manipulating queries
in basic SQL is the same as RA under bag semantics.

Syntax of bag relational algebra. The data model for
RA is very similar to the one we used for basic SQL: tables
are multisets of records, and have attribute names which are
just elements of N. That is, lists of attributes are tuples we
referred to as � in Section 2. Crucially, column names can-
not repeat within a table, which is the standard assumption
for RA, and we follow it here.

Relational algebra expressions are given by the grammar:

E

:= R (base relation)

| ⇡
�

(E) (projection)

| �
✓

(E) (selection)

| E ⇥ E (product)

| E [E (union)

| E \ E (intersection)

| E � E (di↵erence)

| ⇢
�!�

0(E) (renaming)

| "(E) (duplicate elimination)

In relational algebra, terms are given by t

:= N | c | NULL
where N now ranges over N, and c ranges over C as before.
Note that �,�0 in the grammar above are tuples of names.
For a given collection of predicates P 2 P, the conditions

✓ in selections are given by

✓

:= TRUE | FALSE | P (t̄) | const(t) | null(t) | ✓ ^ ✓ | ✓ _ ✓ | ¬✓

As in the case of SQL, we assume that P contains at least
the equality predicate, and predicates are interpreted under
three-valued logic. The predicate null(t) tests if the value of
a term is null, and const(t) is the negation of null(t).
We define the signature `(E) of an expression, i.e., the list

of attribute names of the table that E generates, as follows:

`(R) = list of attributes of base relation R

`(E1 ⇥E2) = `(E1) `(E2)

`(E1 op E2) = `(E1) for op 2 {[,\,�}
`

�

⇡

�

(E)
�

= �

`

�

op(E)
�

= `(E) for op 2 {�, "}
`(⇢

�!�

0(E)) = �

0

The expression E1 ⇥ E2 is well-defined only if `(E1) and
`(E2) are disjoint; the expression E1opE2 for op 2 {[,\,�}
is well-defined only if `(E1) = `(E2); the expression ⇡

�

(E) is
well-defined only if � consists of elements of `(E) and does
not have repetitions; the expression ⇢

�!�

0(E) is well-defined
only if � = `(E), and �

0 has the same length as � and does
not have repetitions.

Semantics of bag relational algebra. The semantics of
well-defined RA expressions is given in Figure 8. An expres-
sion E, evaluated on a database D, produces the table JEK

D

,

34

whose column names are given by `(E). The operations of
union, intersection, di↵erence, Cartesian product, and du-
plicate elimination have their bag interpretation discussed
in Section 3.

The environment ⌘ is a partial mapping from N to values
(constants or null). It is only needed for evaluating selection
conditions, and projections. For � = (N1, . . . , Nm

) and ā =
(a1, . . . , am

), the environment ⌘ā

�

is defined so that ⌘ā

�

(N
i

) =
a

i

for i 2 {1, . . . ,m}. Since no repetitions in � are allowed,
⌘

ā

�

is always well defined.
Note that the semantics of projection is the standard one

under bag semantics; for example, for a base table R(A,B)
with R

D = {(a, b), (a, c)} we get J⇡
A

(R)K
D

= {a, a}.
In the semantics of conditions, equality is interpreted un-

der 3VL, while null(x) has a two-valued (t/f) interpretation.
Boolean connectives follow the rules of SQL’s 3VL.

SQL and RA: equivalence. As already explained, equiv-
alence cannot be guaranteed without imposing any restric-
tions on SQL queries, simply because RA queries just ma-
nipulate data that is available in the database and do not
invent new values, nor repeat attributes. But this is the only
restriction we need to impose.

Definition 1. A basic SQL query is a data manipulation
query if the query itself and every subquery in it is of the
form SELECT [DISTINCT] ↵ : �0 FROM ⌧ : � WHERE ✓ so that
the names in �

0 do not repeat, and for each A = N1.N2 2 ↵,
the name N1 occurs in �.

Thus, we simply disallow repetition of column names in
query/subquery results, force the attributes in SELECT to be
listed explicitly, and only allow data from relations/queries
in the FROM clause to appear in SELECT. Observe that we do
not forbid duplication of columns per se: for example, one
can write SELECT R.A AS A1, R.A AS A2 FROM R; we only
require that the columns be named di↵erently in the output.

Theorem 1. Data manipulation queries of basic SQL and
relational algebra under bag semantics have the same expres-
sive power.

We now explain the proof. It is more direct, and covers
more cases than the translations of [7, 36]. Translating RA
into SQL is completely standard. For the converse, we first
introduce a new version of relational algebra called SQL-
RA. It adds selection conditions that mimic nested IN and
EXISTS subqueries, which makes the translation from SQL
easy. We then show that these extra conditions are just
syntactic sugar, and SQL-RA is equivalent to RA.

The extension to SQL-RA makes the definition of expres-
sions and conditions mutually recursive by extending condi-
tions as follows:

✓

:= TRUE | FALSE | P (t̄) | const(t) | null(t)
| ✓ ^ ✓ | ✓ _ ✓ | ¬✓ | t̄ 2 E | empty(E)

These additions are direct analogs of SQL’s IN and EXISTS
subqueries.
To extend the semantics, we now require every expression,

not just conditions, to carry an environment ⌘, which only
changes in one case:

J�
✓

(E)K
D,⌘

=
n

ā, . . . , ā

| {z }

k times

�

�

�

ā 2
k

JEK
D

and J✓K
D,⌘;⌘ā

`(E)
= t

o

The semantics of the additional conditions is as follows:

Jt̄ 2 EK
D,⌘

=

8

>

<

>

:

t if 9r̄ 2 JEK
D,⌘

: Jt̄ = r̄K
D,⌘

= t

f if 8r̄ 2 JEK
D,⌘

: Jt̄ = r̄K
D,⌘

= f

u otherwise

Jempty(Q)K
D,⌘

=

(

t if JQK
D,⌘

= ?
f if JQK

D,⌘

6= ?

where, for r̄ = (r1, . . . , rm) and s̄ = (s1, . . . , sm), we define
Jr̄ = s̄K

D,⌘

as
V

{Jr
i

= s

i

K
D,⌘

| 1 i m}.
Some expressions of SQL-RA have parameters: for in-

stance, expressions E in t̄ 2 E can refer to values in t̄. When
we say that an SQL-RA expression is equivalent to an SQL
query or an RA expression, we mean expressions with no
parameters, evaluated under the empty environment. The
set of parameters of an expression E, denoted by param(E),
and the set of parameters of a condition ✓ with respect to
a set of attribute names A, denoted by param(✓,A), are de-
fined by mutual recursion as follows. Below op stands for
binary operations ⇥,[,\,�; conn for connectives ^,_, and
names, applied to a set or tuple of terms returns those terms
that are names (as opposed to constants and nulls).

param(R) = ?
param(E1 op E2) = param(E1) [param(E2)

param

�

⇡

↵

(E)
�

= param(E)

param

�

�

✓

(E)
�

= param

�

✓, {A | A 2 `(E)}
�

param

�

P (t1, . . . , tk),A
�

= names({t1, . . . , tk})�A
param(✓1 conn ✓2,A) = param(✓1,A) [param(✓2,A)

param(¬✓,A) = param(✓,A)

param

�

empty(E),A
�

= param(E)�A
param(t̄ 2 E,A) =

�

names(x̄) [param(E)
�

�A

Then SQL-RA queries are defined as SQL-RA expressions
E with param(E) = ?. The semantics of an SQL-RA query
E with respect to a database D is given by JEK

D,?.

Proposition 1. For every data manipulation query in basic
SQL, there is an equivalent SQL-RA query.

The translation closely follows the structure of queries,
once we have resolved two mismatches. The first is about
the use of full names (i.e., elements of N2) in basic SQL vs.
the use of names from N in SQL-RA. The second is about
SQL projection vs. SQL-RA projection.

To address the first mismatch, we can simulate all of the
full names used in a query with extra names from N, since we
have an infinite supply of them. For a given SQL query Q,
we define an injective mapping � : N2 ! N � (N

Q

[Nbase),
where N

Q

is the set of all names occurring in the rename
list of each SELECT clause in Q, and Nbase is the set of all
column names of each base table in the schema. Given this
correspondence, one can then simulate prefixing by renam-
ing; for a tuple of distinct names N1, . . . , Nm

2 N and a
name N 2 N, we let

⇢

�

N

(N1, . . . , Nm

) =
�

�(N,N1), . . . ,�(N,N

m

)
�

which is extended to RA expressions E as follows: ⇢�
N

(E) =
⇢

�!�

0(E) with � = `(E) and �

0 = ⇢

�

N

(�).
Given a name mapping � as defined above, and an SQL

environment ⌘ : N2 ! C[{NULL}, the SQL-RA environment

35

corresponding to ⌘ w.r.t. �, denoted by ⌘

�, is the partial
map ⌘ � ⇣ : N ! C[{NULL}, where ⇣ is the left inverse of �.

When it comes to projection, SQL’s SELECT ↵ may have
repetitions of attributes, in which case we cannot use it di-
rectly in SQL-RA. But it always comes together with a re-
naming � which, for data manipulation queries, contains no
repetitions. This makes it possible to achieve duplication of
columns in RA as well, as we show next. For this, we need
a definition that will also be important in the next section.

Definition 2. The syntactic equality of terms, denoted by
t1

.

= t2, is the comparison with the following semantics:

Jt1 .

= t2KD,⌘

=

(

t if Jt1K⌘ = Jt2K⌘
f if Jt1K⌘ 6= Jt2K⌘

In other words, two terms are syntactically equal i↵ they
refer to the same constant or NULL. Syntactic equality does
not add expressive power, because t1

.

= t2 is equivalent to
�

t1 = t2 ^ const(t1) ^ const(t2)
�

_
�

null(t1) ^ null(t2)
�

.
If E is an RA expression whose signature `(E) consists of

distinct names, ↵ = (↵1, . . . ,↵n

) is a tuple of names from
`(E), and � = (�1, . . . ,�n

) is a tuple of distinct names that
do not appear in `(E), then we define ⇡

↵

�

(E) as
8

<

:

⇢

↵!�

(⇡
↵

(E)), if ↵ has no repetitions,

⇡

�

⇣

�

↵

.

=�

�

E 1s

�

1s
i=1,...,n

"(⇢
↵i!�i(E))

��

⌘

otherwise,

where 1s is syntactic natural join, i.e., natural join where
the comparison condition on common attributes is syntactic
equality. Note that the projection operation is straightfor-
ward when there are no repetitions of attributes; if repeti-
tions exist, one can only simulate them in RA using addi-
tional joins, which is captured by the above definition.

The translation of basic SQL data manipulation queries
to SQL-RA, under renaming �, is defined in Figure 9. The
proof of correctness proceeds by induction on the structure
of queries and conditions.

We then need the second component of the proof of equiv-
alence, namely that the new conditions are syntactic sugar
and can be eliminated.

Proposition 2. For every SQL-RA query, there is an equiv-
alent RA query.

This can be shown in three steps. First, one can eliminate
t̄ 2 E conditions, replacing them with emptiness conditions
instead. Then one translates the resulting expression into a
normal form where each condition is either a predicate P (t̄),
or empty(E), or their negations. Finally, �empty(E)(E

0) and
�¬ empty(E)(E

0) are translated into left (anti) semijoins of E
and E

0. This completes the equivalence proof. 2

Example. We again return to the queries Q1–Q3 from the
introduction, which provide three non-equivalent ways of
expressing the di↵erence of relations R and S with one at-
tribute A. The translations that account for the di↵erent be-
havior of these queries are as follows, where R

0 = ⇢

A!B

(R)
and S

0 = ⇢

A!C

(S):

Q1 = ⇢

B!A

�

"(R0)ns

�

B=C

(R0 ⇥S

0)
�

,

Q2 = ⇢

B!A

�

"(R0)ns

�

B=C_null(B)_null(C)(R
0 ⇥S

0)
�

,

Q3 = "(R)� S .

The operation ns in the first two expressions above is (left)
antijoin based on syntactic natural join, and it is defined as
E1 ns

E2 = E1 � E1 \ ⇡

`(E1)(E1 1s

E2).

6. THREE-VALUED LOGIC
It is common belief that to evaluate SQL queries we need

three-valued logic. The description of the semantics, which
follows the Standard, and the equivalence to three-valued
RA seem to confirm this so far. But if 3VL is really neces-
sary, what are the queries that we miss if we use the standard
Boolean logic with only t and f? The answer is, somewhat
surprisingly: none. Despite what all the SQL books and da-
tabase texts tell us about the need for three-valued logic to
handle nulls, it turns out that the familiar two-valued logic
su�ces. The presence of a formal semantics of SQL allows
us to provide a rigorous proof of this fact.

Two-valued semantics of SQL. To define the semantics
of SQL under two-valued logic, we need to analyze when the
third truth value, unknown (u), appears. There is only one
base case, for predicates P 2 P. This includes equality =,
which we always assume to be present. Then u propagates
further through the logical connectives (AND, OR, NOT), and
through conditions t̄ IN Q, which amount to disjunctions of
t̄ = r̄ for r̄ in the result of Q.
To give a two-valued semantics to predicates, we can con-

flate f and u. This is a rather natural decision in the context
of SQL: after all, when the WHERE clause is evaluated under
3VL, only the tuples for which the condition evaluates to t
are kept, while those for which it is f or u are discarded.
We thus turn the semantics J K of Figures 4–7 into a two-

valued semantics J K2v by changing the rules for all predicates
P 2 P as follows:

JP (t1, . . . , tk)K2v
D,⌘

=

8

>

<

>

:

t P (Jt1K2v
⌘

, . . . , Jt
k

K2v
⌘

) holds

and Jt
i

K2v
⌘

6= NULL, 1 i k

f otherwise

For the equality predicate =, there is another option: we
can interpret it as syntactic equality

.

= (Definition 2) whose
semantics is already guaranteed to produce only truth values
in {t, f}. That is, instead of defining the two-valued seman-
tics of equality like other predicates as above, we could take
Jt1 = t2K2v

D,⌘

= Jt1 .

= t2KD,⌘

.
It turns out that it does not matter which of these two al-

ternatives we choose for equality: in either case the resulting
two-valued semantics captures the behavior of SQL.

Theorem 2. Basic SQL queries have the same expressive-
ness under the three-valued and the two-valued semantics.
That is, for every query Q there exist queries Q0 and Q

00 such
that JQK

D

= JQ0K2v
D

and JQK2v
D

= JQ00K
D

, for all databases D.
This is true for either interpretation of equality under two-
valued semantics.

Proof outline. The two-valued semantics of any predicate in
P can be expressed in the three-valued one by simply taking
its conjunction with conditions checking that its arguments
are not null. Since syntactic equality is expressible as well,
the translations from two-valued to three-valued semantics
are immediate.
We thus concentrate on producing, from a queryQ (poten-

tially with parameters), another query Q

0 so that JQK
D,⌘

=
JQ0K2v

D,⌘

. This is done by defining three translations by mu-
tual induction:

• from conditions ✓ to ✓

t and ✓

f such that

J✓K
D,⌘

= t , J✓tK2v
D,⌘

= t

J✓K
D,⌘

= f , J✓fK2v
D,⌘

= t

36

R

�7�! R if R is the name of a base relation

(T1, . . . , Tk

) : (N1, . . . , Nk

)
�7�! ⇢

�

N1
(E1)⇥ · · ·⇥ ⇢

�

Nk
(E

k

) if T

i

�7�! E

i

, for 1 i k

SELECT [DISTINCT] ↵ : �0

FROM ⌧ : �
WHERE ✓

�7�! ["]⇡�(↵)
�

0
�

�

✓

0(E)
�

if ⌧ : �
�7�! E and ✓

�7�! ✓

0

t

�7�!
(

t if t 2 C [{NULL}
�(t) otherwise

b

�7�! b if b = TRUE or FALSE

t IS [NOT] NULL
�7�! [¬] null(t̂) if t

�7�! t̂

P (t1, . . . , tn)
�7�! P (t̂1, . . . , t̂n) if t

i

�7�! t̂

i

and t

0
i

�7�! t̂

0
i

EXISTS Q

�7�! ¬ empty(E) if Q

�7�! E

t̄ [NOT] IN Q

�7�! [¬]
�

(t̂1, . . . , t̂n) 2 E

�

if Q

�7�! E and t̄

�7�! (t̂1, . . . , t̂n)

For ✓1
�7�! ✓

0
1 and ✓2

�7�! ✓

0
2: ✓1 AND ✓2

�7�! ✓

0
1 ^ ✓

0
2 , ✓1 OR ✓2

�7�! ✓

0
1 _ ✓

0
2 , NOT ✓1

�7�! ¬✓01

For Q1
�7�! E1 and Q2

�7�! E2:

Q1 UNION ALL Q2
�7�! E1 [⇢

`(Q2)!`(Q1)(E2) Q1 UNION Q2
�7�! "

�

E1 [⇢

`(Q2)!`(Q1)(E2)
�

Q1 INTERSECT ALL Q2
�7�! E1 \ ⇢

`(Q2)!`(Q1)(E2) Q1 INTERSECT Q2
�7�! "

�

E1 \ ⇢

`(Q2)!`(Q1)(E2)
�

Q1 EXCEPT ALL Q2
�7�! E1 � ⇢

`(Q2)!`(Q1)(E2) Q1 EXCEPT Q2
�7�! "(E1)� "

�

⇢

`(Q2)!`(Q1)(E2)
�

Figure 9: Translation from basic SQL data manipulation queries to SQL-RA, under renaming �

• from queries Q to Q

0 by inductively replacing each con-
dition ✓ by ✓

t.
That is, the conditions ✓t and ✓

f describe, under two-valued
semantics, the behavior of ✓ under three-valued semantics
(checking whether J✓K = u is captured by ¬✓t ^ ¬✓f), and
Q

0 simply replaces ✓ with ✓

t, since we only select tuples for
which the condition is true.

The translations of conditions are shown in Figure 10 for
the case when the two-valued interpretation of equality is the
same as for all other predicates P 2 P. In the f-translation
of IN, we make use of the SQL construct T ASN(A1, . . . , An

)
that assigns the name N to an n-ary table T and at the same
time renames its attributes to A1, . . . , An

. We assume that
the names N,A1, . . . , An

are fresh and distinct.
When equality is interpreted as syntactic equality, we need

to add the rules

(t1 = t2)
t = (t1 = t2) AND (t1, t2) IS NOT NULL

(t1 = t2)
f = NOT (t1 = t2) AND (t1, t2) IS NOT NULL

and replace the comparisons t

i

= N.A

i

in the f-translation
of IN by (t

i

= N.A

i

)t. In addition, we also need to change
the t-translation of (t1, . . . , tn) IN Q into

EXISTS
�

SELECT * FROM Q

0 AS N(A1, . . . , An

) WHERE

(t1 = N.A1)
t AND · · · AND (t

n

= N.A

n

)t
�

Then, by induction on queries and conditions, we can ver-
ify that JQK

D,⌘

= JQ0K2v
D,⌘

for every D and ⌘.

SQL and two-valued logic. If SQL can be evaluated un-
der two-valued semantics without losing expressiveness, do
we really need three-valued logic for SQL evaluation, espe-
cially since it attracts so much criticism [13]? We argue that

at present, despite the established equivalence result, we are
not yet ready to abandon SQL’s 3VL.
To start with, there is a huge amount of legacy code out

there that assumes query evaluation under 3VL. Suppose for
a minute that SQL did switch to a two-valued interpretation.
Then, legacy queries need to be rewritten so as to give the
same results as they used to. Emulating old behavior turns
into case analysis, which leads to more cumbersome and less
e�cient queries. Indeed, even simple forms of case analysis
introduce extra disjunctions whenever negations occur, and
it is well known and documented that commercial optimizers
struggle with queries involving disjunctions [10].
Still it is tantalizing that, from the point of view of expres-

siveness, one can eliminate the much maligned three-valued
logic from the basic fragment of SQL.

7. RELATED WORK
Given the problems of using the Standard as the definition

of a formal semantics, there have been attempts at formaliz-
ing SQL in the past. Several of them go via translating SQL
queries into RA, whose formal semantics has been properly
defined. Database texts (e.g., [2, 33, 15]) only give examples
of informal SQL-to-RA translations for simple queries. For-
mal translations did appear [7, 36] but assumed set seman-
tics and absence of nulls. As discussed in the introduction,
these assumptions allow for simplifications that do not hold
in general, such as converting a NOT IN subquery into a NOT
EXISTS one, or a query with a WHERE condition in disjunctive
normal form into a union of queries.
Bag semantics was actively studied in the 1990s, with [3]

proposing the set of RA operations on bags we used here.

37

P (t̄)t = P (t̄) P (t1, . . . , tk)
f = NOT P (t1, . . . , tk) AND t̄ IS NOT NULL

(EXISTS Q)t = EXISTS Q

0 (EXISTS Q)f = NOT EXISTS Q

0

(✓1 ^ ✓2)
t = ✓

t
1 ^ ✓

t
2 (✓1 ^ ✓2)

f = ✓

f
1 _ ✓

f
2

(✓1 _ ✓2)
t = ✓

t
1 _ ✓

t
2 (✓1 _ ✓2)

f = ✓

f
1 ^ ✓

f
2

(¬✓)t = ✓

f (¬✓)f = ✓

t

(t IS NULL)t = t IS NULL (t IS NULL)f = t IS NOT NULL

(t̄ IN Q)t = t̄ IN Q

0 �

(t1, . . . , tn) IN Q

�f
= NOT EXISTS

�

SELECT * FROM Q

0 AS N(A1, . . . , An

) WHERE
(t1 IS NULL OR A1 IS NULL OR t1 = N.A1) AND · · ·
· · · AND (t

n

IS NULL OR A

n

IS NULL OR t

n

= N.A

n

)
�

Figure 10: Translations of conditions for the Q 7! Q

0 translation

This extension of RA to bags is equivalent to comprehension-
based languages that share many features with SQL [16,
23]. While such languages were used to study the expressive
power of SQL, they are not SQL; rather, they are theoreti-
cal reconstructions of it that allow one to prove equivalence
results but di↵er significantly from the real language, in par-
ticular w.r.t. handling nulls and variable bindings.

A di↵erent line of work attempted to provide a formal se-
mantics of SQL directly, but all such attempts have fallen
short of the real language. An early paper [29] looked only
at set semantics, and the more recent and rigorous formal-
ization [8, 9] – designed to prove equivalences of queries with
the help of a proof assistant – did not include null values and
used a reconstruction of the language, thus not accounting
for some of the trickier aspects of variable binding. Other
attempts were made in the programming languages commu-
nity [24, 37] but they too restricted the language signifi-
cantly: for example, [24] works essentially with RA, rather
than SQL, under set semantics, while [37] disallows nested
subqueries in both FROM and WHERE and uses list semantics.

We remark that none of the above mentioned works made
any e↵ort to justify, neither experimentally nor by any other
means, the semantics they proposed. So there is no evidence
that these semantics reflect the real behavior of SQL, even if
we take into account the specific restrictions they imposed.

On the logic side, to the best of our knowledge, the only
approach to combine 3VL with Boolean logic along the lines
of SQL is external Bochvar logic, which has a special connec-
tive conflating false and unknown. However, this has mainly
been the subject of study of philosophical logic [25, 34] and
therefore restricted to the propositional case. A two-valued
logic for nulls based on collapsing u and f was also consid-
ered in [5] for a fragment of SQL, but no comparison of its
expressiveness with the standard semantics was made.

8. CONCLUSION
We have produced a formal semantics of a basic fragment

of SQL that behaves like the real-life SQL does, as opposed
to its theoretical reconstructions with their many simplifica-
tions. We verified its behavior experimentally on a very large
number of queries. Using this formal semantics, we provided
two applications. We formally proved the equivalence of the
basic fragment with relational algebra (something that had
only been done in the past under significant simplifications

that do not reflect the real behavior of the language). We
also formally showed that 3VL is not required to achieve the
full expressiveness of this fragment of SQL, and somewhat
surprisingly the familiar two-valued logic does the job.
From a practical point of view, our formal semantics could

be a useful tool for both users and implementers in under-
standing the behavior of SQL queries. It is much more con-
cise than the natural language specification of the Standard,
as well as being very easy to implement and modify. In fact,
we advocate that our formal semantics (or a variant of it, if
necessary) should be an integral part of the Standard and
serve as the basis for a reference implementation endorsed
by ISO. The compliance of a DBMS with the Standard could
then be verified against this implementation, for example by
means of an appropriate suite of test cases like the Technol-
ogy Compatibility Kit developed by the openCypher initia-
tive in the context of graph databases [30].

Future work. A first natural direction for future work is
to extend the formal semantics, and its experimental valida-
tion, to include more features of the language, especially ag-
gregation and grouping, but also capabilities that go beyond
queries, such as schema definition, constraints and updates.
Some of the restricted SQL semantics [9, 24, 37] were de-

fined for verifying the correctness of SQL optimization rules.
They could only do so under the restrictions they imposed;
thus it would be interesting to see what such verification
techniques would yield without restrictions on the language.
The equivalence between two-valued and three-valued se-

mantics of SQL raises some interesting questions too: would
two-valued queries be natural for a common user to write?
We believe people tend to think in terms of true and false
only, rather than three truth values. This conjecture should
be confirmed (or disproved) by a proper usability study.
Yet another line for future work is the extension of recent

attempts [17] to restore correctness of SQL query evaluation
with incomplete data. Due to the lack of a formal semantics
for query evaluation with SQL nulls, so far this has only been
done for databases with marked nulls. Now we have the for-
mal tools to extend the notions of certainty and possibility
to handle SQL’s nulls.

Acknowledgements. The authors would like to thank the
anonymous referees for their comments. Work partially sup-
ported by EPSRC grants N023056 and M025268.

38

9. REFERENCES
[1] H. Abelson et al. Revised report on the algorithmic

language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] J. Albert. Algebraic properties of bag data types. In
17th International Conference on Very Large Data
Bases, pages 211–219, 1991.

[4] T. Arvin. Comparison of di↵erent SQL
implementations. http://troels.arvin.dk/db/rdbms,
2017.

[5] L. E. Bertossi and L. Bravo. Consistency and trust in
peer data exchange systems. TPLP, 17(2):148–204,
2017.

[6] L. Bolk and P. Borowik. Many-Valued Logics:
Theoretical Foundations. Springer, 1992.

[7] S. Ceri and G. Gottlob. Translating SQL into
relational algebra: Optimization, semantics, and
equivalence of SQL queries. IEEE Trans. Software
Eng., 11(4):324–345, 1985.

[8] S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette:
An automated prover for SQL. In CIDR, 2017.

[9] S. Chu, K. Weitz, A. Cheung, and D. Suciu.
HoTTSQL: Proving query rewrites with univalent SQL
semantics. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 510–524. ACM, 2017.

[10] J. Claußen, A. Kemper, G. Moerkotte, K. Peithner,
and M. Steinbrunn. Optimization and evaluation of
disjunctive queries. IEEE Trans. Knowl. Data Eng.,
12(2):238–260, 2000.

[11] E. F. Codd. A database sublanguage founded on the
relational calculus. In Proceedings of 1971
ACM-SIGFIDET Workshop on Data Description,
Access and Control, San Diego, California, November
11-12, 1971, pages 35–68, 1971.

[12] F. Coelho. DataFiller – generate random data from
database schema. https:
//www.cri.ensmp.fr/people/coelho/datafiller.html.

[13] C. J. Date and H. Darwen. A Guide to the SQL
Standard. Addison-Wesley, 1996.

[14] C. Ellison. A Formal Semantics of C with
Applications. PhD thesis, UIUC, 428pp, 2012.

[15] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems - The Complete Book. Pearson
Education, 2009.

[16] S. Grumbach and T. Milo. Towards tractable algebras
for bags. J. Comput. Syst. Sci., 52(3):570–588, 1996.

[17] P. Guagliardo and L. Libkin. Making SQL queries
correct on incomplete databases: A feasibility study.
In Proceedings of the 35th ACM Symposium on
Principles of Database Systems, pages 211–223, 2016.

[18] C. Gunter. Semantics of Programming Languages:
Structures and Techniques. MIT Press, 1992.

[19] Y. Gurevich and J. K. Huggins. The semantics of the
C programming language. In Computer Science Logic,
6th Workshop, CSL ’92, pages 274–308, 1992.

[20] R. Harper. Practical Foundations for Programming
Languages. Cambridge University Press, 2016.

[21] International Organization for Standardization.
ISO/IEC 9075:2016: Information technology –
Database languages – SQL, 2016.

[22] K. E. Kline and D. Kline. SQL in a Nutshell. O’Reilly
& Associates, Inc., 2001.

[23] L. Libkin and L. Wong. Query languages for bags and
aggregate functions. J. Comput. Syst. Sci.,
55(2):241–272, 1997.

[24] J. G. Malecha, G. Morrisett, A. Shinnar, and
R. Wisnesky. Toward a verified relational database
management system. In Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 237–248, 2010.

[25] G. Malinowski. Many-valued logic and its philosophy.
In Handbook of the History of Logic, pages 13–94.
Elsevier, 2007.

[26] R. Milner and M. Tofte. Commentary on standard
ML. MIT Press, 1991.

[27] R. Milner, M. Tofte, and R. Harper. Definition of
standard ML. MIT Press, 1990.

[28] J. C. Mitchell. Concepts in programming languages.
Cambridge University Press, 2003.

[29] M. Negri, G. Pelagatti, and L. Sbattella. Formal
semantics of SQL queries. ACM Trans. Database
Syst., 16(3):513–534, 1991.

[30] Neo Technlogy Inc. openCypher project,
http://www.opencypher.org/.

[31] M. Norrish. C formalised in HOL. Univ. Cambridge
Techreport UCAM-CL-TR- 453, 150pp., 1998.

[32] N. Papaspyrou. A Formal Semantics for the C
Programming Language. PhD thesis, NTUA, 253pp,
1998.

[33] R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGraw-Hill, 2003.

[34] N. Rescher. Topics in Philosophical Logic. Reidel,
1969.

[35] Transaction Processing Performance Council. TPC
Benchmark™ H Standard Specification, 2014. Revision
2.17.1.

[36] J. Van den Bussche and S. Vansummeren. Translating
SQL into the relational algebra. Course notes, Hasselt
University and Université Libre de Bruxelles, 2009.

[37] M. Veanes, N. Tillmann, and J. de Halleux. Qex:
Symbolic SQL query explorer. In Logic for
Programming, Artificial Intelligence, and Reasoning
(LPAR), pages 425–446, 2010.

39

