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ABSTRACT

KOKO is a declarative information extraction system that incorpo-
rates advances in natural language processing techniques in its ex-
traction language. KOKO’s extraction language supports simultane-
ous specification of conditions over the surface syntax and on the
structure of the dependency parse tree of sentences, thereby allow-
ing for more refined extractions. Furthermore, the KOKO extraction
language allows for aggregating evidence from an input document
and supports conditions that are tolerant of linguistic variation of
expressing concepts.

In this demo, we outline the design of KOKO, a system for ex-
tracting information and understanding the results of the extraction.
KoKo provides an interactive interface that allows participants to
write queries, understand the input and results of the queries. In
particular, the user can customize the input text, visualize the input
text’s dependency parse trees, and understand the correspondences
between query components, dependency tree nodes, text tokens,
and the computation and associated scores that led to an extraction.

PVLDB Reference Format:

Xiaolan Wang, Jiyu Komiya, Yoshihiko Suhara, Aaron Feng, Behzad Gol-
shan, Alon Halevy, Wang-Chiew Tan. Koko: A System for Scalable Se-
mantic Querying of Text. PVLDB, 11 (12): 2018-2021, 2018.

DOI: https://doi.org/10.14778/3229863.3236249

1. INTRODUCTION

Information extraction is the task of extracting structured data
from text. Today, information extraction systems are either machine-
learning based systems or rule-based systems. Machine-learning
based systems often require a significant amount of training data
to train a reasonable extraction model and they are more opaque
to understand. In contrast, rule-based systems enjoy the advantage
that they do not require training data and the results they produce
are explainable [2]. KOKO is a declarative rule-based system that
takes information extraction to a new level where advances in nat-
ural language processing techniques are incorporated into the ex-
traction language.

Today, many extraction languages express extraction patterns
through regular expressions, combined with conditions on the POS
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(part of speech) tags, over the surface text of a sentence. However,
such regular expression patterns may not be sufficient for many ex-
traction tasks.

EXAMPLE 1.1. Suppose our goal is to extract food that are de-
scribed as delicious in text. One approach would be to specify an
extraction pattern that looks for the word “delicious” preceding a
noun that is known to be in the category of foods. However, such
extraction pattern may fail since the word “delicious” does not al-
ways immediately precede the noun of interest. For example, for the
sentence “I ate a delicious and salty pie with peanuts”, the word “deli-
cious” does not immediately precede the word “pie”, and it also
precedes the word “peanuts” which were not deemed delicious. In
the sentence “I ate a chocolate ice cream, which was delicious, and also
ate a pie” the word “delicious” comes after “ice cream” which makes
the extraction via regular expressions even more challenging.

KoKO overcome the above challenges by supporting conditions
that combines the surface-level patterns, e.g., regular expressions,
with the semantic tree patterns over the text sentences. The se-
mantic tree structure is represented as dependency parse trees (or
dependency trees in short). The dependency tree of Example 1.1
is shown in Figure 1. The dependency tree shows that the word
“delicious” is in the subtree of the direct object of the verb “ate”,
which is the “chocolate ice cream”. As we explain later, this intu-
itively means that “delicious” refers to “chocolate ice cream”. Hence,
a pattern over the dependency tree that looks for the word “deli-
cious” in the subtree of a noun in the food category could provide
the correct extractions.

In addition to the expressive hybrid conditions as mentioned above,
the KOKO language allows for extractions that accommodate varia-
tion in linguistic expression and aggregation of evidence. To exem-
plify, consider the task of extracting cafe names from blog posts.
It is challenging to write rules that would extract them accurately
since there is a variety of names that can be cafe names. However, it
is possible to combine evidence from multiple mentions in the text
to extract cafe names with high confidence. For example, if we see
that an entity employs baristas and serves espresso, we might infer
that it is a cafe. However, there are wide linguistic variations on
how these properties are expressed in blogs. For example, a blog
may express that a cafe serves up delicious cappuccinos or hired
the star barista while another blog may mention that they have
world-champion baristas serving coffee. KOKO includes a seman-
tic similarity operator that retrieves phrases that are linguistically
similar to the one specified in the rule. Semantic similarity can
be determined using paraphrase-based word embeddings. KOKO
attaches a confidence value to the phrases matched by the similar-
ity operator, and these confidence values can be aggregated from
multiple pieces of evidence in a document.
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Figure 1: A sentence and its dependency tree annotated with parse labels [4], tokens, POS tags [5], and entity types. This dependency tree is

generated from Google Cloud NL API [3].

Compare to existing extraction systems that also allow users to
specify tree patterns, KOKO is novel in that it provides a single
declarative language that combines the surface-level patterns with
the tree patterns, accommodates variation in linguistic expression
and aggregation of evidence, and uses novel indexing techniques
to scale to large corpora. Our multi-indexing scheme is efficient
in pruning irrelevant sentences, thus achieves at least 7x speedup
compared to prior indexing techniques.

In this demonstration, we will showcase the KOKO system. Speci
ically, we will demonstrate the features of the KOKO language,
including its ability to query over surface-level patterns in con-
junction with tree patterns, and in combination with its ability to
combine evidence from different parts of the text. Furthermore,
we will demonstrate the ability of the KOKO system to explain
its results. Given a selected result, KOKO can unfold the deriva-
tion by displaying the surface level patterns and dependency tree
bindings, and the sentences (and relevant portions of it) where the
evidence is combined from. We will also demonstrate KOKO’s
ability to scale by executing queries over 5 million Wikipedia ar-
ticles. A preliminary version of KOKO is available at https:
//github.com/biggorilla—-gh/koko and the full version
of KOKoO will soon be available in open source.

2. THE KOKO LANGUAGE

A basic KOKO query has the following form.

extract (output tuple) from (input.txt) if
(variable declarations, conditions, and constraints)
[satisfying(output variable)
(conditions for aggregating evidence)
with threshold o]
[excluding {conditions)]

The KOKO query consists of essentially two parts: the extract
clause which consists of conditions on the surface text with regu-
lar expressions and conditions on the hierarchical structure of the
dependency tree. The other part, the satisfying clause contains lin-
guistic similarity conditions whose results can be aggregated across
the entire document. Note that there can be up to one satisfying
clause for each output variable. Due to space limit, we omit some
details of the KOKO language. The complete description can be
found in [7].

2.1 Surface and hierarchy conditions

To support conditions on the surface text and the dependency
tree, variables in a KOKO expression can be bound to node terms
or span terms. Node terms refer to the nodes in the dependency tree
of the sentence, and span terms refer to spans of text.

Node terms: Node terms are defined using XPath-like syntax [8].
A path is defined with the “/” (child) or “//” (descendant) axes and
each axis is followed by a label (a parse label, POS tag, token,
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wildcard (*), or a pre-defined node variable). For example, the ex-
pression a = //verb/dobj binds a dobj node that is directly under a
verb node. Each label can further be associated with conditions,
which are specified in [...], such as a regular expression [ @regex =
(regex)] or [@pos="(tag)”’]. For example, //prep//*[ @pos=“noun”]
denotes a node that is a decedent of the prep node with a noun POS
tag. Multiple conditions stated within [...] are separated by *,”. For
example, [@pos="noun”, etype="Date”] states that the POS tag is
noun and the entity type is Date.

Span terms: A span term x is constructed with the syntax x =
(atom)1+...+(atom)y, where k > 1 and (atom); is one of the
following: a path expression as described above, a node variable, a
sequence of tokens, x.subtree, or an elastic span ~ (which denotes
zero or more tokens) or with conditions ~[...]. For A, KOKO also
allows the specification of regular expression over the span or the
minimum and/or maximum number of tokens for the span. For
example, = //verb + a + b.subtree + ~ [etype="Entity”] defines x to
bind to a span that must begin with //verb, followed immediately by
the span of a, the span given by b.subtree, and the span that defines
an entity in this order. A span term has type Str (String). The output
of a Koko query also serializes all entity types into strings.

Given a node z, z.subtree refers to the span that includes all the
words in the subtree of x. Given a node x, we also use x to refer to
the span that includes only the text of the word x.

Results: The output of a KOKO expression is a bag of tuples.
The values in the tuples can be either nodes or spans. The tuples
to be returned are defined by the extract clauses (that correspond
roughly to the select and where clauses in SQL).

The Extract clause: The extract clause is where variables are de-
fined. The defined variables also need to satisfy certain conditions:
typed conditions, hierarchical structural conditions over the depen-
dency tree and/or horizontally over the sequence of tokens. Users
can specify constraints among the variables outside a block using
the in or eq constructs. For example, “z in y” requires that the to-
kens of x are among the tokens of y, while “z eq y” requires that
the two spans given by x and y are identical.

EXAMPLE 2.1. The example query below extracts pairs (e,d)
where e is an entity type and d is a string type. The variables a, b,
¢, and d are defined within the block /ROOT{ ...} where the paths
are defined w.r.t. the root of the dependency tree. The variables a,
b, and c are node terms while d and e (defined in the first line) are
span terms. Outside the block, “(b)in (e)” is a constraint between
b and e which asserts that the dobj token must be among the tokens
that make up entity e.

extract e:Entity, d:Str from input.txt if
(/ROOT:{

a = //verb, b = a/dobj,

c = b//“delicious”, d = (b.subtree)
}(B)in (e))



For the sentence in Figure 1, there is only one possible set of
bindings for the variables in this query: a = “ate”, b = “cream”, ¢
= “delicious”, d = “a chocolate ice cream, which was delicious”, and e
= “chocolate ice cream”. The query returns the pair (e,d). a

>

2.2 Similarity and aggregation conditions

Additional constraints on the variables can be specified in the

satisfying clause. The satisfying clause also contains conditions
to aggregate evidence from different parts of the text. Some of
these conditions are boolean and some are approximate and return
a confidence value.
Boolean conditions A boolean condition is specified by a regular
expression and evaluates to true or false. For example, x “, a cafe”
requires that z is immediately followed by the string “, a cafe”, and
is a sufficient condition for determining that x is the name of a cafe.
Other types of conditions using matches or contains (which we
do not elaborate here) are also allowed.

Descriptor conditions A descriptor condition evaluates to a con-
fidence value. There are two types of descriptor conditions. The
first is of the form z similarTo (descriptor) which returns how sim-
ilar z is to (descriptor). The second is of the form x [[descriptor]]
(or [[descriptor]] x) and returns how similar descriptor is to the
span after x (or before ). Note that the distance between x and
the terms similar to descriptor affects the confidence returned for
the similarity. In addition, every condition is associated with a
weight between 0 and 1, which specifies how much emphasis to
place on the condition when a match occurs. Upon receiving the
query, each descriptor is expanded to words semantically close to
it using a paraphrase embedding model'. For example, by simply
specifying the condition (z [[“serves coffee”]]), KOKO will automati-
cally expands it to similar phrases such as “sells espresso” and “sells
coffee”. Although the expansion is not always perfect, descriptors
enable users to be agnostic to linguistic variations to a large extent.’

Aggregation For every sentence where the extract clause is satis-
fied, KOKO will search the text corpus to compute a score for every
satisfying clause. If the satisfying clauses are satisfied (i.e., passes
the respective threshold), and the excluding clause is not satisfied,
then the tuple as specified in the extract clause is returned.

The satisfying clause consists of a set of conditions each with
a weight. The ith condition has weight w; which corresponds to
how important the condition is to determining whether the value in
question should be extracted. The score of a value e for the variable
under consideration is the weighted sum of confidences, computed
as follows:

score(e) = w1 * mi(e) + ...+ wn * mn(e)

where w; denotes the weight of the ith condition and m;(e) de-
notes the degree of confidence for e based on condition 7. The
confidence for e is computed for each sentence in the text and ag-
gregated together by their sums. By combining evidence from mul-
tiple mentions in a coherent article or blog post, KOKO allows users
to perform extractions with high confidence. For every variable, if
the aggregated score of the satisfying clause for that variable from
the collective evidence passes the threshold stated, then the result
is returned.

EXAMPLE 2.2. The query below has an empty extract clause
but a more complex satisfying clause. The intent of the query is
to extract cafe names. It considers all entities as candidate cafe
names. However, only those that pass the satisfying x clause will
be returned as answers.

1https ://github.com/nmrksic/counter-fitting
One can also supply a dictionary of different types of coffee to
KOKO to guide the expansion.
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Figure 2: Koko system workflow.

The first two boolean conditions checks whether the name of the
entity contains “Cafe” or “Roasters”. It also looks for evidence in
input.txt that the name is followed by the string “, a cafe”. In ad-
dition, it will search the text for evidence that the name is followed
by a phrase that is similar to “serves coffee” or “employs baristas”.

extract x:Entity from “input.txt” if ()
satisfying =
(str(z) contains “Cafe” {1}) or
(str(z) contains “Roasters” {1}) or
(x “ acafe” {1})or
(z [[“serves coffee”]] {0.5}) or
(z [[“employs baristas”]] {0.5})
with threshold 0.8
excluding (str(x) matches “[Lija Marzocco™)

The first 3 conditions each has weight 1, and the last two have
weight 0.5 each. When we run the above query over authorita-
tive coffee sites where new cafes are described, it is highly un-
likely that we will find exact matches of the phrase “serves coffee”,
which is why the descriptor conditions play an important role. The
excluding condition ensures that x does not match the string “La
(or la) Marzocco” (an espresso machine manufacturer).

3. THE KOKO SYSTEM

Figure 2 shows the basic workflow of Koko. The input to a
KOKO query is a text document that can either be processed by
KoKO Preprocessing Engine or be parsed online. By default, KOKO
will invoke its Preprocessing Engine to process the text document
by first parsing it through a natural language parser (e.g., spaCy [6]
or Google NL API [3]), and then create the indices for its parsed
components. The parser transforms the text document into a se-
quence of sentences, each of which consists of a sequence of fo-
kens. Aside from the original text, each token carries a number of
annotations, such as the POS tag, parse label, and a reference to the
parent in the dependency tree. We refer to a sequence of consecu-
tive tokens in a sentence as a span.

With the preprocessed document, the KOKO Query Evaluation
Engine evaluates a given query in 4 steps:

1. Normalize query. The expressions in the KOKO query are first
normalized and conditions among variables are explicitly stated in
preparation for subsequent steps.

2. Decompose paths and lookup indices. Every normalized com-
ponents in the query are further decomposed into one or more
paths so that each of them can be used to access an index. The
results from all accesses to indices are then joined, as needed, to
obtain a candidate set of sentences that should be considered next.
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KOKO Demo

Text Document
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1 was talking to my sister in law, eating chocolate custard, and spending some
time with my youngest child.

I made a tasty cocoa pudding, and everyone enjoyed it

I'had a piece of the richest, most moist chocolate cake I've ever had.

| ate a delicious chocolate fudge brownie.

@

KOKO Query /

extract c:Str from “input.txt" if

(/root:{

v =//verb,

0 = v//dobj,

s = vi/nsubj,

¢ = Aflmax="3"]
} (o) in (c)) satisfying
(c similarTo *chocolate" {1}) or
([["delicious"]] ¢ {1)) or
(str{v) contains “ate” {0.5))
with threshold 1.0

Results /

3.0 chocolate fudge brownie
2.7 fudge brownie.

2.0 brownie.

1.6 cocoa pudding,

1.0 eating chocolate custard
1.0 chocolate custard,

® O]

/

Explanation

Explaining the extraction: / (4 ﬂ)
+1.0 (str(c) contains *[chocolate]* (1.00) or "[caramelT* (0.80) or "Tchocolates]’ (0.78)
or "[candy]" (0.77) or "[fudge’" (0.76) or "[‘cake’]" (0.76) or "['cocoa’” (0.74) or "
[cheesecake']" (0.73) or "[dessert]" (0.73) o "Tbutter]" (0.72))

+1.0 ([delicious)" (1.00) or “[tasty]" (0.92) or Tyummy]" (0.88) or ‘[delectable]"
(0.84) or *[scrumptious]" (0.84) or “Tmouthwatering " (0.77) or "[flavorful " (0.76) or *
[dessertsT" (0.75) or "[deliciously’]" (0.75) or "'mouth-watering]" (0.75) ~ c)

+1.0 (str(v) contains "ate" { 0.50 })

More details on the extraction:

()

4:1(s) ate

a delicious chocolate fudge brownie (o

Figure 3: Screenshot of KOKO demonstration.

3. Generate evaluation plan. This module applies a heuristic on
“horizontal” conditions to identify a set of variables whose evalu-
ation can be first skipped. The bindings for the skipped variables
are then derived and constraints are checked.

4. Aggregate. The conditions of satisfying clauses are evaluated
across the text to obtain evidence and the final result is determined.

KOKO is also able to evaluate a query on the given text document

without any preprocessing: in the 2nd step, instead of accessing the
pre-built indices for relevant sentences, KOKO can also parse the
given input text document on the fly and deliver the parsed results
to the following step for evaluation.

4. DEMONSTRATION OUTLINE

We will demonstrate KOKO with an emphasis on three aspects
of the system which makes it a powerful information extraction
tool: expressiveness, scalability and explainability. To this end, we
bundle Koko with three (pre-indexed) text corpora, HappyDB [1],
Wikipedia, and coffee blogs we scraped from Barista Magazine and
Sprudge.com websites. KOKO has 4 panels (Figure 3) that allow
users to specify the input and interactively explore the output. We
detail the interactive process as below.

Step 1 (Define Text Input): The first panel ((1) Text document)
in Figure 3 shows sentences in the input documents. KOKO allows
users to define their own text input through the textbox. Meanwhile,
users can also select one of the three text corpora as the text input.

Step 2 (Define KOKO Query): To explore the KOKO system, the
second step is to define a KOKO query through panel ((2) KOKO
query). Similar to Step 1, users have the flexibility to select one
of the pre-defined queries, customize these queries, or define their
own queries.

Step 3 (Run KOKO Query and Explore the Results): After the
input text and Koko query is defined, the user needs to press “Run
Koko”, and the results are displayed on the third panel ((3) Results).
To explore the results, the user can click the result and interact with
the system through the rightmost panel ((4) Explanation). For ex-
ample, if the user selects a result tuple “chocolate fudge brownie”,
the sentence from which the phrase “chocolate fudge brownie” is
extracted, “I ate a delicious chocolate fudge brownie” in panel (1),
will be highlighted as red. Simultaneously, panel ((4) Explana-
tion) will display two tabs for explanation: one for the extract
clause and one for each satisfying clause. The tab for the extract
clause displays the dependency parse trees of every sentence that
contributes to extracting the tuple. The dependency parse tree will
be visualized in the same manner as Figure 1. The tree will also
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depict the bindings of the variables in the extract clause to the
nodes of the tree. The tab for satisfying clause is composed by
two components: the first component ((4-a) Explaining the extrac-
tion) shows the relevant conditions in the satisfying clause that
contributed to the outcome. For example, panel (4-a) in Figure 3
shows three conditions and their scores to explain why “chocolate
fudge brownie” was extracted. Users can further explore the con-
ditions through panel ((4-b) More details on the extraction), which
depicts the (spans of) sentences with the bound variables.

Through the three steps procedure, we demonstrate that KOKO
is expressive, scalable, and explainable.

Expressiveness. In Step 2, we prepare several KOKO queries that
present various features of KOKO including its ability to (1) query
over the surface syntax, (2) KOKO’s ability to query over the depen-
dency parse tree and/or the surface syntax, and (3) KOKO’s ability
to do the above in conjunction with the aggregation of evidence.

Scalability. We showcase the scalability of KOKO by running our
queries on the text corpora with different scales (Step 1). In par-
ticular, we demonstrate that KOKO is able to query millions of
Wikipedia articles in minutes.

Explainability. In conjunction, we demonstrate KOKO’s ability to
explain results. Specifically, through Step 3, we demonstrate and
explain why a result tuple is generated through our interactive user
interface.
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