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ABSTRACT
In many real-world systems, such as Internet of Thing, sen-
sitive data streams are collected and analyzed continually.
To protect privacy, a number of mechanisms are designed to
achieve ε-differential privacy for processing sensitive stream-
ing data, whose privacy loss is considered to be rigorously
controlled within a given parameter ε. However, most of
the existing studies do not consider the effect of temporal
correlations among the continuously generated data on the
privacy loss. Our recent work reveals that, the privacy loss
of a traditional DP mechanism (e.g., Laplace mechanism)
may not be bounded by ε due to temporal correlations. We
call such unexpected privacy loss Temporal Privacy Leakage
(TPL). In this demonstration, we design a system, ConTPL,
which is able to automatically convert an existing differ-
entially private streaming data release mechanism into one
bounding TPL within a specified level. ConTPL also pro-
vides an interactive interface and real-time visualization to
help data curator to understand and explore the effect of
different parameters on TPL.
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1. INTRODUCTION
With the development of wearable and mobile devices,

vast amount of temporal data generated by individuals are
being collected, such as trajectories and web page click streams.
The continuous publication of statistics from these tempo-
ral data has the potential for significant social benefits such
as disease surveillance, real-time traffic monitoring and web
mining. However, privacy concerns hinder the wider use of
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Figure 1: Differentially Private Continuous Aggre-
gate Release under Temporal Correlations.

these data. To this end, differentially private continuous
aggregate release [2] [3] [4] [7] [10] [11] [12] [14] [17] [8] has
received increased attention because it provides a rigorous
privacy guarantee. Intuitively, differential privacy (DP) [9]
ensures that the modification of any single user’s data in the
database has a “slight” (bounded in ε) impact on the change
in outputs. The parameter εãĂĂalso called privacy budget,
is defined to be a positive real number to control the pri-
vacy level. ε is inversely proportional to the randomness (or
noises) injected to the released data. The more randomness
means that the data are more private. Small values of ε re-
sult in high privacy levels. Thus, we can consider ε as the
degree of privacy loss, i.e., a large value of ε indicates more
privacy loss.
Most existing studies on differentially private continuous

data release do not take temporal correlation among data
into consideration. Temporal correlation can be modeled by
a Markov chain that represents transition probabilities be-
tween the values of data at two consecutive time points. Ad-
versaries may obtain the temporal correlations, which com-
monly exist in real life and are easily acquired from public
information or historical data. Figure 1 shows the released
aggregates of location data with underlying temporal corre-
lations due to road networks.
In our recent work [5] [6], we prove that the privacy loss of

a traditional differentially private mechanism at each time
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Figure 2: System Overview of ConTPL.

point may increase over time because of temporal corre-
lation, which is called Temporal Privacy Leakage (TPL).
In [6], we design efficient algorithms to precisely quantify
such privacy loss.
In this demonstration, we propose a system, ConTPL,

to Control Temporal Privacy Leakage in differentially pri-
vate continuous data release. First, data curator chooses
a value for α as the maximum temporal privacy leakage.
Then, data curator selects a differentially private mecha-
nism to use for releasing private streaming data, denoted
as M in Figure 2. Many existing mechanisms for steaming
data allocate privacy budget at each time point either adap-
tively [3] [4] [12] [14] (e.g., the current privacy budget de-
pends on the outputs or previous allocated privacy budgets)
or non-adaptively [2] [7] [10] [11] [17] [8]. In either case, our
system can control TPL of the selected mechanism within
[0, α] by suggesting appropriate privacy budgets to data cu-
rator. The system consists of two major modules, Privacy
Budget Calibration and TPL Quantification, as shown in
Figure 2. The first module provides an appropriate privacy
budget ε forM at each time point so thatM can release pri-
vate data from the input Dt whose temporal privacy leakage
is less than α. The second module, TPL Quantification, pre-
cisely quantifies TPL according to the use of previous and
current privacy budget and visualizes the change of TPL at
each time point as well as the data utility to help data cu-
rator understand the trade-off between privacy and utility.

2. BACKGROUND
Differential privacy (DP) [9] is a formal definition of data

privacy. Let D be a database and D′ be a copy of D that
is different in any one tuple. D and D′ are neighboring
databases. A differentially private output from D or D′

should exhibit little difference. The parameter ε, called the
privacy budget, represents the degree of privacy offered. In-
tuitively, a lower value of ε implies stronger privacy guaran-
tee and a larger perturbation noise, and a higher value of ε
implies a weaker privacy guarantee while possibly achieving
higher accuracy. A commonly used method to achieve ε-DP
is the Laplace mechanism, which adds random noise drawn
from a calibrated Laplace distribution into the aggregates
to be published.
Existing works on differentially private continuous aggre-

gate release [1] [2] [3] [4] [7] [10] [11] [12] [14] [17] [8] do no
take temporal correlation into consideration. In other words,
they assume data between different time points are indepen-
dent or the attacker has no knowledge of such temporal cor-
relations. Although a few studies [18] [15] have investigated
the issue of differential privacy under probabilistic correla-
tions, they are not applicable for continuous data release

because of the different problem settings. These works are
focusing on one-shot data publish with differential privacy
and consider the correlations between different users. While,
in our setting, the data are continuously released by differ-
entially private mechanism and the correlations are within
each single user’s steaming data (such as the correlation be-
tween two consecutive locations in a user’s trajectory).
In our recent work [5] [6], we rigorously quantify and

bound the privacy leakage against adversaries who have knowl-
edge of temporal correlation. First, we model the temporal
correlations using Markov model and analyze the privacy
leakage of a DP mechanism against adversaries who have
knowledge of such correlations. We find that the privacy
loss of a DP mechanism may accumulate and increase over
time. We call it temporal privacy leakage (TPL). In the fol-
lowing, we introduce the model of temporal correlation and
the bound of TPL.
Markov Chain for Temporal Correlations. The Mar-

kov chain (MC) is extensively used in modeling user mobil-
ity profiles [13] [16]. For a time-homogeneous first-order
MC, a user’s current value only depends on the previous
one. The parameter of the MC is the transition matrix,
which describes the probabilities for transition between val-
ues. The sum of the probabilities in each row of the tran-
sition matrix is 1. A concrete example of transition matrix
and time-reversed one for location data is shown in Figure
3. As shown in Figure 3(a), if user i is at loc1 now (time
t); then, the probability of coming from loc3 (time t − 1)
is 0.7, namely, Pr(lt−1

i = loc3|lti = loc1) = 0.7. As shown in
Figure 3(b), if user i was at loc3 at the previous time t− 1,
then the probability of being at loc1 now (time t) is 0.6;
namely, Pr(lti = loc1|lt−1

i = loc3) = 0.6. We call the transi-
tion matrices in Figure 3(a) and (b) as backward temporal
correlation and forward temporal correlation, respectively.
We note that these transition matrices used in our approach
are not limited to be the same over time. For simplicity, we
suppose they are time-homogeneous.
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loc1 0.2 0.3 0.5

loc2 0.1 0.1 0.8

loc3 0.6 0.2 0.2
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Figure 3: Examples of Backward and Forward Tem-
poral Correlations.

The backward and forward temporal correlations between
user i’s data lt−1

i and lti are described by transition matri-
ces PB

i , P
F
i ∈ Rn×n, representing Pr(lt−1

i |lti) and Pr(lti |l
t−1
i ),

respectively.
Quantify Temporal Privacy Leakage. In [5], we find

that TPL includes two parts: Backward Privacy Leakage
(BPL) and Forward Privacy leakage (FPL) due to the ex-
istence of backward and forward temporal correlations. We
also find that BPL may accumulates from previous privacy
leakage and FPL increases with future release. Intuitively,
BPL at time t is affected by previously releases at time 1 to
t1, and FPL at time t will be affected by future releases at
time t + 1 to T , which is the last time point of the release.
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In order to quantify such privacy loss in real-time, we de-
sign efficient algorithms for calculating it in sub-linear time
in [6]. We illustrate TPL, BPL and FPL in Figure 4.
Bound Temporal Privacy Leakage Although the tem-

poral privacy leakage may increase over time, we also show
that its supremum may exist in some cases. To bound the
privacy loss, we propose mechanisms that convert any exist-
ing DP mechanism into one against temporal privacy leak-
age. We implement these algorithms in our system, i.e.,
ConTPL, and demonstrate the effectiveness using two real-
life datasets.

3. SYSTEM OVERVIEW
In our system, data curator first specifies a bound of tem-

poral privacy leakage α, then selects an existing differentially
private mechanism for releasing streaming data. The system
releases private data with bounded temporal privacy leak-
age by controlling the privacy budget of the selected mech-
anism, demonstrate the increase or decrease of TPL along
with time, and compare the data utility among different
mechanisms or different privacy budget allocations.
In order to fulfill this system, we implement the major

differentially private mechanisms for steaming data in lit-
erature, whose privacy budget allocation strategies can be
categorized into two types: adaptive privacy budget alloca-
tion [3] [4] [12] [14] and non-adaptive privacy budget alloca-
tion [2] [7] [10] [11] [17] [8]. Our framework also includes a
function for learning Markov model from time-series data.
As shown in Figure 2, our system consists of two major mod-
ule, two major modules, Privacy Budget Calibration and
TPL Quantification. At each time point, the first module
Privacy Budget Calibration suggests an appropriate privacy
budget to data curator (data curator may not adopt it),
and the second module TPL Quantification visualizes the
temporal privacy leakage and the data utility (e.g., Mean of
Squared Error and Mean of Absolute Error) of the outputs.
In the following, we explain the details about the process in
these modules.

3.1 Privacy Budget Calibration
We use two privacy budget allocation strategies proposed

in our previous work [5] [6] as building blocks in this mod-
ule. The first method, called upper-bound-method, allocates
a specific privacy budgets uniformly at each time point so
that the upper bound of TPL is alway less than or equal
to α; the second method, called quantification-method allo-
cates privacy budgets on the fly, which depends on the value
of previous allocation.
The two strategies can be used to calibrate the privacy

budget w.r.t. different types of mechanisms. For non-adaptive
differentially private mechanisms who requires fixed privacy
budget at each time point, we can use either upper-bound-
method or quantification-method. For adaptive differentially
private mechanisms, such as FAST in [12], BD or BA mech-
anisms in [14], we can only use quantification-method to cal-
ibrate the privacy budget. Given all previous budget al-
location, quantification-method can calculate an appropri-
ate value of budget for the current time point; meanwhile,
the adaptive differentially private mechanism will provide
a optimized privacy budget (mostly for improving the util-
ity) which may be different to the one from quantification-
method. In order to satisfy α-TPL, we use the smaller one
of the above two privacy budgets.

For exploring different setting of privacy budget, the sys-
tem allows data curator to manually specify a privacy bud-
get at each time point as desired. Enabling such “manual
model” means that the system may not be able to control
TPL within a bounded value. By integrating the visualiza-
tion module in the next section into the system, it serves
as an interactive tool to help data curator understand the
trade-off between TPL and data utility.

3.2 TPL Quantification
We use TPL quantification algorithms in our previous

work [5] [6] as building blocks in this module. The quantifi-
cation algorithms require three types of input: (1) temporal
correlation, (2) TPL at the previous time t− 1 and (3) pri-
vacy budget at the current time t. For the first input, we
provide a function for learning transition matrix of Markov
model from trajectories. For the second input, we can calcu-
late it using quantification algorithms. For the third input,
we obtain it from the previous module. We decompose the
TPL into FPL (i.e., forward privacy leakage) and BPL (i.e.,
backward privacy leakage), as shown in Figure 4. We refer
reader to our previous work [5] [6] for more details about
the formulas of TPL, BPL and FPL.
We also demonstrate the Mean of Absolute Error and

Means of Squared Error of the released private data. We
compare the utility of the selected differentially private mech-
anism with and without the Privacy Budget Calibration mod-
ule, which shows the cost of the protection against temporal
privacy leakage.

4. DEMONSTRATION OVERVIEW

4.1 Datasets
We use two well-known real-life trajectory datasets: T-

Drive [19] and Geolife [20]. We extract POIs by 0.1km ×
0.1km grids on the map for both two datasets. T-Drive con-
tains the GPS trajectories of 10,357 taxis during the period
of Feb. 2 to Feb. 8, 2008 within Beijing. The total number
of points in this dataset is about 15 million and the total
distance of the trajectories reaches to 9 million kilometers.
Geolife contains 17,621 trajectories with a total distance of
1,292,951kilometers and a total duration of 50,176 hours.
These trajectories were recorded by different GPS loggers
and phones, and have a variety of sampling rates. 91.5%
of the trajectories are logged in a dense representation, e.g.
every 1∼5 seconds or every 5∼10 meters per point. The
data format is similar as the one shown in Figure 1(a).

4.2 Visualization of DP data release
In this part, using generated dataset (refer to our recent

work [5]), we visualize the traditional DP data release and
the potential temporal privacy leakage. For the purpose of
this part, we expect attendees can gain an intuitive idea
about our scenario and the problem (unexpected privacy
loss). According to the analysis in [5], the TPL is divided
into two parts: Backward Privacy Leakage (BPL) and For-
ward Priavcy Leakage (FPL), as shown in Figure 4. They
are caused by backward and forward temporal correlations,
respectively. The difference between TPL and FPL is as
follows: when releasing differentially private data at time t,
all the BPL at the previous time points keep the same and
all the FPL at the previous time points will be updated due
to the forward temporal correlations. Hence, the dynamic
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Figure 4: Illustration of Temporal Privacy Leakage of Lap(1/0.1) at each time point.

visualization will be helpful for understanding the increase
of BPL and FPL.

4.3 TPL in the real-life datasets
In the demo, we design interactive queries to allow atten-

dees to explore the cause of TPL for each user in the real-life
trajectory datasets, so that the attendees can gain insights
on the connection between users’ movements and the pri-
vacy loss. For example, users who present obvious mobility
pattern may result in higher temporal privacy leakage due to
high predictability. We also investigate how large the TPL
is on real-life datasets. The results indicate that a large
amount of users are subjected to the worst case of temporal
privacy leakage, i.e., the privacy loss increases linearly over
time. The reason is that, for most of the users, it is easy
to observe their mobility patterns (e.g., the driver always
moves between train stations.)

5. CONCLUSION
In this demonstration, we design a system to control tem-

poral privacy leakage of an existing differentially private
mechanism for streaming data. The system also serves as
an interactive tool for data curator to explore the trade-off
between TPL and utility. We also show how to use this
system to release location statistics of real-world data sets
continuously against TPL. We believe that this demo will
be a useful tool for continuous private data release.
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