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ABSTRACT
In this work, we demonstrate Sterling, a decentralized marketplace
for private data. Sterling enables privacy-preserving distribution
and use of data by using privacy-preserving smart contracts which
run on a permissionless blockchain. The privacy-preserving smart
contracts, written by data providers and consumers, immutably and
irrevocably represent the interests of their creators. In particular,
we provide a mechanism for data providers to control the use of
their data through automatic verification of data consumer contracts,
allowing providers to express constraints such as pricing and dif-
ferential privacy. Through smart contracts and trusted execution
environments, Sterling enables privacy-preserving analytics and ma-
chine learning over private data in an efficient manner. The resulting
economy ensures that the interests of all parties are aligned.

For the demonstration, we highlight the use of Sterling for training
machine learning models on individuals’ health data. In doing so, we
showcase novel approaches to automatically appraising training data,
verifying and enforcing model privacy properties, and efficiently
training private models on the blockchain using trusted hardware.
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1. INTRODUCTION
Machine learning (ML) systems benefit from large quantities of

diverse training data. Currently, collecting high-quality datasets is
challenged by data privacy requirements. In this work, we propose
a marketplace in which mutually-distrusting parties can share and
use private data without sacrificing privacy.

There have been several attempts at creating distributed AI and
data marketplaces for public datasets, some of which are imple-
mented as smart contracts on distributed ledgers known as blockchains.
Although smart contracts enable reaching consensus on the result
of a computation, current mechanisms for verifying correctness re-
quires public disclosure of contract inputs and state. This poses a
difficulty for data marketplaces since any user of the blockchain can
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directly view and copy the data and models. Furthermore, even in
the benign case, there is no way to ensure that data are not used in
a manner that conflicts with its provider’s constraints (e.g., using
biometric data to train ad-serving models).

To simultaneously address these issues, we propose Sterling,
a data marketplace for private datasets. Our approach combines
blockchain smart contracts, trusted execution environments (e.g., In-
tel SGX [2], Sanctum [13], Keystone [11]), and differential privacy,
to offer strong security and privacy guarantees for user data and
machine learning models. Smart contracts allow the enforcement of
data providers’ constraints on how their data is used. For example,
they can require analytics performed on their data to be differentially
private. Smart contracts also enable users to define payments and re-
wards. By leveraging privacy-preserving smart contracts running in
trusted execution environments, we can compute analytics and train
machine learning models while keeping all data and models private.
Sterling thus enables mutually distrusting parties to collaboratively
train privacy-preserving machine learning models, compensating
parties while keeping their data private.

We make the following technical contributions:

1. a framework supporting generic data provider and data consumer
smart contracts which uphold their creators’ interests;

2. a method to encode and automatically enforce flexible constraints
on the use of data,

3. a method for running machine learning pipelines while ensuring
privacy of both data and models,

4. a concrete demonstration of the above contributions on the task
of medical diagnosis.

2. THE STERLING MARKETPLACE
Consider the motivating example of a medical researcher wishing

to train a predictive model of disease. Currently, this would require
a lengthy process of negotiating with hospitals for data [18]. Obtain-
ing a truly representative dataset may require collaborations with
clinics across the globe. Instead Sterling, a privacy-preserving data
marketplace, allows individuals to provide their EHR data for direct
use by researchers and organizations. Thus, individuals can realize
the economic value of their data without compromising privacy.

Generally, we seek to provide the following workflow (Figure 1):

1. A data provider, Ud, uploads encrypted data to a centralized or
decentralized storage service (e.g., AWS, IPFS, Swarm) . Ud

publishes a smart contract Cd containing the address of the data
and, optionally, constraints like payment or privacy requirements.
Ud provisions Cd with a data decryption key which is privately
stored by the contract.
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Figure 1: Diagram of the interaction between data producers and consumers in the Sterling marketplace. The economic and privacy
interests of each party is mediated and enforced using privacy-preserving smart contracts. The circled numbers refer to steps of the
workflow described in Section 2.

2. A data consumer, Uc, desiring to use provided data writes a smart
contract Cc which satisfies the constraints of Cd.

3. Uc invokes Cc which sends a signed request, attesting to its
identity, to Cd.

4. Cd automatically verifies that Cc satisfies the constraints and
securely returns a data decryption key.

5. Cc performs its computation on the decrypted data and Ud is
compensated according to the terms of use.

Enabling a secure protocol like the above is challenging. In Ster-
ling, we propose an approach which effectively addresses these
challenges. In the remainder of this paper, we describe our ap-
proach for automatically enforcing the constraints of data providers
(Section 2.1), the resulting data economy (Section 2.2), and our im-
plementation of an end-to-end privacy-preserving machine learning
pipeline (Section 2.3). We then describe the demonstration scenario
of training a predictive model of disease from electronic health
records (Section 3). We conclude with an overview of the system.

2.1 Automatically Enforcing Terms of Use
A primary contribution of the Sterling marketplace is the ability

for data providers to impose terms of use, or constraints, on the use of
their data. In our system, the privacy-preserving smart contracts are
programmed in a general-purpose language (e.g., Rust, JavaScript).
Thus, data providers can encode flexible requirements within the
Sterling framework. Perhaps the simplest term of use is requiring
payment for each use of the data. Recalling the motivating example,
a more nuanced term might be that a consumer contract bearing the
cryptographic signature of a hospital receives the EHR data for free.

By executing the contracts on a blockchain, Sterling ensures cor-
rect autonomous execution of smart contracts. Sterling is designed
to be compatible with existing blockchains, inheriting the assump-
tions of the underlying blockchain for achieving availability and
integrity. Currently we use the Oasis blockchain platform [16] which
extends Ekiden [4] and provides privacy-preserving smart contracts.

2.1.1 Terms of Use for Training ML Models
In our initial system, we focus on the constraints of payment

and differential privacy [6] of models trained on the data. In both
cases, our approach relies on static analysis to ensure that the data
consumer contract satisfies the constraints of data provider contract.

For ensuring differential privacy, we provide functionality for
training differentially private ML models like logistic regression
and neural networks using stochastic gradient descent [1]. We use

techniques from Optio [15] to perform privacy-aware type checking
of a consumer contract’s model definition, so to ensure that it sat-
isfies differential privacy. We further describe differential privacy
constraints in Section 2.3.2.

Since Sterling supports flexible logic (which includes calls to
other contracts), a data provider can straightforwardly create addi-
tional, custom constraints within the general framework.

2.2 Data Economics
In general, the data economy is governed by the terms of use set

by data providers. Since data providers are free to create additional
provider contracts, they can re-share data under modified terms
of use–for instance, lowering the price to reflect other providers’
actions in the marketplace.

A main challenge of working with private data is that the con-
sumer is unable to determine ahead of time that the data are of value.
In a benign case, a data provider may simply offer poor documen-
tation. An adversarial provider, however, may attempt to defraud
buyers by submitting random noise or even plausible fake data. Thus
it would be advantageous–indeed essential–for a data consumer con-
tract to automatically determine the value of the data it receives.
Generally, appraising data requires domain specific knowledge of
what constitutes good data. In the section to follow, we present as
examples techniques usable in machine learning applications.

Assuming that data consumers are able to verify the utility of data,
the economics of the market ensure that the objectives of providers
and consumers are aligned. For example, an adversary might submit
fake data with the constraint that payment be made upfront, but no
rational data consumer would use the data without first verifying
its utility. Conversely, an honest data provider would not want their
data to be used without payment, so they might require that a data
consumer contract not reveal the results of its computation until
a payment is made. Since each party’s terms are immutably and
irrevocably encoded in a privacy-preserving smart contract, Sterling
guarantees that all parties requirements are fulfilled.

2.2.1 Economics of ML Models & Data
For the specific use case of machine learning, we draw on tech-

niques from data valuation [10] and adapt them for use on the
blockchain. For a given utility function, computing the exact value
of data requires training many models on varying subsets of the
full dataset. Since the blockchain cost model makes extensive re-
training prohibitively expensive, we need to use approximations.
Specifically, we use an approximation to influence functions which,
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themselves, approximate the influence a training point had on a
model’s prediction [12]. Importantly, computing influence functions
does not require re-training the model. As an additional benefit,
this technique enables providing fine-grained payments for data: if
a fee is charged per prediction, payment can be distributed to the
providers whose data were most influential for the prediction.

2.3 Privacy-Preserving Machine Learning
To protect the contents of data and models and ensure their fair

use, we must guarantee that the complete machine learning pipeline
remains privacy-preserving–from data loading to evaluation of the
trained model. To this end, we use the unique combination of trusted
execution environments and differential privacy.

2.3.1 Trusted Execution Environments
In Sterling, trusted execution environments (TEEs) can serve as

the foundation for secure computation. The ML pipeline begins
with the TEE remotely attesting to the veracity of the consumer
smart contract. Once verified, the TEE runs the smart contract
while keeping the program state safe from external observation or
manipulation. The consumer contract is then able to obtain en-
crypted data via the provider smart contract, decrypt it, and use
it to directly update the model parameters, inside the TEE. Even
with the overhead of memory encryption and privacy-preserving
context switches, this approach is significantly more efficient than
direct cryptographic methods like homomorphic encryption or se-
cure multi-party computation. Indeed, machine learning in TEEs
has performance comparable to non-private CPU-based training [9].

The TEE threat model does not include side-channel attacks,
however. We address this using data-oblivious implementations of
common training algorithms [17] which do not depend on the values
of input data. Moreover, the threat model does not aim to protect
the host from the computation. For example, since an TEE can
directly access host RAM, a malicious smart contract could probe
host memory for sensitive information like private keys. To counter
such an attack, we sandbox the smart contracts by running them
within a WebAssembly interpreter which provides complete memory
isolation and limits the resources available to the computation.

Having established a secure way to operate on ML models, we
now turn to ensuring that the model does not learn the exact values
of the training data.

2.3.2 Differential Privacy
Even if data and model parameters are secured within a TEE,

naive implementations of machine learning algorithms can memo-
rize and later reveal training data [3].

Differential privacy (DP), in essence, provides strong theoretical
guarantee that the risk to a data provider’s privacy is not signifi-
cantly increased by the use of the data. In other words, applying
a DP mechanism ensures that the results of analyzing the data are
relatively insensitive to the exact values of any particular provider’s
data. A simple and intuitive DP mechanism is the addition of noise
to the model’s gradients during training. The trade-off between
privacy and precision is controlled by the privacy budget. An impor-
tant element of DP is that making queries of the data (e.g., through
model training or inference) “spends” the privacy budget.

The Sterling framework allows the data provider contract to spec-
ify the differential privacy parameters as terms of use. We make
the novel contribution of an automatic tracker for privacy budget
expenditure which does not require trust assumptions (c.f. [14]):
the privacy requirements of every consumer request is automatically
determined by analyzing its computation graph [15]. When the con-
sumer contract uses the data, the provider smart contract’s privacy

Figure 2: Data providers upload encrypted data and list it on
Sterling. Data consumers can browse and purchase those data
which satisfy their requirements.

budget is correspondingly reduced; when the budget reaches zero,
the contract ceases to yield data and consumer contracts admit no
further queries. Sterling permits an economy to develop around pri-
vacy budget by allowing providers to require payment in proportion
to privacy usage, perhaps using principles from the literature [8, 7].

3. DEMONSTRATION
To demonstrate the utility of the Sterling data marketplace, we

implement the disease modeling scenario described in the beginning
of Section 2. The concrete application is diagnosis of diabetic
retinopathy from fundus (back of eye) images. Examples of which
are shown in Figure 2).

We simulate multiple data providers by splitting a public dataset
of fundus images among several data providers. Each provider con-
tract will offer a randomly sized partition of the data and have its own
privacy and payment requirements. Demo participants then assume
the role of medical researchers and design consumer smart con-
tracts, through our web interface, which train and evaluate privacy-
preserving models on providers’ data. As a basis for customization,
we provide several examples of models including logistic regression
and deep neural networks.

In this setting of medical diagnosis, we provide a walkthrough
which highlights the key features of Sterling. Namely:

1. the ability of a data provider to specify a rich set of constraints,
like payment and privacy, on privately shared data,

2. the ability of a data consumers to, via a web interface (shown
in Figures 2 and 3), browse the marketplace, assemble a custom
dataset, and create contracts which satisfy the constraints of all
selected providers,

3. efficient, secure training of differentially private ML models, and
automatic appraisal of training data and the resulting model.

To yield insight into the otherwise opaque blockchain operations,
we develop a blockchain explorer that displays events like pending
transactions and model training progress (shown in Figure 4).

Overall, the demonstration offers a preview of a realistic end-to-
end workflow for buying and selling data in a privacy-preserving
data marketplace.
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Figure 3: Web IDE for creating and editing smart contracts.
From here, data providers can specify precise constraints on
the use of their data; and data consumers can design machine
learning models which use the data.

Figure 4: Blockchain explorer which provides visibility into
Sterling transactions. Here, we see two requests for data and
the creation of a new provider contract.

4. CONCLUSION & FUTURE WORK
In this demo proposal, we introduce Sterling, a data marketplace

based on privacy-preserving smart contracts, which allows partici-
pants to exchange and use private data without revealing the data
or the analytics performed thereon to untrusted parties. These in-
teractions are mediated through novel data provider and consumer
smart contracts; each automatically enforces the terms-of-use set
by its creator. Upon this generic platform, we build a market for
privacy-preserving machine learning data and models. In this con-
text, models are kept from leaking the training data by automatic
verification of differential privacy. In this way Sterling enables
applications including credit scoring, smart home automation, and
medical diagnosis. Indeed, the medical use case is the focus of our
demo, which highlights the usability and security of our system.

As a follow-up to this demonstration, we aim to deploy Sterling
and conduct a formal observational study on its real-world utility.
Further lines of inquiry might explore exotic terms of use, privacy-
preservation via secure multi-party computation, or even non-ML
use cases like decentralized ad serving or customer relationship man-
agement. We hope that Sterling makes a step towards amplifying
the value of heretofore unshareable data.
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