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ABSTRACT
We introduce holistic in-database query processing over in-
formation extraction pipelines. This requires considering
the joint conditional distribution over generic Conditional
Random Fields that uses factor graphs to encode extraction
tasks. Our approach introduces Canopy Factor Graphs, a
novel probabilistic model for effectively capturing the joint
conditional distribution given a canopy clustering of the
data, and special query operators for retrieving resolution
information. Since inference on such models is intractable,
we introduce an approximate technique for query process-
ing and optimizations that cut across the integrated tasks
for reducing the required processing time. Effectiveness and
scalability are verified through an extensive experimental
evaluation using real and synthetic data.
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1. INTRODUCTION
Entity Resolution (ER) is the vital task of creating en-

tities, one for each set of instances that describe a dis-
tinct real world object (e.g., location, event). To success-
fully perform resolution in highly heterogeneous and un-
structured data, the Information Extraction (IE) commu-
nity uses information extraction pipelines. Important tasks
in such a pipeline are: segmentation that divides text into
a sequence of meaningful fields (e.g., to become tuples in a
relational table); coreference that detects instances of the
same objects; and canonicalization that creates entities rep-
resenting the detected coreferent instances. IE research has
shown that resolution by maintaining and combining hy-
potheses across these tasks achieves more accurate results
than the sequential, in-isolation execution of tasks [14, 24].
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The vast majority of existing resolution approaches from
the database (DB) community focus only on the coreference
task. This task is typically executed in isolation and the
results are simply used normally during query processing;
that is, once the coreference process is executed, a predefined
threshold is employed to decide which instances are merged
together. Each merge leads to an entity, which is typically
mapped to one of the instances or to the union of all corefer-
ent instances. The created entities permanently replace the
original instances and are then used for answering queries.
The focus of such earlier approaches is mainly on suggesting
mechanisms to detect the coreferent instances, e.g., based
on the use of instance similarities [5] or exploiting the rela-
tionships across instances (namely collective resolution) [8,
28]. Although some approaches enhance this basic method-
ology, e.g., with propagation of merged information to other
possible matches [8], there is still a lack of methodologies
providing a deep integration with more than one extraction
task and the ability to integrate the complex probabilistic
graphical models required to represent these tasks.

In this paper, we adopt state-of-the-art IE techniques
and address the issues of probabilistic DB support for IE
pipelines comprising the tasks of coreference and canonical-
ization. (We do not consider segmentation since it works
on raw text and is, thus, typically executed outside rela-
tional DB systems.) We introduce a novel approach based
on the joint probabilistic inference over generic Conditional
Random Fields (CRFs) that encode the conditional distri-
bution of the factor graphs representing these extraction
tasks. We argue that, compared to existing probabilistic DB
approaches addressing these tasks separately, such holistic
processing using a joint graphical model results in higher ac-
curacy answers by considering the complete resolution sce-
nario rather than individual tasks. A key insight here is
that canonical entities can affect the “possible worlds” dis-
tribution of ER — for instance, after canonicalization it may
become obvious that two sets of coreferent instances, which
we initially thought to be distinct, (i) are actually the same
entity, or (ii) are indeed distinct as also reflected by the
stronger evidence from the resulting canonical entities.

Holistic query processing over IE pipelines offers several
benefits. First, it allows incorporating optimizations that
cut across the integrated tasks. Furthermore, it allows query
processing over the full “possible worlds” distribution, rather
than focusing solely on individual high probability resolution
decisions. The importance of tight integration of inference
and query processing for both efficiency and accuracy has
been convincingly demonstrated in earlier work, e.g., [27].
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BuyerD

id name surname gender country
r1 Alexander Hill male U.S.
r2 Alexander Hill, Mr. M USA
r3 Alex Hill United St. of America
r4 Alexandra Hill, Dr. Female USA
r5 A. Hill female United States
r6 Alexander H., Mr. male United States
r7 Alexander Hiller M States
r8 Alexander Hiller male United States

History
order buyer cost type returns bonus
o1 r1 150 electronics y 10
o2 r2 50 books y 10
o3 r3 20 electronics y 5
o4 r4 80 toys n 15
o5 r4 90 cloths y 15
o6 r5 100 garden n 20
o7 r5 110 electronics y 20

Figure 1: A fraction of a database that contains tables
with duplicates (i.e., duplicate instances in table BuyerD).

Possible world 1 - Coreferent set {{r1,r2,r3},{r4,r5},{r6,r7,r8}} p1

Id. Coref. Canonical Entity History
e123 r1,r2,r3 〈Alexander; Hill, Mr.; male; United St. of America〉 o1-o3
e45 r4,r5 〈Alexandra; Hill, Dr.; female; United States〉 o4-o7
e678 r6,r7,r8 〈Alexander; Hiller; male; United States〉 -

Possible world 2 - Coreferent set {{r1,r2},{r3,r4,r5},{r6,r7,r8}} p2

Id. Coref. Canonical Entity History
e12 r1,r2 〈Alexander; Hill, Mr.; male; USA〉 o1-o2
e345 r3,r4,r5 〈Alexandra; Hill, Dr.; female; United St. of America〉 o3-o7
e678 r6,r7,r8 〈Alexander; Hiller; male; United States〉 -

Possible world 3 - Coreferent set {{r1,r2},{r3},{r4,r5},{r6,r7,r8}} p3

Id. Coref. Canonical Entity History
e12 r1,r2 〈Alexander; Hill, Mr.; male; USA〉 o1-o2
e3 r3 〈Alex; Hill; ; United St. of America〉 o3
e45 r4,r5 〈Alexandra; Hill, Dr.; female; United States〉 o4-o7
e678 r6,r7,r8 〈Alexander; Hiller; male; United States〉 -

Figure 2: The join between tables History and BuyerD. Each answer
in the possible worlds of table BuyerD contains the canonical entity, the
coreferent set, and the probability.

Another important aspect of our work is that it investi-
gates the integration of complex IE pipelines within rela-
tional query processing. Recently, the DB community has
shown increasing interest in a deeper integration of IE tasks
and, more specifically, in incorporating a single extraction
task within database query processing. This is discussed,
for instance, in [27] and [4]: both perform segmentation (en-
coded using linear-chain CRFs) through in-database infer-
ence during query processing. Results show improvements
in accuracy and efficiency, e.g., [27]. In this aspect, our ap-
proach complements existing approaches, since it also deals
with the additional challenges that arise from handling more
than one extraction task and more complex graphical mod-
els (i.e., generic rather than linear-chain CRFs).

A main technical challenge is that exact inference on generic
CRFs is intractable. We alleviate this through three novel
mechanisms. The first is moving away from instances and
towards “fuzzy” instance clusters, i.e., namely canopies. More
specifically, we introduce a new probabilistic model struc-
ture that is based on canopies (i.e., Canopy Factor Graphs
(CFG)) and approximately model the joint conditional prob-
ability. The second mechanism is a novel process that ex-
ploits our CFG model to approximately estimate and gen-
erate the best possible coreferent sets. Combining this with
queries minimizes the overall execution time. Finally, we
also introduce algebraic optimizations that further reduce
the time required for in-database query processing.

Holistic Query Evaluation: An Example. Fig. 1 shows
a small fragment of a store’s database that monitors and
continuously integrates data from other systems. Table Buyer
contains instances of the same real world objects, and table
History contains information related to them. Query an-
swers must reflect the canonical entities of Buyer, e.g., en-
tity e45 resulting from merging coreferent instances r4 and
r5. The joins are also performed given the canonical entities,
for example entity e45 will be joined with o4-o7. Users are
able to request entities given the data found either in the
corresponding canonical entity (i.e., e45) or in the detected
coreferent instances (i.e., r4 and r5). The latter is important
since it ensures that users will retrieve answers even if they
do not know the exact data in the final canonical entities.

Consider searching the “electronics” department returns
for person (i.e., canonical entity) having surname “Hill%”
and country “United St. of America”, with the query:

1 SELECT name, surname, gender, order, cost

2 FROM History join BuyerD

3 WHERE type=“electronics” and returns=“y” and (Q.1)
4 canonical-entity.surname like “Hill%” and
5 canonical-entity.country=“United St. of America”
6 ORDER BY cost desc
7 LIMIT with-k 2

In order to use table Buyer, we must first derive its alter-
native resolution solutions, following the “possible worlds”
semantics. Fig. 2 shows the three most probable worlds (i.e.,
solutions). The important point to note here is that solu-
tions and their probabilities are affected by the coreferent
instances as well as the resulting canonical entities.

Since we are interested in the returns, which are stored in
table History, we need to perform the join between tables
History and Buyer. The join is based on the resolution so-
lutions, and more specifically the coreferent instances. For
example, the first entity in possible world 1 has instances
r1, r2, and r3 as coreferent. Thus, it must be joined with
the History records involving orders o1 to o3.

The huge volume of entities that will be created (as is
typically the situation with possible worlds) will overwhelm
users and not allow them to spot useful information. To rem-
edy this, we introduce operators expressing resolution needs.
First, conditions can be expressed using the coreferent in-
stances or/and the canonical entities. E.g., the user in Q.1
is interested in resolution results that contain a canonical
entity with the surname containing “Hill” (line 4). Second,
we allow users to specify the number of possible worlds to
be considered, by specifying either a minimum probability
or an exact number of the result rows (as in Q.1, line 7).

After applying the given conditions on the two tables, we
need to generate the possible resolution solutions for table
Buyer, and then construct the records resulting from their
join with table History. For instance, given the conditions
of Q.1 for Buyer (i.e., lines 4-5) we have e1,2,3, e3,4,5, and e3,
and, given the conditions for table History (i.e., line 3), we
have o1, o3, and o7. Thus, we perform the join between: (1)
e1,2,3 and o1; (2) e1,2,3 and o3; (3) e3,4,5 and o3; (4) e3,4,5 and
o7; and (5) e3 and o3. The final step is to execute the order
by and limit operators (lines 6-7). Hence, only answers 1
and 4 remain, and the final result set for Q.1 becomes:
{ 〈Alexander; Hill, Mr.; male; United St. of America, o1, 150〉,
〈Alexandra; Hill, Dr.; female; United St. of America, o7, 110〉 }

Note that the conventional approach of addressing the
problem would execute the coreference process, select the
highest probability coreferent sets, and replace the instances
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in each coreferent set with one of the instances (e.g., the
most recently added instance). In the data of Fig. 1 this pro-
cess might result in the coreferent sets {r1, r2} and {r3, r4, r5},
with r1 replacing the instances of the first set and r3 re-
placing the instances of the second. This means that query
answers can include only r1 and r3 as the entities of BuyerD.

Overview. We support new resolution querying semantics
(Sec. 2). The proposed approach is based on a novel com-
bination of overlapping canopies with the joint conditional
distribution using CRFs (Sec. 3). Query processing is per-
formed using an approximate technique (Sec. 4) with query
plans being optimized to reduce execution time (Sec. 5).

Our Contributions. We advocate a novel approach for
holistic query processing over complex IE pipelines, focusing
on two important tasks: coreference and canonicalization.
Our contributions can be summarized as follows:
1. We provide new semantics for probabilistic querying of
duplicated instances using information extraction pipelines.
2. We introduce Canopy Factor Graphs (CFGs) — a generic,
approximate CRF encoding the joint conditional distribu-
tion of the factor graphs representing the IE tasks, given a
canopy clustering of the instances.
3. We introduce approximate query processing that consid-
ers the joint conditional distribution of the defined CFGs.
4. To improve query performance, we propose optimizations
(based on equivalent query rewritings) that cut across the
integrated tasks and significantly reduce processing time.
5. We verify effectiveness and efficiency through an exten-
sive evaluation based on real and synthetic data.

2. DATA MODEL AND QUERIES
To represent the resolution-related information we intro-

duce a data and query model that has the ability to tightly
integrate probabilistic IE semantics. More specifically, we
consider a typical relational database composed of relations,
with each relation containing a large number of instances.
Some of the database relations have instances that describe
the same real world objects.

Definition 1. A relation is a set of instances. It is de-
noted as R(a1,...,ak)={r1,...,rn}, with R being the name of
the relation, a1, ..., ak its attributes, and r1, ..., rn in-
stances of R. Each ri provides values v1, ..., vk for each of
the attributes a1, ...ak of the relation.

A database contains various relations, with and without
duplicates. We use RD to denote a relation R that contains
duplicates, i.e., contains multiple instances for the same real
world object. In the remaining text, we use notation ri∼=rj
to denote that ri and rj are duplicated instances.

Definition 2. A coreferent set M is a subset of the RD

instances, i.e., M⊆RD, which describe the same real world
object: ∀ ri,rj ∈ M ⇒ ri∼=rj.

In essence, providing a solution to the entity resolution
problem for relation RD requires partitioning the instances
into disjoint coreferent sets, i.e., CMj={M1, M2, ..., Mk}
where ∪k

i=1Mi=R
D. Each coreferent set Mi means that the

instances it contains describe a particular real world object
and should be considered as such.

We consider entities as a complementary design artifact
of our data model. An entity e is modeled exactly as an
instance, but describes a particular and distinct real world
object. Since each coreferent set contains instances that de-
scribe the same object, we can create a single entity e to

1 SELECT Ri.attr 1, Ri.attr 2, ..., RD
j .attr 1, RD

j .attr 2, ..., [prob]

2 FROM Ri join RD
j

3 WHERE Ri-conditions
4 [ and|or corefer-instance conditions] // loose mode
5 [ and|or canonical-entity conditions] // tight mode
6 [ ORDER BY Ri.attr asc/desc ] // default is entity prob.
7 LIMIT with-k max entities | // iceberg option
8 with-p min probability // threshold option

Figure 3: The query syntax.

represent them. This entity acts as the canonical represen-
tation of all these instances.

Definition 3. Given a coreferent set M for RD, then the
canonical entity e corresponds to an instance that repre-
sents all instances in M . An entity e provides values v1, ...,
vk for the attributes of RD, with vi ∈

⋃
∀r∈M {r.ai}.

All in-database resolution approaches either do not deal
with the issue of canonicalization or simply return the union
of all instances. In contrast to those approaches, we fol-
low the IE approach [31] and construct canonical entities by
defining canonical values for each relation’s attribute.

Our technique allows users to express queries over the
possible coreferent sets and their canonical entities. Fig. 3
shows the complete query syntax. Queries perform the join
between tables Ti and Tdup, with the latter being the table
that contains duplicates. This requires joining the data from
table Ti with the possible entities from table Tdup.

The query syntax allows users to retrieve results that do
not consider all entities, but are limited to specific entities as
specified in the given query. More specifically, there are two
options: (i) restrict based on threshold, in which the results
consider all entities that have an overall probability higher
that a given min probability (line 8), and (ii) restrict based
on the number of results, in which the results consider the
entities placed within the first max entities (line 7). Sorting
is performed using a given attr (line 6) with the default being
the overall probability.

Another aspect of our query syntax is the capability to ex-
press queries in which the conditions are based on either the
canonical entities (line 5), or the instances from which the
canonical entity was created (line 4). Recall that a canon-
ical entity is generated from a set of coreferent instances,
and that each attribute value in the canonical entity is taken
from the union of attribute values of these instances. Thus,
the results given conditions over the canonical entity (tight
mode) will be significantly less than the results given condi-
tions over the corresponding instances (loose mode). Note
that although expressing query conditions using the original
data is rarely allowed in the literature (e.g., [28, 10]), it is
considered an important feature with respect to resolution.
This is because it allows returning answers even when query
contains data that are not in the final entities (if this not
supported, users would simply receive an empty result set).

3. CANOPY FACTOR GRAPHS
We now introduce our canopy-based CRF model, termed

Canopy Factor Graphs, a novel approach for encoding the
approximate joint conditional distribution of the factor graphs
representing the tasks of coreference and canonicalization.

Existing Methodologies. Our work follows existing IE
approaches that jointly model extraction tasks, e.g., [15, 31].
In short, the underlying model requires considering all pos-
sible arbitrary partitions (clusterings) of the RD instances
into coreferent sets. For each partition, the model assesses
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the compatibility of the instances in each cluster, as well as
the compatibility across clusters (details provided in the fol-
lowing paragraphs). Solving resolution using all partitions of

the RD instances implies investigating a total of 2|R
D| sets.

Since probabilistic models of this size are clearly impracti-
cal, existing approaches typically rely on simple heuristics
(e.g., greedy agglomerative clustering [29]).

Restricting Possible Worlds through Canopy Clus-
tering. We introduce a novel, approximate graphical model
that basically creates and uses sets of instances (based on
canopy clustering [16]), rather than individual instances.
This drastically reduces the number of partitions that must
be considered in comparison to existing techniques.

Consider function SIM(ri,rj) that measures the similar-
ity of instances ri and rj . Existing literature on resolution,
indicates that it is easy to detect the instances that do not
match each other because these will return a low similarity,
i.e., SIM(ri,rj)≤t2, as well as the instances that match be-
cause these will return a high similarity, i.e., SIM(ri,rj)>t1.
The challenge lies with instances that return a similarity
that does not allow us to distinguish whether they match
or not, i.e., t2<SIM(ri,rj)≤t1. Dealing with the latter is
the focus of canopy clustering [16], which we also adopt and
extend in this work.

Definition 4. A canopyi is a set of instances. It con-
tains at least one instance rc, named centroid, and all in-
stances ri of RD with SIM(rc,ri)>t2. In addition, instance
set Ci contains the “core” instances of canopyi with SIM(rc,
ri)>t1. Core instances in Ci are present only in canopyi,
whereas the remaining instances, i.e., canopyi\Ci, might
also participate in other canopies.

Given a relation RD, canopy clustering generates a set
of (possibly) overlapping canopies. For example, let us as-
sume that the instances of Buyer create 3 canopies canopy1,
canopy2, and canopy3, despicted in the Fig. 4.a using colors
blue, red, and green, respectively. As shown, canopy1 con-
tains r1, r2, r3, r7, and r8. The centroid is r1 and it has
similarity higher than t1 only with r2, thus CA={r1,r2}.
Similarly, r4 and r5 belong only to canopy2 (i.e., CB) and
r6 to canopy3 (i.e., CC). This means that for resolution
we now need to process CA, CB and CC instead of the five
corresponding instances.

Definition 5. Let canopies={canopyi} denote the set of
canopies generated by canopy clustering over RD. Canopy
intersections create overlapping areas, one for each possi-
ble subset of the canopies: ∃ OS for each S∈ 2canopies (i.e.,
the power set of the canopies set). An instance ri∈OS iff
ri∈canopyi ∀canopyi∈S.

Generating the canopies of RD allows us to detect sets
of core instances that should be considered together, i.e.,
the Ci of each canopyi. Def. 5 states that we can create
sets from the non-core instances (i.e., the canopy overlaps),
and thus allow resolution to also process them as sets rather
than individual instances. We consider one overlapping area
O for each possible intersection between canopies (given by
the power set of canopies). Clearly, an instance can belong
to more than one canopy intersections, e.g., r3 in Fig. 4.a
belongs to the overlapping areas of the intersections be-
tween (i) canopy1, canopy2, and canopy3, (ii) canopy1 and
canopy2, etc. We avoid having an instance in more than
one O’s by considering it as part of the intersection with the

Figure 4: An illustration of (a) three overlapping canopies and
(b) some of their possible coreferent sets.

maximum number of canopies, e.g., r3 is included in O1 that
denotes the intersection of all three canopies.

Following Def. 5, a canopyi corresponds to Ci∪{Oj}. We
now continue by explaining how to use the O’s and C’s from
the canopies to create partitions over RD.

Definition 6. The alternatives give the possible coref-
erent instances (i) locally for each canopyi=Ci∪{Oj} as alter-

natives(canopyi) = {Ci}×2{Oj} (i.e., Ci and all possible
subsets of overlaps in canopyi); and, (ii) globally over all
canopies as alternatives(canopies) = A1 × ... × Ak where
Ai=alternatives(canopyi).

In other words, the alternatives for canopyi allow for Ci

to be merged with any possible subset of {Oj}. Intuitively,
these results can be seen as possible coreferent instances
that our resolution algorithm must process. As an example,
consider canopy1=CA∪O1∪O2. The alternatives results in
{{CA}, {CA,O1}, {CA,O2}, {CA,O1, O2}}. Thus, e.g., we
should consider instances of CA andO1 as coreferences. Sim-
ilarly, the alternatives for canopy2 gives {{CB}, {CB ,O1}},
and for canopy3 {{CC}, {CC ,O1}, {CC , O2}, {CC ,O1,O2}}.
The cartesian product of all canopy alternatives creates a
global view of all possible coreferent instance sets, e.g., {{CA},
{CB}, {CC}} and {{CA}, {CB ,O1}, {CC ,O2}}. (Slightly
abusing notation, we also assume that {Ci, Oj , Ok, . . .} is
equivalent to Ci∪ Oj∪ Ok∪ . . ., i.e., the set of all instances
in the corresponding alternative).

A global alternative can essentially be viewed as a parti-
tioning of instances that is “compatible” with the derived
canopies. More specifically, given a global alternative {set1,
. . ., setk} ∈ A1 × ... × Ak, we create a partitioning by
(i) merging overlapping sets (with common O’s), since these
provide instances that are part of the same coreferent par-
tition, and (ii) including as a coreferent partition instances
of overlaps O’s not in the alternatives. This construction is
formalized in the following definition.

Definition 7. A global alternative {set1, . . ., setk} ∈
A1 × ... × Ak corresponds to a partitioning of instances
CM={M1,...,Mj} constructed as follows:
• Merge overlapping sets: seti1∪...∪setik∈CM if for each
setij there exists a setil with l 6=j and an overlap set O∈
setij∩setil
• Retain sets not overlapping any others: seti∈CM if
∀O∈seti 6 ∃setj s.t. O∈setj
• Include all remaining overlaps: {Ol}∈CM if Ol /∈set1,
Ol /∈set2, ..., Ol /∈setk

As an example, global alternative {{CA,O1,O2}, {CB},
{CC ,O1}} becomes partition {{CB}, {CA,CC ,O1,O2}}, il-
lustrated in Fig. 4.b(V); and {{CA}, {CB}, {CC}} becomes
partition {{CA}, {CB}, {CC}, {O1}, {O2}}, Fig. 4.b(II).

Note that the numnber of local alternatives for canopyi

is 2ni , with ni being the number of O’s it contains. Given
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Figure 5: Illustration of one variable assignment.

k canopies, it is easy to see that there is a maximum total
of 2n1×2n2×...2nk possible coreferent instance partitions.
Thus, solving resolution over our small example data set
through the possible RD partitions results in 256 (i.e., 28)
coreferent partitions, while canopies give only 32 (i.e., 22 +
21+22) partitions. Clearly, the reduction can be much more
dramatic for larger |RD|.
Canopy Factor Graphs (CFGs). The previous para-
graphs discussed the generation of possible coreferent sets
(e.g., Fig. 4.b). Still, this is not sufficient to address our
resolution problem, since we also need to decide which are
the most probable coreferent sets. For example, in Fig. 4.b,
coreferent set III might be more probable than I and II. This
can be decided by also encoding additional important resolu-
tion information, primarily affinity between the instances of
a coreferent set and repulsion across two distinct coreferent
sets. We model this information through Conditional Ran-
dom Fields (CRFs) [25] — a graphical model that has been
successfully used by IE for handling entity resolution in a
principled manner. It captures the conditional distribution
of hidden/unknown variables given a collection of observa-
tions (i.e., known variables) [13]. This model can be used for
representing the relationships between the collection of ob-
servations and for generating a possible interpretation (i.e.,
an assignment over the unknown variables) by executing an
inference algorithm.

In our model, the observed variables are the RD instances
along with the canopies generated by these instances. Let
xi denote a particular coreferent set. Given the canopies,
and thus {C1, ..., Cm} and {O1, ..., Ok}, the domain of xi is
∪n

j=1alternatives(canopyj) ∪k
l=1Ol (i.e., the set of all possi-

ble instance partitions compatible with our derived canopies).
The unobserved variables indicate the compatibility within
and across x1, x2, . . .. More specifically, the (binary) vari-
ables denoted with yi indicate whether the instances in set
xi are coreferent, and the (binary) variables denoted with
yij indicate whether the instances in set xi are coreferent
with the ones in set xj . The set Y={yi, ..., yij , ...} contains
all unobserved binary variables that we wish to predict. In
addition, set E={ei} contains the canonical entities corre-
sponding to the collection of coreferent sets, i.e., {xi}.

Our proposed CFG graphical model employs factor graphs
as the associated graphical structure for the CRF [25] over
the canopies. A factor graph is constructed using observed
and hidden variables that represent the various resolution
scenarios. Conditional independence across variables is used
to decompose complex probability distributions into a prod-
uct of factors, each consisting of a smaller subset of variables.
In essence, having multiple factors for the same variable al-
lows us to express preferences of certain assignments with
respect to other assignments. We consider two factor types:

I. Affinity Factors - F a(yi, xi): measure the compati-
bility between the assignment to variables yi with respect to
a given instance set xi, i.e., if yi correctly indicates whether
the xi instances are coreferent.

II. Repulsion Factors - F r(yij, ei, ej): measure the
compatibility of the assignment to variable yij , i.e., coref-
erent given the canonical entities (i.e., ei and ej) of two
instance sets (i.e., xi and xj).

Definition 8. The conditional probability distribution given
the C’s and O’s is computed using the following formula:

P (Y, E | Λ, {O1, ...}, {C1, ...}) =

1

Z
×

∏
∀yi∈Y

F
a
(yi, xi) ×

∏
∀yij∈Y

F
r
(yij , ei, ej) (1)

where Z is the input-dependent normalizer and Λ a vector
containing the weight of each feature function. The two fac-
tor types have this form: FT (.) = exp

(∑
k λ

T
k φ(T, k, .)

)
with

φ being a positive real-valued feature function that equals to
φT
k (.) for F a and 1-φT

k (.) for F r. Symbol λT
k ∈Λ denotes the

weight for the corresponding function φ(T, k, .).

This model follows existing IE approaches, e.g., [31]. Each
affinity factor indicates if the corresponding instance set in-
deed contain coreferent instances, and each repulsion factor
indicates if two instance sets should be actually merged to-
gether. Note that this a particular graphical model in which
inference corresponds to graph partitioning. Each possible
partition of the instances creates a different set of Y vari-
ables, i.e., Y={yi, ..., yij , ...} as well as a different assign-
ment to those instantiated variables. Intuitively, this means
that the graph can have any arbitrary structure, i.e., the set
of factors depend on the particular entity assignment.

The collection of feature functions is associated with the
specific data domain on which we apply the model. Sec. 6
presents the feature functions, i.e., φ(T, k, .). The values of
all λT

k ∈Λ are determined through training.

Example 1. Fig. 5 gives a graphical illustration of the
resulting factor graph for one of the possible variable assign-
ments of the Fig. 4 canopies. There are two x variables:
x1=CA∪CB∪O1 and x2=CC∪O2 (i.e., Fig. 4.b-III). The
probability of the particular variable assignment is computed
using Eq. 1 and corresponds to entities ea and eb.

Def. 8 requires executing an inference algorithm over our
CFG graphical model. However, exact inference and learn-
ing in such models is known to be intractable (e.g., [31]).
To address the problem, in the following section, we in-
troduce an approximate solution, and we experimentally
demonstrate that our solution has no serious drawbacks on
the quality of created entities.

Canonicalization. Our model uses one canonical entity ei
for each of the detected coreferent sets Mi (Def. 3). Gener-
ating the canonical entity is performed through the canon-
icalization process. We consider a generic form of canoni-
calization, and thus different possible semantics that canon-
icalization must be able to capture.

The most typical method, which is followed by the ma-
jority of the existing resolution approaches [3], is to con-
sider a canonicalization process that uses one of the in-
stances of the coreferent set as the canonical entity, i.e.,:
cbasic |M 7→ ri, where ri∈M . We will refer to this process
as basic canonicalization. An example implementation for
the basic canonicalization is to return the instance that was
more recently included in the data.

Another, more complex than the previous methodology, is
to create canonical entities composed using data from all the
corresponding coreferent, as for example discussed in [28].
We will refer to this process as generic canonicalization.
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The processing is based on the average similarity between
the value of an instance r to the corresponding values of all
other instances r′∈M . It is computed as follows:

avg sim(r.ai,M) =
1

|M | ×
∑

∀r′∈M, r 6=r′

SIM(r.ai, r
′.ai),

where function SIM(r.ai, r
′.ai) gives the similarity between

r.ai and r′.ai. The value r′.ai that has the highest sim-
ilarity with r.ai is then incorporated in the canonical en-
tity. Thus, given the coreferent set M that contains dupli-
cate instances of the same real world object, the canonical
value for each attribute ai is retrieved by: cgeneric | M 7→
r, if ∀r, r′∈M avg sim(r.ai,M) ≥ avg sim(r′.ai,M).

4. HOLISTIC QUERY PROCESSING
Consider again the conditional probability distribution in

Def. 8. As already explained, inference corresponds to graph
partitioning, i.e., detecting which grouping of the instances
into coreferent sets gives the highest probability based on
Eq.1. This section introduces an approximate solution for
detecting the most probable coreferent sets. The process
starts from the canopies (Sec. 4.1) and derives the k best
coreferent sets by deciding the merges between Os and Cs.
This is achieved by deriving and using a simpler correlation
between the canopy subsets, i.e., absorb/detach (Sec. 4.2).
Each of these k best coreferent sets provides variable in-
stantiation of Y , which basically corresponds to defining
the structure of the factor graph. Over the resulting fac-
tor graphs we compute the overall probability. The process
also uses the query information to generate a partial instan-
tiation and assignment over the Y variables (Sec. 4.3) and
thus allows focusing only on situations that provide entities
that are also related to query results (Sec. 5).

Note that our query processing approach introduces two
distinct levels of approximation. The first is an approxima-
tion over the probabilistic model in order to estimate the
joint conditional distribution using a novel, more concise
graphical model structure (exploiting the canopies). The
second is a new approximate technique for performing in-
ference over our CFG model. Our proposed optimizations
(based on equivalent query rewritings) improve query per-
formance by significantly reducing processing time.

4.1 Generation of Canopies
Generating the canopies is a preparation step as it consid-

ers only the duplicated instances, without taking into con-
sideration the query information. As such, it is executed
only once, and the generated structures are updated only
when new instances are added in the specific relation. The
process follows the original canopy clustering algorithm with
an extension for considering C/Os.

The algorithm is as follows: First, we include in list S
all RD instances. We randomly select an instance r from
S and compute its similarity with all other instances from
S. Instances with a similarity higher than threshold t2 are
included in the canopy of r, and excluded from S when this
similarity is higher than t1. The idea behind this process is
that we detect two type of instances with respect to a specific
r: (i) instances we are confident that are coreferent with r
and as such we also do not need to continue comparing them,
and (ii) instances that might be coreferent with r, but as the
similarity is not high enough for a confident decision we need

Table 1: Meaning of canopy-related information.

a(Ci,Oj) = { Ci∪Oj } d(Ci,Cj) = { Ci, Cj }
¬a(Ci,Oj) = { Ci, Oj } ¬d(Ci,Cj) = { Ci∪Cj }

to continue comparing them. The remaining instances are
not similar to r and are thus ignored. The process results
in a set of Cs and Os (e.g., see Fig. 4.a).

4.2 Best Coreferent Sets
Given the generated canopies, we can now generate the

coreferent sets with the highest scores. Consider again Eq. 1,
and in particular the included product. The k best coref-
erent sets correspond to the k combinations for affinity and
repulsion factors that have the highest overall scores among
all possible combinations. Generating the k best coreferent
sets is achieved through four steps, which are described in
the following paragraphs.

I. Independent Canopy Partitions. The first step is
to partition the set of canopies into non-overlapping subsets,
i.e., canopies of the same partition have common instances,
but canopies of different partitions do not have a common
instance. Our algorithm bounds each partition to a set of
canopies, and thus also to a set of instances, i.e., the ones
contained in the canopies of the specific partition.

To detect the independent partitions, we consider an empty
set of partitions, and start processing each instance of ev-
ery canopy. We first retrieve the partition that contains the
specific canopy, and the partition that contains the specific
instance. There are three possible situations: (a) The in-
stance and the canopy are not yet placed in a partition, so
we create a new partition and include both of them; (b) Only
one of them is not placed in a partition, we thus include it
in the partition that other belongs to; and (c) The instance
is placed in a different partition than the canopy, let’s say
partitions a and b. In this case, we create another partition
in which we include the specific canopy and instance, and
also all instances/canopies from partitions a and b.

This step results in a collection of canopy partitions, which
allows us to process each canopy partition individually.

II. Canopy-related Information. Detecting the best
coreferent sets is based on canopy-related information, which
we generate using the Os/Cs groups. In particular, we con-
sider: (i) an absorb a(Ci,Oj) for each pair Ci and Oj from
the same canopy, and (ii) a detach d(Ci,Cj) for pair Ci and
Ok of canopyi and pair Cj and Ok of canopyj .

An a(Ci,Oj) represents that the instances of Ci must ab-
sorb the instances of Oj . A detach d(Ci,Cj) means that
the instances from Ci and Cj must not be merged together.
Table 1 provides the meaning of possible canopy-related in-
formation. Evidently, a(Ci,Oj) and ¬d(Ci,Cj) provide in-
formation about F as, i.e., we consider a xi with all Cs/Os
for all a(Ci,Oj) and ¬d(Ci,Cj) with common groups. Also,
¬a(Ci,Oj) and d(Ci,Cj) provide information about F rs, i.e.,
there is an F r for sets xi and xj with Ci∈xi and Oj/Cj∈xj .

Each absorb and detach is given a score. The score for
a(Ci,Oj) is the average similarity of the canopy’s center,
i.e., rc of Ci, with all the instances of the overlapping Oj .
The score for d(Ci,Cj) is the dissimilarity between the cen-
ters of the two canopies, i.e., rc of Ci with rc of Cj . The
particular similarities were computed during the creation of
the canopies and thus we do not need to perform any com-
putation but simply reuse the previous results.

As stated in Eq. 1, F a and F r use weighted real-value

222



features with F a considering all instances of the correspond-
ing xi and F r the two canopy entities for xi and xj . The
absorb/detach scores used in the current version of our ap-
proach provides an estimation, since these use similarities
that are actually part of the ones used for the F a and F r.
Incorporating other scores would require additional compar-
isons and increase the overall execution time.

The final score of the k best coreferent sets will be revised
during the next query processing phases.

III. Partition’s best coreferent sets. We now ex-
plain how to retrieve the best coreferent sets directly from
the canopy-related information created in the previous step.
The main idea is that each absorb/detach can be either in-
cluded in or excluded from a coreferent set, with the latter
meaning that we include its negation. The effect of including
the absorb/detach, or its negation, is to “append” the coref-
erent set with the corresponding absorb/detach result listed
in Table 1. Alg. 1 gives an overview of the process. It start
from the canopy-related information (algorithm’s input) and
removes absorb/detach at each step (line 9). The purpose
of the process, explained in the following paragraphs, is re-
moving absorb/detach (lines 5&7) such that the coreferent
sets are generated in decreasing order of probability.

Example 2. Consider again our example and more specif-
ically Fig. 4.a, which illustrates that for the particular data
we have canopy1 = CA∪O1∪O2, canopy2 = CB∪O1 and
canopy3 = CC∪O1∪O2. Given these canopies, we create ab-
sorb a(CA,O1), a(CA,O2), a(CB,O1), a(CC ,O1), and a(CC ,O2),
and detach d(CA,CB), d(CA,CC), and d(CB,CC).

One of the possible combinations for accepting/rejecting
the canopy-related information is: a(CA,O1); ¬a(CA,O2);
a(CB,O1); ¬a(CC ,O1); ¬a(CC ,O2); ¬d(CA,CB); d(CA,CC);
and d(CB,CC). It results in the following coreferent set:
M1=CA∪CB∪O1; M2=O2; and M3=CC . This corresponds
to graphical illustration III in Fig. 4.b.

It is easy to see that we can generate a large number of
coreferent sets by selecting which absorb/detach to include
as is or to negate. We are not interested in retrieving all of
them, but just the k with the highest score. To achieve this,
we follow an exhaustive search approach in which we use
the canopy-related information to first generate the possible
coreferent sets in decreasing score and then check whether
a generated coreferent set is “valid” based on the specific
canopy-related information. A coreferent set is not valid
when it contains an independent Ol while none of the Cjs
that participate in the same absorb with Ol (i.e., a(Cj ,Ol))
are not independent. The intuition behind this is that in-
stances between Cs of overlapping canopies have lower simi-
larity that instances between the an O and C of overlapping
canopies. It is thus senseless to not merge the O and C and
merge just the Cs. For example, in Fig. 4.a we cannot the
have the merge CA∪CB∪CC∪O2 but leave O1 independent.

Initially, we check all absorb/detach and negate it when
its score is less than 0.5. E.g., if a(CA,O1) has score 0.48
we will consider ¬a(CA,O1) with 0.52. The canopy-related
information (i.e., absorb/detach) is placed in a list I, sorted
according to score, from lowest to highest.

Generating coreferent sets in decreasing score is achieved
by negating only one absorb or detach from I. A similar idea
was used in the retrieval of linkage combinations from [9]. A
vital difference with our situation is that each node results in
a different outcome (in [9], two different combinations could

Figure 6: Node n2 was created by deleting PI[i]. We thus gen-
erate its children that correspond to deletion of n’s PI items with
locations i−1 until 0.

have the same outcome). Thus, the process we introduce
here visits only the required combinations.

The process is based on a tree structure with each node
corresponding to a partition of the instances. A node pro-
vides the absorb/detach from I that is included or excluded.
As such, the probability of a node P (ni) is the product be-
tween the scores of included absorb/detach and the com-
plement of the scores of the excluded ones. Each node has
two lists, list PI giving the locations of the I items that are
included and list NI the ones that are excluded. Initially,
i.e., root node, all items are included in the combination and
thus PI={0,...,|I|-1} and NI={}. To generate the descen-
dants of a node n, we use the PI and NI lists of node n and
exclude an item from PI and include it in the NI.

It is easy to show that a node has score less or equal to
the score (i) of its parent, i.e., P(n3)≤P(n1) in Fig. 6 and
(ii) of its left sibling, i.e., P(n3)≤P(n2), since sibling and
children nodes are different in just one item, the one with
the lower probability. Thus, generating the combinations in
a decreasing score is achieved through a depth-first visiting
of the nodes. Each time we visit a node we generate its
right sibling and its leftmost child. These nodes are included
in a list sorted by score. The processing always continues
from the highest-score node in the list. In the worst case,
we would need to visit all nodes of the tree with the total
number of nodes being 1 +

∑|I|−1
i=1

(∏i
j=1(|I| − j + 1)

)
.

Theorem 1. Let n be the node that was created by re-
moving the item at location i from its parent PI, i.e., PI
← PI \ {PI[i]}. We do not need to consider the children
of n that correspond to the deletion of the items with loca-
tions |PI|−1 until i−2 from PI since these combinations
are found as descendants of the left siblings of node n.

(Proof in the technical report)

Given the above theorem, we only generate the children
nodes of n that correspond to the deletion of the items with
locations i−1 until 0 from PI (illustrated in Figure 6). This
reduces the number of nodes we need to visit. In the worst
case the number of nodes we need to visit is now:

1 +

|I|−1∑
i=1

(∏i
j=1(|I| − j + 1)

i!

)
IV. Probabilities. During the previous steps we derived

the k best coreferent sets, with each coreferent set {M1, ...,
Mn} encoding a possible assignment for the coreferent vari-
ables Y . In this step, we apply the canonicalization process
on each included coreferent set M . This will provide an
assignment for the canonical entity variables in E.

The probability computation during this step corresponds
to the conditional probability distribution that was defined
and discussed in Def. 8. For computing this probability, we
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Algorithm 1: Retrieve the k best coreferent sets

Input: I: canopy-related information (i.e., absorb/detach),
k: number of results

Output: kbest: a set with the k best coreferent set
1 node←new Node(); node.PI←I; node.NI←{};
2 node.delpos←I.size(); // position of PI deletion
3 kbest←{}; max heap←{node};
4 while ( kbest.size()<k ) do
5 node←max heap.removeFirst();
6 kbest←kbest∪node;
7 for ( i=node.delpos-1 to 0 ) do
8 node child ←new Node(); node child.delpos← i;
9 node child.PI← node.PI / {PI[i]};

10 node child.NI← node.NI ∪ {PI[i]};
11 max heap←max heap∪{node child};

12 return kbest;

use the canonicalization process presented in Sec. 3. Note
that in the described query execution technique we always
assume that the generic canonicalization process is used.
The basic canonicalization process is easier to apply and
it requires less computational resources. This is further dis-
cussed with the algebraic optimizations introduced in Sec. 5.

During this step, we first apply the canonicalization pro-
cess over each coreferent M . Applying the generic canoni-
calization process initially computes the average string sim-
ilarity between the value of each instance r with the corre-
sponding values of all other instances. Since this step is part
of the query processing, we include the value in the canoni-
cal entity when we detect that this has the highest average
similarity and that it also satisfies the query conditions.

Each of the k best coreferent sets results in an instantia-
tion and assignment of the Y variables as well as an ei for
each Mi. The assignment of the Y variables is then used for
computing the overall probability, i.e., Def. 8. Recall that
each of the k best coreferent sets corresponds to a possible
world, as for example the one shown in Fig. 5.

4.3 Partial Assignment
As explained at the beginning of this section, we want to

reduce the query processing time using information from the
query. In particular, we use the canonical-entity condi-
tions (line 5, Fig. 3) to fix values within the resulting canon-
ical entities (step 1) and the corefer-instance conditions
(line 4) to fix the instances of the final entities (step 2).

Step 1 - Canonical-entity Conditions. The vari-
able denoted with E is the final set of canonical entities
for the coreferent sets generated for the RD instances. The
canonical-entity conditions are converted into a partial
assignment over E, i.e., variable assignments that satisfy the
query. The result is denoted with symbol Ep.

We consider the canonical-entity conditions of the query
as one expression and convert it into disjunctive normal form
(DNF). We thus have clause1 ∨ ... ∨ ... clausen. Each clausei
is equal to cond1∧cond2∧.... For relation RD, defined as tu-
ple 〈a1, a2, ...〉, then Ep =

⋃
{〈v1, v2, ...〉}, where each 〈v1,

v2, ...〉 corresponds to a clausek and

vi =

{
condj .value, ∃ condj ∈ clausek & condj .attr = ai
unspecified, otherwise.

Step 2 - Corefer-instance Conditions. We convert
these conditions into a partial assignment over the hidden
variables representing the coreferent between an instance set
(i.e., yi) or between two instance sets (i.e., yij). The result is

denoted with Yp. As the Y variables refer to instances, the
process for creating Yp involves converting the information
of the query condition, which specify the desired values for
the attributes, into instances.

As with canonical-entity conditions, we initially con-
sider an expression with the corefer-instance conditions
and convert it into DNF. Thus, we have clause1 ∨ clause2
∨ ..., and each element of the list is a conjunction of at-
tribute conditions, i.e., clausek=condi ∧ ... ∧ condn. The
next step, takes each element of this list and detects the in-
stances of RD that satisfy each of the attribute conditions,
thus condi={rj}. The next step creates all the possible com-
binations between the instances detected for each clause,
i.e., clausej=∧ri. The partial assignment for the corefer-
instance is the disjunction between all these clauses. It has
the following form: Yp=

∨
(
∧
ri).

Step 3 - Creating the Partial Assignment. Gener-
ating the possible worlds can be performed based on Ep and
Yp over the hidden variables E and Y . More specifically, the
possible worlds (denoted with symbol pwd) are:
pwd(Ep, Yp) = ∪{ 〈Y,E〉 | ∃ei ∈ E ⇒ ∃Ep.clause ∈ ei and (2)

∃yi ∈ Y ⇒ yi=true∧∃Yp.clause ⊆Mi}
The partial assignment can be seen as constraints that E and
Y must satisfy for being valid answers to the given query.
For this, in the rest of the document the terms partial as-
signment and constraints will be considered equivalent.

Example 3. Consider a query with a DNF canonical-
entity condition cond1∧cond2, where cond1 is surname
like “H%, Dr.” and cond2 is country = “USA”. Then, Ep

is {〈·, ·, ·, “Hill, Dr.”, ·, “USA”〉}. This means that we need
to find possible worlds with an entity containing such a tuple.
Consider now this is a corefer-instance condition. The
DNF is the same as with the canonical-entity conditions.
Detecting the instances satisfying each DNF condition gives:
{r4} for cond1 and {r2,r4} for cond2. Thus, Yp=(r4∧r2) ∨
(r4), meaning we need to find possible worlds with a coref-
erent set containing either r4 and r2, or just r4.

4.4 Complexity Analysis
The processing time for canopy generation depends on

the number of Cs and Os, which basically corresponds to
the resolution characteristics. The worst-time scenario is
O(|RD|2), occurring when each instance is placed in a sep-
arate C and the algorithm compares all instances between
them. The best-time scenario is O(|RD|), occurring when all
instances are in a single C. Rather unsurprisingly, real life
data do not correspond to such scenarios. We further dis-
cuss this in Sec. 6. Given the canopies, we generate the best
coreferent sets. The first step is creating the independent
canopy partitions, which has a complexity O(|RD|). This
is followed by the generation of canopy-related information
with complexity O(n), where n is the number of Cs and Os
that must be processed. Finally, the complexity of the best
coreferent set per partition is O(k · logk), where k is the
number of best coreferent sets we need to retrieve.

Efficient and scalability is achieved through two mecha-
nisms: (a) using canopies and their partitions, i.e., sets of
instances, instead of individual instances; and (b) retriev-
ing the variable assignments over the model using the best
coreferent sets algorithm.

5. QUERY PLANS & OPTIMIZATIONS
Let us now consider the RD

j relation. For processing
queries we must consider that it contains duplicates; hence
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we need to generate all possible entities. This is achieved
by applying the k best coreferent, denoted with bk, followed
by canonicalization, denoted with cf. The related conditions
(i.e., lines 4-5 in Fig. 3), are applied over the resulting re-
lations. For this we use the generated partial assignments,
i.e., Sec. 4.3. Thus, the resulting relations are given by the
following expression: L = σYp∧Ep ( cf [ bk ( RD

j ) ] )
As relation Ri is deterministic, we follow the traditional

process, which is a selection given the related conditions
(line 3 in Fig. 3). The join is performed between the relations
created from Ri and from RD

j . Over the resulting relation,
we apply a monotonic scoring function Fmin p/top k,attr,order

that keeps a subset of the entities. There are two options for
this scoring function: select the records with a probability
highest that the specified min p (line 8), or select the k
records that have the highest values for attribute attr in
ascending or descending order as specified by the given order
(line 7). The final operator is a projection for selecting the
attributes specified by the user (line 1). Thus, the overall
expression is as follows: π. ( F. [ L ./ ( σc [ Ri ] ) ] )

The most challenging issue of managing probabilistic data,
is the amount of data (i.e., size of relations) yielded through
the generation for the possible worlds of the instances in
RD

j . We are able to reduce the considered possible worlds
by generating the k best coreferent sets satisfying both Yp

and Ep. The rationale behind the use of Ep also here (and
not just in the process of Sec. 4.2) is that one cannot create
a canonical entity satisfying Ep when the instances used do
not satisfy Ep, i.e., if the user requests a canonical entity
with value vi for attribute ai then at least one of the in-
stances used for generating the entity should contain vi. We
denote this operator with bk,Yp,Ep .

Starting point of this process is the partial assignments,
Ep and Yp. In short, we first convert them into canopy-
related information, i.e., a set of absorb/detach conditions
I’. We then force the k best coreferent sets process (Alg. 1)
to treat them as obligatory elements. We achieve this by
not negating them and always including them as are in the
generated representations, i.e., Alg. 1 receives as input I\I’
and not I. The detailed process for creating I’ follows.

Consider again the partial assignments (Sec. 4.3). They
are a disjunction of clauses, i.e., Yp =

∨
clauseyi and Ep

=
∨
clauseej where clauseyi=∧ri and clauseei=∧(aj=vj).

A canonical entity would satisfy both of them if it satisfies
at least one of their clauses, i.e., clauseyi∧clauseej . All
such expressions can be derived by considering the possible
combinations between the clauses of Yp with the clauses of
Ep. Recall that each expression is a conjunction of instances,
and that we actually know the group (i.e., Ci/Oj) in which
each instance belongs. By replacing each instance with its
group, we derive the groups that should be merged in order
to create an entity that satisfies the given query conditions.
We consider only the Ci groups, so in case an instance is
part of an Oj group we instead use all Ci for which there
is an a(Ci,Ok). We denote the resulting expression with
symbol Y Eo

p and this has the form:
∨

(
∧
Ci).

The challenge here is to efficiently detect the correspond-
ing detach information to place as obligatory elements dur-
ing the k best coreferent sets process using Y Eo

p . This
is achieved by converting it into a graph traversal prob-
lem. To create the graph we use only the detach informa-
tion. More specifically, for each d(Ci,Cj) we create node Ci,
node Cj , and an edge between Ci and Cj . The probability

Figure 7: The generic and optimized query plans.

that the edge between Ci and Cj exists is [1-P(d(Ci,Cj))] ·
P(a(Ci,Ok)) · P(a(Cj ,Ok)). The probability that this edge
does not exist is P(d(Ci,Cj)) · [1-P(a(Ci,Ok)) · P(a(Cj ,Ok))].
The latter implies that the instances in Ci should be merged
into one entity, the instances in Cj should be merged into a
different entity, and the instances in Ok might either be in
one of those two entities or even in an a third independent
entity. Given this graph, we detect the paths satisfying the
Y Eo

p expression, i.e., connecting all required Ci. A path is
a set of detach information, which we then use to create I’.

Example 4. Consider having the absorb/detach of Ex. 3
with Yp=r4∧r2. Instance r2∈CA and r4∈CB, which means
that for satisfying Yp we need CA∪CB. We thus exclude
d(CA,CC) from the input I of Alg. 1 and consider always
¬d(CA,CC). This forces the generated best coreferent sets
to satisfy the given conditions.

Consider again the canonicalization process for each of the
k coreferent sets. For each coreferent set M it generates a
canonical entity by combining values from the instances of
M , and then verifies that a value satisfies the given query.
We can push the query conditions in the canonicalization
process and thus avoid processing that will be then ignored
because it’s results do not satisfy the query. To achieve
this, we use Ep and define the attribute values that should
be included in the canonical entities. These attribute val-
ues are excluded from the canonicalization process. This is
performed by operator cf,EP .

We present algebraic optimizations that rewrite the generic
query plan into optimized query plans that require less com-
putational resources (illustrated in Fig. 7).

A. Performing the join earlier. The optimization intro-
duced in A and B modify the original query plan to into:

π. [ F. ( L′ ./ N ) ], where (3)

L′ = cf,EP [ bk,Yp,Ep ( RD
j ) ] and N = σc ( Ri )

Executing the cf,EP and bk,Yp,Ep operators, i.e., best coref-
erent sets and computing probabilities, has a higher cost
when increasing the considered instances.

For some queries, we can reduce the number of instances
given to these operators by performing the join earlier, i.e.,
before the cf,EP and bk,Yp,Ep operators. These are queries in
which the selectivity of the distinct instances of N is higher
than the selectivity of RD

j instances satisfying Yp and Ep.
Thus, (in this case) performing the join between the N and
RD

j will give less instances to the cf,EP and bk,Yp,Ep op-
erators, and this reduces the overall execution cost. The
optimization is: L′ ./ N ≡ cf,EP [ bk,Yp,Ep ( RD

j ./ N ) ]
B. Basic Canonicalization Process. Using the basic canon-

icalization process means that analyzing the canonical-
entity conditions (Sec. 4.3) of a query (line 5, Fig. 3) in-
volves instances and not pairs between attributes and val-
ues. Thus, Ep is now a

∨
(
∧
ri). Since this is similar to

the information in Yp we consider the information from Ep

as part of Yp and discard Ep from query processing. We
therefore have an optimization with two modifications: (i)
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Table 2: Statistics for the collections with the synthetic data sets as well as for the three real data sets.

C-1 C-2 B-1 B-2 B-3 B-4 A-1 A-2 A-3 A-4 A-5 Cora CiteSeer DBLP+ACM
size (#instances) 20.000 20.000 11.000 8.800 3.900 20.000 16.000 12.000 8.000 2.000 1.504 1.031 4.671
duplic. vs. clean 10% 6% 10% 10% 8% 7% 6% 4% 107% 142% 166%

max inst. per entity 7 6 7 6 5 4 7 21 21 2
number of entities 18.528 19.048 18.528 10.209 8.188 3.647 18.528 15.034 11.515 7.836 1.935 862 558 2.552

canopies 17.739 18.115 17.739 9.765 7.803 3.480 17.739 15.096 10.953 7.398 1.825 816 399 2.436
areas 262 171 262 145 102 47 262 180 116 53 26 46 20 138
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the cf,EP operator is no longer needed; and (ii) the bk,Yp,Ep

is converted into bk,Yp because the information from Ep

is now transferred into Yp. The resulting optimization is:
L′ ./ N ≡ [ bk,Yp ( RD

j ./ N ) ]
C. Iceberg Queries with Alternative Attribute. The scoring

function F. can be based either on sorting the resulting en-
tities according to probability, or on sorting them according
the values of a specified attribute. For being able to perform
this operator when this is based on the entity probabilities
we must first execute the generic query plan. However, this
is not needed for being able to perform this operator when
this is based on another attribute. This means that we can
execute the process over a smaller number of entities, which
will reduce the total execution time.

To incorporate this modification in the query processing,
we introduce a modified version of operator for canonical-
ization, i.e., cf,Ep . More specifically, this operator now also
includes the functionality of the F. operator. The new op-
erator, denoted with cf,Ep,F., first selects the k records that
have the highest values for attribute attr, sorted either as-
cending or descending according to the query, and then ex-
ecutes the process only over these entities.

6. EXPERIMENTAL EVALUATION
We now present the evaluation results. All experiments

were executed on a single core of an Intel Core i7, clocked at
2.5GHz, and used a maximum of 1GB memory. Data was
stored in MySQL 5.6, maintained on a 5400rpm HDD.

Data sets. We used three data sets with real publica-
tions: (i) Cora, which is typically used to evaluate resolu-
tion techniques; (ii) CiteSeer used in the Alchemy project
[1]; and (iii) DBLP+ACM from a recent Entity Blocking
survey [19]. We also used synthetic data to study the fol-
lowing characteristics: (A) maximum number of coreferent
instances; (B) percentage of duplicated vs. clean instances;
and (C) size, i.e., number of instances. We used the data
generator [11] to create clean and duplicated instances (us-
ing misspellings over attributes and values, abbreviations,
and permutations). We then created various collections
of data sets, with each collection having a fixed value on
one of the three characteristics and an increased number
for the other two. Table 2 shows data set statistics while
http://www.softnet.tuc.gr/̃ ioannou/data.html gives access
to the synthetic data and the generator’s configuration.

Queries. We created queries by converting a randomly

selected attribute-value pairs into conditions. Depending on
the experiment, queries contained a corefer-instance, a
canonical-entity condition, or both conditions. Each of
the following evaluations used 500 queries.

Feature Sets. For the features of Eq. 1, we followed [29]
and used real-value and boolean-value. The real-value fea-
tures correspond to the TFxIDF cosine similarity between
the same attributes of two publications, i.e., (i) titles, (ii)
authors, and (iii) venues. Aggregating over a set of publica-
tions means aggregating the above results to all pairs in the
set, i.e., considering the (i) average of their results, (ii) maxi-
mum result, (iii) minimum result, and (iv) number of results
that are above a threshold. The boolean-value features are
based on testing whether there is a full match between the
same attributes of two publications, i.e., (i) titles, (ii) dates,
(iii) venues, (iv) authors, (v) page numbers, (vi) volumes,
and (vii) publishers. Aggregating over a set of publications
includes taking the (i) average number of times the feature
is true/valid, (ii) testing whether the majority results are
true, and (iii) testing whether the minority results are true.
The values of all λT

k ∈Λ were determined through training
by randomly selecting 5% from the records of each data set.
Training requires 550 msec for A1 (i.e., the largest data set).

1. Existing Methodologies. Existing approaches do
not support the proposed query syntax (Sec. 7). To rem-
edy this, we compare against methodologies closely related
to the processing of our approach and more specifically on
clustering techniques: (i) GAC-CanopyBased [16] is a
greedy agglomerative clustering over the results returned by
canopy clustering; (ii) MRCL-Standard [20] corresponds
to a naive Bayes classifier in which each feature contributes
independently to the overall probability; and (iii) MRCL-
Collective [20] performs simultaneous inference of all can-
didate matching pairs (modeled using CRFs) while allowing
information to propagate based on relationships.

These three methodologies return the data partitioned in
clusters and the instances in each cluster correspond to a
different object, i.e., the solution with the highest probabil-
ity. We simulate this behavior by the following process: We
start from a list with all publications and issue one query
for each publication in the list. This is an iceberg with k=1
and a canonical-entity condition for the publication’s ti-
tle. This publication along with all returned coreferent pub-
lications are removed from the list. The final resolution
solution (i.e., clustering of the publications) occurs when
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Figure 11: Results of the scalability experiments.

the list is empty. Given this solution we check the decision
of each publication pair and measure (as in [16]): precision
as the fraction of correct pairs among all pairs of publica-
tions found to be coreferent; recall as the fraction of correct
pairs among all pairs of publications found as coreferent; and
f-measure as weighted average of the precision and recall.
Precision, recall and f-measure of the different approaches
are: our approach 0.75, 0.87, 0.81; GAC-CanopyBased [16]
0.74, 0.97, 0.84; MRCL-Standard [20] 0.74, 0.92, 0.80; and
MRCL-Collective [20] 0.84, 0.91, 0.87. The results indi-
cate that our approach has similar effectiveness as GAC-
CanopyBased and MRCL-Standard. MRCL-Collective has
higher effectiveness but this is a specialized approach that
focuses on collective resolution. Although this evaluation
allowed us to compare effectiveness, we need to note that
our capabilities are beyond clustering (Sec. 1).

2. Accuracy of Results. Accuracy depends on the
resulted coreferent sets as well as canonical entities. The
former is directly measured using the instances placed in
the coreferent sets with respect to the ones included in the
ground truth. Thus, we compute the number of instances
that are: (i) correctly placed in the coreferent set, (ii) miss-
ing from the coreferent set, and (iii) incorrectly placed in the
coreferent set, i.e., belong to another set. Fig. 8 reports re-
sults over Cora. As shown, for threshold queries with proba-
bility 0.5 to 0.9 a total of 84% instances are correctly placed
in the coreferent sets. Decreasing the probability reduces the
instances correctly placed in the coreferent sets, i.e., 1.22%
between probabilities 0.5 and 0.7. This is an expected be-
havior, since decreasing the probability forces the approach
to return more answers that might include less accurate or
incomplete results, i.e., instances are missing from the coref-
erences. The figure also includes iceberg queries with k being
2, 3 and 4. The results indicate high accuracy, since 84%
percent of instances are placed in the correct coreference
sets (i.e., considering top-2). As expected, quality slightly
reduces as the value of k gets larger.

3. Real Data Sets. We also examined accuracy on
other data. Fig. 10 reports accuracy for all real data sets.
As shown, results have the same behavior, e.g., accuracy
slightly reduced when probability goes from 0.9 to 0.7. We
also notice better results for DBLP+ACM, e.g., 0.02 for
top-1. This occurs as DBLP+ACM has a maximum of 2
coreferences; much lower than the 21 of Cora and CiteSeer.

4. Execution Time. Fig. 9 reports results for thresh-
old queries over Cora with a probability 0.5, 0.7 and 0.9.
As shown, our approach has an average execution time of

16 msec. Reducing the probability increases the execution
time, e.g., 15 msec for probability equal to 0.9 and 17 msec
for 0.7. This time difference occurs due to the increased
number of data/results that the approach needs to deal
when reducing the probability. The average execution time
of iceberg queries is similar, i.e., 16 msec. Increasing k im-
plies handling a larger number of data and results, and thus
slightly increases the execution time.

5. Instances in Entities. As shown in Fig. 8, both
iceberg and threshold queries have a high percentage of
correctly placed instances in coreferent sets when the en-
tities have a very small number of instances. E.g., thresh-
old queries with probability 0.7 have 90% correctly placed
instances when entities have 1 instance and 88% for 2 in-
stances. This percentage is reduced when increasing the
number entity instances (for both query types). Execution
time, Fig. 8&9, is increased when entities have more in-
stances. E.g., for threshold queries and p≥0.7 we have 2msec
for entities with [13-20] instances than with [9-12].

6. Canopy Generation. The generation is an offline
process based on random instances (Sec. 4.1). Thus, each
generation creates different canopies. Our evaluations showed
that canopy generation takes around the same time, with
195 seconds over Cora (avg. over 5 executions). Also, query
processing over different executions of this process (i.e., dif-
ferent canopies) showed that the efficiency and effectiveness
results are only slightly different. We have also conduct a se-
ries of experiments studying performance when using differ-
ent thresholds, i.e., reducing and increasing the two thresh-
olds. These showed that small modifications (e.g., [0.1-0.5])
have no significant differences on performance. This is ex-
pected since one of the benefits of our approach is achieving
more accurate results by maintaining and combining deci-
sions/results of the tasks involved in the resolution process.

7. Algebraic Optimizations. The generic canoni-
calization imposes additional execution time over the ba-
sic canonicalization, which was measured to 3 msec when
less that 10 instances are involved and 5 msec for less than
21 instances. This is quite low and does cause a consider-
able overhead, even when queries require the execution of
a number of canonicalizations. We also investigated the ef-
fect of performing the join earlier and detected that this
optimization is especially beneficial when queries contains
conditions over Ri that select a small number of instances.
Time was reduced by a factor of 5 for DBLP+ACM and 10
for Cora (differences in accuracy are less than 0.02). Cora
has a higher benefit since its entities are composed by a
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larger maximum of instances. Using the optimization for
sorting by an attribute other than probability showed that
time was reduced by a factor of 3 for DBLP+ACM and 2
for Cora (with negligible accuracy differences).

8. Scalability. For these experiments we used the syn-
thetic data. Fig. 11.a&b show accuracy and execution time
for collection A and Fig. 11.c&d for collection B. The results
show that increasing 10 times the data set size along with
2.5 times the number of duplicates or 2 times the instances
per entity, causes a 4 times increment in the execution time
with 0.1 accuracy reduction. This behavior mainly results
from using canopies (instead of individual instances) as well
as the algorithm for generating best coreferent sets. C-1 and
C-2 have 20000 instances. From Fig. 11.e&f, we see that C-2
has higher execution time, and, when more than 5 instances
in entities, a lower accuracy. This is caused by the higher
number of entities in C-2 than C-1 (Table 2), which forces
the algorithm to generate and process more canopies.

7. RELATED WORK
We now discuss recent resolution methods and mecha-

nisms related to extraction tasks and probabilistic models.
Statistical Reasoning within Databases. Following

the IE community, recent papers [27] and [4] introduced
methodologies that incorporate extraction tasks directly into
the relational query processing; thereby achieving interac-
tion between tasks that were previously performed sequen-
tially and in isolation. The suggested approaches [27, 4],
perform segmentation through in-database inference during
query processing, typically using linear-chain CRFs. In con-
trast to the separate execution of the segmentation task and
query evaluation, their combination improved the overall ef-
ficiency of processing, accuracy of results, and enhanced the
expressivity of queries (e.g., querying the results with the
higher probabilities and not just the highest one). We focus
on multiple extraction tasks and executing joint inference
over a (possibly large) model that represents these tasks.

Joint Probabilistic Inference. The goals of our work
are closely related to recent approaches focusing on joint
probabilistic inference. The DeepDive project [23], considers
the problem of processing unstructured sources for populat-
ing structured databases. Random variables and their corre-
lations are modeled using factor graphs. A previous version
of the project, i.e., Tuffy [17], focused on variables assigned
values using one of their possible labels and a bottom-up ap-
proach for the grounding combined with in-memory search
and partitioning for scaling execution. The DeepDive model
is more similar to our model. It supports boolean variables
with each possible world being a particular assignment of
the variables and the probability of each world based on the
weights of factor functions. Our work goes beyond this. It
(i) incorporates two extraction tasks, which covers a larger
portion of the IE pipeline; (ii) handles the more complex
model that is generated by efficiently considering not only
the possible worlds arising from different variable assign-
ments over factor graphs as DeepDive but the worlds over
the combination of factor graphs with canopy clustering; and
(iii) computes inference over a large class of SQL queries.

Tuffy and DeepDive are based on / related with Markov
Logic Networks; a more expressive model. With respect
to related work in this area [21], we are able to retrieve
the most probable variable assignments and not just the
one with the highest probability. Also, our technique incor-

porates mechanisms for efficiently detecting these variable
assignments (note that Tuffy has mechanisms with similar
goals). In addition, the followed approach provides advan-
tages by following relational database mechanisms, such as
the performance benefits from the algebraic optimizations.

Incremental processing is another contribution of the re-
cent DeepDive publications [23]. It is achieved by techniques
incorporated in the grounding and inference phases in order
to enable incremental maintenance that will influence both
the output data as well as output probabilities. Our current
work focuses on the data model and query processing; we
plan to study this aspect in the next steps of our work.

Efficiency & Scalability. One methodology is by scal-
ing the inference process. For instance, Elementary [18] em-
ploys specialized inference algorithms and [30] sampling but
instead of generating the possible worlds from scratch it uses
MCMC to hypothesize modifications to worlds and executes
the query over the resulting hypothesized worlds. Our ap-
proach uses approximate inference based on substructures,
which detects the k best variable assignments and then ex-
ecutes inference on the resulting factor graphs. This means
that our approach’ scalability can be further improved by
scaling the inference process and even by adjusting and in-
corporating existing methodologies (e.g., [30]).

The area of probabilistic databases has also related mech-
anisms. In particularly, partitioning separates data into a
series of groups that are then combined to generate the pos-
sible worlds [2, 22]. Our technique works on a more complex
model since our groups (i.e., canopies) are not disjoint.

In addition, there are approaches executing queries di-
rectly on the representations following different materializa-
tion strategies as in MauveDB [7] or even without material-
ization as in FunctionDB [26]. MauveDB and FunctionDB
focus on the particular aspect whereas our technique just
builds on the basic idea of this mechanism.

Another option with respect to scalability is incorporating
techniques introduced for processing large data sets. Sug-
gestions in the context of resolution include blocking mech-
anisms, i.e., partitioning the data into independent blocks
and comparing only the ones inside the same block [6, 12,
28]. In this work, we build on canopy clustering that par-
titions the data into overlapping blocks [16]. We basically
reduce the overall execution process by generating substruc-
tures of our model through canopy clustering. To the best of
our knowledge, this is the first time that canopy clustering
has been used in such a combination with graphical models
(both in IE and DB methodologies).

8. CONCLUSIONS & FUTURE WORK
We introduced holistic query processing over IE pipelines

with special operators for retrieving resolution information.
We also defined canopy factor graphs and introduced an
approximate technique for processing queries as well as op-
timizations that cut across the integrated tasks. We verified
effectiveness and scalability through an extensive evaluation.

This work revealed additional challenges worth investigat-
ing. The first is incorporating additional extraction tasks,
especially segmentation, which requires extending the model
and query processing. An additional challenge is enhancing
query expressivity, with a final goal being the generic SPJ.
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[4] F. Chen, X. Feng, C. Ré, and M. Wang. Optimizing sta-
tistical information extraction programs over evolv-
ing text. ICDE, pages 870–881, 2012.

[5] W. Cohen, P. Ravikumar, and S. Fienberg. A compari-
son of string distance metrics for name-matching tasks.
In IIWeb, 2003.

[6] T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust
record linkage blocking using suffix arrays. In CIKM,
pages 305–314, 2009.

[7] A. Deshpande and S. Madden. Mauvedb: supporting
model-based user views in database systems. In SIG-
MOD, pages 73–84, 2006.

[8] X. Dong, A. Halevy, and J. Madhavan. Reference rec-
onciliation in complex information spaces. In SIGMOD,
pages 85–96, 2005.

[9] E. Ioannou and M. Garofalakis. Query analytics
over probabilistic databases with unmerged duplicates.
TDKE, 27(8):2245–2260, 2015.

[10] E. Ioannou, W. Nejdl, C. Niederée, and Y. Velegrakis.
On-the-fly entity-aware query processing in the pres-
ence of linkage. PVLDB, 3(1):429–438, 2010.

[11] E. Ioannou, N. Rassadko, and Y. Velegrakis. On gen-
erating benchmark data for entity matching. JoDS,
2(1):37–56, 2013.

[12] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage
in large data sets. In DASFAA, pages 137–146, 2003.

[13] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In ICML, pages 282–289, 2001.

[14] A. McCallum. Information extraction: distilling struc-
tured data from unstructured text. ACM Queue,
3(9):48–57, 2005.

[15] A. McCallum. Information extraction, data mining and
joint inference (tutorial). In KDD, page 835, 2006.

[16] A. McCallum, K. Nigam, and L. Ungar. Efficient clus-
tering of high-dimensional data sets with application to
reference matching. In KDD, pages 169–178, 2000.
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