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ABSTRACT
In order to democratize data science, we need to fundamentally
rethink the current analytics stack, from the user interface to
the “guts.” Most importantly, enabling a broader range of users
to unfold the potential of (their) data requires a change in the
interface and the “protection” we offer them. On the one hand,
visual interfaces for data science have to be intuitive, easy,
and interactive to reach users without a strong background in
computer science or statistics. On the other hand, we need to
protect users from making false discoveries. Furthermore, it
requires that technically involved (and often boring) tasks have
to be automatically done by the system so that the user can
focus on contributing their domain expertise to the problem. In
this paper, we present Northstar, the Interactive Data Science
System, which we have developed over the last 4 years to ex-
plore designs that make advanced analytics and model building
more accessible.
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1. INTRODUCTION
To truly democratize Data Science, we need to fundamen-

tally change the way people interact with data. Astonishingly,
the interfaces people use to analyze data have not changed
since the 1990s, and most analytical tasks are still performed
using scripting languages and/or SQL. Of course, there have
been fashion trends in the choice of programming language
(e.g., from PERL to Python), algorithms (e.g., from neural nets
to statistical learning and back to neural nets), and database
technology (SQL to NoSQL to Not Only SQL). Yet, people still
interact with data primarily through writing scripts and SQL-
like languages, with up to hour-long wait times for results.
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We argue that we should stop holding onto the past; rather,
we should start designing systems for how Data Science should
be done 10 years from now. With Northstar1, a system for
interactive Data Science, we’ve tried to do exactly that for the
last four years. Perhaps surprisingly, some aspects of our vision
for the system have been inspired by movies such as ”Minority
Report” and the newer James Bond films. All of these movies
feature highly collaborative visual environments with touch
(and pen) interfaces for analyzing data; you see nobody coding
in Python. With Northstar, we had a very similar goal: to
provide a highly collaborative visual Data Science environment
based on a touch and pen interface, and simplify its use so
much that domain experts who are not trained in statistics or
computer science can use it without any help.

At the same time, we wanted to use hardware that is already
available and not wait until holograms actually become reality
(though, we were really excited about HoloLens [76]). We
therefore settled on interactive whiteboards – specifically, the
Microsoft Surface Hub – as our core target platform. Inter-
active whiteboards are essentially large multi-touch TVs, but
often with highly reduced lag time and better resolution, which
provide a real alternative to whiteboards. Consequently, we
were not shocked that Microsoft struggled to fulfill the demand
for the Surface Hub [111], nor did it surprise us that other tech
companies, such as Google, followed suit and now also offer
their own interactive whiteboard solutions.

So far, interactive whiteboards are just better conferencing
systems, but they have the potential to be much more. We
want to put them at the center of every meeting that involves
numbers, from discussing sales figures to better understanding
the customer base, and even to building predictive models. We
envision a collaborative environment where domain experts and
data scientists can work together to arrive at initial solutions
during a single meeting – solutions which can then, if neces-
sary, be refined offline. This is in stark contrast to the current
dreadful way that data scientists and domain experts interact:
meetings after meetings to find a common base before real
progress is first made. Consequently, to foster collaboration
and results during a meeting, the system has to provide a vi-
sual interface, because co-programming Python with a CEO is
simply not an option. Furthermore, we want to enable domain

1Previously, it was named Interactive Data Exploration System
(IDES), but this name no longer seemed adequate since we
added significant support for model building.
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Figure 1: Illustration of Vizdom accompanying the use case described in Section 2. (1a) Example of progressive visualiza-
tions. (1b) Example of a brushing operation initiated by putting two visualizations close to each other. (2a) Example of a
frequent itemset operator that is filtered by a selection in the visualization in the top right area. (2b) Operators can also serve
as filters for downstream visualizations. Dashed connection lines represent a NOT operator. The bottom left visualization
is filtered to everything BUT the item selected in the operator. (3a) Example of a prediction operator that uses Northstar’s
automated ML capabilities. (3b) Visualizations can be used as filters to subset the data a prediction operator works on. (3c)
Users can choose to transfer long-running prediction operators to an offline mode if more precision is desired.

experts to build models on their own without the help of a data
scientist or within the meeting room setting. Thus, the user
experience on a domain expert’s laptop should be similar to that
on an interactive whiteboard and feature a virtual data scientist,
who watches over the process and prevents any major mistakes.
Interestingly, by putting the user experience first, we not only
found that existing systems do not work in this setup, but we
also ended up designing a system very different from one we
would have created using a systems-first approach. Today, we
already have several pilot deployments of Northstar in industry
and academia, among them Adobe and IGT.

The main goal of this system paper is to provide an overview
of Northstar and explain the rationale behind its design, as well
as outline interesting challenges, solutions, and future work for
designing the next generation of Data Science systems, with
the goal of eventually truly democratizing Data Science.

The remainder of this paper is organized as follows: After
a motivating use case (Section 2), we provide an overview
of Northstar (Section 3), and afterward discuss the different
components of Northstar in more detail (Section 4 - 8). Fi-
nally, we discuss related work (Section 9) and future directions
(Section 10), before concluding the paper (Section 11 & 12).

2. A MOTIVATING USE CASE
To motivate Northstar and illustrate its power, we present an

introductory use case of how we envision Northstar being used.
Throughout this description, we refer to parts of Figure 1.

Pete, a product manager, and Dana, a data scientist, both
work at a large software company that offers various produc-
tivity tools through a subscription-based model. The company
has recently released a new product, XYZ, and Pete has noticed
that it’s not meeting their expectations. More specifically, it
seems like the churn rate (i.e., the numbers of customers who
stop their subscription) for XYZ has been increasing steadily.

Pete asks Dana to meet with him to investigate the issue
collaboratively and explore how customers are behaving. They
start up Vizdom, the front end of Northstar, on an interactive

whiteboard (see also Figure 2) in one of the meeting rooms and
start out with a few data exploration queries. (1a) For example,
they plot the churn rates of other products and find, that the
overall trend for XYZ indeed looks worse. (1b) Using Vizdom’s
brush and normalization features, they follow up by looking at
XYZ’s user demographics to see if particular subpopulations
(different age groups, in the example) of users are more likely to
stop their subscriptions. They conclude that no particular group
of users shows any interesting trends. All of these visualizations
are computed and refined progressively. Despite their large data
set, Dana and Pete see near-instantaneous results for all their
interactions, allowing them to explore many different questions
in a short amount of time and without losing focus on their
current train of thought.

Dana suggests investigating interactions between different
tools. (2a) She brings up a frequent itemset operator in Vizdom,
inputs ”products used,” and filters it to include only users who
have used XYZ; they observe that users commonly use XYZ in
combination with other company tools. (2b) Pete has a hunch
and selects all the users using XYZ together with ABC. He has
long suggested that the overlap in functionality between the
two tools is fairly significant and that they might compete with
each other. Looking at the churn rate for this subpopulation
and comparing it to the overall population of users who use
XYZ, they see that there is a noticeable difference: users who
use both tools are more likely to end their subscription than
users who do not. Vizdom’s filter functionality supports the full
power of boolean queries. In the example, Pete uses a gesture to
produce a NOT operator, represented by the dashed connection
line. Pete writes a note: he wants to follow up with his team
and discuss ideas for making the two tools more distinct.

After exploring the data, our two protagonists decide to be
more proactive and install measures to reduce the number of
future subscription cancellations. In the past, they had good
success with sending coupons to customers. They think adding
a new customer relation workflow that automatically sends this
coupons to users they are about to loose could help.
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(3a) To check how feasible this is, they use Vizdom to build a
model that predicts, given all available data, if a particular user
is likely to cancel their subscription in the future. The system
goes off and initiates an automatic model search that validates
its results by splitting the data into various training and testing
folds. Since this operation is again done progressively, Pete
and Dana can see after just a few seconds that the system found
a model that does fairly well on this task (i.e., F1-Score = 75%).
Pete is not an expert in machine learning, so Dana toggles the
view to a confusion matrix that shows the detailed performance
of the best model the system has found so far. Pete wants some
more details, so they inspect the model in more depth. Among
other things, they can inspect different training testing splits,
see the predictions for different user sub-populations, or look at
attribute-based decision boundaries. In doing so, Pete notices
that one of the top decision criteria is whether a customer
is a student. That seems fishy to Pete. Given his domain
background and experience, he knows there is high fluctuation
among students. They often cancel their subscriptions at the
end of a semester then sign up again at the beginning of the
next. (3b) He asks Dana to exclude this population of users
from their model. The system restarts its model search and
Pete and Dana see that the overall performance is a bit worse
now, but Pete thinks it’s better to exclude those users to avoid
sending unnecessary promotions.

They decide that the workflow is reasonable and plan to
deploy it into the production environment. (3c) Dana puts the
ongoing model search into offline mode. The system will keep
searching for and improving models that solve this problem
and will notify Dana of the results after a specified time. At
that point, Dana can export the best model the system found in
Python and hand it off to one of her team members to set up
this new customer-relations workflow with some A/B testing.
After a few weeks, Dana and Pete reconvene and use Vizdom
again to analyze if this prediction model worked well and if
sending these promotions affected the churn rate.

3. Northstar OVERVIEW
Putting the targeted user experience first, as sketched out in

the previous section, led us to a very different system design
than a systems-first approach would have. In this section, we
first discuss some of the key realizations that influenced the
system design before presenting the overall system architecture.

3.1 Key Requirements for Designing an In-
teractive Data Science System

Over the course of the project, we conducted several user
studies [113, 115, 114], which guided our system design to
address the aforementioned use case. While some of the real-
izations appear to be trivial in hindsight, they were not when we
started. In the following, we outline some of our key findings
during the course of the project.

(1) Results have to be approximate: Results for any opera-
tion, including machine learning, have to return in seconds, if
not milliseconds. Anything else disturbs the user’s experience,
leading to fewer discoveries [69, 113] and causing domain
experts to walk away, saying, “better to do that offline.” Unsur-
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Figure 2: Northstar architecture overview

prisingly, that implies that results have to be approximated, as
it is otherwise often impossible to return answers fast enough.

(2) Outliers matter: While a lot of work in approximate
query processing disregards the importance of outliers, we
found them extremely important. Users have a tendency to
explore anything that stands out – the most valuable customers,
records with data errors, the top-k sold products, etc.

(3) Progressive results are often better than error bars:
While the first version of our interface featured error bars, we
now support them only as an option for advanced users. As
other studies have already shown [23], error bars are often mis-
interpreted by users or simply ignored in the first place. We
found that progressive results, which are continuously updated
in the background until they converge on the complete answer,
provide the user with a much better experience. Most impor-
tantly, we found that fluctuations in the visualization help the
user to better understand how reliable the approximation is, and
the guarantee that the result will eventually converge provides
additional confidence.

(4) Connect & explore over legacy systems: Companies
often have a large landscape of legacy systems, from various
database installations (Oracle, DB2, Postgres, etc.) to dis-
tributed filesystems (Hadoop, EMC, etc.), which hold most of
their data and are extremely hard to change. Therefore, a key
requirement is that a new analytics system has to seamlessly
integrate with the existing infrastructure and that a user can
simply connect to a data source and start exploring without any
time-consuming pre-processing steps.

These requirements influenced one of the most important de-
sign decisions for Northstar; instead of creating a new database
system which replaces existing DWHs (e.g., as proposed in
[106, 107]) to better support Interactive Data Science (IDS), we
decided to design an accelerator, which sits on top of DWHs,
filesystems, etc., and essentially functions as a giant intelligent
cache for the data source.
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(5) Visualizations are not like SQL queries : The work-
load created by visualization systems is very different from
what TPC-H and TPC-DS make us believe analytical work-
loads look like. A single visualization often requires more than
one query, and even simple visualization are often extremely
hard to express as SQL queries [35]. For example, histograms
require binning the data into buckets and then performing an
aggregation per bucket, which is surprisingly complicated to
express in SQL and not well supported by existing DBMSs.

(6) Visualization can hide information: For months, we
demonstrated Northstar’s unsupervised learning feature using
MIMIC II [77], a data set about critical care patients. Using
frequent itemset clustering, we showed that we can quickly find
a large difference between the common diseases of young vs.
old people. However, just by chance, one of us inspected the
data more closely and found that the age 0 was used for patients
whose age was unknown. When those records were removed,
the difference in the clustering wasn’t that pronounced anymore,
indicating that patients with missing patient information also
have different diseases. This simple discovery led us down a
rabbit hole of research topics to investigate techniques that can
automatically point out potential problems in an analysis, from
the Simpson Paradox to Multiple-Hypothesis Error.

(7) Taking a holistic view of Data Science is important:
Users frequently want to switch between looking at data (ex-
ploring it), transforming and analyzing it (building models,
running stats). For example, with the MIMIC 2 data set, we
wanted to test if patients with a fever also have a higher heart
rate. We therefore quickly created a statistical test in our inter-
face, but then noticed that the temperature of some patients was
reported in Celcius and not Fahrenheit. Thus, a user should be
able to quickly write a UDF to convert Celsius to Fahrenheit
and rerun the whole analysis with the corrected input without
ever switching to different tools.

3.2 Overall System Architecture
We designed Northstar specifically to address the IDS re-

quirements, and also kept redesigning it as we came across
new ones. For example, we first designed Vizdom with the
goal of taking advantage of our existing analytics framework,
Tupleware [24, 25]. Tupleware is in many aspects similar to
Spark, but was designed to run on small high-performance clus-
ters and was able to achieve one to three orders of magnitude
better performance. However, while our initial belief was that a
fast execution engine is key to achieving interactivity, it turned
out that query approximation and progressive results and the
ability to quickly change the analytical workflow based on user
interaction are far more important and often contradict the goal
of code compilation. Interestingly, the same observation was
recently made by the HyperDB team. Because of its excellent
query execution performance, HyperDB was sold to Tableau
and now is primarily used as a backend for Tableau’s visual
front end. However, in a recent publication [61], the authors
primarily describe how to avoid code generation for the often
short running queries generated by the visual front end. In con-
trast, we decided to build IDEA, the interactive data exploration
accelerator, and now only use Tupleware to pre-compile com-
plex operations. Furthermore, during the turn of the project,
Python became increasingly popular as the main language of

choice for data scientist. Thus, it became pretty clear that we
can not rely on a single execution engine, but rather need to be
compatible with other frameworks.

The resulting system architecture is shown in Figure 2. The
Vizdom front end provides a visual data exploration environ-
ment specifically designed for pen and touch interfaces, such as
the Microsoft Surface Hub. Figure 2 includes an actual picture
of the Microsoft Surface Hub in our lab running Vizdom to
explore a medical data set. A demo video of Vizdom can be
found here vimeo.com/139165014. Currently, Vizdom
connects to IDEA using a standard REST interface, which in
turn connects to the data sources using the appropriate proto-
cols (e.g., ODBC). These data sources can include anything
from legacy data warehouses to raw files to advanced analytics
platforms (e.g., Spark, Hadoop).

In turn, IDEA acts as an intelligent cache and streaming
approximation engine that uses Tupleware [25, 24], Python,
Spark or other engines as runtimes for more complex analytics
tasks. To inform IDEA about which operations are available
in which runtime, the primitive library provides a standard-
ized API and metadata information about them. For the ML
auto-tuning, we built Alpine Meadow, a ”query” optimizer for
machine learning. Finally, QUDE, the component to Quantify
the Uncertainty in Data Exploration, monitors every interaction
the user does and tries to warn about common mistakes and
problems and, if possible, even prevents them from happening
in the first place.

In the following, we describe each component in more detail
and how they address the aforementioned challenges.

4. VIZDOM: AN NOVEL INTERFACE
FOR DATA SCIENCE

As Fisher et al. [42] argued, a common way to perform data
analytics at the turn of the 21st century was to use spreadsheet
applications and data sets that would fit completely in mem-
ory. Computations were therefore fast and results were visible
within seconds. Users could perform multiple analyses simul-
taneously, explore different aspects of the data, and iteratively
and interactively refine findings at a fast pace.

Today, these conveniences are gone. Increasing data com-
plexity that requires specialized query languages and transfor-
mations, modern analytical scenarios that rely on advanced
algorithms (e.g., machine learning), and the sheer size of to-
day’s data all force users to interact with data through custom
jobs written in scripting or programming languages. These
jobs run for minutes or hours in the cloud, without providing
insights on what goes on behind the scenes.

This mainframe-like interaction paradigm is an inherently
poor fit for Data Science. The work is exploratory by nature and
demands rapid iterations, and all but the simplest analysis tasks
require domain experts, who often do not have programming
skills, to be in the loop to effectively steer the process.

While systems like Tableau are a step in the right direction,
offering a visual interface for data exploration, they lack support
for creating sophisticated models. In our work to make Data
Science more accessible, we saw user experience as a crucial
component. We consciously designed Northstar using a top-
down approach, where user needs drive the requirements for the
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rest of our system. We therefore closely collaborated with Andy
van Dam’s group at Brown University to develop Vizdom [26],
a novel pen-and-touch interface for interactive Data Science
(Figure 2 shows Vizdom running on a Microsoft Surface Hub).

Vizdom exhibits a fluid [36] and novel interaction style that
is designed to promote “flow”—staying immersed in the cur-
rent activity and not being distracted by the user interface—and
relies on prompt feedback and fast response times. Interac-
tively analyzing multidimensional data sets requires frequent
switching between a range of distinct but interrelated tasks
(e.g., producing different visuals based on different column
sets, calculating new variables, observing interactions between
subsets of the data, creating statistical models, etc.). Vizdom
addresses this challenge by unifying a comprehensive set of
tools for visual data analysis into a hybrid pen-and-touch sys-
tem designed to exploit the visualization advantages of large
interactive displays. Tools are either data views, placeholders
for visualizations, or operators that perform transformations or
computations on data. User can interact with these elements
through direct manipulation, and elements will act not only as
result-viewers but also, more importantly, also as controls for
adjusting or steering ongoing computations. Leveraging an un-
bounded whiteboard metaphor, users can combine these tools
like building blocks to create interactive and visual workflows.

In designing Vizdom, we put heavy emphasis on fast re-
sponses to each and every user interaction regardless of the
size of the data being analyzed. Human-computer interaction
literature [80, 93] often states that a delay of one second is the
upper bound for system responses, after which users lose focus
on their current train of thought. To ensure a highly interactive
environment for data analysis, Vizdom makes use of progres-
sive visualizations and approximate answers as computed by
IDEA (see Section 6).

We first demonstrated Vizdom at VLDB 2015, where it won
the Best Demo Award. Since then, we have worked with various
academic and industry partners to get Vizdom with its backend
deployed and learn more about the real needs of domain experts
and data scientists across various domains. We worked with one
of Adobe’s Data Science teams, who used Vizdom to analyze
their product subscription data, and started a collaboration with
IGT, among others. Similarly, we continuously use Vizdom
for focused user studies to better understand user behavior. For
example, we studied the impact of approximate visual results
on exploratory analysis [113] and examined the effect of the
multiple comparison problem in visual analysis [115].

5. TUPLEWARE: BARE METAL SPEED
FOR UDFS

Todaya’s analytics frameworks are ill-suited to support in-
teractive visual frontends, even for simple operations on small
data sets. Current frameworks (e.g., Hadoop, Spark) are de-
signed to process massive data sets distributed across huge
clusters, which addresses the problems faced by giant Internet
companies. With these frameworks, just scheduling a single
job can often take longer than any reasonable interactivity la-
tency threshold. With Tupleware, we explored the design of a
new analytical framework for interactive latencies and “normal”
users—not the Googles of the world. Two key contributions of

Tupleware are (1) the close-to-zero execution and scheduling
overhead and (2) new query compilation and optimization tech-
niques. The latter fundamentally bridges the gap between query
optimizers, which usually make high-level optimization deci-
sion (e.g., join ordering), and compilers, which make low-level
optimization decisions (e.g., loop-unrolling).

While Tupleware was very important in the early stages of
Northstar, it lost its importance in the interactive Data Science
stack over time. First, it turned out that even the fastest exe-
cution engine can be too slow to provide interactive response
times for complex operations. Thus, we started to implement
more and more algorithms as approximate and progressive al-
ternatives directly in IDEA (see next section). Second, code
compilation, as also noted by others [61], often has an up-front
cost, which can quickly add up in cases where many small,
short-running queries dominate the workload. Hence, it be-
came more efficient to use Tupleware mainly to pre-compile
complex analytical operations (similar to stored procedures),
which are then combined into complex workflows based on the
user interactions within IDEA using an iterator-based execution
model. However, Tupleware was one of the very first systems
to compile complex analytical workflows, and many systems
built upon its results [1, 78, 83, 37]. Furthermore, we believe
that Tupleware’s compilation strategies might play an important
role in the next generation of Northstar as part of synthesizing
better access methods [63].

6. IDEA: AN INTERACTIVE DATA
EXPLORATION ACCELERATOR

As mentioned in the previous section, even the fastest run-
time can be too slow to guarantee interactive response times
over very large data sets. Approximate query processing (AQP)
techniques can help in these situations, but existing techniques
fall short in providing good approximations over rare events.
Yet, users commonly explore those events, as they often contain
interesting insights (e.g., the habits of the few highest-valued
customers, the suspicious outliers, etc.). Furthermore, exist-
ing AQP engines integrate poorly with legacy systems. We
therefore started to develop the first Interactive Data Explo-
ration Accelerator (IDEA) [27] with the goal of building the
first approximation engine for interactive Data Science, which
seamlessly integrates with existing IT infrastructures.

6.1 Neither a DB nor a Streaming Engine
Interestingly, IDEA required a fundamental rethinking of

the query execution model; it is neither a system for one-shot
queries, nor traditional AQP engine, nor a streaming engine.
Rather, IDEA has entirely unique semantics. Fundamentally,
IDEA is a database as a middle-tier and acts as an intelligent, in-
memory caching layer that sits in front of the much slower data
sources, managing both progressive results and the samples
used to compute them.

But even over cached samples, the query execution model
is different. Unlike DBMSs, queries are not one-shot opera-
tions that return batch results; rather, workflows are constructed
incrementally, requiring fast response times and progressive
results that refine over time. It is also not a traditional AQP
engine, as users often incrementally compose operations into
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complex workflows with one output being the input for one or
more other operations, like in a streaming system. Yet, in con-
trast to streaming engines, IDEA is meant to enable free-form
exploration of data sampled from a deterministic system (e.g.,
a finite data source), whereas traditional streaming engines
typically assume a predefined set of queries over infinite data
streams and do not have samples as inputs.

Also in contrast to a traditional DBMS, IDEA can offload
prefiltering and pre-aggregation operations to an underlying
data source (e.g., perform a predicate pushdown to a DBMS)
or even transform the base data by executing custom UDFs in
the source. Most importantly, though, in contrast to traditional
DBMSs, AQP engines, or streaming engines, IDEA users com-
pose queries incrementally, therefore resulting in simultaneous
visualizations of many component results with varying degrees
of error. Maintaining different component partial results rather
than single, exact answers imposes a completely new set of
challenges for both expressing and optimizing these types of
queries. Currently, our IDEA prototype uses a preliminary
interaction algebra to define a user’s visual queries.

6.2 Visual Indexes
Similar to the algebra and optimizer, we also found that tra-

ditional indexes are suboptimal for interactive data exploration
tasks. Existing incremental techniques either sort the data (e.g.,
database cracking [51]) or do not naturally support summary
visualizations. However, sorting can destroy data randomness
and, consequently, the ability to provide good estimates. Simi-
larly, existing techniques generally index every tuple without
considering any properties of the frontend (e.g., human percep-
tion limitations, visualization characteristics) and can require a
lot of storage space, especially for highly dimensional data.

For example, some visualizations (e.g., histograms) require
the system to scan all leaf pages in a traditional B-tree, since this
index is designed for single-range requests rather than provid-
ing visual data summaries. We therefore proposed VisTrees [35],
a new dynamic index structure that can efficiently provide ap-
proximate results specifically to answer visualization requests.
The core idea of VisTrees is that the nodes within the index are
“visually-balanced” to better serve visual user interactions and
then compressed based on perception limitations.

6.3 Sample Management
As previously mentioned, IDEA caches as much data as pos-

sible from the underlying data sources in order to provide faster
approximate results, since most data sources are significantly
slower. For example, the memory bandwidth of modern hard-
ware ranges from 40−50GB/s per socket [10, 110], whereas we
recently measured that PostgreSQL and a commercial DBMS
can only export 40−120MB/s, even with a warm cache holding
all data in memory. Although DBMS export rates may improve
in the future, IDEA’s cache will still remain crucial for provid-
ing approximate answers to visual queries and supporting more
complex analytics tasks (e.g., ML algorithms).

Conceptually, IDEA can be best referred to as a sample
management system and roughly divides the memory into
three parts: the Result Cache, the Sample Store, and space for
Indexes. When triggered by an initial user interaction, IDEA be-
gins ingesting data from the various data sources, speculatively

performing operations and caching the results in the Result
Cache to support possible future interactions. At the same time,
IDEA also caches all incoming data in the Sample Store using
a compressed row format. When the available memory for the
Sample Store is depleted, IDEA starts to update the cache using
a reservoir sampling strategy to eventually create a representa-
tive sample over the whole data set even if the data stream is
biased. To further mitigate the impact of bias in the data stream,
IDEA takes advantage of sampling operators most database
systems provide as well as reads from random offsets of the
data (e.g., when connected to a file). Furthermore, IDEA might
decide to split up the reservoir sample into several stratified
subsamples to overrepresent the tails of the distribution, or to
create specialized indexes for potential future queries. This is
done based on the current visualizations on the screen as they,
for example, determine what filter chains the user is able to
create. All these decisions are constantly optimized based on
both past and current user interactions. For example, if the user
drags a new attribute onto the canvas, the system will allocate
more resources to the new attribute in preparation for potential
follow-up queries. At the same time, IDEA constantly streams
increasingly precise results to the frontend as the computation
progresses over the data, along with indications about both the
completeness and error estimates.

6.4 Approximating Black Boxes
In contrast to most other AQP engines, IDEA has the goal of

approximating complex analytics and machine-learning pipelines.
This is particularly challenging as many operations are black
boxes to IDEA. For example, IDEA is fully compatible with
scikit-learn [52] and even allows users to add new Python op-
erations. In order to approximate results for these operations,
IDEA uses a relatively simple idea: it executes the operation
first over a small sample and then re-executes the operation over
progressively increasing sample sizes. However, this creates a
whole new set of challenges, e.g., what is a good sample size
to start with and in what increments should it be made larger?
We address some of these questions in more detail when we
discuss Northstar ML auto-tuning capabilities (Section 7).

6.5 Result Reuse
As outlined earlier, query approximation for visual interac-

tive Data Science has its own set of challenges but also pro-
vides a vast array of opportunities, one of them being reuse.
Visual tools have encouraged a more conversational interaction
paradigm [43], whereby users incrementally compose and iter-
atively refine queries throughout the data exploration process.
Moreover, this style of interaction also results in several sec-
onds (or even minutes) of user “think time” where the system
is completely idle. Thus, these two key features provide an
AQP system with ample opportunities to (1) reuse previously
computed (approximate) results across queries during a session
and (2) take actions to prepare for potential future queries.

However, it turned out that there existed close to no work to
efficiently reuse approximate results. To that end, we made an
interesting and, in hindsight, conceivably trivial observation:
almost all visualizations convey simple statistics about the data.
Based on that observation, we developed a new AQP formula-
tion that treats aggregate query answers as random variables
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Figure 3: IDEBench results for four systems as a summary report. Results show the mean percentage of time violations
and missing histogram bins, as well as the mean relative errors (MREs) and MRE CDF for the approximated results; the
greater the proportion of small errors, the smaller the area above the curve.

to enable reuse of approximate results with formal reasoning
about error propagation across overlapping queries [43].

For example, consider a simple bar chart showing the count
per category of the following SQL query:

SELECT sex, COUNT(*)
FROM census
GROUP BY sex

One way to model a group-by attribute is to treat it as a
categorical random variable X , where X can assume any one
of the possible outcomes from the sample space ΩX . For
example, a random variable modeling the sex attribute can take
on an outcome in the sample space Ωsex = {Male,Female}.

More interestingly, filter chains as shown in Figure 1 can be
expressed as conditional variables. For example, assume that a
sex bar chart was linked to a salary bar chart as the downstream
operation, and only ‘Female’ was selected. Let us further
assume that Y is the random variable for the salary distribution.
Then, we can determine the proportional height of the bar for
the salary range 0− 10k as P (Y ≤ 10k|X = Female).

Surprisingly, this view of query results for visualizations not
only made it easier to estimate the quality of results for each
operation in an incrementally composed workflow, but also
opened up many new opportunities for result reuse. For exam-
ple, it allows “query rewrites” by means of Bayes’ Theorem or
the Law of Total Probability.

6.6 Results
We recently evaluated IDEA against other systems to create

a benchmark for interactive data exploration, called IDEBench
[33]. The key result of this study is shown in Figure 3 and
compares MonetDB, IDEA, approXimateDB, and a commer-
cial in-memory AQP system (referred to as System X) with

respect to the data loading time and data quality after X sec-
onds over 500MB of flight data [81] for 10 different interactive
exploration workflows (see [33] for more details). As the fig-
ure shows, IDEA overall is able to return the fastest and even
meets a targeted return time of 500ms around 99% of the time
with significantly less data prep time. In this case, the data
was stored on file for all systems and we gave idea 3 minutes
from “connecting to” the file to exploring. IDEA also has fewer
missing bins in approximated histograms, and the mean relative
error over all returned results is significantly less than approXi-
mateDB’s and marginally less than System X’s’. One of the key
reaons is, that the benchmark simulates a user who explores the
data set by incrementally building queries and that IDEA can
explore the incremental nature of requests. Finally, it should be
noted, that in contrast to the next best system, the commercial
AQP engine System X, IDEA features progressive results, and
in contrast to all other systems, it can also approximate the
execution of machine-learning algorithms.

7. Alpine Meadow: A QUERY OPTIMI-
ZER FOR MACHINE LEARNING

One key promise of our work is to help users quickly ar-
rive at an initial solution, often a model, in a collaborative
meeting. Unfortunately, selecting the right ML algorithm and
hyper-parameter tuning is often a time-consuming and boring
process. In 2013, with MLbase [64], we took the first step
toward unlocking the power of ML for end users. MLbase
provided (1) a simple declarative way to specify ML tasks and
(2) a novel optimizer to select and dynamically adapt the choice
of learning algorithm. One of the key contributions of this work
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was TuPAQ [95], a novel bandit-based hyper-parameter tuning
strategy that was the predecessor of Hyperband [67]. How-
ever, MLbase was not designed for interactive environments
and the process of hyper-parameter tuning could take hours.
Therefore, we started the Alpine Meadow project based on our
experience with MLbase. Alpine Meadow and MLbase have
several commonalities: they both use a query-optimizer-based
approach to ML auto-tuning and, for example, use bandits to
efficiently explore the search space. But there are also signifi-
cant differences—most importantly, the focus on interactivity.
In the remainder of this section, we outline in greater detail
what makes Alpine Meadow unique.

7.1 Focus on End-to-End Learning
Alpine Meadow was developed as part of the DARPA D3M

[92] project, which aims to entirely automate machine learning.
Every six months, DARPA evaluates all systems on how well
they can autonomously solve a set of problems. The problems
range from text classification tasks to building models that auto-
matically measure wrist length from images. Each task comes
in the form of a JSON description containing the goal and a
description of the available data for the task. The system then
needs to automatically find the best pipeline in a given time
frame (e.g., 10 minutes) and is evaluated using some quality
metric (e.g., F1 score). Therefore, in contrast to MLbase and
many other ML auto-tuning systems, Alpine Meadow’s goal
is to automatically create the entire end-to-end workflow from
data cleaning operations to the model, including deep-learning
models. Also in contrast to MLbase, Alpine Meadow is de-
signed to take user feedback into account. Meaning, a user can
steer the exploration, for example, by proposing new features
or presetting certain operations, such as cleaning operations.

7.2 Interactivity
The most notable difference between Alpine Meadow and

other ML auto-tuning systems is the focus on interactivity.
Alpine Meadow aims to provide a first answer in seconds,
which is then refined in the background. Consequently, it
usually tries simpler pipelines over small samples first before
increasing the sample size and model complexity.

Furthermore, we developed a cost-quality model to measure
the ”promisingness” of a pipeline over a given sample. By
filtering out pipelines with high cost, we can prune the search
space, saving resources and reducing the overall search latency.
For now, our cost-quality model estimates three factors for a
given pipeline over a sample of size m: (1) the time for training
and testing the pipeline; (2) the expected quality gain of a
pipeline over the last best solution; (3) the risk of a pipeline,
that is, the variance of quality. These factors are then weighted
differently over time. For example, at first, the training time
is given more weight as we want to return a good solution as
quickly as possible to the user, potentially sacrificing quality.
Later we assume that the quality of a pipeline matters more
and we allow proportionally more expensive pipelines to run
to eventually find the best performing model. . To actually
build the cost model we use (1) learned rules (see next section)
as well as (2) the history of past and ongoing training steps
(see [9] for more details).

7.3 Learned Rule-Based Optimization and
Transfer Learning

We extensively use meta-learning techniques to utilize his-
tory from similar problems. Most importantly, our optimizer de-
rives best-practice rules from past experience and uses them to
create and prune the search space as well as prioritize pipelines.
To jump-start the system, we trained it using publicly available
competitions (e.g., Kaggle) as well as the sample problems
that DARPA provided (note that DARPA has a separate set
of problems that we have never seen for evaluation purposes).
Furthermore, we made the rules problem-specific. Based on
the techniques of [41], we determine the similarity of every
problem to previous problems and adjust the importance of
rules based on this similarity.

This approach further allows us to transfer existing solutions
to new problems. For example, for an image classification
task, we might use an existing deep-learning model that was
trained on CIFAR, “chop off its head” (i.e., remove the top
neuron layers), and replace it with a new set of layers for the
given task (a common transfer learning technique). As a result,
we are often able to train more complex models in a short
amount of time, as our optimizer prefers to start from existing
solutions. A nice side effect of the rule- and transfer-learning-
based approach is that it also makes the final pipelines simpler
to explain to the user.

7.4 User Interactions with Alpine Meadow
While Alpine Meadow can be used without Vizdom and

IDEA, it unfolds it full potentially when used together. For
example, using Vizdom users can at any time steer the search
process, e.g., by restricting the model type or feature prepro-
cessing steps, adding new features, and/or restricting the model
building to subpopulations of the data. Furthermore, IDEA en-
sures that all operations, including the machine learning model,
return first results in sub-seconds after every user interaction,
and that the key characteristics of the so far best models are
always visualized to the user. Furthermore, the best pipelines
can be interactively inspected and modified, and the output of a
model can be used as an input for other operations in Vizdom,
making it for example possible to quickly analyze on what data
the model does not perform well on, or to use the model itself
to label unlabeled data, etc.

7.5 Initial Results
Figure 4 shows the performance of Alpine Meadow against

other systems competing in D3M, which includes teams from
Stanford, NYU, UC Berkeley, and many others (anonymized
as Systems 2-10). The figure shows how many of the DARPA-
provided prediction tasks each system is able to solve, how
often they are better than the expert solution, as well as the
normalized utility score, which is defined as

∑
i
si−bi
|bi|

, with si
(bi) being the performance of the system (baseline) on problem
i. As of March 2018, Alpine Meadow solves not only all of
the DARPA-provided challenges, but is also able to outperform
the expert solution in 80% of the cases. Furthermore, the
normalized score shows that it provides overall good solutions
(i.e., if the system were only a bit better in 80% of the cases
but otherwise much worse, the score would likely be negative).
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Solved Problems Better Than Baseline Normalized Score

Alpine Meadow 100% 80% 0.42
System 2 40% 27% 0.09
System 3 40% 13% 0.02
DARPA Baseline 100% 0% 0.00
System 4 20% 7% -0.07
System 5 87% 47% -0.16
System 6 27% 7% -0.22
System 7 60% 20% -0.59
System 8 87% 53% -0.75
System 9 60% 20% -1.14
System 10 60% 20% -4.57

Figure 4: DARPA D3M Competition Results on 03/2018

8. QUDE: QUANTIFYING THE UNCER-
TAINTY IN DATA EXPLORATION

While visual tools are key to democratizing Data Science,
they also bring new risks. For example, data is often massaged,
filtered, and visualized until the domain expert sees something
interesting, and only then is a statistical test performed. How-
ever, this ignores the “fishing expedition” before the test—and
the increased risk of a false discovery because of it. We there-
fore believe that a system should automatically track potential
common mistakes within a Data Science pipeline. But multi-
hypothesis errors are just one type of potential problem among
many within Data Science pipelines. Others include the Yule-
Simpson effect or, when training models, imbalance of labels
or common problems in representing null values. If we want
to empower a broader class of users without deep statistical or
machine-learning backgrounds to analyze data sets, we should
work toward automatically protecting them from these (com-
mon) mistakes. Over the last one to two years, we have started
to address this problem by developing QUDE (pronounced
“cute”), a tool for Quantifying the Uncertainty in Data Explo-
ration. In the following, we highlight four areas where QUDE
already helps to detect, quantify, and sometimes even correct
common problems.

8.1 Uncertainty as Unknown Unknowns
Incompleteness of data is one of the most common sources

of uncertainty in practice. For instance, if unknown data items
are missing from the unknown target population (i.e., we can’t
tell if the database is complete or not), even a simple aggregate
query result, like SUM, can be questionable.

We therefore started to develop techniques that estimate not
only the amount of missing data based on techniques from [100,
101, 102] but also the impact those items might have on query
results [19, 20]. We assume a simple data integration scenario
in which (semi-)independent data sources are integrated into
a single database. The overlap between the different data sets
allows us to estimate the number of missing items using species
estimation techniques [100]. Further, it is possible to make
estimates about the values the missing items might have using
our novel bucket estimator [19]. This way, Vizdom is able to
indicate to the user how much impact missing data might have
on the visualization.

8.2 Uncertainty as Undetected Data Errors
For a data scientist, it is important to know whether a data

set is clean enough to begin analysis or if it is worthwhile to

invest more time and money in cleaning. In the best case, these
unknown errors are unimportant corner cases, but often enough
they can be crucially overlooked problems that significantly
affect any subsequent analytics. This raises a fundamental
question: Is it possible to quantify the data quality of a data set
with regard to the number of remaining errors in the data set?

While this is a seemingly simple question, it is actually
extremely challenging to define data quality without knowing
the ground truth [85, 14, 38, 91, 39, 58]. A simple approach
is to extrapolate the number of errors from a small “perfectly
clean” sample [104, 108, 11, 16, 22, 71]): (1) we take a small
sample, (2) perfectly clean it manually or with the crowd, and
(3) extrapolate our findings to the entire data set. For example,
if we found 10 new errors in a sample of 1000 records out of 1M
records, we would assume that the total data set contains 10000
additional errors. However, this naı̈vee approach presents a
chicken-and-egg paradox. If we clean a small sample of data,
it may not be representative and thus will give an inaccurate
estimate. For larger samples, how can the analyst know that the
sample itself is perfectly clean without a quality metric?

We therefore developed the Data Quality Metric (DQM) [18],
a statistical estimator based on the principle of diminishing re-
turns, which basically states that every additional error is more
difficult to detect. For example, with experts or crowdsourcing,
the first (crowd-)worker to pass over the data set finds more
new errors than every subsequent worker, and so on. The key
insight is to estimate this diminishing return rate (i.e., fewer
errors are found in each pass) and project this rate forward to
estimate the number of errors if there were an infinite number
of workers (i.e., all discoverable errors). The ratio of the current
errors to the estimated discoverable errors then functions as an
indicator of the cleanliness of the data set.

8.3 Uncertainty as False Discovery
While interactivity is key to the usability of advanced visual

analytical tools [69], using them also significantly increases the
risk of making spurious discoveries. Such risk has two aspects:
(1) the statistical significance of the visualized results is unclear,
and (2) the growing number of hypotheses being tested during
exploration increases with every single visualization.

The first aspect of risk is important because visualizations
have the power to influence human perception and understand-
ing.Suppose that an ice cream company salesperson is exploring
a data set about sales. First, she wants to get a yearly distribu-
tion of the sales figures. So, she compares the sales of the last
five years using a histogram of sales per year. In the second
step, she is interested in learning if sales differ significantly
across states. She thus compares sales per state over the last
five years.

Suppose the histogram shows that sales in Vermont were
higher than in Rhode Island. Consider how tempting it is for an
unsophisticated user to conclude that Vermonters buy more ice
cream just based on the visualization. Although a statistically
inclined user would formally analyze this observation by using
hypothesis testing, she would have to redirect her attention to
work with a different statistical tool (e.g., R) before proceeding
to the next data exploration step. After such a context switch,
the insight might turn out completely wrong due to random
noise. At scale, the division of labor between data exploration
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and hypothesis testing will cause even more waste of human
efforts on such spurious insights. Thus, if a visualization pro-
vides any insights, these should be tested immediately for their
significance. If that is not be the case, the value of the visualiza-
tion would be very limited, as the user would not be allowed to
make any conclusions based on the visualization. Thus, if we
consider a visualization as something more than a pretty picture
presented to the user (i.e., more than just a listing of facts), we
should always test the insight the user gains from the visualiza-
tion for its significance and inform the user about it. A central
challenge of our work is the understanding of the hypothesis
derived by the user given a certain data visualization. With
respect to the previous example, the hypothesis derived by the
user could be: (1) Vermonters buy more ice cream than Rhode
Islanders, (2) Rhode Islanders buy more than Vermonters, or
(3) they buy ice cream in the same amount.

The second aspect of risk is arguably even more severe. With
every additional hypothesis test, the chance of finding a false
discovery increases. This problem is known as the “multiple
comparisons problem” (MCP) and has been studied extensively
in statistics literature [12, 7, 46, 60].

Data exploration on systems such as Vizdom [26] or Tableau
not only increase the risk of false discovery, but also changes
the way that statistical tests are applied. Suppose in the pre-
vious example the salesperson explores various relationships
in the sales data set through visualizations until she sees a vi-
sualization that she deems useful (e.g., significantly more ice
cream sales to males in Massachusetts compared to California).
With some background in statistics, she validates this insight
by using an appropriate test with a significance level of 5%.
Suppose the observed p-value is below the significance level,
so she rejects the null hypothesis and believes that there is only
a 5% chance that she incorrectly rejected the null hypothesis
in case it was true. However, this way of applying statistical
testing is wrong. What the user ignores is that before she did
the test, she had already searched through the data set for a
while and observed different insights and, implicitly, their cor-
responding hypotheses, albeit untested. Thus, by the time the
user applied the statistical test, she was already inadvertently
trapped in the multiple comparisons problem. This was also
confirmed in a recent user study we performed [115]. In our
experiment using synthetic data sets with known ground truth
labels, over 60% of user insights were false.

Unfortunately, existing work to control for MCP are often
not directly applicable to interactive data exploration or have
other severe drawbacks. For example, the most common ap-
proach of using holdouts allows verifying the gathered insights
just once; any additional data exploration session would require
a complete new holdout unless the testing over the holdout was
MCP-controlled, so the problem remains (see [116] for more
details). Furthermore, splitting a data set into exploration and
holdout data sets can significantly lower the power (i.e., the
chance to find real insights), especially for rare events. In con-
trast, statistical techniques such as the Benjamini-Hochberg
procedure to bound the False Discovery Rate (FDR) or the
Bonferroni procedure to bound the Family-Wise Error Rate
(FWER) were not designed for incremental testing. We there-
fore started to develop techniques which (1) try to infer based
on the visualizations what the user might be inferring/testing

and (2) automatically control the FDR rate. For example, in
[116, 117] we develop an automatic MCP control based on
alpha-investing fully integrated into Vizdom. However, the
whole area is still in its infancy and many interesting research
challenges remain.

8.4 Uncertainty as Hidden Facts
Visualizations as a form of aggregation can “hide” data errors

or the incompleteness of data, and sometimes even mislead. As
mentioned in Section 3, we recently observed this phenomenon
when analyzing the age distribution of patients in the MIMIC-
II data set. The distribution was visualized using histograms
with a bucket size of 10 years. Nothing was suspicious about
the visualization, which showed that very young and older
people are in the emergency room slightly more often. Only
after zooming in did we find that the data set did not contain
any patients between 1 and 9 years; rather, all patients in this
bucket had an age of 0. It turned out that the data came from
an emergency room for adults and the value 0 was used if
the age was not known. Even more severe, filtering out the
0-aged patients significantly changed our conclusions regarding
younger and older patients.

Inspired by this result, we developed techniques [47] to au-
tomatically detect forms of Simpson’s Paradox, which is a
special type of error in which a high-level aggregation leads
to a wrong conclusion. The two main challenges to enabling
efficient online detection are sheer data size as well as the num-
ber of different attribute combinations that need to be tested.
Therefore, for our algorithms, we applied two main techniques:
(1) For dealing with large data sets, we developed a set of ap-
proximate algorithms that can stream over the data and decide
in a probabilistic manner if the data is likely to contain a Simp-
son’s Paradox. This allows our algorithms to make a prediction
at interactive speeds of how likely it is to find a paradox after
seeing only a small amount of data. (2) Since many different
attribute combinations need to be tested to detect a Simpson’s
Paradox, we devised a technique that leverages ideas from mul-
tiarmed bandits to find a good trade-off between exploration
and exploitation. These techniques allow us to scale out to
large data sets or data sets with many different attributes.

To summarize, QUDE is a first step toward building an as-
sistant that can help domain experts who are not trained data
scientists to make discoveries on their own. However, clearly
we are still at the beginning, and many interesting research
challenges remain open as described in Section 10.

9. RELATED WORK
Our work around Northstar spans many different research

areas — in fact, so many areas that we need to refer to the
individual publications around Northstar for a more detailed
listing of related work and only highlight a few of them here.

Vizdom: the visualization community has produced various
systems that facilitate data exploration by domain experts. For
example, Tableau and its research predecessors Polaris [97] and
imMens [70] are systems for analyzing data sets through visu-
alizations with a high degree of customizability. To achieve the
low latencies required for user-driven data exploration, these
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systems either use heavily optimized DBMSs or precomputa-
tion of results. Though we support similar data exploration
workflows, we apply an intuitive pen-&-touch interface in Viz-
dom and focus on progressive computation and visualization
to guarantee interactivity thresholds. Furthermore, we aim
to support users in the entire Data Science process from data
preparation over exploration to model building.

IDEA: Most related to IDEA is the work in approximate
query processing using sampling [3] and online aggregation [50].
However, systems that use biased sampling (e.g., AQUA [4],
BlinkDB [5], DICE [56]) typically require extensive prepro-
cessing or foreknowledge about the expected workload, which
goes against the ad hoc nature of interactive data exploration.
On the other hand, systems that perform online aggregation
(e.g., CONTROL [49], DBO [55], HOP [21], FluoDB [112])
typically cannot deal with black-box operations and/or out-
liers. Verdict [84] uses the results of past queries to improve
approximations for future queries in a process called “database
learning.” However, Verdict requires up-front offline parameter
learning, as well as a sufficient number of training queries, in
order for users to begin seeing large benefits. Also related to
IDEA are techniques to improve the “visual experience;” for
example, approximated histogram [73], better smoothing of
timeseries data [89], or visualizing data transformations [59].
Those techniques are largely orthogonal to the ideas presented
here, but it would be very interesting to integrate them into
Northstar. Most related to IDEA’s execution model are prob-
ably FluxQuery [31] and zenvisage [94], although their focus
is on SQL workloads. Finally, in order to better support user
sessions in DBMSs, various techniques have been developed
to reuse results [98, 54, 79, 29]. Nonetheless, these techniques
do not consider reuse in the context of (partial) query results
with associated error.

Alpine Meadow: Most related to Alpine Meadow is the
work on ML algorithm selection and hyper-parameter tuning
[96, 8, 72, 68, 66, 45]. For example, TuPAQ [96] and Hy-
perband [66] use variations of the multiarmed bandit (MAB)
algorithm to better allocate computational resources for hyper-
parameter tuning. Other solutions like Auto-WEKA [99, 62]
or its sister package Auto-sklearn [40] are more similar to our
approach, as they also consider various feature selection and
data transformation algorithms with the intent of generating
ML pipelines. Still, these solutions are built for offline use and
run for a predefined amount of time, rendering them unfeasible
for interactive settings. Furthermore, they also do not consider
transfer learning or data cleaning steps, and do not offer good
support to take user input into account.

QUDE: Obviously, QUDE builds upon the vast amount of
techniques developed in the statistics community (see [48] for
an overview). Surprisingly, even though statistical errors are
highly common [53], there is very little work in automating
these techniques in the form of a Data Science assistant to
prevent layman users. Some notable exceptions are the recent
efforts to automatically detect bias in machine learning, algo-
rithm building, and analytics [44, 109] or the use of perceptual
models to quantify when approximations are safe [6].

10. THE FUTURE OF INTERACTIVE
DATA SCIENCE

Northstar provides one of the very first interactive Data Sci-
ence environments with the goal of democratizing Data Science.
It addresses a wide range of research problems to make ana-
lytics and model building more interactive, many of which we
discovered only during the course of this project. However,
even more challenges remain, and we believe interactive Data
Science and the goal of making analytics more accessible for a
broader range of users creates a new research field in itself. We
highlight a few potential future research challenges below.

10.1 Formal Execution Model
As outlined in Section 6.1, the execution model of IDEA

is not a traditional query processor, a pure AQP engine, or a
streaming engine. However, a precise model for the execution
engine does not yet exist. Arguably, our AQP formulation
of Section 6.5 goes in the right direction, but it is mainly fo-
cused on the reuse of results. Even further complexity arises
when considering more diverse data models, such as time series
data, which come with their own semantics and algebra [34].
Nonetheless, we believe that a strong, formalized foundation
can guide the development of future accelerators for interactive
Data Science and their optimizations.

10.2 Other Data Types
Many real-world use cases require dealing with more than

one data type. For example, a sales prediction model might
start out with structured data gathered from a data warehouse,
but then might include features from the product description,
reviews, or the quality of product pictures. Thus, we need tools
which allow data scientists to deal efficiently with different data
types from semi-structured data to videos. This is particularly
challenging as many of the state-of-the-art models for concep-
tual tasks (e.g., video object detection, audio transcription, or
entity discovery in text) are neural nets, which are notoriously
hard to train in sub-seconds. However, techniques like transfer
learning [105] might make it possible, as it allows us to start
from a good existing solution. Yet it is not without challenges,
as the problem now becomes how to efficiently find the most
relevant already-trained model and how to best integrate it into
the current analytical pipeline.

10.3 Data Integration and Transformation
Data scientists commonly want to integrate several data

sources, which often requires an intensive data cleaning and
munging [57] to get all the data into the right format and consol-
idated so it can actually be analyzed. While there has been a lot
of work in data integration [28], most of the existing work is not
necessarily result-oriented, is computationally very expensive,
and/or still imposes a lot of scripting on users. For example, it
would be great if the system could highlight how potential data
errors might influence the individual operations on the screen
(see also 8) and what concrete cleaning steps a user might want
to take. Similarly, the process of transformation should be
made easier. Systems like Trifacta [2] or BoostClean [65] are
already big steps in the right direction; however, we believe
the integration with the Data Science analytics system must
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be much closer to better support the iterative Data Science life
cycle. Ideally, users should be able to seamlessly move between
the different tasks of data collecting, cleaning and integration,
explorative analysis, and building and evaluating models, all in
a visual manner.

10.4 Better Approximation Techniques for
Legacy Systems

As outlined throughout the entire paper, approximate query
processing and progressive results are key to enabling a fluid
user experience. While many techniques have been developed
over the years [13], we found several issues keeping them from
beings fully applicable for us. Most importantly, commercial
database systems currently barely support AQP, and it is unre-
alistic to assume that existing legacy systems, such as a data
warehouse or distributed file system, can easily be replaced
with an AQP engine. This was one of the reasons we imple-
mented our AQP techniques in the middle layer, IDEA, which
then connects to the existing legacy system without actually
changing it. However, this design imposes a whole new set of
challenges, including: (1) how IDEA can guarantee that it gets
a sufficiently randomized data stream out of the legacy system
(see also [82]), (2) how IDEA can best take advantage of the fea-
tures the legacy system provides (e.g., predicate push-downs)
while maintaining fast response times for initial results, and
(3) the possibility of leveraging the underlying system to better
deal with extreme values/outliers (e.g., if the data warehouse
has an index, can the index be partially used?).

Another exciting future direction for AQP techniques is to
learn models that represent the data distribution, as done in
learned indexes [63]. [63] shows how a CDF model can be
used to enhance index structures with quite promising results.
Now assuming a CDF model exists, for example in the form of
a learned index, the same model could now also be directly used
to answer queries. In fact, our AQP formulation for enabling
approximate result reuse from Section 6.5 already provides the
foundation to do that, as it treats results as random variables.

10.5 Risk Control
As outlined in Section 8, democratizing Data Science should

also mean protecting users from common (and not-so-common)
mistakes. With QUDE, we took a first step in this direction,
but many open challenges remain. For example, there is a
growing trend toward creating recommendation engines, which
propose interesting visualizations (e.g., [103, 74, 32, 90, 88])
or exploration steps [75], or automatically test for correlations
[15]. Those systems are potentially checking thousands of hy-
potheses in just a few seconds and are smoking guns disguised
as water pistols. As a result, it is almost guaranteed that the
system will find something “interesting” regardless of whether
the observed phenomenon is statistically relevant. Even worse,
without knowing how exactly the system tried to find some-
thing “interesting” (e.g., a visualization, correlation, etc.) and
how many correlations were tested, it is later often impossible
to correct for the MHP. In some cases, like data polygamy, even
a holdout technique does not work.

The same also holds true for automatically finding machine-
learning models as done with Alpine Meadow, which can be

regarded as a model recommendation engine. That is, train-
ing machine-learning models can be seen as a form of testing,
with the hypothesis being that a given model generalizes over
unseen data, which is usually evaluated using techniques like
cross-validation. However, the more model pipelines and hyper-
parameters we test, the greater the chance that we find a model
that just by chance works well over the cross-validation data
sets (see [30] for a more detailed description). Hence, control-
ling the MHP for recommendation engines is a largely unsolved
research question and we only recently made some interesting
progress on that front by using VC dimensions.

Similarly, there exist many more types of errors that a system
could warn the user about. For example, there has been a lot
of excitement recently about automatically detecting bias [44,
109, 17] or helping the user to understand results using lineage
[86, 87]. We therefore believe that there is a lot of potential for
building a virtual Data Science Assistant, a tool that helps the
domain expert in the discovery and model-building process and
prevents him from making mistakes.

11. CONCLUSION
We speculate that in the near future many conference rooms

will be equipped with an interactive whiteboard, like the Mi-
crosoft Surface Hub, and that we can use such whiteboards to
enable domain experts and data scientists to work together dur-
ing a single meeting to visualize, transform, and analyze even
the most complex data on the spot. We showed that democra-
tizing Data Science requires us to completely rethink the full
analytical stack, from the interface to the “guts,” as well as take
a more holistic view of problems and bridge various research
communities. With Northstar, we explored a first system design
for true interactive Data Science and collaboration using inter-
active whiteboards. Furthermore, Northstar’s deployments in
industry and academia, as well as our various user studies [113,
115, 114], have shown that Northstar helps to gain insights
faster and avoid problematic discoveries, and adds significant
value in practice.
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and S. Zdonik. An architecture for compiling udf-centric workflows.
PVLDB, 8(12):1466–1477, 2015.

[25] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B.
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