
Discovering Diversified Paths in Knowledge Bases

Christian Aebeloe∗, Gabriela Montoya∗, Vinay Setty∗†, Katja Hose∗
∗Aalborg University, Denmark †University of Stavanger, Norway

{caebel, gmontoya, vinay, khose}@cs.aau.dk vinay.j.setty@uis.no

ABSTRACT
Vast amounts of world knowledge is now accessible through
Knowledge Graphs (KGs) in RDF format and can be queried us-
ing SPARQL. Yet, finding paths between nodes in such graphs
is not part of the official SPARQL 1.1 standard; only the simpler
functionality of checking reachability is supported, i.e., assessing
whether two nodes are connected based on certain conditions for-
malized as property paths but without providing information on
how they are actually connected. To close this gap of functionality,
we present JEDI, a system that extends a popular SPARQL engine,
Jena, with the ability to compute paths connecting entities in a KG.
JEDI shows the k most relevant results to the user where relevance
is assessed as a trade-off between path length and diversification of
the intermediate nodes in the path. Furthermore, our solution is not
limited to a single property path pattern but supports queries con-
taining multiple property path patterns. While JEDI supports arbi-
trary KGs, for demonstration purposes some predefined KGs, such
as YAGO and DBLP, will be used.

PVLDB Reference Format:
Christian Aebeloe, Gabriela Montoya, Vinay Setty, Katja Hose. Discover-
ing Diversified Paths in Knowledge Bases. PVLDB, 11 (12): 2002-2005,
2018.
DOI: https://doi.org/10.14778/3229863.3236245

1. INTRODUCTION
In the past decade, representing and querying knowledge in a

structured way using Knowledge Graphs (KGs), such as YAGO [5]
and DBpedia [2], has become more and more popular. Recently,
several commercial KGs such as the Google KG, the Facebook En-
tity Graph, and Microsoft Satori have been proposed with appli-
cations to search engines and personal voice assistants. Given the
proliferation of KGs and their verbose structure, there is a clear
need for algorithmic techniques to facilitate interactive exploration
and analysis of semantic relationships between entities in a KG.

Due to their versatility and expressiveness, the W3C standards
RDF1 and SPARQL2 have been widely adopted in the Seman-

1https://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-sparql-query/

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/08.
DOI: https://doi.org/10.14778/3229863.3236245

tic Web community. The recent introduction of SPARQL 1.1 has
enabled novel approaches and optimizations [6, 7, 9] incl. prop-
erty paths3, which made it possible to formulate SPARQL queries
checking the transitive reachability of entities (vertices) in RDF
graphs using regular expressions involving operators, such as ‘*’
(zero or more occurrences–kleene star), ‘|’ (OR operator), ’∧’
(NOT operator), etc.

However, these operators are only of very limited use for
exploring semantic relatedness between entities as they do
not return the full paths between the entities but merely
check for its existence. For example, a property path query
with the clause “Princess_Margaret_of_Connaught
hasChild* Margrethe_II_of_Denmark” only checks if
Margrethe_II_of_Denmark is transitively reachable from
Princess_Margaret_of_Connaught via any number of
hasChild property relationships but omits the intermediate
entities in the path.

There is currently only very little related work in this area. Some
systems try to address this issue by computing the complete paths
connecting a given pair of entities defined in a user query [4, 11]
or sets of entities [12], respectively. However, these systems are
either limited to queries involving a single property (as opposed
to queries supporting arbitrary paths involving a diverse range of
properties occurring in a KG) or ignore the properties completely.
There is usually no advanced support for combining property path
expressions with other standard SPARQL operators. Moreover, to
the best of our knowledge there is no system that supports retrieving
full paths for queries involving multiple property path patterns.

To address these issues, we propose a system coined JEDI (Jena
Extension for DIscovering diversified paths in knowledge bases).
JEDI extends the property path grammar with a new operator ‘→’,
which, in addition to checking the reachability, also enumerates
all the property paths matching an arbitrary given property path
query. In general, however, it is not sufficient to simply enumerate
all paths fulfilling a property path pattern as such results are of-
ten large in number and redundant. We therefore introduce a rank-
ing scheme using a diversification metric as a post-processing step.
As we implement our solution as an extension to Jena4, a popu-
lar framework for parsing and processing SPARQL queries, JEDI
is able to combine property paths with other operators known from
standard SPARQL queries.

Example Query. Suppose we are interested in finding any
possible links between the Danish and Swedish royal fami-
lies along with their lineage. We can express a property path
query with the → operator to retrieve all the common ances-
tors of Margrethe II of Denmark, the current Queen of Den-

3https://www.w3.org/TR/sparql11-property-paths/
4https://jena.apache.org/

2002

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-property-paths/
https://jena.apache.org/

mark, and Carl XVI Gustaf of Sweden, the current King of Swe-
den – the corresponding SPARQL query is shown in Listing 1.

PREFIX :<http://yago-knowledge.org/resource/>
PREFIX rdfs:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT * WHERE {
?a :hasChild-> :Margrethe_II_of_Denmark .(pp1)
?a :hasChild-> :Carl_XVI_Gustaf_of_Sweden .(pp2)
?a rdfs:label ?b

}

Listing 1: SPARQL query Q1 to retrieve links between Danish
and Swedish royal families

Figure 1 illustrates the graph formed by the top-3 paths match-
ing the query in Listing 1, which clearly shows the need for diver-
sification. When we rank the results purely based on path lengths
(Figure 1(a)), we can see that all paths share the same subpath af-
ter the entity Princess_Margaret_of_Connaught. In Fig-
ure 1(b), when we rank equally based on the diversification metric
and path length to select the top-3 paths, we discover new paths,
e.g., from the paternal side of Margrethe_II_of_Denmark,
via the entity Frederik_XI_of_Denmark even though it is a
much longer path. These new paths do not involve the same sub-
path as when we rank purely based on path lengths, and thus are
more diverse.

a)

b)

Figure 1: Top-3 paths for the query in Listing 1: (a) Without
diversification, (b) With diversification. For both only the top-1
result path is highlighted: red nodes are part of property path
pp1, green nodes are part of property path pp2, mixed color
nodes are part of both, and gray nodes are part of other results.

2. SYSTEM OVERVIEW
JEDI is implemented on top of Jena4. We have extended the

grammar of property path operators accepted by Jena with a new
operator, ‘→’. This operator outputs the actual paths connecting
two nodes in addition to performing the reachability check between
them. JEDI comes with a Java Web Application for graphical user
interaction that allows the user to explore the query results both
in a tabular format and in a visual graph-based format. JEDI al-
lows the user to select one or more results in the table to high-
light the corresponding paths in the graph. JEDI’s code is available

at http://qweb.cs.aau.dk/jedi/. The overall architecture of
JEDI is sketched in Figure 2. JEDI’s three main components are: a
Graphical User Interface, a Query Executer, and a Diversifier.

User

SPARQL Query
Generator

Graph
Builder

Jena Extension Diversifier

KG
Query
Executer

Graphical
User Interface

SPARQL Query Diversified Results

1
Figure 2: System architecture of JEDI.

Graphical User Interface. This component provides the user
with a Web Interface to interact with JEDI in two modes: (i) a sim-
ple query mode for less experienced users requiring help in formu-
lating SPARQL queries and (ii) an advanced query mode allow-
ing users to directly input arbitrary SPARQL queries. In the simple
query mode (see Figure 3 (b)), users are guided to provide every
component of a SPARQL query using input fields and the assis-
tance of auto-completion functionality to compute and present sug-
gestions to the user. Property path operators can be chosen from
a list; for binary operators another field is dynamically added for
the remaining operand. Additional triple patterns or property path
patterns can easily be added as well. The ‘→’ operator is enabled
by activating a check box (see Figure 3 (c)); if not activated the
standard implementation of property paths is applied during query
evaluation. For experts, the advanced query mode provides the user
with a textbox where he/she can freely edit and input an arbitrary
SPARQL query. The Web Interface also displays the results both
as a table and as a graph, and allows users to explore the results
by selecting some query result (rows in the table) to highlight the
corresponding paths in the graph and choosing the colors used to
highlight the paths.

In the simple query mode, this component relies on the SPARQL
Query Generator to obtain the SPARQL query that is passed on to
the Query Executer. In both modes, the Graph Builder is used to
present the top k diverse results to the user as a graph that allows
for visualizing and exploring the obtained paths.

Query Executer. The→ operator computes the paths that con-
nect entities in a Knowledge Graph (KG). To compute these paths,
the nodes reachable from the source node are visited in depth-first
order and their immediate predecessors are stored. Then, these pre-
decessors are used to compute the actual paths, while using the
number of paths required to avoid the computation of an exponen-
tial number of paths. As paths with loops are not shorter or more di-
verse, they are omitted. JEDI relies on a SPARQL compliant service
to access the KG. This service does not handle the→ operator, but
is used to retrieve triples in the KG that possibly fulfill some con-
ditions, e.g., with a given subject or property. Hence, JEDI can be
used together with arbitrary SPARQL endpoints. However, in the
context of this demonstration, JEDI relies on a Virtuoso 7.2.4.25

endpoint as back-end.
Diversifier. Finding all possible paths connecting entities can

be very expensive and overwhelm the user with too many results.

5https://virtuoso.openlinksw.com/

2003

http://qweb.cs.aau.dk/jedi/
https://virtuoso.openlinksw.com/

In order to provide the user with the top-k most relevant results
only, JEDI diversifies the results using a diversification metric (Sec-
tion 2.1). JEDI is able to diversify results even for queries with mul-
tiple paths by using the diversification metric over the combination
of all the connected paths present in each query result.

2.1 Diversification Metric
Our diversification metric aims at balancing the path length and

the similarity among the result paths R of a given query Q. The
balance between these two is determined by a user-defined diversi-
fication parameter 0 ≤ λ ≤ 1. If λ = 0, we rank the paths purely
according to their lengths. On the other hand, if λ = 1, the k most
dissimilar paths according to Jaccard similarity irrespective of their
path lengths are chosen. Given a queryQ, with matching resultsR,
our goal is to select S ⊆ R according to the following objective:

DivP (R) = argmax
S⊆R

∑
Pi∈S

(1− λ) ·
minPj∈R |Pj |

|Pi|

+ λ ·
(
1− max

Pj∈S,Pi 6=Pj

|Pi ∩ Pj |
|Pi ∪ Pj |

)
s.t.|S| = k

(1)

Each pathP is represented as a set of entities and properties. This
allows us to compute the path lengths (|P |) and Jaccard similarity
using set intersection and union sizes. In order to bring the path
lengths to the same range ([0, 1]) as the Jaccard similarity value, it
is normalized by computing the ratio between each path’s length
and the shortest path length in the result set R. Note that the ob-
jective function DivP (R) in Equation 1 is agnostic to the number
of properties and entities in the paths and we can also replace the
Jaccard similarity metric with any other similarity metric.

THEOREM 1. The objective function forDivP (R) in Equation
1 is submodular.

PROOF. The proof follows from the Maximal Marginal Rele-
vance problem proposed in [3].

COROLLARY 1.1. A greedy algorithm for DivP (R) guaran-
tees (1− 1

e
)-Approximation.

PROOF. Follows from the results in [10].

This allows us to design a greedy approximation algorithm that
iteratively selects a path Pi in each step that makes the maximum
contribution to the objective in Equation 1.

3. PATH DISCOVERY WITH JEDI
Using JEDI, users can explore paths for various use cases. In this

section, we focus on a specific use case using the YAGO3 [8] KG
and show how JEDI can be used to explore it.

Consider query Q1 in Listing 1. With Q1 it is possible
to find links between the Danish and Swedish royal fami-
lies. Q1 includes two property path patterns that start from
the same common ancestor and end with the Danish Queen
and the Swedish King, respectively. The property path pattern
pp1 is satisfied by any entity X that is connected directly to
:Margrethe_II_of_Denmark through the property :hasChild,
i.e., if the triple X :hasChild :Margrethe_II_of_Denmark

is in the KG, or if X is connected directly to another entity
Y that is connected (directly or through additional entities) to
:Margrethe_II_of_Denmark. With the property path pattern
pp2, the condition that the entity X should also be connected in
a similar way to :Carl_XVI_Gustaf_of_Sweden is imposed.

Using the JEDI Web interface, Q1 can be input using the simple
query mode as shown in Figure 3 (b). In this mode, the use of the
→ operator is activated by ticking the checkbox next to the pat-
tern (Figure 3 (c)). To obtain the top k diverse results, k can be
specified through the field highlighted in Figure 3 (e) – 3 in this ex-
ample. Moreover, the value of λ can be specified through the field
highlighted in Figure 3 (d). In this example, λ = 0.2.

The top-3 most diverse results are obtained and combined into a
graph that is shown in Figure 3 (a). In Figure 3, the user has selected
a particular result, which is consequently highlighted both in the
graph representation as well as in the results table (Figure 3 (a) and
Figure 3 (f)). The orange path marks the path to the Danish Queen
(first property path in the query, pp1), and the green path marks the
path to the Swedish King (second property path in the query, pp2).
Note that Princess_Margaret_of_Connaught is present
in both paths of the selected row as it represents the connection
between the two paths corresponding to ?a in the given query. In
general, nodes that belong to more than one path are highlighted
using the color that results from mixing the colors of the involved
paths. In this case, it is highlighted in a mix of the green and or-
ange. It is also possible to edit the color for each result path man-
ually (Figure 3 (g)). Moreover, it is also possible to select multiple
rows, and to reset the selection.6

JEDI is, of course, not restricted to this use case but can be used
for numerous different use cases other than finding common an-
cestors between royal families, e.g., finding connections between
politicians and researchers, etc.

4. DEMONSTRATION
At the conference, we will demonstrate JEDI using a number of

selected KGs. Although JEDI can work with any KG – as its im-
plementation only relies on the availability of a SPARQL endpoint
to access the data (supporting endpoints hosted on other servers) –
for the demonstration we will run JEDI and the SPARQL endpoint
on the same machine to avoid any problems caused by unstable
Internet connections during the conference.

To ease interaction with the system, we will prepare several in-
teresting SPARQL queries involving property paths. Conference at-
tendees will then have the opportunity to build upon these example
queries by editing parameters and exploring the results. In addition,
experts are invited to freely formulate SPARQL queries using the
extended property path operator proposed in this paper. After JEDI
has computed and displayed the results, including their graphical
representation, users will be able to freely explore the results by
selecting specific paths, marking them in the graph, and in doing so
discover connections between specific entities.

One of the KGs that we will use for the demonstration is
YAGO3 [8]. It provides information extracted from Wikipedia and
contains 1+ billion triples covering a broad range of topics. This
dataset, for example, supports the queries and use cases outlined
in Section 3. In addition to YAGO3, we will also prepare queries
over other KGs: DBLP7 and DBpedia8. These KGs support queries
about cross domain knowledge, such as “Brazilian book authors
that have been influenced by French writers” or queries about spe-
cific domains, such as “How are authors of papers connected to
track chairs via co-author relationships?”. DBpedia provides infor-
mation extracted from Wikipedia in a wide range of topics includ-
ing facts about persons, places, and organizations. For the demon-
stration, we use the English DBpedia 2016-04 with over 396 mil-
lions facts. DBLP consists of bibliographic information about sci-
6A video of JEDI is available at http://qweb.cs.aau.dk/jedi/
7https://dblp.org/
8http://dbpedia.org/

2004

http://qweb.cs.aau.dk/jedi/
https://dblp.org/
http://dbpedia.org/

a)

b)

e)

c)

d)

f)
g)

Figure 3: JEDI’s graphical interface when obtaining Q1’s top-3 paths with λ = 0.2

entific publications in the domain of computer science. For the
demonstration we use DBLP version 2018-02-01 containing over
76 million facts.

5. CONCLUSION
In this paper, we have presented JEDI, a system that enhances

an existing SPARQL query engine, Jena, to ease knowledge graph
exploration using property path patterns that, differently from the
SPARQL 1.1 standard, output the paths connecting entities. The
generated paths comply with diversification metrics to produce the
k most interesting results satisfying the user’s query. The effective-
ness of JEDI’s diversification metrics have been evaluated in [1],
showing the impact of the similarity measures on the obtained top-
k paths. In the current implementation, diversification is imple-
mented as a post-processing phase. However, given that the number
of paths connecting entities in a KG can be very large, we plan to
integrate the diversification metric into the path generation step in
our future work. Doing so, will reduce space requirements and in-
crease JEDI’s performance.

Acknowledgments
This research was partially funded by the Danish Council for In-
dependent Research (DFF) under grant agreement no. DFF-4093-
00301 and Aalborg University’s Talent Management Programme.

6. REFERENCES
[1] C. Aebeloe, V. Setty, G. Montoya, and K. Hose. Top-K

Diversification for Path Queries in Knowledge Graphs. In ISWC’18,
2018.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives. DBpedia: A Nucleus for a Web of Open Data. In ISWC’07,
pages 722–735. Springer, 2007.

[3] J. Carbonell and J. Goldstein. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In
SIGIR’98, pages 335–336, 1998.

[4] V. Fionda and G. Pirrò. Explaining and querying knowledge graphs
by relatedness. PVLDB, 10(12):1913–1916, 2017.

[5] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2:
A spatially and temporally enhanced knowledge base from
Wikipedia. Artificial Intelligence, 194:28–61, 2013.

[6] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi. Processing
Aggregate Queries in a Federation of SPARQL Endpoints. In
ESWC’15, pages 269–285, 2015.

[7] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi. Optimizing
Aggregate SPARQL Queries Using Materialized RDF Views. In
ISWC’16, pages 341–359, 2016.

[8] F. Mahdisoltani, J. Biega, and F. Suchanek. YAGO3: A knowledge
base from multilingual wikipedias. In CIDR’14, 2014.

[9] G. Montoya, H. Skaf-Molli, and K. Hose. The Odyssey Approach for
Optimizing Federated SPARQL Queries. In ISWC’17, pages
471–489, 2017.

[10] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of
approximations for maximizing submodular set functions–I.
Mathematical Programming, 14(1):265–294, 1978.

[11] V. Savenkov, Q. Mehmood, J. Umbrich, and A. Polleres. Counting to
k or how SPARQL1.1 Property Paths Can Be Extended to Top-k Path
Queries. In SEMANTICS’17, pages 97–103, 2017.

[12] S. Seufert, P. Ernst, S. J. Bedathur, S. K. Kondreddi, K. Berberich,
and G. Weikum. Instant Espresso: Interactive Analysis of
Relationships in Knowledge Graphs. In WWW ’16 Companion, pages
251–254, 2016.

2005

	Introduction
	System Overview
	Diversification Metric

	Path Discovery with JEDI
	Demonstration
	Conclusion
	References

