
Interleaving with Coroutines: A Practical Approach for
Robust Index Joins

Georgios Psaropoulos⋆† Thomas Legler† Norman May† Anastasia Ailamaki⋆‡

⋆EPFL, Lausanne, Switzerland
{first-name.last-name}@epfl.ch

†SAP SE, Walldorf, Germany
{first-name.last-name}@sap.com

‡RAW Labs SA

ABSTRACT
Index join performance is determined by the efficiency of the
lookup operation on the involved index. Although database
indexes are highly optimized to leverage processor caches,
main memory accesses inevitably increase lookup runtime
when the index outsizes the last-level cache; hence, index
join performance drops. Still, robust index join performance
becomes possible with instruction stream interleaving : given
a group of lookups, we can hide cache misses in one lookup
with instructions from other lookups by switching among
their respective instruction streams upon a cache miss.

In this paper, we propose interleaving with coroutines for
any type of index join. We showcase our proposal on SAP
HANA by implementing binary search and CSB+-tree tra-
versal for an instance of index join related to dictionary com-
pression. Coroutine implementations not only perform simi-
larly to prior interleaving techniques, but also resemble the
original code closely, while supporting both interleaved and
non-interleaved execution. Thus, we claim that coroutines
make interleaving practical for use in real DBMS codebases.

PVLDB Reference Format:
Georgios Psaropoulos, Thomas Legler, Norman May, and Ana-
stasia Ailamaki. Interleaving with Coroutines: A Practical Ap-
proach for Robust Index Joins. PVLDB, 11(2): xxxx-yyyy, 2017.
DOI: https://doi.org/10.14778/3149193.3149202

1. INTRODUCTION
When choosing the physical operator for an equi-join be-

tween two relations, A and B, a query optimizer checks if
either has an index on the join attribute. Such an indexed
relation, e.g., A, can be used for an index join, which scans
B, looking up A’s index to retrieve the matching records.

In main memory column stores that employ dictionary
encoding [9, 17, 19, 26, 27], we encounter relations that are
always indexed: the dictionaries. Each dictionary holds the
mapping between a value and its encoding, and every query
for a list of values requires a sequence of lookups on the
dictionary. In this paper, we consider these lookups a case

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 2
Copyright 2017 VLDB Endowment 2150-8097/17/10... $ 10.00.
DOI: https://doi.org/10.14778/3149193.3149202

0

2

4

6

8

10

12

14

16

18

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

512MB

1GB
2GB

Q
u
er
y
re
sp

o
n
se

ti
m
e
(i
n

m
s)

Data size (log scale)

Main

Main-Interleaved

Figure 1: Response time of an IN-predicate query with
10K INTEGER values. Main memory accesses hinder se-
quential execution when the dictionary is larger than the
cache (25 MB); interleaved execution is affected much less.

of an index join that we use to propose a practical technique
that significantly enhances index join performance by hiding
the cost of main memory accesses.
Like all index lookups, dictionary lookups become dispro-

portionally expensive when the dictionary outsizes the last
level cache of the processor. Figure 1 illustrates this dispro-
portionality in the runtime of a query with an IN predicate,
executed on the SAP HANA column store [9]. For the size
range 1MB–2GB, we observe a significant runtime increase
when the dictionary outgrows the last level cache (25MB).
The increase is caused by main memory accesses (details in
Section 2), a known problem for index joins [32] and main
memory database systems in general [5, 20].
Traditional tenets for dealing with main memory accesses

prescribe the elimination of excessive indirection and non-
sequential memory access patterns. Given that dictionary
implementations are cache-conscious data structures, we can
assume any effected main memory accesses to be essential
and thus unavoidable. Still, we can hide the latency of main
memory accesses by providing the processor with enough
independent instructions to execute while fetching data. In
our case, lookups are independent from each other, allowing
us to execute them concurrently in a time-sharing fashion:
we can interleave the instruction streams of several lookups
so that, when a cache miss occurs in one instruction stream,
execution continues in another. Hence, the processor keeps
executing instructions without having to wait for data.
Prior works propose two forms of such instruction stream

interleaving (ISI): static, like group prefetching (GP) [6] and

230

230 - 242

software pipelined prefetching (SPP) [6], and dynamic, like
the state-of-the-art asynchronous memory access chaining
(AMAC) [15]. Static interleaving has negligible overhead
for instruction streams with identical control flow, whereas
dynamic interleaving efficiently supports a wider range of
use cases, allowing instruction streams to diverge, e.g., with
early returns. Both approaches require to rewrite code either
as a group or a pipeline in the static case, or a state ma-
chine in the dynamic case (see Section 3). The interleaved
code ends up in the database codebase alongside the origi-
nal, non-interleaved implementation, implying functionality
duplication, as well as additional testing and maintenance
costs. As a result, developers can be reluctant to use inter-
leaved execution in production.

In this work, we propose interleaving with coroutines, i.e.,
functions that can suspend their execution and resume at a
later point. Coroutines inherently support interleaved exe-
cution, while they can also run in non-interleaved mode.
A technical specification [3] for the popular C++ language
introduces coroutine support at the language level: the pro-
grammer simply inserts suspension statements into the code,
and the compiler automatically handles the state that has
to be maintained between suspension and resumption (see
Section 4). With this soon-to-be-standard language support,
we implement interleaving with comparable performance to
the prior proposals, supporting both interleaved and non-
interleaved execution through a single implementation that
closely resembles the original code (see Section 5).

Concretely, we make the following contributions:
• A technique for instruction stream interleaving based

on coroutines. We exhibit our technique in index joins,
where we use sorted arrays and CSB+-trees as indexes,
describing how it can be applied to any type of pointer-
based index structure.

• A comparison with group prefetching (GP) and asyn-
chronous memory access chaining (AMAC). Since co-
routines are a dynamic interleaving approach, they are
equivalent to AMAC in terms of applicable use cases
and performance without the need for an explicit state
machine. Coroutine code closely resembles the original
implementation and can be used in both interleaved
and non-interleaved execution, relying on the compi-
ler for state management and optimization.

• An optimized implementation for IN-predicate queries
with predictable runtime, proportional to the dictio-
nary size. This implementation is part of a prototype
based on SAP HANA, and targets both sorted and
non-sorted dictionaries for INTEGER columns.

Demonstrating how coroutines minimize the effort of im-
plementing ISI, we believe our contributions provide a strong
argument for interleaved execution in real DBMS codebases.

2. BACKGROUND & RELATED WORK
In this section, we describe how column stores use dictio-

nary encoding, explain why dictionary lookups performed in
bulk are instances of index joins, and establish IN-predicate
queries against dictionary encoded columns as the running
example for this work. Further, we quantify the negative
effect of main memory accesses on dictionary lookups when
the dictionary outsizes the last level cache, and justify why
eliminating all main memory accesses is unrealistic for large
dictionaries regardless of their implementation, thus moti-
vating instruction stream interleaving.

2.1 Dictionaries in Column Stores
Dictionary encoding is a common compression method in

main-memory column stores, e.g. [9, 17, 19, 26, 27]. It maps
the value domain of one or more columns to a contiguous
integer range [7, 9, 10, 12, 18, 20]. This mapping replaces
column values with unique integer codes and is stored in a
separate data structure, the dictionary, which supports two
access methods:

• extract returns the value for a code.
• locate returns the code for a value that exists in the

dictionary, or a special code that denotes absence.
The resulting vector of codes and the dictionary consti-

tute the encoded column representation. The code vector
is usually smaller than the original column, reflecting the
smaller representation of codes, whereas the dictionary size
is determined by the value domain, which can comprise from
few to billions of distinct values as encountered by database
vendors in customer workloads [25].

In this work, we use the column store of SAP HANA,
which has two parts for each column: the read-optimized
Main, against which the query in Figure 1 was run, and the
update-friendly Delta. A Main dictionary is a sorted array
of the domain values, and the array positions correspond to
codes, similarly to [9, 17, 27]. Hence, extract is a simple ar-
ray lookup, whereas locate is a binary search on the array
contents for the appropriate array position. On the other
hand, Delta dictionaries are implemented as unsorted ar-
rays indexed by a cache-conscious B+-tree (CSB+-tree) [28];
extract is again an array lookup, but locate is now an in-
dex lookup on the CSB+-tree.
Sorted or not, a dictionary array can be considered a rela-

tionD(code, value) that is indexed on both attributes: codes
are encoded as array indices, whereas values can be retrieved
through binary search or index lookup, respectively in the
sorted and the unsorted case; here, we focus on the value
index. Since a sequence of values is also a relation S(value),
every value lookup from a column involves a join S ◃▹ D,
which is performed as an index join when |S| << |D|. Such
joins dominate the IN-predicate queries that we discuss next.

2.2 IN Predicates and Their Performance
In this paper, we study the problem of random memory

accesses in queries with IN predicates [23], yet our analysis
and the coroutine-based technique we propose apply to any
index join that involves pointer-based data structures like
hash tables or B+-trees, or algorithms involving chains of
non-sequential memory accesses like binary search.

IN predicates are commonly used in an ETL process to
extract interesting items from a table. An IN predicate is
encountered in the WHERE clause of a query, introducing
a subquery or an explicit list of values that the referenced
column must match. Listing 1 showcases an IN predicate
from Q8 of TPC-DS [4], which extracts all zip codes from
the customer address table that belong in a specified list of
400 predicate values.

1 SELECT substr(ca_zip ,1,5) ca_zip
2 FROM customer_address
3 WHERE substr(ca_zip ,1,5)
4 IN (’24128 ’, ..., ’35576 ’)

Listing 1: IN predicate excerpt from TPC-DS Q8.

When IN-predicate queries are executed on dictionary-
encoded data, the predicate values need to be encoded before

231

the corresponding rows can be searched in the code vector.
This encoding comprises a sequence of locate operations,
which can be viewed as an index join, as we described in the
previous subsection. Ideally, the runtime of an IN-predicate
query would depend only on the computation involved, re-
sembling the Interleaved data series of Figure 1 rather than
the measured Sequential one. This behavior is not observed
only in Main; Delta has a similar problem, as illustrated in
Figure 8.

To identify what causes the significant runtime increase
for large dictionaries of both Main and Delta, we profile
the query execution for the smallest and largest dictionary
sizes, i.e., 1 MB and 2 GB. The resulting list of hotspots
identifies dictionary lookups (locate) as the main execution
component, as shown in Table 1.

Table 1: Execution details of locate.

Main Delta
1 MB 2 GB 1 MB 2 GB

Runtime % 21.4 65.7 34.3 78.8
Cycles per Instruction 0.9 6.3 0.7 4.2

In the 1 MB case, locate contributes just 21.4%(34.3%)
of the total execution time for Main(Delta), but this con-
tribution surges to 65.7%(78.8%) for the 2 GB case. These
surges can be attributed to the 7×(6×) increase in the cy-
cles per instruction (CPI) ratio between the 1 MB and the
2 GB cases. To explain the CPI difference, we investigate
microarchitectural behavior applying the Top-Down Micro-
architectural Analysis Method(TMAM) for identifying per-
formance bottlenecks in out-of-order cores [11]. Below we
establish the terminology used in the rest of the paper.

Top-down Microarchitecture Analysis. This method
uses a simplified model for the instruction pipeline of an out-
of-order core, consisting of two parts:
Front-end: Fetches program instructions and decodes them
into one or more micro-ops (µops), which are then fed to the
Back-end—up to four µops per cycle in Intel architectures.
Back-end: Monitors when the operands of a µop become
available and executes it on an available execution unit.
µops that complete execution retire (again up to four µops
per cycle) after writing their results to registers/memory.

Furthermore, TMAM uses pipeline slots to abstract the
hardware resources necessary to execute one µop and assu-
mes there are four available slots per cycle and per core.
In each cycle, a pipeline slot is either filled with a µop, or
remains empty (stalled) due to a stall caused by either the
Front-end or the Back-end. The Front-end may not be able
to provide a µop to the Back-end due to, e.g., instruction
cache misses; whereas the Back-end can be unable to accept
a µop from the Front-end due to data cache misses (Me-
mory) or unavailable execution units (Core). In the absence
of stalls, the slot can either retire (Retirement) or execute
non-useful work due to Bad Speculation.
In Table 2, we present the pipeline slots of locate’s exe-

cution1 divided into the aforementioned categories. In the
2 GB case, memory stalls account for 46.0% and 85.9% of the
pipeline slots, respectively for Main and Delta, while they
are relatively less prominent in the 1 MB case. The stalls
occur from random accesses in the dictionary array for Main
and to the index nodes for Delta. The 1 MB dictionary fits in
1Retrieved from a profiling session of 60 seconds.

Table 2: Pipeline slot breakdown for locate.

Main Delta
1 MB 2 GB 1 MB 2 GB

Front-End 10.4% 3.5% 0.7% 0.2%
Bad speculation 43.3% 26.1% 0.0% 0.3%
Memory 2.8% 46.0% 30.8% 85.9%
Core 16.4% 20.5% 28.9% 7.3%
Retiring 27.0% 3.9% 40.0% 6.3%

the processor caches, so memory stalls are avoided with out-
of-order execution. For the 2 GB dictionary, only the first
few binary search iterations (Main) or tree levels (Delta)
are expected to be in a warmed-up cache, since they are
reused by many lookups, while the rest of the data reque-
sts incur main memory accesses. Each main memory access
has a latency of 182 cycles [11] that cannot be hidden with
out-of-order execution, hence the observed memory stalls.

1 function lookup (tab le , va lue){
2 s i z e = tab l e . s i z e ()
3 low = 0
4 while ⌊size/2⌋ > 0 do
5 ha l f = ⌊size/2⌋
6 probe = low + ha l f
7 v = tab l e [probe]
8 i f v < value then
9 low = probe

10 s i z e −= ha l f
11 return low
12 }

Listing 2: Binary search.

Furthermore, a significant fraction of the issued instructi-
ons in Main never retire, regardless of the dictionary size.
These instructions are speculatively executed and then rol-
led back because of bad speculation, which is inherent to
binary search: the search continues with the same probabi-
lity in either the left or the right subarray from the current
array position, depending on the result of the comparison
between the value of the current position and the one we
are looking for (line 8 in Listing 2). To avoid waiting for the
result of the comparison, the processor predicts which of the
two alternative control flow paths will be chosen and execu-
tes it speculatively. Given both alternatives have the same
probability, the prediction is wrong 50% of the time, so the
speculatively executed instructions have to be rolled back.
Nevertheless, a binary search implementation can avoid spe-
culation using a conditional move; the Delta uses such an
implementation for the tree nodes, so no pipelines slots get
wasted due to bad speculation. When the comparison ope-
rands reside in the cache, avoiding speculation is preferable
since there is little latency to hide; still, in case the compari-
son needs data to be fetched from main memory, speculated
execution is better, as we explain in Section 5.4.1.
Moreover, we believe bad speculation is also the main re-

ason for the front-end stalls we observe in Main, given that
these stalls are negligible in Delta, and do not appear in
the non-speculative microbenchmarks we study in Section 5.
Finally, the core fraction in both Main and Delta contains
stalls due to data unavailable execution units.
Takeaway. Memory stalls due to data cache misses be-

come the main source of inefficiency for dictionaries that do
not fit in the cache.

232

2.3 Tackling Cache Misses
In the literature, we find many software techniques to deal

with cache misses. Based on how they affect the number of
cache misses and the incurred penalty, these techniques fall
into the following three categories:

• Eliminate cache misses by increasing spatial and
temporal locality. Locality is increased by a) elimina-
ting indirection, designing cache-conscious data struc-
tures like the CSB+-tree [28]; b) matching the data
layout to the access pattern of the algorithm, i.e, store
data that are accessed together in contiguous space; or
c) reorganizing memory accesses to increase locality,
e.g., with array [16] and tree blocking [14, 32]. In this
work, we assume that the index has the best possible
implementation and locality cannot be further incre-
ased without penalizing single lookups. Nonetheless,
our proposal can be applied to any index structure.

• Reduce the cache miss penalty by scheduling in-
dependent instructions to execute after a load; this
approach increases instruction-level parallelism and le-
ads to more effective out-of-order execution. To reduce
the main-memory access penalty, a non-blocking load
has to be introduced early enough, allowing indepen-
dent instructions to execute while fetching data. This
is achieved through simple prefetching within an in-
struction stream, or exploiting simultaneous multithre-
ading with helper threads that prefetch data [31]. In
index lookups, however, one memory access depends
on the previous one with few independent instructions
in-between, so these techniques do not apply.

• Hide the cache miss penalty by overlapping me-
mory accesses. The memory system can serve several
memory requests in parallel (10 in current Intel CPUs)
and exploiting this memory-level parallelism increases
memory throughput. However, overlapping requires
independent memory accesses, which do not exist in
the access chain of an index lookup.

Takeaway. These approaches do not benefit individual
index lookups. Next, we show how to hide the cache misses
of a group of lookups with interleaved execution.

3. INTERLEAVED EXECUTION
In this section, we present the idea of instruction stream

interleaving, how it applies to IN-predicate queries, and ex-
isting techniques that can be used to implement it.

We deal with the general case of code with independent
instruction streams, some or all of which exhibit memory
access patterns that hardware prefetchers cannot predict.
Our objective is to overlap memory accesses from one in-
struction stream with computation from others, keeping the
instruction pipeline filled instead of incurring memory stalls.
We interleave the execution of several instruction streams,
switching to a different instruction stream each time a load
stalls on a cache miss. Therefore, we call this approach in-
struction stream interleaving (ISI).

Figure 2 illustrates ISI through an example with three
binary searches on a sorted array with eight elements. IS A,
B, and C are instruction streams that correspond to each
binary search. For simplicity, we assume all array acces-
ses are cache misses and all other memory operations hit in
the cache. Each instruction stream accesses the array three
times, splitting the instruction stream into four computa-

Figure 2: Sequential vs interleaved execution.

tion stages of duration Tcompute. With sequential execution,
the three instruction streams run one after the other (we
omit the third instruction stream due to lack of space), and
there is a mechanism (e.g., a loop) that, when IS A finis-
hes, switches to IS B and then to IS C. Every array access
leads to a cache miss and a corresponding Tstall. With in-
terleaving, execution switches from one instruction stream
to another at each memory access, incurring an overhead
Tswitch (per instruction stream) that overlaps with Tstall

and leaves Ttarget = Tstall − Tswitch stalls. In this case,
when IS A accesses the array during its first stage, execu-
tion switches to the first stage of IS B, then to the first stage
of IS C, and then back to IS A for the second stage.

We generalize this example to model a group of G in-
struction streams, where each instruction stream i has dis-
tinct Ti,compute, Ti,switch, and Ti,target parameters. Ti,target

is removed iff Ti,target ≤
∑j ̸=i

j∈[0..G) (Tj,compute + Tj,switch).
In case of identical model parameters across the instruction
streams, we can drop the indices and get:

G ≥ Ttarget

Tcompute + Tswitch
+ 1 (1)

Inequality 1 estimates the optimal G, i.e., the minimum
group size for which stalls are eliminated. Interleaving more
instruction streams does not further improve performance
since there are no stalls; to the contrary, performance may
deteriorate due to cache conflicts—see Section 5.4.5.

Considering the total execution of an instruction stream
group, ISI belongs in the second category of the taxonomy
in Section 2.3. Nevertheless, it becomes also a member of the
third category when memory stalls from different instruction
streams overlap, e.g., the example in Figure 2.

Implementing ISI . In principle, we can implement ISI
using any cooperative multitasking technique. However, in-
terleaved execution makes sense only when Tstall >> Tswitch,
i.e., the mechanism employed to switch instruction streams
requires significantly less cycles than the penalty of the cor-
responding cache miss. Furthermore, an effective switching
mechanism should not introduce more cache misses.

OS threads are a natural candidate to encode instruction
streams and can be synchronized to cooperatively multi-
task; the granularity we consider, however, rules out such
implementations: preemptive multithreading imposes non-
negligible synchronization overhead, context switching in-
volves system calls and takes several thousand cycles to com-
plete, while switching among full-blown thread stacks likely

233

thrashes the cache and the TLB. Hence, the techniques we
present below do not depend on OS multithreading; instead,
they eliminate stalls, increasing the efficiency of thread exe-
cution. Given an amount of work, interleaving techniques
reduce the necessary execution cycles in both single- and
multi-threaded execution.

Existing techniques. In the literature, we find pre-
fetching techniques that implement restricted forms of in-
struction stream interleaving. Chen et al. [6] proposed to
exploit instruction stream parallelism across subsequent tu-
ples in hash joins by manually applying well-known loop
transformations that a general-purpose compiler cannot con-
sider due to lack of dependency information. They proposed
group prefetching (GP) and software-pipelined prefetching
(SPP), two techniques that transform a fixed chain of N me-
mory accesses inside a loop into sequences of N+1 computa-
tion stages separated by prefetches. GP executes each stage
for the whole group of instruction streams in the loop before
moving to the next stage; whereas SPP executes a different
instruction stream at each stage in a pipeline fashion. Both
techniques interleave instruction streams, although they tar-
get ones with a fixed number of stages.

To apply GP on the dictionary lookups of IN predicates,
we decompose the loop of a binary search (lines 4–11 in
Listing 2) into a prefetch and a load stage (lines 9–13 and 14–
20 in Listing 3). The number of times these two stages are
repeated depends on the table size, therefore the vanilla GP
proposal does not apply. Nevertheless, the idea behind GP
is not inherently restricted to a fixed number of stages: in
cases like the dictionary lookups of IN predicates, the stage
sequence is the same for all instruction streams, enabling us
to use a variation of GP2 in the implementation of Listing 3.

1 struct s t a t e { value ; low ; }
2
3 procedure bulk lookup gp (
4 group s i z e , tab le , t a b l e s i z e , input
5){
6 foreach va lue group in input do
7 s i z e = t a b l e s i z e
8 in i t search group
9 while ⌊size / 2⌋ > 0 do

10 ha l f = ⌊size / 2⌋
11 foreach s t a t e in search group do
12 probe = s t a t e . low + ha l f
13 p r e f e t ch tab l e [probe]
14 for i = 1 to g r oup s i z e do
15 s t a t e = search group [i]
16 probe = s t a t e . low + ha l f
17 v = tab l e [probe]
18 i f v <= value group [i] then
19 s t a t e . low = probe
20 s i z e −= ha l f
21 foreach s t a t e in search group do
22 store s t a t e . low
23 }

Listing 3: Binary search with GP.

The loop is shared among all instruction streams in a group,
reducing the state variables that have to be maintained for
each instruction stream, as well as the executed instructions.
However, sharing the loop means the instruction streams are
coupled and execute the same instruction sequence.

Kocberber et al. [15] considered this coupling as a limi-
tation that complicates cases where each instruction stream
2We have not yet investigated how to form a pipeline with
variable size, so we do not provide a SPP implementation.

follows a different control flow. To decouple the progress
of different instruction streams, they proposed the state-of-
the-art asynchronous memory access chaining (AMAC), a
technique that encodes traversals of pointer-intensive data
structures as finite state machines. The traversal code is
manually rewritten to resemble a state machine, enabling
each instruction stream in a group of traversals to progress
independently from others, based only on its current state.

1 enum s tage { A, B, C }
2 struct s t a t e {
3 value ; low ; probe ; s i z e ; s tage
4 }
5
6 struct c i r c u l a r b u f f e r {
7 . . . //members
8 function l o a d n ex t s t a t e () { . . . }
9 }

10
11 procedure bulk lookup amac (
12 group s i z e , tab le , t a b l e s i z e , input
13) {
14 in i t b f // c i r c u l a r b u f f e r o f g r oup s i z e
15 not done = g roup s i z e
16 while not done > 0 do
17 s t a t e = b f . l o ad n ex t s t a t e ()
18 switch (s t a t e . s tage){
19 case A: // I n i t i a l i z a t i o n
20 i f index < i n p u t s i z e then
21 s t a t e . low = 0
22 s t a t e . va lue = input [index++]
23 s t a t e . s i z e = t a b l e s i z e
24 s t a t e . s tage = B
25 else
26 s t a t e . s tage = Done
27 not done = not done − 1
28 break
29 case B: // Pre fe tch
30 i f ⌊state.size / 2⌋ > 0 then
31 ha l f = ⌊state.size / 2⌋
32 s t a t e . probe = s t a t e . low + ha l f
33 p r e f e t ch tab l e [s t a t e . probe]
34 s t a t e . s i z e −= ha l f
35 s t a t e . s tage = C
36 else
37 //Output r e s u l t
38 s t a t e . s tage = A
39 break
40 case C: //Access
41 v = tab l e [s t a t e . probe]
42 i f v <= s ta t e . va lue then
43 s t a t e . low = s t a t e . probe
44 else
45 s t a t e . s tage = B
46 break
47 }
48 store s t a t e in b f
49 }

Listing 4: Binary search with AMAC.

In Listing 4, we illustrate lookups on a sorted dictionary
interleaved with AMAC. The state machine code is a switch
statement (line 18–47) with one case for each stage. The
state of each instruction stream is stored in a buffer (line
14) and retrieved in a round-robin fashion. The state ma-
chine examines the current stage of the instruction stream
and decides how to proceed. This way, instruction streams
can progress independently—but at the cost of an imple-
mentation that has little resemblance to the original code.

Takeaway. Table 3 summarizes the properties of the ISI
implementation techniques we study in this paper.

234

Table 3: Properties of interleaving techniques.

Interleaving
Technique

IS
Coupling

IS Switch
Overhead

Added Code
Complexity

GP Yes Very Low High
AMAC No Low Very High
Coroutines No Low Very Low

GP adds minimum overhead owing to execution coupling,
whereas AMAC supports more use cases by allowing each
instruction stream to proceed independently. Nevertheless,
both GP and AMAC require intrusive code changes that
obfuscate the original control flow, incurring high costs for
development, testing, and maintenance. These costs make
the two techniques impractical to use in a large codebase.

In the next section, we present an interleaving technique
that requires minimal non-intrusive code changes.

4. INTERLEAVING WITH COROUTINES
A coroutine is a control abstraction that extends subrou-

tines [24]. A subroutine starts its execution upon invocation
by a caller and can only run to completion where the control
is returned to the caller. The coroutine construct augments
this lifetime with suspension and resumption: a coroutine
can suspend its execution and return control before its com-
pletion; the suspended coroutine can be resumed at a later
point, continuing its execution from the suspension point on-
ward. To resume a coroutine, one has to use the coroutine
handle that is returned to the caller at the first suspension.

Although coroutines were introduced in 1963 [8], main-
stream programming languages did not support them until
recently, except for restricted generator constructs in lan-
guages like C# [1] and Python [2]. The advantages of co-
routines gave rise to library solutions, e.g., Boost.ASIO and
Boost.Coroutine3, which rely on tricks like Duff’s device4,
or OS support like fibers on Windows [30] and ucontext_t
on POSIX systems [13]. Asynchronous programming and its
rise in popularity brought coroutines to the spotlight as a
general control abstraction for expressing asynchronous ope-
rations without callbacks or state machines. Languages like
C#, Python, Scala and Javascript have adopted coroutine-
like await constructs; C++ has a technical specification for
coroutines as a language feature [3], which at the time of
writing is supported by the Visual C++ and the Clang com-
piler. Naturally, database implementations have also picked
up coroutines to simplify asynchronous I/O [29], but, to the
best of our knowledge, not to hide cache misses.

Implementing ISI . Coroutines can yield control in the
middle of their execution and be later resumed. This abi-
lity makes them candidates for implementing ISI, as already
remarked by Kocberber et al. [15]. An efficient implemen-
tation needs a) a suspension/resumption mechanism that
consumes a few tens of cycles at most, and b) a space foot-
print that does not thrash the cache. Our interleaving with
coroutines proposal satisfies these requirements by using the
stackless coroutines as specified for C++ in [3].
Coroutines as state machines. A stackless coroutine5

is compiled into assembly code that resembles a state ma-

3http://www.boost.org/doc/libs
4https://en.wikipedia.org/wiki/Duff%27s_device
5As opposed to stackfull coroutines, see [24] for details.

chine. In a sequence of transformation steps, the compiler
splits the body of a coroutine into distinct stages that are se-
parated by the suspension/resumption points. These stages
correspond to the state machine stages that a programmer
derives manually for AMAC; in the coroutine case, however,
the compiler performs the transformation, taking also care
of preserving the necessary state across suspension/resump-
tion. The compiler identifies which variable to preserve and
stores them on the process heap, in a dedicated coroutine
frame that is analogous to each entry in the state buffer of
AMAC. Beside these variables, the coroutine frame contains
also the resume address and some register values; these are
stored during suspension and restored upon resumption, ad-
ding an total overhead equivalent to two function calls.

Binary search as a coroutine. In Listing 5, we demon-
strate with binary search how to transform an index lookup
to support interleaved execution. The presented pseudocode
introduces the coroutine keyword to denote the difference
to the ordinary procedure and function. Moreover, the
suspension and return statements hint to the actual code.

1 coroutine lookup (
2 tab le , t a b l e s i z e , value , i n t e r l e a v e
3){
4 s i z e = t a b l e s i z e
5 low = 0
6 while ⌊size / 2⌋ > 0 do
7 ha l f = ⌊size / 2⌋
8 probe = low + ha l f
9 i f i n t e r l e a v e == true then

10 p r e f e t ch tab l e [probe]
11 co await suspend always ()
12 v = tab l e [probe]
13 i f v < value then
14 low = probe
15 s i z e −= ha l f
16 co return low
17 }

Listing 5: Binary search coroutine.

Calling lookup creates a coroutine instance and returns a
handle object with the following API: a resume method for
resuming execution; an isDone method that returns true if
the coroutine completed its execution, and false otherwise;
a getResult method to retrieve the result after completion.
Lines 4–16 are the code of the original sequential imple-

mentation augmented with a prefetch (line 10) and a sus-
pension statement (line 11) before the memory access that
causes the cache miss (line 12). The added code is wrapped
in an if statement combining both sequential and interle-
aved execution (depending on the value of interleave) in
a single implementation. The actual C++ code uses tem-
plate metaprogramming with interleave as a template pa-
rameter to ensure the conditional statement is evaluated at
compile time, therefore generating the optimal code for each
case. Finally, instead of a normal return statement, the co-
routine code uses co_return in line 16 to return the result.
CSB+-tree lookup as a coroutine. In Listing 6, we

depict the coroutine implementation for a CSB+-tree lookup
that adheres to the original proposal of Rao et al. [28]. For
simplicity, we assume a cached root node; for all other tree
levels, we prefetch all cache lines for each touched node and
suspend (lines 10 to 12). Note that, for the binary search
within nodes, we use the coroutine of Listing 5 without sus-
pension; the node prefetch brings the keyList to the cache,
so the binary search causes no cache misses. Moreover, a

235

leaf node differs from an inner node since the result of the
binary search is used to fetch the searched value from the
valueList instead of a child node; this value is the result
returned in line 16.

1 coroutine t r e e l ookup (
2 tree , t r e e h e i gh t , value , i n t e r l e a v e
3){
4 node = tree−>root
5 while node−>l e v e l > 0 do
6 i l = node−>keyL i s t ; i n = node−>nKeys
7 handle = lookup (i l , i n , value , fa l se)
8 i c = node−>f i r s t C h i l d
9 node = i c + handle . ge tResu l t ()

10 i f i n t e r l e a v e then
11 p r e f e t ch node
12 co await syspend always ()
13 l k l = node−>keyL i s t ; l n = node−>nKeys
14 handle = lookup (l k l , l n , value , fa l se)
15 l v l = node−>va lu eL i s t
16 co return l v l [handle . ge tResu l t ()]
17 }

Listing 6: CSB+-tree lookup coroutine.

Sequential and Interleaved Execution. The lookup
described above can be executed with or without suspension,
depending on the scheduler, i.e., the code implementing the
execution policy for the lookup sequence.

1 procedure runSequent ia l (
2 index , i nd ex s i z e , va lues , r e s u l t s
3){
4 foreach value in va lue s do
5 handle = lookup (index ,
6 i nd ex s i z e , value , fa l se)
7 r e s u l t = handle . ge tResu l t ()
8 store r e s u l t to r e s u l t s
9 }

10
11 procedure run In t e r l eaved (
12 index , i nd ex s i z e , va lues , r e s u l t s
13){
14 for i = 0 to g r oup s i z e − 1 do
15 value = va lue s [i]
16 handles [i] = lookup (index ,
17 i nd ex s i z e , value , true)
18 not done = g roup s i z e
19 i = g roup s i z e
20 while not done > 0 do
21 foreach handle in handles do
22 i f not handle . isDone () then
23 handle . resume ()
24 else
25 r e s u l t = handle . ge tResu l t ()
26 store r e s u l t to r e s u l t s
27 i f i < va lue s . s i z e () then
28 handle = lookup (index ,
29 i nd ex s i z e , va lue s [i] , true)
30 i = i + 1
31 else
32 not done = not done − 1
33 }

Listing 7: Sequential and interleaved schedulers.

In Listing 7, we present two schedulers:
• The runSequential scheduler performs the lookups

one after the other (lines 4–8). The coroutines are
called with interleaved=false, so they do not sus-
pend. The only difference to a normal lookup function
is that we retrieve the result through the handle.

• The runInterleaved scheduler initializes a group of
coroutines, specifying interleaved=true, and main-
tains a buffer of coroutine handles (lines 15–17). Since
lookup execution now suspends, the while loop over
the buffer resumes unfinished lookups (line 23), or re-
trieves the results from the finished lookups (lines 25–
26) and starts new ones (lines 27–29).

Either of the two schedulers can be selected depending on
the probability of cache misses in a lookup and amount of
lookup parallelism present; in cases like the node search in
Listing 6, or when there is no other work to interleave with,
sequential execution is better as it incurs no overhead.

Finally, since the schedulers are agnostic to the coroutine
implementation, they can be used with any index lookup.

Performance considerations. The described way of in-
terleaving with coroutines relies on an optimizing compiler
to generate assembly that a) in interleaved execution, recy-
cles coroutine frames from completed lookups for subsequent
coroutine calls (lines 25–29 in Listing 7), and b) in sequential
execution, allocates no coroutine frame, since it is not neces-
sary for non-suspending code (lines 5–6 in Listing 7). These
optimizations avoid unnecessary overhead by eliding unne-
cessary frame allocations. At the time of writing, the Visual
C++ compiler we use does not perform these optimizations,
so we apply them manually in separate implementations for
sequential and interleaved execution. As compiler support
matures, manual optimization separately for sequential and
interleaved execution will become unnecessary.

Takeaway. To implement interleaving with coroutines
means essentially to add suspension statements to sequen-
tial code at each point where there will probably be a cache
miss. Furthermore, the same coroutine implementation sup-
ports both sequential and interleaved execution, depending
on the scheduler we use. As we show next, coroutines make
interleaved execution significantly easier to adopt compared
to GP and AMAC, while offering similar performance.

5. EXPERIMENTAL EVALUATION
In this section, we demonstrate that interleaving with co-

routines is easier to code and maintain, and performs simi-
larly to the other two ISI techniques studied in this work,
i.e., GP and AMAC. First, we compare the three techniques
in interleaved binary searches, highlighting the minimal code
overhead and the few modifications of interleaving with co-
routines. Second, we demonstrate the advantages of interle-
aving over sequential execution for binary searches over int
and string arrays. Third, we explain the performance gains
with a thorough microarchitectural analysis of the int case,
where we also show how to estimate the best group size—
the number of concurrent instruction streams. Finally, we
implement our coroutine-based technique in both the Main
and the Delta of SAP HANA, enabling IN-predicate query
execution with robust response times.

5.1 Methodology
Microbenchmarks. We study five binary search imple-

mentations: two for sequential execution and three for inter-
leaved. The sequential ones are std::lower_bound from the
C++ standard library (abbreviated as std), and Baseline,
which is similar to Listing 2 and uses a conditional move to
avoid speculative execution. Based on Baseline, we imple-
ment the three ISI techniques. For each implementation, we
can configure the group size, i.e., how many lookups run

236

interleaved at any given point in time. Finally, GP and AMAC
resemble the pseudocode in Listings 3 and 4 respectively,
whereas CORO is a modified version of Listing 5 that avoids
memory allocations by using the same coroutine frame for
subsequent binary searches.

Table 4: Architectural parameters.

Processor Intel Xeon 2660v3 [11]

Architecture Haswell
Technology 22nm @ 2.6GHz
Cores 10 (Hyperthreading disabled6)
Core Type 4-wide OoO
L1 I/D (per core) 32 KB/32 KB, 8-way associative
Line Fill Buffers 10
L2 Cache 256 KB, 8-way associative
LLC Cache 25 MB
DTLB 64 entries, 4-way associative
STLB 1024 entries, 8-way associative

Experimental Setup. The workstation used in our ex-
periments is listed in Table 4. It features two Intel Xeon
2660 v3 processors with 10 cores per socket and runs Win-
dows 10 1511. For our measurements, we have pinned our
microbenchmarks on one core and migrated all other pro-
cesses to the other socket in order to minimize performance
variability due to uncontrollable thread migrations between
sockets and external interference from other processes.

To use coroutines, we compile our code with the Microsoft
Visual C++ (MSVC) v14.1 compiler7. To prefetch data, we
use the instruction PREFETCHNTA (through the compiler
intrinsic _mm_prefetch(ptr, _MM_HINT_NTA)). The compi-
lation flags used are: /Ox /arch:AVX2 /await. Finally, we
use Intel VTune Amplifier XE 2017 to profile execution and
observe microarchitectural behavior.

5.2 Code Complexity and Maintainability
By comparing the implementation methodologies of the

three ISI techniques (and the corresponding examples in
Listings 3, 4, and 5), we intuitively see that interleaving
with coroutines is easier to implement and maintain than
the prior techniques. To validate this intuition, we calcu-
late the lines of code (LoC) that are different between each
of the ISI implementations and the original sequential code
(Diff-to-Original), as well as the total LoC one has to main-
tain per lookup algorithm, e.g., binary search, to support
both sequential and interleaved execution (Total Code Foot-
print). The first metric hints to the implementation com-
plexity, while the second one to maintainability; for both
metrics, lower values are better.

In Table 5, we present the two metrics for GP and AMAC,
as well as CORO for both the proposed unified implementa-
tion (CORO-U) and the separate implementations (CORO-S).
CORO-U requires the least modifications/additions (6 LoC) to
the original code to be implemented, while it has the smal-
lest code footprint (16 LoC) thanks to the unified codepath;
all other implementations have separate codepaths for each
mode of execution and, thus, have two implementations for
the same lookup algorithm. Nonetheless, both CORO variants
have significantly less code than GP and AMAC.

6To simplify the interpretation of measurements [21].
7Clang did not have a stable support at the time we perfor-
med the experiments, hence the use of MSVC.

Table 5: Implementation complexity and code footprint
of ISI techniques. The two CORO variants differ the least
from the original code (11 LoC) and require the least code
to support both sequential and interleaved execution.

Technique GP AMAC CORO-U CORO-S

Interleaved 24 67 15 18
! Diff-to-original 18 64 6 9

Total Code Footprint 35 78 16 29

Why not use essential or cyclomatic complexity?
Contrary to the two LoC metrics we use above, standard
metrics like essential and cyclomatic complexity [22] reflect
code properties that are not useful in determining which
technique is easier to implement and maintain. Essential
complexity assesses how structured the code is, examining
the entry and exit points of each control flow structure used
in the code; depending on their state, coroutines are entered
and exited at different points, which means they have high
essential complexity although they are arguably easy to un-
derstand. Moreover, cyclomatic complexity is a property of
the control flow graph, which is almost identical for AMAC
and CORO since they are both state machines with the same
states; consequently, AMAC and CORO have similar cyclomatic
complexity, despite the little resemblance between them, in
analogy to how a switch statement and the equivalent se-
quence of if...elses have the same cyclomatic complexity.
For these reasons, we do not consider these two metrics in
our comparison.

Takeaway. Interleaving with coroutines has two key pro-
perties: a) the lookup logic is kept separate from the execu-
tion policy, enabling a single codepath to be configured for
sequential or interleaved execution; b) the coroutine code is
the sequential code extended with a prefetch and a suspen-
sion statement per switch point. Thanks to these properties,
coroutines incur significantly lower development and main-
tenance costs compared to prior ISI techniques.

5.3 Sequential vs Interleaved Execution
We evaluate the five aforementioned implementations on

sorted arrays whose size ranges from 1 MB to 2 GB. We
generate the array values using the array indices: for inte-
ger arrays, the values are the corresponding array indices,
whereas for string arrays we convert the index to a string of
15 characters, suffixing characters as necessary. Further, the
list of lookup values is a subset of the array values, generated
using std::uniform_int_distribution and std::mt19937
with seed 0.

Figure 3 depicts the performance per binary search with
lookup lists of 10K values. We report the average runtime of
100 executions, and, for ISI implementations, the depicted
measurements correspond to the best group size configura-
tion (see Subsection 5.4.5). Since the instructions executed
in a binary search are a logarithmic function of the array
size, the horizontal axis has a logarithmic scale.

The difference between sequential and interleaved execu-
tion is clear for both int and string arrays. std and Baseline
incur an important runtime increase for arrays larger than
16 MB. These arrays outsize the last level cache (25 MB),
so binary search incurs main memory accesses that manifest
as stall cycles, as we explained in Section 2.2. As a result,
runtime diverges significantly from the logarithmic function

237

0

5

10

15

20

25

30

35

40

45

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

512MB

1GB
2GB

C
y
cl
es

p
er

se
a
rc
h

(×
1
0
0
)

Array size

std

Baseline

GP

AMAC

CORO

(a) Integer array.

0

5

10

15

20

25

30

35

40

45

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

512MB

1GB
2GB

C
y
cl
es

p
er

se
a
rc
h

(×
1
0
0
)

Array size

std

Baseline

GP

AMAC

CORO

(b) String array.

Figure 3: Binary searches over sorted array. Interleaving
increases runtime robustness. CORO performs similarly to
AMAC, while the difference to GP is smaller for the string case.

we described above. Contrary to this behavior, runtime in-
creases are less significant for GP, AMAC and CORO.

Focusing on arrays larger than the last level cache, the
three ISI implementations behave similarly. GP constantly
has the lowest runtime, in the range 2.7–3.7× and 1.8–2.2×
respectively for integer and string values. CORO and AMAC fol-
low with decent speedups, in the ranges 2.0–2.4× and 1.8–
2.3× for integers, and in the ranges 1.4–2.1× and 1.2–1.9×
for strings. We should note that, thanks to compiler opti-
mizations, CORO performs slightly better that AMAC, whose
data alignment and layout we have carefully optimized.

Finally, as array size increases, we observe a smoother in-
crease of the interleaved execution for strings than for inte-
gers. This observation reflects the computationally heavier
string comparisons, which de-emphasize cache misses. In
Section 5.4, we focus on the integer case, identifying how
runtime behavior changes for different array sizes.

Increasing locality with sorting. Sorting small lists is
a cheap operation, and thus a valid preprocessing step. In
this case, the lookup values are sorted before starting the
binary searches. Figure 4 depicts the corresponding mea-
surements for integers (strings). std and Baseline are up
to 2.6×(1.8×) and 2.4×(1.8×) faster, owing to increased
temporal locality: since subsequent lookups access monoto-
nically increasing positions in the array, the values access in
one lookup are likely to be cache hits in later lookups. This
additional temporal locality benefits also GP, AMAC and CORO
up to 2.2×(1.4×), 1.9×(1.3×) and 1.9×(1.3×) respectively.
Still, sorting does not affect spatial locality: if the lookup

0

5

10

15

20

25

30

35

40

45

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

512MB

1GB
2GB

C
y
cl
es

p
er

se
a
rc
h

(×
1
0
0
)

Array size

std

Baseline

GP

AMAC

CORO

(a) Integer array.

0

5

10

15

20

25

30

35

40

45

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

512MB

1GB
2GB

C
y
cl
es

p
er

se
a
rc
h

(×
1
0
0
)

Array size

std

Baseline

GP

AMAC

CORO

(b) String array.

Figure 4: Binary searches over sorted array with sorted
lookup values. Sorting increases temporal locality, but does
not eliminate compulsory cache misses.

values are not close to each other, which is likely for arrays
much larger than the lookup lists, there will still be compul-
sory cache misses to hide.
Takeaway. Interleaved execution is more robust to array

size increases compared to sequential execution. CORO has
slightly better performance than the functionally equivalent
AMAC, while GP performs best thanks to the minimal over-
head of static interleaving. Furthermore, sorting the lookup
values increases temporal locality between subsequent look-
ups, but does not eliminate compulsory cache misses.

5.4 Microarchitectural Analysis
To understand the effect of interleaved execution, we per-

form a microarchitectural analysis of our binary search im-
plementations. We study them for int arrays and unsorted
lookup values, analyzing them with TMAM (described in
Section 2.2). Furthermore, we leverage the same analysis to
determine the best group size for each implementation.

5.4.1 Where does the time go?
In Figure 5, we depict the execution time breakdown of

a binary search as the array size increases, with the best
group size for each technique, i.e., 10 for GP, and 6 for
AMAC and CORO (we describe how to determine these values
in Section 5.4.5). We calculate the execution cycles spent
on front-end, memory or resource stalls, wasted due to bad
speculation, or retired normally (as specified by TMAM) by
multiplying the respective percentages reported by VTune
with the measured cycles per search.

238

0
5

10
15
20
25
30
35
40

1MB
4MB

16MB
64MB

256MB

1GB
0
5

10
15
20
25
30
35
40

1MB
4MB

16MB
64MB

256MB

1GB
0
5

10
15
20
25
30
35
40

1MB
4MB

16MB
64MB

256MB

1GB
0
5

10
15
20
25
30
35
40

1MB
4MB

16MB
64MB

256MB

1GB
0
5

10
15
20
25
30
35
40

1MB
4MB

16MB
64MB

256MB

1GB

C
y
cl
es

p
er

se
a
rc
h

(×
1
0
0
)

Array size

Front-End Bad Speculation Memory Core Retiring

std

Array size

Front-End Bad Speculation Memory Core Retiring

Baseline

Array size

Front-End Bad Speculation Memory Core Retiring

GP

Array size

Front-End Bad Speculation Memory Core Retiring

AMAC

Array size

Front-End Bad Speculation Memory Core Retiring

CORO

Figure 5: Execution time breakdown of binary search. Interleaved execution reduces memory stalls significantly.

0
5

10
15
20
25
30

1MB
4MB

16MB
64MB

256MB

1GB
0
5

10
15
20
25
30

1MB
4MB

16MB
64MB

256MB

1GB
0
5

10
15
20
25
30

1MB
4MB

16MB
64MB

256MB

1GB
0
5

10
15
20
25
30

1MB
4MB

16MB
64MB

256MB

1GB
0
5

10
15
20
25
30

1MB
4MB

16MB
64MB

256MB

1GB

L
o
a
d
s
p
er

se
a
rc
h

Array size

LFB hits L2 hits L3 hits DRAM accesses

std

Array size

LFB hits L2 hits L3 hits DRAM accesses

Baseline

Array size

LFB hits L2 hits L3 hits DRAM accesses

GP

Array size

LFB hits L2 hits L3 hits DRAM accesses

AMAC

Array size

LFB hits L2 hits L3 hits DRAM accesses

CORO

Figure 6: Breakdown of L1D misses. Interleaved execution hides the latency of data cache misses.

Owing to the small instruction footprint of our implemen-
tations, the front-end and bad speculation components are
negligible in all implementations except for std, which is
penalized by bad speculation as explained in Section 2.2.
Notably, however, std runs faster than Baseline for arrays
larger than 16 MB; this means that speculation, even if it is
bad half the time, is better that waiting for the data to be
fetched from the main memory.

Compared to std and Baseline, memory stalls are redu-
ced in GP, AMAC and CORO. They are negligible until 4 MB,
and they start to dominate GP execution from 32 MB; in
AMAC and GP memory stalls are even fewer, but come with
more resource stalls and normally retiring cycles, as a result
of their instruction overhead which is larger than GP.

Takeaway. Interleaving significantly reduces the memory
stalls that dominate sequential binary search execution.

5.4.2 How does interleaving reduce memory stalls?
Memory stalls occur when a load instruction fetches data

from an address that is not in the L1D cache. In this case,
the Line Fill Buffers (LFB) are checked to see if there is
a memory request for the same cacheline. If not, a new
memory request is created, an empty LFB is allocated to
track the status of the request, and the request itself gets
forwarded to the L2 cache. If the requested address is not
in the L2, the request is next forwarded to the L3 cache
(also called last level cache, LLC), which is shared among
the cores in a socket for the Intel processor used in our expe-
riment. Finally, if the address is not in the L3, the request
goes to the memory controller and subsequently to the main
memory (DRAM). Depending on the level where the reque-
sted address is found, we categorize a load as a L1D hit, a
LFB hit, a L2 hit, a L3 hit, or a DRAM access.

In Figure 6, we depict a breakdown of the load instructi-
ons per implementation and array size, based on the me-
mory hierarchy level in which they hit and omitting L1D
hits as they do not cause lengthy memory stalls. We ge-
nerally observe that, with interleaved execution, most L1D
misses are LFB hits. The reason for this behavior is the use

of prefetch instructions by the interleaving techniques: each
prefetch that misses in L1D creates a memory request allo-
cating an LFB; the corresponding load either finds the data
in L1D in case enough instructions are executed between
the prefetch and the load, or finds the allocated LFB other-
wise. The instructions GP injects between a prefetch and the
corresponding load are not enough to effectively hide L1D
misses, despite using the best group size (see Section 5.4.5
for an explanation); still, they reduce the average miss la-
tency, leading to the observed runtime decreases. Contrary
to GP, AMAC and CORO eliminate most L1D misses for ar-
rays up to 32 MB; for larger arrays, the effected L1D misses
seem to be caused by address translation, as we describe in
Section 5.4.3.

Takeaway. Interleaved execution introduces enough in-
structions between a prefetch and the corresponding load,
decreasing the average memory latency of load instructions.

5.4.3 How does address translation affect execution?
In Section 5.3, we note that runtime increases smoothly

for string arrays. However, in the measurements for integer
arrays, we observe runtime jumps when increasing the array
size from 4 MB to 8 MB, from 16 MB to 32 MB, and with
every increase beyond 128 MB. Since the memory load ana-
lysis of Section 5.4.2 cannot explain these runtime jumps,
we monitor and analyze the address translation behavior.

Profiling shows most loads hit in the DTLB, the first-level
translation look-aside buffer for data addresses. However,
DTLB misses can hit in the STLB, the second-level TLB
for both code and data addresses; or perform a page walk to
find the address mapping in the page tables. In the latter
case, the appropriate page tables can be located in any level
of the memory hierarchy—we denote the page walks that
hit L1D, L2, L3 and DRAM as PW-L1, PW-L2, PW-L3
and PW-DRAM respectively.

The aforementioned runtime jumps correspond to para-
meters related to address translation. The first runtime
jump from 4 MB to 8 MB matches the STLB size, and our
profiling results show PW-L1 hits for larger arrays, while the

239

second one, from 16 MB to 32 MB, corresponds to PW-L2
hits. Since the latencies of L1D and L2 are partially hidden
by out-of-order execution, the two first jumps are small. Ho-
wever, the PW-L3 hits that cause the third jump cannot be
hidden, so increasing the array size beyond 128 MB incurs
the most evident runtime increases.

We should note that interleaving works thanks to prefetch
instructions. A prefetch does not block the pipeline in case
of an L1D miss, and thereby allows subsequent instructions
in the instruction stream to execute. Yet, the pipeline is
blocked until the prefetched virtual address is translated to
a physical one, possibly involving long page walks.

Takeaway. Larger array sizes imply higher address trans-
lation latency that cannot be hidden with interleaving.

5.4.4 Why does GP perform best?
The performance difference between the three instruction

stream interleaving techniques can be explained by their re-
spective instruction overhead: Compared to Baseline, from
which they are derived, GP, AMAC and CORO execute 1.8×,
4.4× and 5.4× more instructions. These instruction over-
heads, also reflected as more retiring cycles in Figure 5,
correspond to the overhead of switching among instruction
streams, which mainly consists of managing state.

Many binary searches on the same array is a best case sce-
nario for group prefetching: all instruction streams within
a group execute the same code for the same number of ite-
rations. The instruction streams share the binary search
loop, reducing the number of instructions executed and the
number of state variables that have to be tracked per in-
struction stream. As we describe in Listing 3, the tracked
state variables include only the searched value and the cur-
rent low, whereas probe is inexpensively recomputed. In
addition to these variables, the non-coupling AMAC and CORO
have to maintain the loop state separately per instruction
stream, which means they execute more load and store in-
structions when switching between instruction streams.

Takeaway. Contrary to AMAC and CORO, GP shares com-
putation among instruction streams and maintains less state
per instruction stream. In other words, GP executes less in-
structions than AMAC and CORO, and thus performs best.

5.4.5 How to choose the group size?
As already mentioned, the results we present correspond

by default to the best group size configurations for each im-
plementation. Given that all lookups execute the same in-
structions, we can estimate the best group sizes by applying
the interleaving model of Section 3 to the profiling measure-
ments. From Baseline, we map memory stalls to Tstall and
all other cycles to Tcompute. Further, we compute Tswitch as
the difference in retiring cycles between Baseline and each
of the three interleaved implementations for group size 1.
We apply these parameters to Inequality 1 for a 256 MB int
array, yielding GGP ≥ 12 and GAMAC = GCORO ≥ 6.
To verify these results, we run our microbenchmarks with

all possible combinations of array and group sizes. In Fi-
gure 7, we depict our runtime measurements for a 256 MB
int array as a function of the group size, which ranges be-
tween 1 and 12 concurrent binary searches (performance
varies little for larger group sizes). We observe that the
best group sizes are 10 for GP, and 5–6 for AMAC and CORO.
For GP, Gestimated differs from Gobserved due to a hardware
bottleneck: current Intel architectures have 10 LFBs (see

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12

C
y
cl
es

p
er

se
a
rc
h

(×
1
0
0
)

Group size

Baseline

GP

AMAC

CORO

Figure 7: The effect of group size on runtime (for 256 MB
int array). Best group sizes: 10 for GP, 5–6 for AMAC, CORO.

Section 5.4.2), limiting the number of outstanding memory
accesses and, thus, the benefit of interleaving. However, 10
LFBs suffice for AMAC and CORO, corroborating our estimates.

We should note that interleaved execution with group
size 1 makes no sense: GP, AMAC and CORO are slower than
Baseline due to the overhead of the switching mechanism.
The non-negligible overhead emphasizes the need for imple-
mentations that switch only in case of interleaved execution;
otherwise, the switching mechanism should be bypassed.
Finally, similar observations to the ones above can be

made for the other array sizes and for string arrays (we omit
these measurements due to space limitations). Varying the
array size affects the number of cache misses and not the
Tcompute nor the Tstall per cache miss, whereas Tcompute for
comparing strings with 15 characters seems to not differ sig-
nificantly from integer comparison.

Takeaway. Knowing per instruction stream the available
computation, the memory stalls, and the switch overhead,
we can assess the effect of an interleaving technique on a
group of lookups. Since the above parameters are similar
for all lookups, Inequality 1 provides a reasonable estimate
of the best group size, as long as the hardware supports the
necessary memory-level parallelism.

5.5 IN-Predicate Queries on SAP HANA
Beside our microbenchmark evaluation, we apply our co-

routine proposal in the codebase of SAP HANA. We in-
terleave the execution of dictionary lookups in both Main
(binary search) and Delta(CSB+-tree lookup). The Main
implementation is straightforward, but the Delta one dif-
fers from the CSB+-tree described in Section 4: leaf nodes
contain codes instead of values, so comparisons against the
values of a leaf node incur accesses to the dictionary array to
retrieve the actual values, adding an extra suspension point
on the access to the dictionary array.

We evaluate the two implementations in the execution of
IN-predicate queries with 1K, 5K, 10K, and 50K predicate
values over INTEGER arrays with distinct values and dicti-
onaries whose size ranges in 1 MB–2 GB. Figure 8 depicts
the query response time for the 10K case. In the other cases,
lookups account for a smaller part of total execution and the
benefit of interleaving is less evident.

For dictionaries larger than 16 MB, interleaving reduces
the Main runtime for dictionary sizes larger than the cache,
from 9% at 32 MB to 40% at 2 GB, corroborating the micro-
benchmark results. On the other hand, the Delta runtime is

240

0

2

4

6

8

10

12

14

16

18

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

512MB

1GB
2GB

Q
u
er
y
re
sp

o
n
se

ti
m
e
(i
n

m
s)

Data size (log scale)

Main

Main-Interleaved

Delta

Delta-Interleaved

Figure 8: IN-predicate queries with 10K INTEGER values
run on SAP HANA. Interleaving with coroutines increases
performance in both Main and Delta.

reduced for all dictionary sizes, from 10% at 1 MB to 30%
at 2 GB; this can be explained by the memory stalls Delta
exhibits in the 1 MB case, as we see in Section 2.2.

Takeaway. For both Main and Delta, interleaved exe-
cution hides the cache misses of dictionary lookups as the
dictionary grows larger that the last level cache. As a result,
IN-predicate queries become robust to dictionary size.

6. DISCUSSION & FUTURE WORK
In this work, we have proposed a practical way to the la-

tency of unavoidable memory access in index joins. Here,
we discuss other potential applications, hardware features
that can increase the efficiency of the suspension/resump-
tion mechanism, as well as the interplay of interleaving with
address translation and NUMA effects.

Other targets for interleaving. Having demonstrated
interleaving with coroutines on the distinct codepaths of bi-
nary search and CSB+-tree traversal, we believe our techni-
que applies to the lookup methods of any pointer-based in-
dex. A hash-table with bucket lists is such an index, so the
probe phases of hash joins that use it are straighforward
candidates for our technique; moreover, since Kocberber et
al. [15] demonstrate AMAC also on the build phase, and our
technique is equivalent to AMAC, interleaving with corou-
tines applies also to important hash-join operators. In fact,
our technique can be employed in any data- or task-parallel
operation with a memory stall problem, like sort operators,
or operations related to the state management of the lock
and the transaction manager. However, if the amount of
computation and stalls varies among instruction streams, we
have to consider the parameters of each instruction stream
separately, so we cannot use Inequality 1.

Moreover, coroutines allow instruction streams to progress
asynchronously, so, in principle even different operations
on multiple data-structures can be interleaved, from sim-
ple lookups to whole transactional queries. In the latter
case, instruction stream latency might pose a restriction—
unlike in a join—while instruction cache misses can increase
front-end stalls. Consequently, the potential of interleaving
requires further study.

Hardware support for interleaving. In this work, we
switch instruction streams at every load that may cause ca-
che miss, assuming the switch eliminates more memory stalls
than adds instruction overhead. However, we could condi-

tionally switch instructions streams with hardware support
in the form of an instruction tells if a memory address is
cached; with such an instruction, we could avoid suspension
when the data is cached and unnecessary overhead.

Moreover, most of the instruction overhead comes from
storing/restoring the state of each instruction stream. With
a processor that supports as many hardware contexts as
the instruction streams in a group, an instruction stream
switch would be instant, as it would not require to swap
working sets in the registers. This way, interleaving with
coroutines that are aware of this support could be fast as
group prefetching.

Interleaving and TLB misses. To circumvent the lack
of TLB locality in binary search over large arrays, we can in-
troduce a B+-tree index with page-sized nodes on top of the
sorted array. Lookups on this structure traverse the tree no-
des, performing binary searches within each of them. Each
binary search involves memory accesses within a single page,
so the corresponding address translations hit in the TLB
most of the time, contrary to original scheme without the
B+-tree, where the binary search thrashes the TLB incurring
expensive page walks. We could also use large or huge pa-
ges, but this alternative requires special privileges, manual
configuration, or dedicated system calls, requirements inap-
propriate for general-purpose systems. Nevertheless, both
alternatives can be combined with interleaving.

Interleaving and NUMA effects. In our experiments,
we ensure the microbenchmarks allocate memory and run on
the same socket, to avoid process migration across sockets
and remote memory accesses. However, the idea of inter-
leaved execution applies also to cases with remote memory
accesses; interleaving could be even more beneficial, assu-
ming there is enough work to hide the increased memory
latency. We plan on analyzing interleaved execution in a
NUMA context to determine the related bottlenecks.

7. CONCLUSION
Instruction stream interleaving is an effective method to

eliminate memory stalls in index lookups and improve index
join performance. However, prior techniques required signi-
ficant effort to develop, test and maintain a special imple-
mentation for interleaved execution, alongside the original
code, an effort that could prohibit the adoption of interlea-
ved execution in a real database system.

In this work, we proposed interleaving with coroutines,
a compiler-based approach for lookup implementations that
can be executed both sequentially and interleaved. Levera-
ging language support, our approach is easy to implement
for any kind of index lookup, which we have demonstrated
with binary search and CSB+-tree lookups. Finally, inter-
leaving with coroutines exhibits similar performance to ca-
refully optimized implementations of prior interleaving pro-
posals, so we consider our proposal the first practical inter-
leaving technique for real codebases.

8. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers, as well

as Ismail Oukid, Eleni Tzirita-Zacharatou, Lucas Lersch,
Frank Tetzel, Manos Karpathiotakis, Iraklis Psaroudakis,
Stefan Noll, Georgios Chatzopoulos, and Mirjana Pavlovic
for their valuable feedback on the paper. This work was
supported by SAP SE, Walldorf, Germany.

241

C# Reference. https://msdn.microsoft.com/en-us/
library/9k7k7cf0.aspx [Online; accessed

August-2017].
Generators. Python Wiki. https://wiki.python.org/
moin/Generators [Online; accessed 14-August-2017].
Programming languages — C++ extensions for
coroutines.
Transaction Processing Performance Council. TPC-DS
benchmark version 2.3.0. http://www.tpc.org/tpcds/
[Online; accessed 14-August-2017].
A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. DBMSs on a modern processor: here does
time go? In Proc. VLDB, pages 266–277, 1999.
S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving hash join performance through
prefetching. ACM Trans. Database Syst., 32(3), 2007.
M. Colgan. Oracle Database In-Memory. Technical
report, Oracle Corporation, 2015. http://
www.oracle.com/technetwork/database/in-memory/
overview/twp-oracle-database-in-
memory-2245633.html.
M. E. Conway. Design of a separable
transition-diagram compiler. Commun. ACM,
6(7):396–408, 1963.
F. Färber, N. May, W. Lehner, P. Große, I. Müller,

Rauhe, and J. Dees. The SAP HANA Database –
an architecture overview. IEEE Data Eng. Bull.,
35(1):28–33, 2012.
S. Idreos, F. Groffen, N. Nes, S. Manegold,

Mullender, and M. Kersten. MonetDB: wo decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

Intel Corporation. Intel⃝R 64 and IA-32 Architectures
Optimization Reference Manual, June 2016.
A. Kemper and T. Neumann. HyPer: hybrid OLTP
& OLAP main memory database system based on
virtual memory snapshots. In Proc. ICDE, pages 195–
206, 2011.
M. Kerrisk. The Linux Programming Interface: A
Linux and UNIX System Programming Handbook.
C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and

Dubey. FAST: ast architecture sensitive tree search
on modern CPUs and GPUs. In Proc. SIGMOD, pages
339–350, 2010.
O. Kocberber, B. Falsafi, and B. Grot. Asynchronous
memory access chaining. PVLDB, 9(4):252–263, 2015.
M. D. Lam, E. E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked
algorithms. In Proc. ASPLOS, 1991.
H. Lang, T. Mühlbauer, F. Funke, P. Boncz,

Neumann, and A. Kemper. Data Blocks: ybrid
OLTP and OLAP on compressed storage using both
vectorization and compilation. Proc. SIGMOD, 2016.
P.-A. Larson, C. Clinciu, C. Fraser, E. N. Hanson,

Price, S. Rangarajan, R. Rusanu, and M. Saubhasik.
Enhancements to SQL Server column stores. In Proc.
SIGMOD, pages 1159–1168, 2013.
P.-A. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L.
Price, S. Rangarajan, A. Surna, and Q. Zhou. SQL
Server column store indexes. Proc. SIGMOD, pages
1177–1184, 2011.
S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing database architecture for the new
bottleneck: emory access. VLDB Journal,
9(3):231–246, 2000.
J. Marusarz. Understanding how general exploration
works in Intel VTune Amplifier XE, 2015. https://
software.intel.com/en-us/articles/
understanding-how-general-exploration-works-
in-intel-vtune-amplifier-xe [Online; accessed 14-
August-2017].
T. J. McCabe. A complexity measure. IEEE Trans.
Softw. Eng., 2(4):308–320, July 1976.
J. Melton. Advanced SQL 1999: Understanding
Object-Relational, and Other Advanced Features.
Elsevier Science Inc., 2002.
A. L. D. Moura and R. Ierusalimschy. Revisiting
coroutines. ACM Trans. Program. Lang. Syst.,
31(2):6:1–6:31, Feb. 2009.
I. Müller, C. Ratsch, and F. Färber. Adaptive string
dictionary compression in in-memory column-store
database systems. In Proc. EDBT, pages 283–294,
2014.
M. Poess and D. Potapov. Data compression in
Oracle. Proc. VLDB, pages 937–947, 2003.
V. Raman, G. Attaluri, R. Barber, N. Chainani,

Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus,
R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle,
A. Storm, and L. Zhang. DB2 with BLU Acceleration:
o much more than just a column store. PVLDB,
6(11):1080–1091, 2013.

[28] J. Rao and K. A. Ross. Making B+-trees cache
conscious in main memory. In Proc. ACM SIGMOD,
pages 475–486, 2000.

[29] RethinkDB Team. Improving a large C++ project
with coroutines, 2010.
https://www.rethinkdb.com/blog/improving-a-
large-c-project-with-coroutines/ [Online;
accessed 14-August-2016].

[30] M. E. Russinovich, D. A. Solomon, and A. Ionescu.
Windows Internals, Part 1: Covering Windows Server
2008 R2 and Windows 7. Microsoft Press, 6th edition,
2012.

[31] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah.
Improving database performance on simultaneous
multithreading processors. In Proc. VLDB, pages
49–60, 2005.

[32] J. Zhou and K. A. Ross. Buffering accesses to
memory-resident index structures. In Proc. VLDB,
pages 405–416, 2003.

242

