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ABSTRACT 
We present DfAnalyzer, a tool that enables monitoring, debugging, 
steering, and analysis of dataflows while being generated by 
scientific applications. It works by capturing strategic domain data, 
registering provenance and execution data to enable queries at 
runtime. DfAnalyzer provides lightweight dataflow monitoring 
components to be invoked by high performance applications. It can 
be plugged in scientific code scripts, or Spark applications, in the 
same way users already plug visualization library components. 
During this demo, we will show how DfAnalyzer captures the 
dataflow, provenance, as well as how it provides runtime data 
analyses of applications. We will also encourage attendees to use 
DfAnalyzer for their own applications. 
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1. INTRODUCTION 
Scientific applications typically involve the execution of 

complex computational models and, consequently, the generation 
of a huge volume of heterogeneous data. These data are commonly 
stored in several workspaces as raw data files, which often follow 
a de facto standard format established by the application domain, 
e.g., HDF5 and FITS. However, despite the big data volume, spread 
in thousands of files, typically only a small subset of the data is 
relevant and used for analysis [6].  

These complex scientific applications are long lasting even when 
executing in parallel with High Performance Computing (HPC). 
They often require fine-tuning of the parameters or changing 
functions due to their exploratory nature [8]. Supporting data 
monitoring and analysis at runtime allows for anticipating the 
evolution of results, avoiding waiting for the whole execution to 
finish or aborting the execution to adjust it and resubmit. 
Visualization tools, like ParaView and VisIt, are present in most 
scientific applications, particularly in HPC to help on data analysis 
and monitoring [2]. Computational scientists (our target users) 
already include visualization library calls in their simulation script 
codes to share data with visualization tools to generate images and 

videos to be analyzed at runtime. Despite being mandatory, these 
tools have very limited query support and no provenance data, 
limiting the scope of runtime data analysis support.   

There are several open issues in data analysis in long lasting 
parallel executions, like supporting the identification of data 
regions of interest and the dataflow implicit in the contents of raw 
data files. We present DfAnalyzer, a tool that supports runtime 
dataflow analysis for HPC applications. DfAnalyzer relates raw 
data files, exposes strategic domain data associated to these files, 
and generates dataflow provenance with debugging data all in the 
same columnar database, which is managed by MonetDB. This 
database acts as a global view of raw data and metadata, which can 
be queried during a long application execution complementing 
visualization tools. DfAnalyzer has several monitoring and raw 
data extraction components that are invoked in the same way users 
already do for the visualization tools.  

DfAnalyzer incurs in negligible overhead  (less than 0.5% of the 
application elapsed time) as measured while supporting some high 
performance applications [3,8]. DfAnalyzer components are 
efficient because they extract domain data as they are being 
generated, often directly from the same memory space avoiding 
opening and accessing raw data files. The resulting database is also 
very small as compared to the raw data itself. At the same time, it 
allows for complex query submissions. 

These extracted strategic domain data (e.g., quantities of interest) 
are often scalar data associated to large graphs or raw datasets as a 
result of a complex computation, like the volume of a region, the 
residual norms or a probability measure. In DfAnalyzer, all raw 
data is kept in files with their original format, but the strategic data 
representing these files are extracted, along with a reference to its 
source file, and the dataflow. As a result, DfAnalyzer provides a 
rich set of data to help tracking the evolution or the top values of 
the main results of the application, and directly pointing to the 
associated raw data file. Otherwise, it would require an ad-hoc 
program using a third-party tool to parse all raw data files to find 
and to extract the relevant contents from them.  

In situ raw data query engines, like  Slalom [6], provide for 
efficient scientific data analysis with adaptive mechanisms that 
access raw data directly from the files avoiding data copies, 
loading, and indexing overheads. However, these raw data query 
engines require that the files are all generated before starting the 
query submission for the analysis. In addition, this offline approach 
might not identify the implicit dataflow of the data transformation. 
It requires a complex analysis to obtain the relationship from within 
contents of heterogeneous files that compose the dataflow. Also, 
some relevant data might be available only during the execution 
and will no longer be available offline. DfAnalyzer and in situ raw 
data query engines are complementary. DfAnalyzer can be seen as 
a first step data analysis for its runtime support. Its generated global 
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view database can be used by in situ raw data query engines as an 
index to execute queries on the strategic data and directly identify 
regions of interest to be further analyzed offline, without having to 
parse all the files. 

Despite being targeted for long running scientific applications 
[3,8], in this demo, we will use a simple dataflow use case with 
parallelism managed by Apache Spark [1]. We will walk it through 
the process of dataflow modeling, data capture, provenance 
management, and analysis supported by DfAnalyzer. We will show 
(a) how users point to strategic data to be extracted by DfAnalyzer, 
(b) raw data extraction and indexing, (c) the graphical interface of 
DfAnalyzer to visualize dataflows, and (d) runtime raw data and 
dataflow analysis using the query interface. 

2. BACKGROUND 
During the execution of scientific applications, users need to 

analyze data consumed and produced by different programs or data 
transformations. In a previous work [5], our workflow system was 
in charge of collecting data and registering provenance, available 
for queries at runtime. Provenance capturing registers the flow of 
data transformations with data input/outputs, but the dataflow 
remains implicit. DfAnalyzer is an alternative that, similarly to 
noWorkflow [7] avoids having the workflow system being in 
charge of the execution control flow and having to wrap data 
transformations, which can be a problem when using HPC libraries. 
However, noWorkflow is specific for Python scripts and has no 
support for raw data or HPC. DfAnalyzer is based on a dataflow 
representation to register the flow of datasets and data elements. In 
this section, we present a simple use case for predicting sales 
forecasts, dataflow concepts and how our dataflow-aware approach 
is able to analyze data elements manipulated by transformations. 

2.1 SalesForecasts: a data science application 
This demonstration paper concentrates on a simple application 

for predicting the sales of a clothing company based on the 
customers consumption patterns adapted from [4], renamed as 
SalesForecasts. Company’s leaders, or the Decision Supporting 
System (DSS) specialists, aim to finalize their requests with 
providers to maximize profits. More specifically, these DSS 
specialists design systems to analyze the quantities of items to be 
sold, while managing the inventory. In this scenario, they often start 
the design by modeling the sales prediction on top-selling items, 
meaning using a reduced input dataset. Once the predictions meet 
the expected budget and inventory capacity, they can evaluate new 
items by adjusting the input dataset.  

Figure 1 shows the SalesForecasts data transformations as 
tagged black edges. It starts with the transformation 
deduplicate_customers that reads customer records from different 
lists (input dataset customers) and removes duplicated records 
(output dataset deduplicated_customers). The next data 
transformations, filter_us_customers and filter_ue_customers, 
filter deduplicated customers into two customers datasets. Then, 
transformation merge join all customers from these countries in the 
output dataset combined_customers.  

Since there are deduplicated customers from specific countries, 
the transformation cross_product combines these customers with 
clothing items from a list with all clothing items to be analyzed by 
the predictive model (input dataset clothing_items), generating the 
dataset combined_customers_with_items. After that, its results are 
considered with the customer buying patterns (input dataset 
buying_patterns) to obtain the predictive model with the data 

transformation predict, which produces the probabilities of selling 
clothing items (dataset probabibilites_of_selling_items). Finally, 
these probabilities are grouped by the clothing item identifier to 
calculate the expected number of items to be sold on the next season 
(output dataset sales_forecasts generated by the data 
transformation aggregate).  

 
Figure 1. Data perspective view of SalesForecasts application. 

Several analyses depend on the entire dataflow. Considering the 
dataflow shown in Figure 1, DSS specialists need to design systems 
that present probabilities of selling a specific clothing item with its 
sales forecast, and its description. Since such data is stored in 
different datasets produced by different data transformations, 
reconstructing this implicit dataflow from raw data files can be 
error prone. DfAnalyzer represents dataflows as they occur.   

2.2 Dataflow Concepts 
The smallest unit of interest is the data element (𝑒). A data 

element has values (v) for each predefined attribute (a) that 
represents 𝑒. The schema that represents e is a set A, where each a 
is represented as (name, type). A set of data elements consists of a 
data collection (𝑐). Then, a dataset (𝑠) is composed of a set of data 
collections (𝐶). A data transformation (𝑡) consumes data from one 
(or more) dataset(s) as input (𝑆'()*+) and produces data in one (or 
more) dataset(s) as output (𝑆,*+)*+). Furthermore, two data 
transformations can present a data dependency (𝜑) with relation to 
a dataset, when the data is produced by one data transformation 
(𝑡)./0',*1) and consumed by another (𝑡(/2+). Based on such concepts, 
a dataflow (𝐷4) is defined by the data resulting from the 
composition of data transformations (𝑇), manipulating datasets (𝑆) 
concerning data dependencies (Φ).   

Table 1. Dataflow definitions. 

Concept Definition 

data element 
𝑒 = (𝑣;, 𝑣=, … , 𝑣?) ∴ 

𝑣'	𝑖𝑠	𝑎𝑛	𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	𝑣𝑎𝑙𝑢𝑒	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑎'	𝑖𝑛	𝐴	 
∧	𝑎' = (𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒) 

data collection 𝑐 = {𝑒;, 𝑒=,… , 𝑒R} 
dataset 𝑠 ≡ 𝐶 

data transformation 𝑡 = (𝑆'()*+, 𝑆,*+)*+) 
data dependency 𝜑 = (𝑠, 𝑡)./0',*1, 𝑡(/2+) 

dataflow 𝐷4 = (𝑇, 𝑆,𝛷) 

Figure 1 shows a dataflow view of SalesForecasts, where nodes 
in the graph represent datasets and edges represent data 
transformations. Input datasets are colored in green and 
output/input datasets in blue. Figure 2 shows some dataset views of 
SalesForecasts with the data elements that belong to each collection 

dataflow fragment
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of the dataset. With this representation at the data element level, 
DSS specialists are able to relate the sales forecasts (attribute 
quantity of dataset 𝑠;V) with specific clothing items (attribute 
description of dataset 𝑠W), by correlating data elements (attribute 
item_id) among datasets. 

 
Figure 2. Excerpt of a data element flow in SalesForecasts. 

3. OVERVIEW OF DFANALYZER 
DfAnalyzer follows ARMFUL [8], a component-based reference 

architecture for dataflow analysis. DfAnalyzer has six components, 
shown, in Figure 3, as gray rounded rectangles: (i) Provenance Data 
Extractor (PDE); (ii) Raw Data Extractor (RDE); (iii) Raw Data 
Indexer (RDI); (iv) Dataflow Viewer (DfViewer); (iv) Query 
Interface (QI); and (vi) Database (DfDB). DfAnalyzer captures 
provenance and domain-specific data (i.e., strategic data obtained 
during the application execution). DfAnalyzer enables raw data 
extraction from such files and content indexing by direct access to 
memory or invoking third-party programs or tools. The first three 
components are invoked by plugging calls on the application, while 
the other two have independent interfaces for the user to submit 
data analyses at runtime.  

 
Figure 3. Architecture of DfAnalyzer. 

We plugged DfAnalyzer to the SalesForecasts application 
parallelized with Spark in a 1000-core computer and we observed 
an execution time overhead of up to 0.34% of the application 
elapsed time (1h:48min), which can be considered negligible. 
Following we detail each component of DfAnalyzer. 

3.1 Provenance and Raw Data Extraction 
The PDE component provides a RESTful API, in which the body 

of HTTP requests represents the mapping between the data 
processing steps of an application and the dataflow concepts 
presented in Section 2. Figure 4 shows the modifications in the data 
transformation predict of SalesForecasts using PDE for extracting 
provenance data. Therefore, users are able to define which 
computational methods in their applications correspond to a data 
transformation to be registered. They can also define which data 
elements consumed and produced by each data transformation are 
relevant to be registered. If raw data is stored in files, it requires the 
invocation of the component RDE and, if indexing is desired, RDI. 
Figure 4 shows a method, named rawDataAccess, developed for 
SalesForecasts application using RDE and RDI to extract and index 
raw data from Spark Resilient Distributed Datasets (RDD) stored 
in files. Since extraction is at runtime, often data is still cached. 

 
Figure 4. Transformation predict tracked by DfAnalyzer. 

3.2 Data Loading and Dataflow Analysis 
As provenance and raw data have been extracted/indexed, PDE 

loads such data into the DfDB database. DfDB follows the schema 
PROV-Df [8], compliant to W3C PROV. All data expected in 
PROV traces are available for queries. In distributed and parallel 
computing environments, we deploy MonetDB and DfDB in a 
dedicated computational node for loading data asynchronously 
without jeopardizing the performance of parallel applications.  

DfAnalyzer provides DfViewer and QI for online dataflow 
analysis. DfViewer is a Web application that accesses all dataflows 
from the DfDB database and generates a view of the dataflows 
selected by the user. QI is a RESTful service that aids users to run 
their SQL queries. The user provides a dataflow fragment of 
interest, attributes to be returned (as the SELECT SQL clause), and 
conditions on attribute values (as the WHERE SQL clause) so that 
QI automatically generates the SQL to submit the queries and show 
the results. In Section 4, we present a query example using QI. 

CUSTOMER_ID COUNTRY CONTINENT … ITEM_ID DESCRIPTION

1 United_States North_America … 1 t-shirt

2 France Europe … 1 t-shirt

3 Chile South_America … 2 pants

𝑠" = combined_customers_with_items

CUSTOMER_ID ITEM_ID BUYING_PATTERN_ID PROBABILITY

1 1 1 0.50

1 1 2 0.82

2 1 1 0.93

2 1 2 0.37

3 2 1 0.76

3 2 2 0.12

𝑠# = probabilities_of_selling_items

ITEM_ID QUANTITY

1 6351

2 3799

𝑠$% = sales_forecasts aggregation or t'
<< data transformation >>

prediction or t(
<< data transformation >>
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public JavaRDD<String> predict(String transformationTag,  
                       JavaRDD<String> combined_customers_with_items) { 

     String inputDataset = Utils.getInputDataset(transformationTag); 
     String outputDataset = Utils.getOutputDataset(transformationTag); 
     // DfAnalyzer - PDE 
     pde.task(dataflowTag, transformationTag, config.getTaskID(),  

"RUNNING", outputWorkspace, config.getResource()); 
     pde.collection(inputDataset,  

"{{" + getElements("buying_patterns") + "}}"); 
    pde.dependency("{cross_product}", "{" + config.getTaskID() + "}"); 

     pde.sendRequest(); 
     // Spark 
     JavaRDD<Tuple2<String, String>> cartesianProduct =          
                 combined_customers_with_items.cartesian(buyingPatterns). 
                 rdd().toJavaRDD(); 
     … 
     JavaRDD<String> probabilities_of_selling_items =  

               similaritiesPair.map(new Prediction()); 
     // Write RDD 
     prediction.saveAsTextFile(outputWorkspace + transformationTag);      
    // DfAnalyzer – RDE and RDI 
     rawDataAccess(transformationTag); 
     // DfAnalyzer – PDE 
     pde.changeTaskStatus("FINISHED"); 
     pde.collection(outputDataset,  

         "{{" + getElement(transformationTag) + "}}"); 
     pde.sendRequest(); 
     return probabilities_of_selling_items; 
} 
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4. DEMONSTRATION PLAN 
In our demonstration session, we encourage conference 

attendees to experience runtime dataflow analysis using 
SalesForecasts application in DfAnalyzer, for example by defining 
raw data extraction and querying using DfViewer and QI. This 
demonstration application using DfAnalyzer is available at 
https://github.com/vssousa/dfanalyzer-spark. 

Use Case. John is the IT leader of a clothing company, i.e., a 
DSS specialist, that designs an application to predict the sales to the 
next season based on the consumption patterns of the customers. 
He uses the SalesForecasts application (Figure 1). He initially uses 
the original version of this application, without DfAnalyzer, i.e., 
only the source code using Spark operators, as shown in Figure 4.  

The SalesForecasts output data is the sales_forecasts.rdd file, 
with the clothing item identifier and the quantity of sales for such 
item. However, to present a predictive data analysis, John needs to 
provide the description of the clothing item (to understand which is 
the category, the size, and other informations) and the probability 
of selling a specific clothing item to a customer according to a 
specific buying pattern. He uses this selling probability to only 
select clothing items that have a high probability (i.e., probability 
> 0.65) of being sold in accordance with a specific customer buying 
pattern. This value probability can be set/changed at runtime. 

Without DfAnalyzer, he has to write programs to access and 
extract raw data from the clothing_items.csv (attributes item_id and 
description), and the intermediate file stored in the RDD format, 
i.e., combined_customers_with_items.rdd (attributes item_id and 
probability), besides the sales data from the output file 
sales_forecasts.rdd (item_id and quantity). Even with the raw data 
extracted and, maybe, indexed, he has to correlate these raw data 
elements from different files and formats (i.e., he has to develop a 
query for a dataflow analysis based on the extracted raw data). 

John would also have to wait until the end of the application 
execution for running his own developed data analysis programs. It 
is time-consuming and error-prone. Now let us see how to plug 
DfAnalyzer to the SalesForecasts application.  

Dataflow Specification. As the first step to use DfAnalyzer, 
database specialists scheduled a meeting with John to know which 
are strategic data and metadata for his predictive analyses. Then, 
database specialists model SalesForecasts dataflow according to 
provenance data of the main data transformations and strategic data 
to the DSS specialist. As a result, a dataflow specification is 
obtained with transformations, datasets, data dependencies, and 
attributes to be monitored by DfAnalyzer.  

Raw and Provenance Data Extraction. Since database 
specialists have a dataflow specification to guide the flow of data 
elements generation, they help John to plug DfAnalyzer 
components, i.e., RDE, PDE, RDI, for extracting raw and 
provenance data at runtime, as well as indexing. Figure 4 shows the 
method rawDataAccess() introduced in the original source code of 
the application for raw data extraction and indexing, which is based 
on the invocations of RDE and RDI as shown in Figure 5. Since 
DfAnalyzer monitoring components are plugged in the predictive 
data science application, John can submit its execution.  

Dataflow Analysis. John may run DfViewer for visualizing the 
dataflow specification in a dataset perspective view (Figure 1) and 
checking if the registered dataflow is in accordance with the data 
processing steps of the application. Then, he uses this visualization 
for defining the source target, the destination target, the attributes 
to be returned by the query, and the conditions for selecting specific 
raw data elements from the dataflow fragment of interest. Figure 6 

shows the input arguments specified to QI for generating and 
running the SQL-based query. 

 
Figure 5. Raw data extraction and indexing using DfAnalyzer. 

 
Figure 6. Predictive data analysis using the QI component. 
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//command line to run RDE with cartridge Program 
./RDE PROGRAM:EXTRACT probabilities_of_selling_items 
      /root/sales_forecasts probabilities_of_selling_items.rdd  
     {customer_id:numeric, item_id:numeric, …, probability:numeric } 
//command line to run RDI with cartridge FastBit 
./RDI FASTBIT:INDEX probabilities_of_selling_items  
     /root/sales_forecasts probabilities_of_selling_items 
     {customer_id:numeric, item_id:numeric, …, probability:numeric } 
 

source(clothing_items) 
target(sales_forecasts) 
projection(clothing_items.description; sales_forecasts.quantity) 
selection(probabilities_of_selling_items.probability > 0.65) 
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