
GC: A Graph Caching System for Subgraph/Supergraph
Queries

Jing Wang1,*, Zichen Liu2, Shuai Ma1,*, Nikos Ntarmos3, and Peter Triantafillou4

1BDBC, Beihang University 2ICT, Chinese Academy of Sciences 3 University of Glasgow 4 University of Warwick
*{j.wang.7,mashuai}@buaa.edu.cn,liuzichen@ict.ac.cn,nikos.ntarmos@glasgow.ac.uk,p.triantafillou@warwick.ac.uk

ABSTRACT
We demonstrate a graph caching system GC for expedit-
ing subgraph/supergraph queries, which are computation-
ally expensive due to the entailed NP-Complete subgraph
isomorphism problem. Unlike existing caching systems for
fast data access where each cache hit saves one disk I/O,
GC reduces the computational costs due to subgraph iso-
morphism testing. Moreover, GC harnesses both subgraph
and supergraph cache hits, extending the traditional exact-
match-only hit, thus resulting in significant speedups. Fur-
thermore, GC features dashboards for both skilled develop-
ers and general end-users; the former could investigate and
experiment with alternative components/mechanisms while
the latter could look into the principle of GC through a
number of demonstration scenarios.

PVLDB Reference Format:
Jing Wang, Zichen Liu, Shuai Ma, Nikos Ntarmos and Peter Tri-
antafillou. GC: A Graph Caching System for Subgraph/Super-
graph Queries. PVLDB, 11 (12): 2022-2025, 2018.
DOI: https://doi.org/10.14778/3229863.3236250

1. INTRODUCTION
Modern graph applications in chemistry, bioinformatics,

and social networking demand systems with high perfor-
mance graph analytics, in which a central task is to locate
patterns in dataset graphs. For example, there are prevalent
needs pertaining to finding similarities for chemical com-
pounds, computer-aided design of electronic circuits, soft-
ware debugging, etc. These involve performing subgraph/
supergraph queries. Informally, given a query (pattern)
graph g and a graph dataset, the system is called to return
the set of dataset graphs that contain g (subgraph query)
or are contained in g (supergraph query), namely the an-
swer set of g. This entails the problem of subgraph isomor-
phism. As typical in the literature, we focus on non-induced
subgraph isomorphism for undirected labelled graphs where
only vertices have labels; all our results straightforwardly

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236250

generalize to directed graphs and/or graphs with edge la-
bels. The challenge lies in the NP-Completeness nature of
subgraph isomorphism (abbreviated as sub-iso or SI in this
work), which makes subgraph/supergraph query processing
computationally expensive.

To this end, the community has continuously put forth
solutions that usually fall into two categories, i.e., SI algo-
rithms [3] and FTV (“filter-then-verify”) methods [1]. The
former use heuristics so as to improve the efficiency of sub-iso
tests per se. Whereas the latter employ an index of dataset
graphs to filter out graphs that are definitely not in the
query’s answer set; the remaining graphs, coined candidate
set of g then are verified for sub-iso. Indeed, FTV solutions
advance by including an extra filtering stage than that of
standard SI algorithms, such that fewer graphs are sub-iso
tested and the query processing time is reduced. However,
FTV still ends up executing unnecessary sub-iso tests; think
of the example when a query is resubmitted to the system,
it shall be processed from scratch. Hence it gives rise to a
significant drawback of approaches in the literature: they
fail to exploit the knowledge of executed queries.

Interestingly, many real-world applications indicate that
graph queries submitted in the past share subgraph or super-
graph relationships with future queries. Biochemical queries
could range from simple molecules and aminoacids to com-
plex proteins of multi-cell organism. Also, social networking
queries may start off broad (e.g., all the people in a geo-
graphic location) and become narrower (e.g., those having
specific demographics). Recall the computationally expen-
sive graph queries; a straightforward solution for accelera-
tion is using cache, by which GC [11] is motivated.

Indeed, caching result has been studied for graph struc-
tured queries. [8] contributed a cache to optimize SPARQL
queries over RDF graphs, in which a canonical labelling
scheme is proposed to identify cache hits. However, the way
cache contents are exploited in GC differs from that in [8].
GC discovers subgraph, supergraph, and exact-match rela-
tionships between a new query and the cached queries [11],
which the canonical labelling scheme in [8] fails to achieve.

The community has also looked into subgraph queries
against a single large graph with billions of nodes [9]. And
there exist distributed systems for general graph computa-
tions [6, 5]. GC does not target such use cases for the time
being and extending our system to benefit queries against a
single massive graph or distributed operation is left for fu-
ture work. On a related note, [4] presents a solution of opti-
mizing graph queries through “merging” materialized views
(subgraphs and their results). Such optimization is similar

2022



as one of the several cases in GC; however, [4] does not deal
with central issues of a caching system (cache replacement,
admission control, overall architecture/design, etc.).

Underpinned by [10], GC[11] is applicable for both SI
and FTV approaches, offering detailed discussions of design
and implementation, resource management (memory and
threads) and dynamic management of the cache index. GC
rests on two processing components to discover whether the
coming query is a subgraph/supergraph of cached queries
(i.e., sub/super case); these constitute graph cache hits,
allowing for expedited query processing by leveraging the
knowledge from cached results.
Contributions. To the best of our knowledge, this work
is the first demonstration in literature for showcasing key
techniques inside graph cache pertaining to expediting sub-
graph/supergraph queries. Via a number of scenarios, au-
diences could look into GC characteristics that depart from
existing caching systems. Problem: 1) GC targets at expe-
diting subgraph/supergraph queries against a set of data
graphs and is capable of dealing with the NP-Complete
problem of subgraph isomorphism. 2) GC does not pro-
duce any false negative or false positive (see formal proof
of correctness in [10]). 3) By using over 6 million queries,
GC is attested performing impressively with speedups in
query time up to 40× [11]. Techniques: 1) GC is designed
as a pluggable cache, allowing any future component to be
incorporated (SI/ FTV methods, replacement policies, sce-
narios, etc.). 2) Existing caching systems (e.g. caches in
Neo4j [2]) usually focus on fast data access such that each
cache hit saves one disk I/O, whereas GC aims to reduce
costs associated with executing sub-iso tests; cases in GC
are more complicated - each cache hit shall evoke various
numbers of savings in sub-iso testing, which could in turn
render quite different query times; GC is thus bundled with
a number of exclusive replacement strategies that are graph
query aware and workload adaptive. 3) Central to GC is a
semantic graph cache [11] that could harness both subgraph
and supergraph cache hits, extending the traditional exact-
match-only hit and hence leading to impressive speedups.
Demonstration: 1) As a non-trivial extension of the GC
kernel in [11], this work is characterized by embedding dash-
boards for audiences with varying programming skills, rang-
ing from professional developers to general end-users. 2)
For developers, GC provides programming interfaces such
that alternative components/mechanisms could be investi-
gated. 3) For general end-users, GC employs approachable
demonstrations to enhance the audience experience, includ-
ing two scenarios - The Query Journey interprets the com-
putations inside GC and its principle of accelerating queries;
The Workload Run presents the query processing of a work-
load, cache hits and cache replacement with various policies;
users are closely involved and properly guided in both sce-
narios; furthermore, users could even create and run their
own workloads. 4) GC offers automatic visualization for
graphs, delivering useful functionality for applications in
chemistry, bioinformatics, and social networking.

2. SYSTEM OVERVIEW
GC offers a graph caching system, the kernel of which

is a scalable semantic cache [11] for expediting subgraph/
supergraph queries. Figure 1 presents the system architec-
ture of GC, including three subsystems: Kernel, Dashboard
Manager and Demonstrator. The last two are specific to the

Kernel

Cache Manager

Window 
Manager

Statistics 
Manager

Replacement
Policies

Query Processing Runtime

Sub Case 
Processor

Super Case
Processor

Candidate Set Pruner

Statistics 
Monitor

Method M

VerifierDataset Graphs Filter

Demonstrator

End-User 
Monitor 

Developer 
Monitor 

Sub-Iso 
Testing Query Time Cache

Replacement

Program
Interface

Dashboard 
Manager

Figure 1: GC System Architecture

current work, responsible for showcasing the principle and
techniques of GC.

The GC Kernel [11] consists of several components: 1)
Dataset Graphs cover those underlying graphs over which
queries are executed; 2) Method M could incorporate any
FTV or SI method for acceleration and hence is embedded
with a filtering component Filter in addition to a sub-iso test
implementation Verifier; 3) Query Processing Runtime deals
with the execution of queries, including the Sub/Super Case
Processor for detecting cache hits, the Candidate Set Pruner
to reduce the number of sub-iso tests and a Statistics Mon-
itor for the monitoring of key operational metrics; 4) Cache
Manager is responsible for the management of data and
metadata stored in the cache, comprising Replacement Poli-
cies dealing with graph cache replacement, Window Man-
ager for cache admission control and Statistics Manager.

The Dashboard Manager handles the interaction with GC
audiences. 1) Three major components include the End-
User Monitor, the Developer Monitor and the Program In-
terface, catering to the needs of audiences with varying pro-
gramming skills. 2) To enhance the audience experience
for general end-users, GC offers a number of demonstration
scenarios. 3) Through Program Interface, developers could
enjoy extending/optimizing GC.

The Demonstrator presents GC performance in terms of
Sub-Iso Testing, Query Time and Cache Replacement. We
report query time and number of sub-iso tests, along with
the speedups introduced by GC. Speedup is defined as the
ratio of the average performance (query time or number of
sub-iso tests) of the base Method M over the average perfor-
mance of GC when deployed over Method M (i.e., speedups
>1 indicate improvements).
Remark. GC per se could be plugged into general graph
systems as a library, allowing for future extensions.

3. DEMONSTRATION
For ease of demonstration, GC is deployed over Linode

Cloud with 2GB memory and bundled (but not limited) with
100 real-world graphs from AIDS dataset [7] (the Antivi-
ral Screen Dataset for topological structures of molecules),
workloads each with 10 queries (generated from graphs in
dataset following established principles), graph cache with

2023



0

0

0

0

0

10

10

10

10

10

20

20

20

20

20

30

30

30

30

30

40

40

40

40

40

50

50

50

50

50

LRU

POP

PIN

PINC

HD

(a) (b)

(c)(d)

Figure 2: GC Interfaces for The Query Journey, The Workload Run, Cache Replacement and API

50 executed queries and Method M in [1]. We have imple-
mented all aforementioned GC components in Java, using
HTML and JavaScript (with WebSocket) for front-end. On-
line demonstration of GC is available 1.

Next, we shall first overview GC performance in [11] and
then take a walk through GC as end-users and developers.

3.1 Performance Comparison
The performance evaluation of GC employs over 6 million

queries, both real-world and synthetic graph datasets with
various characteristics, and a number of Methods M.
I: Competition Among Various Policies. GC offers a
number of graph cache replacement policies with different
trade-offs, including: 1) the well established policy LRU;
2) the popularity based strategy POP; 3) PIN and PINC
where graph utilities go down to the level of sub-iso test
numbers and sub-iso testing costs, respectively; 4) HD that
coalesces both PIN and PINC. We have observed through
a large number of experiments that different cache replace-
ment policies take the lead depending on the workload and
dataset characteristics. Here comes the question: how to
choose a replacement policy when said characteristics are
unknown a-priori? Our answer to this question and the first
takeaway message is: When in doubt, use the HD re-
placement policy, as it is attested performing better or on
par with the best alternative.
II: Speedup versus Overhead. Recall that FTV algo-
rithm rests on a dataset index that is built upon graph fea-
tures (feature is the sub-structure of graph, e.g., a path,
tree or subgraph) and sub-iso tests take up the majority of
the query processing time for FTV methods. Then, why
not improve FTV performance by increasing the filtering
power and hence reducing candidate set? Indeed, this can be

1http://74.207.247.121:8081

accomplished by indexing larger features that usually bear
higher discriminative power. To this end, we reconfigured
all FTV methods through increasing their feature sizes by
just one. This minimal increase in feature size did offer
better performance, with the average query processing time
going down by approximately 10%; however, the space re-
quirement was almost doubled. Whereas GC could lead
to significant speedups with a negligible space over-
head ; e.g., for AIDS dataset [7], the memory required by
GC was just over 1% of the space required for the various
FTV indices, but resulting query time speedups up to 40×.

3.2 For General End-Users
Currently, GC provides two scenarios for general end-

users, including The Query Journey and The Workload Run.
And new scenarios could be swiftly plugged in.
Scenario I: The Query Journey. Through the execution
of one query, users are guided to discover the computations
inside GC and its principles for acceleration. Figure 2(a)
shows the interface where a number of patterns (molecules)
are given such that the user could preview (by putting cur-
sor over graph id) and select one (by clicking graph id) to
start off. Figure 3 illustrates GC computations, with each
subfigure pertaining to a key operation.
• 3(a) and 3(e): the coming query renders four cache

hits (by bars filled with dark blue), among which one
is of sub case (H) and three are of super case (H ′).
• 3(b): Method M evicts CM with 75 data graphs (by

colored boxes having id 2, 3, ..., 98) for sub-iso tests.
• 3(c) and 3(d): cache hits leverage the savings in the

number of sub-iso tests; H delivers S, i.e., data graph
with id 46 is in the answer set for sure (not necessary
go for sub-iso verification); similarly, H ′ brings S′ of
data graphs that are definitely not in the answer set
(no need to be verified either).

2024



0 50

(a) H: Cache Hits (Sub Case) (b) CM : Candidate Set of M (c) S: Savings by Sub Case (d) S′: Savings by Super Case

0 50

(e) H ′: Cache Hits (Super Case) (f) C: Candidate Set of GC (g) R: Sub-Iso Result over C (h) A: Answer Set

Figure 3: GC Interface for Showing Computations during The Query Journey

• 3(f): due to S and S′, GC reduces the number of sub-
iso tests from 75 to 43 (cardinality of C).
• 3(g): 14 graphs in C survive sub-iso tests, resulting R.
• 3(h): the final answer set A consists of R and S.

In this example, GC offers speedup 1.74 (75/43) in number
of sub-iso testing and in turn expedites query processing.
Scenario II: The Workload Run. It is designed to show
users the various cache replacement over a number of policies
bundled with GC. User interface is shown as Figure 2(b) and
audience experiences are mainly as follows.
• For the workload to run, users could either choose one

(from a number of given options after preview) or cre-
ate a new workload (in which queries are uniformly
selected from a pattern pool).
• Upon each executed query, users can view sub/super

case cache hit (in percentage calculated as the number
of cache-hits over the number of cached graphs).
• After the workload run, users could observe the graph

cache replacement due to the limited space in memory.
Figure 2(c) shows an example of cache replacement
using different policies, where bars filled in dark blue
represent graphs with least utilities to be evicted out
(meanings are different from those in Figure 3): each
graph cache is full of 50 previously executed queries,
10 of which are replaced by the newly coming queries
in the workload; obviously, different graphs are cached
out in different caches (e.g., PIN cache evicted graphs
with id of 39, 41, ..., 49), echoing that various graph
replacement policies bear various trade-offs.

3.3 For Developers
GC offers ease of programming for developers, allowing

for extension/optimization. For example, alternative graph
cache replacement strategies could be swiftly incorporated
through extending the Cache class, as defined in Figure 2(d).
The developer has to override three abstract methods:
• updateCacheItems method deals with the replacement

in graph cache, i.e., those with least utilities are evicted
such that newly executed queries are accommodated;
• updateCacheStaInfo method updates graph utilities,

upon the contribution in accelerating other queries;

• getReplacedContent method returns the positions of
top x cached graphs to be replaced.

4. CONCLUSIONS
We have demonstrated GC, a graph caching system for

subgraph/supergraph queries. GC has shown its applicabil-
ity for audiences with varying programming skills, its “plug-
and-play” mechanism for incorporating alternative compo-
nents, its exclusive graph cache replacement policies with
competitive performance and its significant speedup in query
time with meagre space overheads when comparing against
state-of-the-art approaches.
Acknowledgments. This work is supported by NSFC
U1636210, 973 Program 2014CB340300, and NSFC 61421003.

5. REFERENCES
[1] V. Bonnici et al. Enhancing graph database indexing

by suffix tree structure. In PRIB, pages 195–203, 2010.

[2] R. V. Bruggen. Learning Neo4j. O’Reilly Media, 2013.

[3] L. P. Cordella et al. A (sub)graph isomorphism
algorithm for matching large graphs. TPAMI,
26(10):1367–1372, 2004.

[4] W. Fan et al. Answering graph pattern queries using
views. In ICDE, 2014.

[5] W. Fan et al. Parallelizing sequential graph
computations. In SIGMOD, 2017.

[6] G. Malewicz et al. Pregel: A System for Large-Scale
Graph Processing. In SIGMOD, 2010.

[7] National Cancer Institute. http://www.nci.nih.gov/,
March 10 2013.

[8] N. Papailiou et al. Graph-aware, workload-adaptive
SPARQL query caching. In SIGMOD, 2015.

[9] Z. Sun et al. Efficient subgraph matching on billion
node graphs. PVLDB, 5(9):788–799, 2012.

[10] J. Wang et al. Indexing query graphs to speedup
graph query processing. In EDBT, 2016.

[11] J. Wang et al. GraphCache: a caching system for
graph queries. In EDBT, 2017.

2025


