
DfAnalyzer: Runtime Dataflow Analysis of Scientific
Applications using Provenance

Vítor Silva
COPPE / UFRJ

Brazil
silva@cos.ufrj.br

Daniel de Oliveira
IC / UFF

Brazil
danielcmo@ic.uff.br

Patrick Valduriez
Inria and LIRMM

France
patrick.valduriez@inria.fr

Marta Mattoso
COPPE / UFRJ

Brazil
marta@cos.ufrj.br

ABSTRACT
We present DfAnalyzer, a tool that enables monitoring, debugging,
steering, and analysis of dataflows while being generated by
scientific applications. It works by capturing strategic domain data,
registering provenance and execution data to enable queries at
runtime. DfAnalyzer provides lightweight dataflow monitoring
components to be invoked by high performance applications. It can
be plugged in scientific code scripts, or Spark applications, in the
same way users already plug visualization library components.
During this demo, we will show how DfAnalyzer captures the
dataflow, provenance, as well as how it provides runtime data
analyses of applications. We will also encourage attendees to use
DfAnalyzer for their own applications.

PVLDB Reference Format:
Vítor Silva, Daniel de Oliveira, Patrick Valduriez, Marta Mattoso.
A Sample Proceedings of the VLDB Endowment Paper in LaTeX
Format. PVLDB, 11(12): 2082-2085, 2018.
DOI: https://doi.org/10.14778/3229863.3236265

1. INTRODUCTION
Scientific applications typically involve the execution of

complex computational models and, consequently, the generation
of a huge volume of heterogeneous data. These data are commonly
stored in several workspaces as raw data files, which often follow
a de facto standard format established by the application domain,
e.g., HDF5 and FITS. However, despite the big data volume, spread
in thousands of files, typically only a small subset of the data is
relevant and used for analysis [6].

These complex scientific applications are long lasting even when
executing in parallel with High Performance Computing (HPC).
They often require fine-tuning of the parameters or changing
functions due to their exploratory nature [8]. Supporting data
monitoring and analysis at runtime allows for anticipating the
evolution of results, avoiding waiting for the whole execution to
finish or aborting the execution to adjust it and resubmit.
Visualization tools, like ParaView and VisIt, are present in most
scientific applications, particularly in HPC to help on data analysis
and monitoring [2]. Computational scientists (our target users)
already include visualization library calls in their simulation script
codes to share data with visualization tools to generate images and

videos to be analyzed at runtime. Despite being mandatory, these
tools have very limited query support and no provenance data,
limiting the scope of runtime data analysis support.

There are several open issues in data analysis in long lasting
parallel executions, like supporting the identification of data
regions of interest and the dataflow implicit in the contents of raw
data files. We present DfAnalyzer, a tool that supports runtime
dataflow analysis for HPC applications. DfAnalyzer relates raw
data files, exposes strategic domain data associated to these files,
and generates dataflow provenance with debugging data all in the
same columnar database, which is managed by MonetDB. This
database acts as a global view of raw data and metadata, which can
be queried during a long application execution complementing
visualization tools. DfAnalyzer has several monitoring and raw
data extraction components that are invoked in the same way users
already do for the visualization tools.

DfAnalyzer incurs in negligible overhead (less than 0.5% of the
application elapsed time) as measured while supporting some high
performance applications [3,8]. DfAnalyzer components are
efficient because they extract domain data as they are being
generated, often directly from the same memory space avoiding
opening and accessing raw data files. The resulting database is also
very small as compared to the raw data itself. At the same time, it
allows for complex query submissions.

These extracted strategic domain data (e.g., quantities of interest)
are often scalar data associated to large graphs or raw datasets as a
result of a complex computation, like the volume of a region, the
residual norms or a probability measure. In DfAnalyzer, all raw
data is kept in files with their original format, but the strategic data
representing these files are extracted, along with a reference to its
source file, and the dataflow. As a result, DfAnalyzer provides a
rich set of data to help tracking the evolution or the top values of
the main results of the application, and directly pointing to the
associated raw data file. Otherwise, it would require an ad-hoc
program using a third-party tool to parse all raw data files to find
and to extract the relevant contents from them.

In situ raw data query engines, like Slalom [6], provide for
efficient scientific data analysis with adaptive mechanisms that
access raw data directly from the files avoiding data copies,
loading, and indexing overheads. However, these raw data query
engines require that the files are all generated before starting the
query submission for the analysis. In addition, this offline approach
might not identify the implicit dataflow of the data transformation.
It requires a complex analysis to obtain the relationship from within
contents of heterogeneous files that compose the dataflow. Also,
some relevant data might be available only during the execution
and will no longer be available offline. DfAnalyzer and in situ raw
data query engines are complementary. DfAnalyzer can be seen as
a first step data analysis for its runtime support. Its generated global

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/08.
DOI: https://doi.org/10.14778/3229863.3236265

2082

view database can be used by in situ raw data query engines as an
index to execute queries on the strategic data and directly identify
regions of interest to be further analyzed offline, without having to
parse all the files.

Despite being targeted for long running scientific applications
[3,8], in this demo, we will use a simple dataflow use case with
parallelism managed by Apache Spark [1]. We will walk it through
the process of dataflow modeling, data capture, provenance
management, and analysis supported by DfAnalyzer. We will show
(a) how users point to strategic data to be extracted by DfAnalyzer,
(b) raw data extraction and indexing, (c) the graphical interface of
DfAnalyzer to visualize dataflows, and (d) runtime raw data and
dataflow analysis using the query interface.

2. BACKGROUND
During the execution of scientific applications, users need to

analyze data consumed and produced by different programs or data
transformations. In a previous work [5], our workflow system was
in charge of collecting data and registering provenance, available
for queries at runtime. Provenance capturing registers the flow of
data transformations with data input/outputs, but the dataflow
remains implicit. DfAnalyzer is an alternative that, similarly to
noWorkflow [7] avoids having the workflow system being in
charge of the execution control flow and having to wrap data
transformations, which can be a problem when using HPC libraries.
However, noWorkflow is specific for Python scripts and has no
support for raw data or HPC. DfAnalyzer is based on a dataflow
representation to register the flow of datasets and data elements. In
this section, we present a simple use case for predicting sales
forecasts, dataflow concepts and how our dataflow-aware approach
is able to analyze data elements manipulated by transformations.

2.1 SalesForecasts: a data science application
This demonstration paper concentrates on a simple application

for predicting the sales of a clothing company based on the
customers consumption patterns adapted from [4], renamed as
SalesForecasts. Company’s leaders, or the Decision Supporting
System (DSS) specialists, aim to finalize their requests with
providers to maximize profits. More specifically, these DSS
specialists design systems to analyze the quantities of items to be
sold, while managing the inventory. In this scenario, they often start
the design by modeling the sales prediction on top-selling items,
meaning using a reduced input dataset. Once the predictions meet
the expected budget and inventory capacity, they can evaluate new
items by adjusting the input dataset.

Figure 1 shows the SalesForecasts data transformations as
tagged black edges. It starts with the transformation
deduplicate_customers that reads customer records from different
lists (input dataset customers) and removes duplicated records
(output dataset deduplicated_customers). The next data
transformations, filter_us_customers and filter_ue_customers,
filter deduplicated customers into two customers datasets. Then,
transformation merge join all customers from these countries in the
output dataset combined_customers.

Since there are deduplicated customers from specific countries,
the transformation cross_product combines these customers with
clothing items from a list with all clothing items to be analyzed by
the predictive model (input dataset clothing_items), generating the
dataset combined_customers_with_items. After that, its results are
considered with the customer buying patterns (input dataset
buying_patterns) to obtain the predictive model with the data

transformation predict, which produces the probabilities of selling
clothing items (dataset probabibilites_of_selling_items). Finally,
these probabilities are grouped by the clothing item identifier to
calculate the expected number of items to be sold on the next season
(output dataset sales_forecasts generated by the data
transformation aggregate).

Figure 1. Data perspective view of SalesForecasts application.

Several analyses depend on the entire dataflow. Considering the
dataflow shown in Figure 1, DSS specialists need to design systems
that present probabilities of selling a specific clothing item with its
sales forecast, and its description. Since such data is stored in
different datasets produced by different data transformations,
reconstructing this implicit dataflow from raw data files can be
error prone. DfAnalyzer represents dataflows as they occur.

2.2 Dataflow Concepts
The smallest unit of interest is the data element (𝑒). A data

element has values (v) for each predefined attribute (a) that
represents 𝑒. The schema that represents e is a set A, where each a
is represented as (name, type). A set of data elements consists of a
data collection (𝑐). Then, a dataset (𝑠) is composed of a set of data
collections (𝐶). A data transformation (𝑡) consumes data from one
(or more) dataset(s) as input (𝑆'()*+) and produces data in one (or
more) dataset(s) as output (𝑆,*+)*+). Furthermore, two data
transformations can present a data dependency (𝜑) with relation to
a dataset, when the data is produced by one data transformation
(𝑡)./0',*1) and consumed by another (𝑡(/2+). Based on such concepts,
a dataflow (𝐷4) is defined by the data resulting from the
composition of data transformations (𝑇), manipulating datasets (𝑆)
concerning data dependencies (Φ).

Table 1. Dataflow definitions.

Concept Definition

data element
𝑒 = (𝑣;, 𝑣=, … , 𝑣?) ∴

𝑣'	𝑖𝑠	𝑎𝑛	𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	𝑣𝑎𝑙𝑢𝑒	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑎'	𝑖𝑛	𝐴	
∧	𝑎' = (𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒)

data collection 𝑐 = {𝑒;, 𝑒=,… , 𝑒R}
dataset 𝑠 ≡ 𝐶

data transformation 𝑡 = (𝑆'()*+, 𝑆,*+)*+)
data dependency 𝜑 = (𝑠, 𝑡)./0',*1, 𝑡(/2+)

dataflow 𝐷4 = (𝑇, 𝑆,𝛷)

Figure 1 shows a dataflow view of SalesForecasts, where nodes
in the graph represent datasets and edges represent data
transformations. Input datasets are colored in green and
output/input datasets in blue. Figure 2 shows some dataset views of
SalesForecasts with the data elements that belong to each collection

dataflow fragment

2083

of the dataset. With this representation at the data element level,
DSS specialists are able to relate the sales forecasts (attribute
quantity of dataset 𝑠;V) with specific clothing items (attribute
description of dataset 𝑠W), by correlating data elements (attribute
item_id) among datasets.

Figure 2. Excerpt of a data element flow in SalesForecasts.

3. OVERVIEW OF DFANALYZER
DfAnalyzer follows ARMFUL [8], a component-based reference

architecture for dataflow analysis. DfAnalyzer has six components,
shown, in Figure 3, as gray rounded rectangles: (i) Provenance Data
Extractor (PDE); (ii) Raw Data Extractor (RDE); (iii) Raw Data
Indexer (RDI); (iv) Dataflow Viewer (DfViewer); (iv) Query
Interface (QI); and (vi) Database (DfDB). DfAnalyzer captures
provenance and domain-specific data (i.e., strategic data obtained
during the application execution). DfAnalyzer enables raw data
extraction from such files and content indexing by direct access to
memory or invoking third-party programs or tools. The first three
components are invoked by plugging calls on the application, while
the other two have independent interfaces for the user to submit
data analyses at runtime.

Figure 3. Architecture of DfAnalyzer.

We plugged DfAnalyzer to the SalesForecasts application
parallelized with Spark in a 1000-core computer and we observed
an execution time overhead of up to 0.34% of the application
elapsed time (1h:48min), which can be considered negligible.
Following we detail each component of DfAnalyzer.

3.1 Provenance and Raw Data Extraction
The PDE component provides a RESTful API, in which the body

of HTTP requests represents the mapping between the data
processing steps of an application and the dataflow concepts
presented in Section 2. Figure 4 shows the modifications in the data
transformation predict of SalesForecasts using PDE for extracting
provenance data. Therefore, users are able to define which
computational methods in their applications correspond to a data
transformation to be registered. They can also define which data
elements consumed and produced by each data transformation are
relevant to be registered. If raw data is stored in files, it requires the
invocation of the component RDE and, if indexing is desired, RDI.
Figure 4 shows a method, named rawDataAccess, developed for
SalesForecasts application using RDE and RDI to extract and index
raw data from Spark Resilient Distributed Datasets (RDD) stored
in files. Since extraction is at runtime, often data is still cached.

Figure 4. Transformation predict tracked by DfAnalyzer.

3.2 Data Loading and Dataflow Analysis
As provenance and raw data have been extracted/indexed, PDE

loads such data into the DfDB database. DfDB follows the schema
PROV-Df [8], compliant to W3C PROV. All data expected in
PROV traces are available for queries. In distributed and parallel
computing environments, we deploy MonetDB and DfDB in a
dedicated computational node for loading data asynchronously
without jeopardizing the performance of parallel applications.

DfAnalyzer provides DfViewer and QI for online dataflow
analysis. DfViewer is a Web application that accesses all dataflows
from the DfDB database and generates a view of the dataflows
selected by the user. QI is a RESTful service that aids users to run
their SQL queries. The user provides a dataflow fragment of
interest, attributes to be returned (as the SELECT SQL clause), and
conditions on attribute values (as the WHERE SQL clause) so that
QI automatically generates the SQL to submit the queries and show
the results. In Section 4, we present a query example using QI.

CUSTOMER_ID COUNTRY CONTINENT … ITEM_ID DESCRIPTION

1 United_States North_America … 1 t-shirt

2 France Europe … 1 t-shirt

3 Chile South_America … 2 pants

𝑠" = combined_customers_with_items

CUSTOMER_ID ITEM_ID BUYING_PATTERN_ID PROBABILITY

1 1 1 0.50

1 1 2 0.82

2 1 1 0.93

2 1 2 0.37

3 2 1 0.76

3 2 2 0.12

𝑠# = probabilities_of_selling_items

ITEM_ID QUANTITY

1 6351

2 3799

𝑠$% = sales_forecasts aggregation or t'
<< data transformation >>

prediction or t(
<< data transformation >>

Spark
Application

Provenance Data
Extractor

raw data files

Raw Data
Extractor

Raw Data
Indexer

MonetDB Query
Interface

Dataflow
Viewer

A
p
p
li
ca
ti
o
n

C
ap
tu
re

S
to
ra
g
e

A
n
al
y
si
s

captures

stores

reads

dataflow
graphs

query
results

captures
stores

Standalone
Program

Python
Script

Scientific
Libraries

public JavaRDD<String> predict(String transformationTag,
 JavaRDD<String> combined_customers_with_items) {

 String inputDataset = Utils.getInputDataset(transformationTag);
 String outputDataset = Utils.getOutputDataset(transformationTag);
 // DfAnalyzer - PDE
 pde.task(dataflowTag, transformationTag, config.getTaskID(),

"RUNNING", outputWorkspace, config.getResource());
 pde.collection(inputDataset,

"{{" + getElements("buying_patterns") + "}}");
 pde.dependency("{cross_product}", "{" + config.getTaskID() + "}");

 pde.sendRequest();
 // Spark
 JavaRDD<Tuple2<String, String>> cartesianProduct =
 combined_customers_with_items.cartesian(buyingPatterns).
 rdd().toJavaRDD();
 …
 JavaRDD<String> probabilities_of_selling_items =

 similaritiesPair.map(new Prediction());
 // Write RDD
 prediction.saveAsTextFile(outputWorkspace + transformationTag);
 // DfAnalyzer – RDE and RDI
 rawDataAccess(transformationTag);
 // DfAnalyzer – PDE
 pde.changeTaskStatus("FINISHED");
 pde.collection(outputDataset,

 "{{" + getElement(transformationTag) + "}}");
 pde.sendRequest();
 return probabilities_of_selling_items;
}

2084

4. DEMONSTRATION PLAN
In our demonstration session, we encourage conference

attendees to experience runtime dataflow analysis using
SalesForecasts application in DfAnalyzer, for example by defining
raw data extraction and querying using DfViewer and QI. This
demonstration application using DfAnalyzer is available at
https://github.com/vssousa/dfanalyzer-spark.

Use Case. John is the IT leader of a clothing company, i.e., a
DSS specialist, that designs an application to predict the sales to the
next season based on the consumption patterns of the customers.
He uses the SalesForecasts application (Figure 1). He initially uses
the original version of this application, without DfAnalyzer, i.e.,
only the source code using Spark operators, as shown in Figure 4.

The SalesForecasts output data is the sales_forecasts.rdd file,
with the clothing item identifier and the quantity of sales for such
item. However, to present a predictive data analysis, John needs to
provide the description of the clothing item (to understand which is
the category, the size, and other informations) and the probability
of selling a specific clothing item to a customer according to a
specific buying pattern. He uses this selling probability to only
select clothing items that have a high probability (i.e., probability
> 0.65) of being sold in accordance with a specific customer buying
pattern. This value probability can be set/changed at runtime.

Without DfAnalyzer, he has to write programs to access and
extract raw data from the clothing_items.csv (attributes item_id and
description), and the intermediate file stored in the RDD format,
i.e., combined_customers_with_items.rdd (attributes item_id and
probability), besides the sales data from the output file
sales_forecasts.rdd (item_id and quantity). Even with the raw data
extracted and, maybe, indexed, he has to correlate these raw data
elements from different files and formats (i.e., he has to develop a
query for a dataflow analysis based on the extracted raw data).

John would also have to wait until the end of the application
execution for running his own developed data analysis programs. It
is time-consuming and error-prone. Now let us see how to plug
DfAnalyzer to the SalesForecasts application.

Dataflow Specification. As the first step to use DfAnalyzer,
database specialists scheduled a meeting with John to know which
are strategic data and metadata for his predictive analyses. Then,
database specialists model SalesForecasts dataflow according to
provenance data of the main data transformations and strategic data
to the DSS specialist. As a result, a dataflow specification is
obtained with transformations, datasets, data dependencies, and
attributes to be monitored by DfAnalyzer.

Raw and Provenance Data Extraction. Since database
specialists have a dataflow specification to guide the flow of data
elements generation, they help John to plug DfAnalyzer
components, i.e., RDE, PDE, RDI, for extracting raw and
provenance data at runtime, as well as indexing. Figure 4 shows the
method rawDataAccess() introduced in the original source code of
the application for raw data extraction and indexing, which is based
on the invocations of RDE and RDI as shown in Figure 5. Since
DfAnalyzer monitoring components are plugged in the predictive
data science application, John can submit its execution.

Dataflow Analysis. John may run DfViewer for visualizing the
dataflow specification in a dataset perspective view (Figure 1) and
checking if the registered dataflow is in accordance with the data
processing steps of the application. Then, he uses this visualization
for defining the source target, the destination target, the attributes
to be returned by the query, and the conditions for selecting specific
raw data elements from the dataflow fragment of interest. Figure 6

shows the input arguments specified to QI for generating and
running the SQL-based query.

Figure 5. Raw data extraction and indexing using DfAnalyzer.

Figure 6. Predictive data analysis using the QI component.

5. ACKNOWLEDGEMENTS
We thank Thiago Perrotta, Thaylon Guedes, and Luciano Leite

for their help in development. We would like to thank INRIA,
CAPES, CNPq, FAPERJ, HPC4E (EU H2020 and MCTI/RNP-
Brazil). This work has been performed (for P. Valduriez) in the
context of the Computational Biology Institute. The HPC Center at
COPPE/ Federal University of Rio de Janeiro has provided
computing and storage resources on the Lobo Carneiro
supercomputer.

6. REFERENCES
[1] Armbrust, M., Zaharia, M., Das, T., Davidson, A., Ghodsi, A.,

Or, A., Rosen, J., Stoica, I., Wendell, P., et al. Scaling spark in
the real world: performance and usability. PVLDB, 8(12):1840–
1843, 2015.

[2] Ayachit, U., Bauer, A., Duque, E.P.N., Eisenhauer, G., Ferrier,
N., Gu, J., Jansen, K.E., Loring, B., Lukić, Z., et al.
Performance Analysis, Design Considerations, and
Applications of Extreme-scale in Situ Infrastructures.
Supercomputing conference, 79:1–12, 2016.

[3] Camata, J.J., Silva, V., Valduriez, P., Mattoso, M., Coutinho,
A.L.G.A. In situ visualization and data analysis for turbidity
currents simulation. Computers & Geosciences, 110:23–31,
2018.

[4] Ikeda, R., Widom, J. Panda: A System for Provenance and
Data. IEEE Data Engineering Bulletin, 42–49, 2010.

[5] Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P.,
Mattoso, M. An Algebraic Approach for Data-Centric
Scientific Workflows. PVLDB, 4(12):1328–1339, 2011.

[6] Olma, M., Karpathiotakis, M., Alagiannis, I., Athanassoulis,
M., Ailamaki, A. Slalom: Coasting Through Raw Data via
Adaptive Partitioning and Indexing. PVLDB, 10(10):1106–
1117, 2017.

[7] Pimentel, J.F., Murta, L., Braganholo, V., Freire, J. noWorkflow:
a tool for collecting, analyzing, and managing provenance from
python scripts. PVLDB, 10(12):1841–1844, 2017.

[8] Silva, V., Camata, J., de Oliveira, D., Coutinho, A.L.G.A.,
Valduriez, P., Mattoso, M. In Situ Data Steering on
Sedimentation Simulation with Provenance Data. Poster
session of Supercomputing conference, 2016.

[9] Silva, V., Leite, J., Camata, J., Oliveira, D., Coutinho, A.L.G..,
Valduriez, P., Mattoso, M. Raw Data Queries during Data-
intensive Parallel Workflow Execution. Future Generation
Computer Systems Journal, 75:402–422, 2017.

//command line to run RDE with cartridge Program
./RDE PROGRAM:EXTRACT probabilities_of_selling_items
 /root/sales_forecasts probabilities_of_selling_items.rdd
 {customer_id:numeric, item_id:numeric, …, probability:numeric }
//command line to run RDI with cartridge FastBit
./RDI FASTBIT:INDEX probabilities_of_selling_items
 /root/sales_forecasts probabilities_of_selling_items
 {customer_id:numeric, item_id:numeric, …, probability:numeric }

source(clothing_items)
target(sales_forecasts)
projection(clothing_items.description; sales_forecasts.quantity)
selection(probabilities_of_selling_items.probability > 0.65)

2085

