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ABSTRACT
Robust query optimization becomes illusory in the presence
of correlated predicates or user-defined functions. Occasion-
ally, the query optimizer will choose join orders whose ex-
ecution time is by many orders of magnitude higher than
necessary. We present SkinnerDB, a novel database man-
agement system that is designed from the ground up for
reliable optimization and robust performance.

SkinnerDB implements several adaptive query processing
strategies based on reinforcement learning. We divide the
execution of a query into small time periods in which dif-
ferent join orders are executed. Thereby, we converge to
optimal join orders with regret bounds, meaning that the
expected difference between actual execution time and time
for an optimal join order is bounded. To the best of our
knowledge, our execution strategies are the first to provide
comparable formal guarantees. SkinnerDB can be used as
a layer on top of any existing database management sys-
tem. We use optimizer hints to force existing systems to
try out different join orders, carefully restricting execution
time per join order and data batch via timeouts. We choose
timeouts according to an iterative scheme that balances ex-
ecution time over different timeouts to guarantee bounded
regret. Alternatively, SkinnerDB can be used as a stan-
dalone, featuring an execution engine that is tailored to the
requirements of join order learning. In particular, we use a
specialized multi-way join algorithm and a concise tuple rep-
resentation to facilitate fast switches between join orders. In
our demonstration, we let participants experiment with dif-
ferent query types and databases. We visualize the learning
process and compare against baselines.
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1. INTRODUCTION

“The consequences of an act affect the probability of its
occurring again.” — B.F. Skinner.

The goal of query optimization is to translate a declarative
query, describing data to generate, into an optimal query
plan. Execution cost of good and bad plans for a given query
often differs by many orders of magnitude [21], making reli-
able query optimization a prerequisite for high-performance
data processing. Perhaps surprisingly, the primary challenge
in query optimization is often not the enumeration of an
overly large search space. Instead, the primary challenge is
to reliably identify the plan with minimal execution cost.

Execution cost estimates are based on cardinality esti-
mates for intermediate results, generated during the exe-
cution of a query plan. Accurately estimating the size of
intermediate results is however inherently difficult before
a plan is executed [21]. For instance, data skew leads to
correlations between different query predicates, making it
hard to estimate the selectivity of predicate groups. Com-
plex user-defined predicates (UDFs) have to be treated as
black boxes from the optimizer perspective, at least when
being encountered for the first time, and make optimization
even harder. Traditional optimizers base their estimates on
coarse-grained statistics about value distributions and many
simplifying assumptions (e.g., independence between differ-
ent query predicates) that are all too often violated. In that
case, disastrous query plans may result whose execution time
is higher than the optimum by many orders of magnitude.

We can gain information on the cardinality of intermedi-
ate results by executing plans (or plan fragments) on data
samples. Such information is valuable as it might lead to
better decisions with regards to query plan properties such
as join order. On the other side, collecting information is
computationally expensive. We cannot obtain reliable size
estimates for all intermediate result candidates (as their
number grows quickly as a function of query size). We need
an appropriate strategy to balance the value of collected
information against the cost of collecting it. The area of re-
inforcement learning [24] has produced a rich body of work
providing strategies with formal guarantees for such scenar-
ios. In this demonstration, we show how such strategies can
be leveraged to learn optimal join orders.

The remainder of this paper is organized as follows. In
Section 2, we give a high-level overview of the approach be-
hind our system. Then, in Section 3, we describe differences
to prior work in the area of robust query processing. Finally,
we describe the specifics of our demonstration in Section 4.
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2. APPROACH OVERVIEW
We discuss the main ideas behind our approach to join

ordering in the following.

2.1 Join ordering: learning-by-doing
Our focus differs from prior work on learning optimiz-

ers [38] or learning DBMS [33]. Those approaches generally
learn from the execution of past queries in order to improve
optimization of the following queries. This is however only
possible if future queries are similar enough to past queries,
if this similarity can be recognized by the optimizer, and if
the underlying data remains stable. Even slight changes to
a query can change execution time of plan candidates signif-
icantly. Instead of learning from past executions, our goal is
to learn during the execution of a query. This ensures that
all gained knowledge is directly applicable to the query at
hand.

To enable learning during the execution of a single query,
we divide query evaluation into many small time periods.
We may try out a different join order in each period. Our
selection of the next join order is generally based on our
experiences gained from trying join orders in the preceding
time periods. Here, we face a dilemma. In order to finish
execution as quickly as possible, we are motivated to exploit
previously gained knowledge and to use a join order that has
worked well in the preceding periods (i.e., small execution
time for a small data batch or, equivalently, fast progress for
a fixed time budget). On the other side, we are motivated
to try out join orders about which little is known so far as
we have not tried them (often) yet. Such exploration could
give us valuable information allowing us to speed up query
evaluation via better choices in the future. All our process-
ing strategies use the so called UCT algorithm [26] to strike
an optimal balance between exploration (i.e., learning about
new join orders) and exploitation (i.e., using join orders that
have shown to work well for the current query).

2.2 Join order learning on top of
existing DBMS execution engines

We propose three processing strategies, implemented in a
novel DBMS called SkinnerDB. Our first processing strategy
sits on top of an existing DBMS that is used as execution
engine. In our demonstration, we will for instance use Post-
gres as underlying execution engine. We initially partition
input data into small batches and use optimizer hints com-
bined with timeouts to force the DBMS to explore different
join orders. A crucial question in this context is the choice
of an appropriate timeout. Choosing the timeout per batch
too low prevents us from making progress. Choosing it too
high allows bad join orders to increase execution time far be-
yond the time required by an optimal join order. Of course,
we cannot know initially what timeout is optimal. We use
an iterative scheme that selects timeouts from a geometric
progression, carefully balancing execution time between dif-
ferent timeouts and slowly increasing the set of considered
timeouts as execution time increases. The UCT algorithm,
based on an appropriate search space and reward function,
governs the choice of join orders for specific timeouts. The
algorithm is iterative and ends once all data batches have
been processed, thereby generating a complete result for the
input query.

The latter strategy completely bypasses the original query
optimizer. This is appropriate for difficult-to-optimize queries

(e.g., due to UDF predicates or predicate correlations) where
a traditional optimizer fails. However, it adds unnecessary
learning overheads for standard queries that are easy to
optimize by the original system. To combine good perfor-
mance for difficult queries with reasonable performance for
standard queries, we propose a hybrid evaluation strategy.
This strategy divides execution time between time dedicated
to plans proposed by the original optimizer and execution
time dedicated to the learning based approach. We show in
our demonstration that this strategy achieves robust perfor-
mance in a variety of scenarios.

2.3 Join order learning with
specialized execution engine

The previous two strategies are versatile and can in prin-
ciple work with any DBMS offering an SQL interface. We
treat the DBMS as a black box and make no assumptions on
the internal processes by which queries are evaluated. For
this flexibility, we pay a performance overhead compared to
a customized execution engine. Our last evaluation strategy
is based on a specialized execution engine, that is tailored
towards the requirements of a learning based query evalua-
tion strategy. Most importantly, the execution engine must
enable us to switch quickly between different join orders,
to repeatedly interrupt processing of a join order with little
penalty, and to share evaluation progress as much as possi-
ble between different join orders. Among the key ideas to
achieve those features, is a multi-way join strategy and a
specialized tuple representation. Both aim at keeping in-
termediate results produced during execution as small as
possible to speed up restoring and backing up evaluation
progress when switching join orders.

2.4 Formal guarantees on near-optimal
expected execution cost

Reinforcement learning methods typically come with for-
mal guarantees bounding the expected regret (which is ob-
tained by making optimal or near-optimal choices during
learning). Our goal is to translate those regret bounds into
bounds on execution cost regret in query evaluation. More
precisely, we define as regret the time difference between
actual query evaluation time for a given query and evalua-
tion time required by an optimal join order. Our process-
ing strategies offer bounds on expected regret of the form
(1− 1/Poly(m)) ·n+O(log(n))) where n is evaluation time
and m is the number of joined tables in the current query
(Poly() designates a polynomial). We put those results into
context. For traditional optimizers, the difference between
execution time of an optimal and sub-optimal query plan can
grow exponentially in the number of query tables. Hence, for
worst-case queries where simplifying assumptions in cardi-
nality estimation lead to sub-optimal plan choices, the regret
of a traditional optimizer could grow as (1− 1/Exp(m)) · n
(where Exp(m) designates an exponential function in the
number of joined tables). Hence, our evaluation strategies
are provably more robust than traditional query optimiza-
tion.

3. RELATED WORK
Our approach connects to prior work that collects infor-

mation on predicate selectivity by evaluating them on data
samples [9, 10, 22, 23, 25, 28, 31, 42]. We compare in our
experiments against a recently proposed representative [42].
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Most prior approaches rely on a traditional optimizer to se-
lect interesting intermediate results to sample. They suffer if
the original optimizer generates very bad plans. The same
applies to approaches for interleaved query execution and
optimization [1, 5, 7] that repair initial plans at run time if
cardinality estimates turn out to be wrong. Robust query
optimization methods [3, 4, 6, 11] assume that predicate
selectivity is known within narrow intervals which is often
not the case [17]. Prior work [15, 16] on query optimization
without selectivity estimation is still based on simplifying
assumptions (e.g., independent predicates) that are often
violated.

Machine learning has been used in the context of databases
to estimate cost for query plans whose cardinality values
are known [2, 27], to predict query [19] or workflow [34]
execution times, result cardinality [29, 30], or interference
between query executions [14]. LEO [1, 38], IBM’s learning
optimizer, leverages past query executions to improve car-
dinality estimates for similar queries. Ewen et al. [18] use a
similar approach for federated database systems. This works
only if past queries are similar and if this similarity can be
recognized (slight changes in the query can lead to huge dif-
ferences in execution time for a given join order). Instead,
we focus on learning during the execution of a given query.

Adaptive processing strategies have been explored in prior
work [5, 12, 13, 36, 37, 40, 41]. Our work uses reinforcement
learning and is therefore most related to prior work using
reinforcement learning in the context of Eddies [40]. We
compare against this approach in our experiments. Among
the differences are for instance the following. First, we use
a more recent reinforcement learning algorithm [20] as base.
Second, we cleanly separate learning-related data structures
from the execution engine, allowing us to perform join or-
der learning on top of existing DBMSs in a non-intrusive
manner (Eddies associate single tuples or tuple batches with
meta-data). Third, Eddies do not deliberately discard inter-
mediate result tuples but complete them instead. We take
great care not to spend a disproportional amount of time on
bad join orders and may discard intermediate results if they
seem to be part of bad join orders. We could not achieve
our formal regret bounds without that feature. In contrast
to worst-case optimal join algorithms [32], our guarantees
are probabilistic and refer to optimal execution time (not
worst-case result sizes). Also, they are valid for arbitrary
predicates (no restriction to equality predicates).

4. DEMONSTRATION
We describe in the following the benchmarks and baselines

used during the demonstration. We describe the metrics
applied to compare baselines as well as visualizations that
enable attendants to understand how different approaches
work. Finally, we describe the demo organization.

4.1 Benchmarks
We use a mix of traditional benchmarks (typically easy

from the query optimization perspective), as well as cor-
ner cases that are extremely difficult for traditional query
optimizers. Our corner cases focus on two weaknesses of
traditional query optimizers: data skew and user-defined
predicates. Both factors make it hard to estimate the car-
dinality of intermediate results. Data skew leads to query
predicates that are correlated (i.e., a tuple satisfying one
predicate is more or less likely to satisfy another predicate).

This violates the predicate independence assumption made
by traditional optimizers, thereby leading to erroneous es-
timates. User-defined predicates, on the other side, corre-
spond to black boxes from the optimizer perspective. Their
selectivity must be guessed, leading potentially to large er-
rors. More precisely, we consider the following benchmarks.

TPC-H Variants. TPC-H [39] is one of the most pop-
ular benchmarks. It has been designed to challenge the ex-
ecution engine, rather than the query optimizer. Hence,
the original TPC-H benchmark is relatively easy to solve by
traditional optimizers. In our demo, we consider the orig-
inal TPC-H queries as well as several variants. For those
variants, we reformulate queries into semantically equivalent
versions that are nevertheless much harder to optimize. For
instance, we replace all unary predicates in TPC-H queries
by user-defined functions with equivalent semantics.

Join Order Benchmark. The join order benchmark is
based on real data from the international movie database [21].
Its data is skewed, making cardinality estimation harder
than for synthetically generated benchmark data sets. We
consider the original benchmark as well as several variants
with semantically equivalent queries.

Micro-Benchmarks. We use several micro-benchmarks
that challenge the query optimizer due to user-defined pred-
icates or data skew. On the other side, we created micro-
benchmarks that make optimization easy as all possible join
orders are equivalent.

4.2 Baselines
We demonstrate multiple approaches implemented in Skin-

nerDB. First, we demonstrate SkinnerDB running on top
of existing database systems. Here, we use either a pure
learning approach or a hybrid approach (which periodically
switches between learned join orders and plans proposed by
the original optimizer). We use Postgres [35] as underly-
ing database system for our demonstration (while the ap-
proach can be applied to other systems as well). Second, we
demonstrate SkinnerDB as stand-alone system, its learning
based optimizer running on top of a tailored execution en-
gine. This approach optimizes performance but requires to
move data between systems.

We compare our approach against several baselines. We
compare against two other database systems: Postgres [35]
and MonetDB [8]. Postgres features a mature, cost-based
query optimizer. It is therefore representative for strengths
and weaknesses of traditional optimizers. MonetDB is opti-
mized for high-performance analytical data processing. We
use it to show that even a highly optimized execution engine
cannot make up for the effects of badly chosen join orders.

Furthermore, we compare against several query optimiza-
tion baselines. To make the comparison as fair as possible,
we implement those baselines on top of the SkinnerDB ex-
ecution engine. As a first baseline, we consider Eddies [40].
This is an adaptive processing strategy that uses reinforce-
ment learning as well (but in a different way compared to
our system). Next, we consider re-optimization [42], an ap-
proach to fix initial query plans based on sampling. Finally,
we consider a traditional cost-based optimizer implemented
on top of the SkinnerDB execution engine.

4.3 Organization
Attendants can access at least one laptop, running Skin-

nerDB and the various baselines. The demo machine has all

2076



of the aforementioned benchmarks installed. Participants
may use existing queries or modifications thereof. We mea-
sure run time for all compared approaches. Also, for all
approaches that use our own execution engine, we measure
additional metrics such as the number of evaluated predi-
cates. This allows to compare different approaches in differ-
ent scenarios, illustrating their strengths and weaknesses.

We produce several types of visualizations. Those visu-
alizations allow participants to gain insights with regards
to internal processes of SkinnerDB. In particular, we visu-
alize developments in the UCT search tree, capturing the
learning process of SkinnerDB. We color tree nodes based
on the number of times join orders were tried and based
on received average rewards. We visualize the search tree
at different stages of the query evaluation process. At the
start of evaluation, little is known about what join order is
optimal. Hence, the number of tries is distributed over tree
parts quite uniformly. As evaluation progresses, preferences
for specific join orders begin to form which is captured in
the search tree.

5. CONCLUSION
We present SkinnerDB, a novel database system that trades

peak performance in standard cases for robustness in corner
cases. SkinnerDB learns optimal join orders during query
evaluation, offering formal guarantees on expected execu-
tion cost. Our system works either as an optimizer layer on
top of existing database systems or as a standalone system.
In our demo, we allow participants to compare our system
against various baselines on different benchmarks.
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