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ABSTRACT
Nowadays, journalism is facilitated by the existence of large
amounts of publicly available digital data sources. In par-
ticular, journalists can do investigative work, which typi-
cally consists on keyword-based searches over many hetero-
geneous, independently produced and dynamic data sources,
to obtain useful, interconnecting and traceable information.
We propose to demonstrate ConnectionLens, a system
based on a novel algorithm for keyword search across het-
erogeneous data sources. Our demonstration scenarios are
based on use cases suggested by journalists from the french
journal Le Monde, with whom we collaborate.
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1. MOTIVATION AND OUTLINE
The explosion of digital data sources on about every as-

pect of modern life has led journalists to collaborate with
computer scientists, statisticians, and social scientists of var-
ious disciplines, aiming at novel digital tools to analyze and
exploit this data. Since a seminal interdisciplinary study [2],
the field of data journalism [11], that is, journalistic work
significantly based on digital data, increasingly attracts the
attention of journalists and computer scientists alike.

In this work, we focus on a core data journalism prob-
lem: identifying connections across a set of heterogeneous,
independently produced data sources. We are inspired by in-
vestigative journalism work, which seeks out and explores
connections between individuals, organizations, companies
etc. Such work requires, first, getting access to data sources,
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through any means (from verbal or phone communication, to
paper mail, fax, and any electronic transmission method);
second, analyzing this data, to find out what valuable in-
formation it may contain. For instance, consider an ex-
ample raised by journalists at Le Monde, a leading French
national newspaper, with which we currently collaborate:
France’s national elections in 2017 brought about an un-
precedented ratio of first-time National Assembly elected
members. Journalists scrambled to learn as much as pos-
sible about the nation’s new representatives, in particular
asking e.g., “what connections the new representatives have
(or have had) with companies?” This question is interesting
to identify areas of economic competence, but also possible
conflicts of interest. By law, French representatives must
disclose direct financial interests, but more indirect connec-
tions (e.g., being, for many years, a close collaborator of a
company’s current CEO) must be dug out by the press.

Many digital data sources which could be used to answer
such questions are publicly available today. However, find-
ing answers to journalists’ queries is challenging for many
reasons. (i) The data is large, precluding the use of the
hand-crafted tools (often spreadsheets) that journalists are
used to; (ii) there are many, structurally heterogeneous,
independently-produced data sources; some sources, e.g. na-
tional company registry, are relational, some others, e.g.
contracts, discourses are text, social media content comes
as JSON documents, open data is often structured in RDF
graphs etc.; (iii) an answer stating, e.g., that a certain repre-
sentative has studied with the CEO of a given company, may
require interconnecting information from several data
sources, e.g., the history of company C, the Wikipedia page
of A, and the public information available onD and its CEO,
namely B; (iv) journalists do not know the shape, size, and
structure of the connections they are seeking out, thus they
need the ability to search through keywords; (v) the
set of data sources is highly dynamic, as journalists collect
various data sources and try to see what insights they can
get by combining them with existing ones. It is also worth
stressing that newsrooms function under extreme time con-
straints, making it unfeasible to clean, consolidate and inte-
grate all data sources in a unified warehouse. Finally, (vi) a
staple of professional journalism is to be able to show ev-
idence for a published claim. Thus, in an answer such as
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the one outlined in (iii) above, it is important to be able
to show where each piece of information came from
and how the connections were made.

ConnectionLens is a prototype addressing the above
challenges. At its core is a novel algorithm for keyword
search across a set D of heterogeneous data sources, each of
which can be: a relational table; a JSON document; a text
file; or an RDF graph.

For instance, Figure 1 shows a JSON datasource DS1

containing information about elected representatives, a text
datasetDS2 listing the alumni of Ecole polytechnique, where
many French company executives have studied, and a re-
lational source DS3 providing information about compa-
nies and their CEOs. A query Q is a set of keywords
{w1, . . . , wn} for some integer n ≥ 1. In Figure 1, the
query “En Marche company” seeks to find out connections
between elected representatives from the “En Marche” po-
litical party, and some company. An answer tree to Q
over D is a tree, part of a virtual graph (which, as we
explain later, is the way we view D). Each answer tree node
ni comes from a dataset Di ∈ D, and each edge ej either
comes from a dataset Dj ∈ D, or is a link between two nodes
(from the same or from two different datasets) whose data
content we find sufficiently similar to consider them “the
same” for the purpose of our querying. Further, each Q
keyword matches a node or an edge of the answer tree. For
example, in Figure 1, the red lines trace an answer tree to
the sample query: one of the elected representatives of the
party “En Marche” (node matching “En Marche” in DS1) is
Anne Martin, who studied at Ecole Polytechnique (alumni
information from DS2) just like Philippe Varin, the CEO of
the Areva company (edge labeled “company” from DS3).

A query Q may have several answer trees on a given D,
some more interesting, or insightful, than others; this can be
captured by a answer tree score function s associating to
every answer tree a number reflecting its interest (the higher,
the better). The problem solved by ConnectionLens then,
is: given D, Q, the score function s and an integer k, find
the k answer trees across D with the highest s scores.

A novel contribution of our system is its keyword search
approach capable of finding answers across heterogeneous
data sources, approach based on a virtual graph we describe
next. Our score function, tailored toward journalistic inter-
ests (Section 3) is also novel.

2. VIRTUAL GRAPH
To be able to exploit data connections occurring within

and across all data sources D ∈ D, we view all data sources
as a single, virtual graph G, and answer keyword search
queries with subtrees of this graph. Each G node has a
(globally unique) identifier, some of which are shown in Fig-
ure 1, in blue. A label function λ assigns to every node
a (possibly empty) text label, reflecting its content in D. G
edges are directed; each edge e carries a text label (we use λ
also to denote the edge labeling function) and a confidence
ce which is between 0 and 1, whose usage will be shortly
explained below. Node and edge labels appear as quoted
strings in Figure 1. Based on this figure, we explain below
how G nodes and edges are (conceptually!) derived from
each data source D.

2.1 Nodes and edges derived from a source
First, a dataset node nD is created in G to represent D

itself, e.g., nDS1 to nDS3. Every G node corresponding to

data from D (see below) is connected to nD, through an
edge labeled origDS (standing for originating data source);
we show such edges with dotted lines in the figure. They
ensure that any two virtual graph nodes coming from the
same data source D are connected at least through nD.

The other nodes and edges of G are defined as follows:
(i) If D is an RDF graph, then G contains all its nodes

and edges of D; λ attaches to each node its URI or literal
(constant) label in D. The property labeling every edge
becomes an edge label in G.

(ii) If D is a JSON document such as DS1, G has a node
for each constant, list and map occurring in D, and an edge
labeled origDS connects the node representing D, to the one
corresponding to the top list or map in D. For each (n1, v1)
name-value pair in a map, n1 becomes the label of the edge
leading to the node corresponding to v1.

(iii) If D is a text such as DS2, we apply entity and re-
lationship extraction to identify in D occurrences of enti-
ties (such as people, places, organizations etc.) and of rela-
tionships (such as bornIn, worksFor etc.) Any off-the-shelf
extractor (or set of extractors) can be used; Connection-
Lens currently uses OpenCalais (http://www.opencalais.com)
for entity extraction. A G node is created to each extracted
entity (resp. relationship) occurrence; its λ label is the ex-
act text snippet identified by the extractor; it has a type
edge pointing to the entity type identified by the extractor,
e.g., OC:Person stands for OpenCalais’ Person type URI,
and child nodes containing the offset and length of its ap-
pearance in the original text (omitted in Figure 1 to avoid
clutter). Further, each node corresponding to an occurrence
of a relationship between two entities, is connected to the
nodes corresponding to the respective entity occurrences by
edges identifying the entity roles in the relationship.

(iv) If D is a relational database such as DS3, for each
relation R(a1, a2, . . .) ∈ D and each tuple r ∈ R, G contains
a node nr, with outgoing edges labeled a1, a2 etc. toward
G nodes, labeled with the values of the respective attributes
of r. The label of nr is one of its primary keys (we add such
a primary key attribute if R doesn’t have one). Further,
for any two relations S, T ∈ D such that S.a is a foreign
key corresponding to the primary key T.b, and tuples s ∈
S, t ∈ T such that s.a = t.b, G comprises an edge ns

a−→ nt.
For instance, if S.spouse is a foreign key on T.id, then G
comprises ns

spouse−−−−→ nt. This graph view of a relational
database is often used for keyword search, e.g. [13, 16].

(v) Any G node whose label λ(n) is longer than a threshold
θtext is treated like a text data source, i.e., entity and rela-
tionship occurrences are extracted as in (iii); however, the
G nodes created from these occurrences are all descendants
of n, and their original data source is that of n. This both
provides a uniform treatment of text regardless of where it
appears, and records the origin of each text content.

All virtual G edges described above have a confidence of
1.0. Some extractors provide a confidence value for the ex-
traction: this can be attached to the edges between the
nodes, e.g. nDS1.V1, and their types, e.g. OC:Person.

2.2 SameAs edges
We add to G an edge labeled sameAs between nodes n1, n2

(from the same or from different data sources), as soon as
they are similar beyond a certain threshold θsim; the con-
fidence of such an edge is the similarity score, normalized
to [0, 1]. Identifying when two data objects represent the
same thing (aka approximate duplicate detection, etc.) is a
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Figure 1: Motivating example: data source collection D, corresponding virtual graph G, and an answer tree (red).

thoroughly studied data integration problem [7], for which
many solutions exist, especially among similarly-structured
objects, e.g. [12, 17]. ConnectionLens interconnects dis-
parate sources that may not even have the same data model,
e.g., an extracted entity may match with a JSON value (e.g.,
“Anne Martin”), or with an attribute in a relational tuple,
e.g. “Philippe Varin” and “P. Varin”; or, an interesting link
may exist between, say, a person and a company, if they
both mention a certain user in their tweets etc. We seek to
find all such value connections, and distinguish the trivial
from the interesting ones using a score (Section 3).

ConnectionLens uses the labels λ(n1), λ(n2) of two G
nodes to decide if they are the same. If the labels are shorter
than a certain size limit L, the Jaro distance between them
is compared with θsim. If λ(n1) or λ(n2) are longer than
L, we turn them both into bags of words and then compute
their set-based Jaccard distance. If λ(n1), λ(n2) are iden-
tical URIs, we connect them through sameAs with a con-
fidence of 1.0. Different distance functions or comparisons
can be plugged in as users get familiar with data sources, in
pay-as-you-go data integration fashion [3].

We do not build sameAs links based on nodes’ adjacent
edges and neighbor nodes. However, sameAs links based on
labels alone, e.g., a common last name of two people, suffice
to establish the data connections we are interested in.

2.3 Virtual graph indexing
We encode, index and store the G nodes and edges derived

from a source D in a set of data structures, as follows.
1. We compute an ID idD for the dataset.
2. We derive nodes and edges as explained above from D.
For each node n, we compute an ID idn prefixed with idD.

This de facto encodes the edge nD
origD−−−−→ n into idn.

3. We compute λ(n) from the original text content of n,
through stop word and punctuation removal, and stemming.
4. For each word w ∈ λ(n), we insert (w, idn) in the index
I(word, node). Similarly, λ(e) is computed for each edge e
and its words indexed in I.
5. We seek to find sameAs edges to which a node n de-
rived from D may participate. We look up all the nodes n′

whose labels share at least a word with n, that is, (w, idn)
and (w, idn′) belong to I, and compute the similarity be-
tween λ(n) and λ(n′). All sameAs edges are stored in a
bridge table B(id1, id2, c) which records that the nodes

identified by n1, n2 are judged the same with confidence c.
For instance, the B(nDS1.V1, nDS3.V2, 0.76) tuple encodes
the sameAs link between the two nodes corresponding to
Philippe Varin in Figure 1.

3. ANSWERING KEYWORD QUERIES
Given a query Q = {w1, . . . , wn}, the problem of finding

the k answer trees (recall their definition in Section 1; we
call them ATs, in short) with the best score is known to be
NP-hard, by reduction to the Steiner tree problem. Thus,
ConnectionLens adopts a heuristic method to enumerate
answer trees and returns the k highest-score ones.
The AT enumeration algorithm starts by looking up in
the index I for the potentially interesting data sources for Q,
denoted P (Q), that is: the data sources from which G nodes
matching some query keywords are derived. For each sub-
query Q′ of Q, and each source D ∈ P (Q) containing exactly
the keyword set Q′, the procedure localSearch(D,Q′) re-
turns the ATs (if any) whose nodes and edges derive only
from D. The implementation of localSearch(D,Q) depends
on the nature of D: it follows the lines of [13] for relational
sources, [1] for JSON, and [14] for RDF data. The algorithm
starts by optimistically asking each D ∈ P (Q) for ATs for
the largest subset of Q for which D has matches. If D has
only one connected component, it is sure to contain at one
such AT; also note that ATs are undirected, that is, G edges
form an AT as soon as they share a node, regardless of the
direction of the edges. For instance, an AT may consist of

three G edges n1
a←− n2

b−→ n3
c←− n4. This is because we

are interested in data connections, and find an edge such as
n1

a−→ n2 interesting as a link, in both directions.
Partial ATs (initially, those local to each data source) are

inserted in a priority queue U, based on their score (dis-
cussed below). The algorithm greedily picks the top-score
AT t from U, and adds it to the result set if it is an answer
to Q and its score is among the k best so far. If t is just a
partial answer, we try to find another partial tree t′ to com-
bine with t, through a sameAs edge between a node from t
and one from t′. The AT t′′ resulting from t and t′ is again
added to U and the process continues, until a time-out oc-
curs or there are no ATs left to add in U. If answers to
Q are not found after a certain time, localSearch calls are
made with smaller Q subqueries, in the hope that the re-
sulting ATs may participate to more sameAs edges allowing
to combine them in answers to Q.
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Figure 2: Sample view of the keyword query interface.

The score s(t) of an AT t comprises for each wi ∈ Q,
a matching score ms(t, wi) reflecting the extent to which
the labels of all t nodes and edges match wi, as well as
a structure score ξ(t) depending on the AT structure.
We quickly found that unlike many previous keyword search
works, small ATs are not always preferable because they
may bring trivial (uninteresting) information. For instance,
any French representative may be connected to any French
company through a node labeled “France” (where they re-
side). Instead, for our journalistic applications, we favor a

specificity metric, computed as follows. The edge n1
a−→ n2 is

specific in an AT, if n1 has few outgoing a edges, and n2 has
few incoming a edges. Then, ξ(t) is a weighted sum of: the
average specificity of its edges; and the product of its edge
confidences. We consider s(t1) > s(t2) if t1 has non-zero
ms scores for strictly more keywords than t2; otherwise, a
weighted combination of the ms and ξ values for both trees
is used to decide who has the highest score.

4. IMPLEMENTATION AND SCENARIOS
ConnectionLens is developed in Java and Python, rely-

ing on Postgres and Jena to store the data sources. We im-
plemented localSearch for relational, JSON, (annotated)
text and RDF data, with the rest of the algorithm from
Section 3. We plan to show two scenarios.

Scenario 1 is based on (i) JSON data from the Re-
gards Citoyens NGO that publishes all the French parlia-
ment activity, including all National Assembly representa-
tive (800KB); (ii) wikidata information about people, for ex-
ample their past jobs (1.55GB JSON file); (iii) a text dump
of recent articles published in main French media; and (iv)
a text dump of Journal Officiel, France’s official public law
repository. Starting from political parties and companies,
e.g. {“En Marche”, “Areva”} from our motivating exam-
ple, we will search for connections between them using the
information available from the underlying data sources.

Scenario 2 Here, we aim at identifying political leaders
who spread journalistic hoaxes. We will use: (i) a DB-
Pedia RDF graph of French political leaders; (ii) a JSON
document containing tweets from French political leaders;
(iii) a known JSON database of hoaxes, provided by Le
Monde. Given queries such as {”Front National”, ”Macron”,
”hoaxes”}, we will investigate connections between pairs of
political leaders through hoaxes, e.g., who disseminates on
the social media hoaxes about the other one.

Figure 2 shows a screenshot of the possible answers to the
initial keyword-based query.

5. RELATED WORK
Our work is related to several areas of prior research.

Large knowledge bases such as DBPedia or Yago are cur-
rently available, however, little-known people, events etc.

are not covered there, yet they are described in details in
other specific and/or local data sources. ConnectionLens
is meant exactly to enable using together data sources of var-
ious nature, model, format etc. Exploiting together large
data source collection is the goal of data integration sys-
tems, in particular dataspaces [10] or more recently data
lakes [5]; our work can be seen as keyword search for datas-
paces, following [8]. However, we seek connections across
distinct data sources, whereas they only find local answers.
Recent works focused on finding how to join large tables sets,
e.g., [6]; we (also) work with semi-structured or text data,
and identify connections among items from different sources.
Keyword search is well-studied in text databases; more re-
cently, algorithms have been proposed to answer keyword
queries in structured databases including relational [15, 4],
XML [1] and RDF [9] ones; in all these works, each keyword
query answer is local to one data source.
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