Ease.ml in Action:
Towards Multi-tenant Declarative Learning Services

Bojan Karla&t, Ji Liu?, Wentao Wu#, Ce Zhangt
TETH Zurich $University of Rochester *Microsoft Research
{bojan.karlas, ce.zhang}@inf.ethz.ch, jliu@cs.rochester.edu,
wentao.wu@microsoft.com

ABSTRACT

We demonstrate ease .ml, a multi-tenant machine learning ser-
vice we host at ETH Zurich for various research groups. Unlike
existing machine learning services, ease.ml presents a novel ar-
chitecture that supports multi-tenant, cost-aware model selection
that optimizes for minimizing total regrets of all users. More-
over, it provides a novel user interface that enables declarative ma-
chine learning at a higher level: Users only need to specify the in-
put/output schemata of their learning tasks and ease .m1 can han-
dle the rest. In this demonstration, we present the design principles
of ease.ml, highlight the implementation of its key components,
and showcase how ease .m1 can help ease machine learning tasks
that often perplex even experienced users.

PVLDB Reference Format:

Bojan Karlasg, Ji liu, Wentao Wu, Ce Zhang. Ease.ml in Action: Towards
Multi-tenant Declarative Learning Services. PVLDB, 11(12): 2054-2057,
2018.

DOI: https://doi.org/10.14778/3229863.3236258

1. INTRODUCTION

The advance and wide application of machine learning technolo-
gies, especially the development of deep neural networks, have
brought up new challenges. It has been demonstrated numerous
times that a deliberately designed and well tuned machine learning
model can achieve comparable quality as human beings for some
tasks, such as when the convolutional neural networks are applied
to image classification and when the recurrent neural networks are
applied to speech recognition. Yet, it remains elusive in many situ-
ations to understand, for a given machine learning task, which are
the suitable models and how to tune their parameters.

There has been substantial past and ongoing effort to make ma-
chine learning more declarative, in the sense to offload the burden
from end users, most of whom are not machine learning experts, by
automatically selecting and tuning appropriate models. Prominent
examples include commercial machine learning platforms hosted
by major cloud service providers such as Amazon Machine Learn-
ing, Microsoft Azure Machine Learning, and Google Cloud Au-
toML, as well as extensive work in the academia and open-source

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 11, No. 12

Copyright 2018 VLDB Endowment 2150-8097/18/08.

DOI: https://doi.org/10.14778/3229863.3236258

Users L
p ‘ Tralnlng Reports . Ease.ml
Test Data |REST service

Predictions

Figure 1: Interaction between users and ease .ml.

community (e.g., Auto-WEKA [12] and Spearmint [10]). Not sur-
prisingly, hyperparameter tuning and model selection have been a
focus in these works and systems given that they are the driving
force of automated machine learning.

The vision and theoretical foundation of ease .m1 is developed
in our previous work [6, 13, 14]. In this demonstration we focus
on presenting the end-to-end system to the audience. The goal of
ease.ml is to provide declarative machine learning services to
end users. The key difference of ease.ml, compared with exist-
ing systems, lies in that (1) it addresses the model selection prob-
lem from a multi-tenant, cost-aware perspective; and (2) it provides
a more declarative user interface to let users express their learning
tasks at a higher level of abstraction. Specifically, in ease.ml
users only need to specify the input/output schemata and the sys-
tem can automatically handle the rest, such as schema matching
and model selection. We focused ourselves on the model selection
mechanism employed in ease .m1 and demonstrated its effective-
ness in [6]. In this paper, we elaborate the design and implemen-
tation of ease.ml from a system building perspective, and show-
case how ease .ml can ease machine learning tasks that are often
challenging for non-expert users using concrete scenarios.

2. USER INTERFACE

As illustrated in Figure 1, a user interacts with the ease.ml
service either through a REST API or a Web interface (which in
turn acts as a facade for the REST API).

The user prepares a data set which consists of training examples
given as input-output pairs. For example, both input and output can
be tensors with similar shapes. A schema defines the shape and
the size of each dimension of the input and output tensors. (We
refer the readers to our full technical paper [6] for the details of the
input/output representations and available schemata in ease.ml
that cover cases that involve images, time series, natural language
sentences, etc.)

In Figure 2, we illustrate the workflow of ease.ml and the in-
teraction model between a user and the system. The major steps of
this workflow are:

1. Training data upload: The user uploads her dataset. ease .ml
will store the data set and perform automatic schema inference.

2054

User actions ease.ml actions

Upload Training Data

© &
@ ImageNet_Train.zip

Configure Schema

Inferred Schema:
@ Tnput :: Tensor[256, 256, 3]
Output :: Tensor [1000]

Store Data

Automatic Schema
Inference

Find Eligible
Models @

Monitor Training Progress

AlexNet : Training
@ ResNet-15 : Queued
Current Best Result : 80%

Upload Test Data

@ _I— Store Data
@ ImageNet_Test.zip

@ View Results and Metrics

m

Make Predictions
With Current
Best Model

O; New Model Added

@—— Check Eligibility for @
All Running Jobs

.—{ Update Model
Search

Figure 2: Workflow for model training in ease .ml.

2. Schema configuration: ease.ml returns the (automatically)

inferred schema to the user for confirmation. The user can make

changes if necessary. The confirmed schema is then returned to

ease.ml. For most common machine learning tasks we saw in

our applications, automatic schema inference is rather robust for

common data formats. Based on the output schema of the dataset,

ease .ml automatically produces a list of applicable objective func-
tions allowing the user to choose one.

3. Model matching: ease.ml matches the data schema with its
internal knowledge base, which contains all models that it is aware
of. The result is a set of candidate models that have consistent
schema; ease.ml then starts automatic model search within all
candidate models.

4. Training progress monitoring: ease.ml provides a user in-
terface that keeps getting updated automatically. From this inter-
face, the user can monitor the training progress, the current best
model, and details about all trained models through various reports
that the system can produce on demand. ease.ml automatically
deals with model selection and hyperparameter tuning using algo-
rithms presented in our previous work [6, 13].

5. Model serving: When ease .m1 finishes training the first model,
it enables a model serving API which allows the user to get infer-
ence results given a new input tensor. The user can then develop
downstream applications using this API. When ease .ml discov-
ers a better model, the schema of the API stays the same (such that

the user does not need to change her applications) but the prediction
quality increases by switching to the better model automatically.

6. Knowledge base maintenance: When a new model is made
available by other machine learning researchers (e.g., a new neural
network architecture for image classification), ease .m1 mainte-
nance staff integrates this new model into the knowledge base. All
user applications with consistent schema get pushed into the execu-
tion queue for model selection. If the new model provides a better
accuracy, the model used by the corresponding model serving API
gets automatically updated. In this way, users’ applications always
stay up to date without any intervention.

Remarks. For advanced users, our system offers more features:
(1) Customizing model selection and tuning by introducing arbi-
trary constraints; (2) Downloading a runnable (Docker) image of
a trained model; and (3) Uploading custom models and objective
functions. Expert users might have background knowledge about
some models that obviously cannot work. In this case, ease.ml
also provides the possibility for ad hoc model filtering.

3. DESIGN AND IMPLEMENTATION

ease.ml is designed to serve multiple users at the same time
with limited, shared resources. As a result, the technical challenge
that ease . ml needs to solve is a new multi-tenant model selec-
tion scenario that was not addressed in previous work. Although
there have been lots of systems on model selection (see [7] for a
survey), most of them focus on the single-tenant setting. Moving
to the multi-tenant setting introduces new challenges, as the system
has to balance the resource demands from different users in terms
of the expected potential improvements they could achieve if their
models were trained. We have developed efficient techniques and
we refer the readers to our full technical paper [6, 13]. However,
our focus there was on the algorithmic side — we studied the the-
oretical properties of our proposed algorithms and compared them
experimentally with baseline approaches. In this demonstration,
we focus on the system design and implementation.

3.1 Design Principles

We design ease . ml with the following principles:

e Multi-tenancy: In the current design, we aim at support-
ing both a single machine and a moderate-size cluster with
around 100 GPUs. Moreover, we hope to be able to serve
both a single user and a user base up to 100 users.

o Efficiency and fairness: ease .m1 should be able to priori-
tize among users according to the ratio of the expected model
quality gain over one unit of cost.

o Extensibility: Adding new models and objective functions
should be possible even while ease.ml is online. When
new models are added to ease .ml, it should transparently
improve users’ model quality whenever possible.

3.2 System Architecture

We design ease .ml in a model-centric fashion: Instead of aim-
ing at building a general Bayesian optimization framework like
Spearmint [10], ease . m1 is aware of the specific type of workload
it supports, i.e., selection of machine learning models. This allows
us to have a design that is tailored to machine learning. Figure 3
illustrates the lifecycle of machine learning models, and Figure 4
shows the system architecture.

2055

Configuration °|‘

Configuration +
Memory

Predictions °|‘

Quality Metrics"|__

@

Construction

@

Configuration

®

E Training : Training Data : Testing Data : Testing Data
: History : : :
. |Feasible set . |Configuration . |Configuration + . |Predictions
' ' . |[Memory '
Model [&&| ! Optimizer @)| ! Model [&&| Model [&&.| Objective
Feasible set ']J ' ' ' '

Fitting

@

Prediction

®

Evaluation

Figure 3: The lifecycle of a model that consists of five stages: construction, configuration, fitting, prediction, and evaluation.

Devices

Figure 4: The system architecture in a distributed setting.

Implementation Details. We embed all modules (i.e. models,
optimizers and objectives) inside Docker images in order to encap-
sulate their various dependencies. This means that all of them can
be implemented in any language and using any framework. The
module images are executed as stateless processes. The complete
state of the system is stored in a centralized database (such as Mon-
goDB) complemented by a shared working directory on a file sys-
tem that is mounted to all instances. We split the state information
as follows:

1. Database: Contains metadata about users, data sets, mod-
ules, jobs and tasks.

2. Shared Directory: It contains all data sets that users have
uploaded, as well as all predictions produced by models.
Apart from that, all Docker images with models, optimiz-
ers and objectives are kept here in TAR format. Finally the
shared directory keeps all model parameters generated dur-
ing training (i.e. model memory) along with logs and poten-
tial debug output.

To facilitate fault tolerance, processes do not communicate di-
rectly, but only indirectly through (persistent) message passing via
databases. A process that wants to send a message will write it to
an appropriate database record, and a process that is expecting a
message queries the corresponding database instance.

We define three types of processes based on their workloads:

1. Controller: It provides an interface between users and in-
ternal data stores. It will initiate training and prediction by
creating corresponding jobs and tasks respectively. Predic-
tion tasks can immediately be picked up by workers, while
training jobs need to be first processed by a Scheduler.

2. Scheduler: It picks up training jobs and runs the Optimizer
program to suggest next training tasks to be performed by
a Worker. The Optimizer program implements techniques
described in our previous work [6, 13].

3. Worker: Each worker has a dedicated device that it uses for
efficiently running the model code. It picks up tasks from the
database and runs them.

3.3 Limitations and Future Work

One of the main shortcomings of our system is the model op-
timization method that we use, which is described in [13]. The
problem is that it uses Gaussian processes for modeling the objec-
tive function of the unknown model space. The implementations of
Gaussian processes rely on inverting a square n X n matrix, where
n is the number of experiments performed. Since our system is
always running, n is unbounded, which means that optimization
could be more computationally expensive for longer experiments.
How to speed up this process for long runs is an interesting future
direction. We expect that updating the optimization algorithm will
not change the architecture of the system.

Other directions for future work include various improvements
over the system itself: (1) Early stopping — we can stop early
for long-running model training sessions predicted not promising
(using techniques similar to the Halving strategy [5]); (2) Enrich-
ment — we can add more functionalities to the pipeline, such as
model ensemble, automated data pre- and post-processing, etc.; (3)
Efficient Model Management — we can integrate recent research
by the database community, e.g., ModelHub [8], to efficiently store
and manage all training histories; (4) Model Compression — one
requirement we see from many of our users is to automatically
compress and deploy trained models to embedded systems such as
embedded GPU, FPGA, and other DSPs, and we hope to integrate
such functionality into ease . m1 in the future.

4. DEMONSTRATION SCENARIOS

User Experience. We will start by walking through the various
scenarios of user interactions with ease .m1 (depicted in Figures 1
and 2) and showcasing major features of the system.

Specifically, we will upload an example data set (prepared before
the demonstration) to the service. Our data parser will scrape the
data set and try to automatically infer the schema, after which we
will check the inferred schema and do potential modifications. The
system will then display the model search space. We will explain
the models and show how to exclude some models. The model
search job can start after we confirm the model space.

As model training proceeds, we will show the dashboard contain-
ing all running model search jobs along with various metrics. As
soon as one model is trained for a job, it becomes possible to make
predictions, either through the Web interface (Figure 5) or through
the REST API. We show how both approaches for predictions work
and we will show the quality metrics of those predictions.

2056

© Models

Figure 5: Web interface of ease.ml.

Finally, we will wait for the model search to converge, essen-
tially finding the best model possible for the given data set.' The
convergence state indicator will be shown in the dashboard next to
the job. Then we will introduce a new model to the system that will
be applicable to the same data set. We will then see how the system
picks this up and continues the model search while notifying the
user through the dashboard that the model search has continued.

Audience participation: We also plan to prepare several other
data sets. After our walkthrough, we will invite the audience to try
our service using these backup data sets.

Multi-user Scheduling Algorithm. In this part, we will show
step by step visualizations of an example model search job. We will
visualize the state of all processes along with internal dynamics of
the scheduling algorithm. We will perform this exercise both for a
single-user and a multi-user scenario. The goal is to show how the
scheduling policy is affected by having multiple users competing
for a limited amount of computational resources.

Audience participation: We would like to encourage the audi-
ence to examine the intermediate scheduling steps using our backup
data sets and the visualization interface. Hopefully they will get a
deeper understanding of how the multi-tenant scheduler underlying
ease .ml works by trying out by themselves.

Applications. ease.ml has been used to enable more than ten
scientific applications developed by our users at both ETH Zurich
and other institutes. In the last demonstration scenario, we show-
case the power of the simple interface provided by ease.ml by
demonstrating an array of real-world applications, ranging from
astrophysics, biology, proteomics, and meteorology, built by our
users using ease .ml.

5. RELATED WORK

There is a growing number of online machine learning services.
Some prominent examples include: Amazon Machine Learning on
AWS, bogml.com, datarobot.com, Google Cloud Auto ML, Mi-
crosoft Azure Machine Learning, rapidminer.com, prediction.io,
and skytree.net. They all contain various features to facilitate the
work of data scientists. Most of them offer some sort of automated
model search and/or tuning capabilities.

Among published work which aims at automated model selec-
tion and tuning, we have Auto-WEKA [4, 12], Auto-sklearn [1],
Spark TuPAQ [11], and Google Vizier [2]. Spearmint [10] and
GPyOpt [3] focus only on hyperparameter tuning. All of them

"For the purpose of our demonstration, we will deliberately use
datasets with relatively small sizes so that the convergences are fast.

2057

focus on a single-user scenario without offering any explicitly en-
forced resource sharing policies.

All mentioned systems use some form of black-box optimiza-
tion for their model selection and hyperparameter tuning. Cur-
rent successful approaches mostly rely on Bayesian optimization
(see [9] for a review). One of the focus points of our system is op-
timal resource allocation in a multi-user setting. Therefore, we use
a variant of the Gaussian Process based approach combined with
the Expected Improvement acquisition function, but modified for
the multi-user, multi-device scenario [13], with proven theoretical
guarantees for speed of convergence.

6. CONCLUSION

We have demonstrated ease.ml, a multi-tenant service that
aims for efficient resource allocation and improved user experience
in declarative machine learning. Compared with other systems,
ease.ml allows users to express their learning tasks at a more
abstract level by focusing on specifying the input/output schemata.
We have also highlighted the key principles underlying the design
and implementation of ease . ml that enable automated model se-
lection and hyperparameter tuning behind the scene.

Acknowledgements. CZ and the DS3Lab gratefully acknowledge the sup-
port from Mercedes-Benz Research & Development North America, Oracle
Labs, Swisscom, Zurich Insurance, Chinese Scholarship Council, and the
Department of Computer Science at ETH Zurich.

7 REFERENCES

] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter. Efficient and robust automated machine learning. In
Proc. NIPS, pages 2962-2970, 2015.

D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and

D. Sculley. Google vizier: A service for black-box optimization. In
KDD, pages 1487-1495. ACM, 2017.

GPyOpt. GPyOpt: A bayesian optimization framework in python.
http://github.com/SheffieldML/GPyOpt, 2016.

L. Kotthoft, C. Thornton, H. H. Hoos, F. Hutter, K. Leyton-Brown,
et al. Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka. JMLR, 18:5, 2017.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv preprint arXiv:1603.06560, 2016.

T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang. Ease.ml: Towards
multi-tenant resource sharing for machine learning workloads.
PVLDB, 11(5):607-620, 2018.

G. Luo. A review of automatic selection methods for machine
learning algorithms and hyper-parameter values. NetMAHIB, 5(1):18,
2016.

H. Miao, A. Li, L. S. Davis, and A. Deshpande. Modelhub: Deep
learning lifecycle management. In /CDE, pages 1393-1394, April
2017.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas.
Taking the human out of the loop: A review of bayesian
optimization. Proc. IEEE, 104(1):148-175, 2016.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian
optimization of machine learning algorithms. In NIPS, pages
2951-2959, 2012.

E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, and
T. Kraska. Automating model search for large scale machine
learning. In Proc. SoCC, pages 368-380. ACM, 2015.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Auto-weka: Combined selection and hyperparameter optimization of
classification algorithms. In KDD, pages 847-855. ACM, 2013.

C. Yu, C. Zhang, J. Zhong, B. Karlas, and J. Liu. Multi-device,
multi-tenant model selection with gp-ei. 2018. under review.

C. Zhang, W. Wu, and T. Li. An overreaction to the broken machine
learning abstraction: The ease.ml vision. In HILDA, pages 3:1-3:6,
2017.

[2]

[3

[t}

[4

=

[5]

[6]

[71

8

—

[9

—

[10]

(11]

[12]

[13]

[14]

