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ABSTRACT
Fraud detection rules, written by domain experts, are often em-
ployed by financial companies to enhance their machine learning-
based mechanisms for accurate detection of fraudulent transactions.
Accurate rule writing is a challenging task where domain experts
spend significant effort and time. A key observation is that much of
this difficulty originates from the fact that experts typically work as
“lone rangers” or in isolated groups to define the rules, or work on
detecting frauds in one context in isolation from frauds that occur in
another context. However, in practice there is a lot of commonality
in what different experts are trying to achieve.

In this demo, we present the GOLDRUSH system, which facil-
itates knowledge sharing via effective adaptation of fraud detection
rules from one context to another. GOLDRUSH abstracts the pos-
sible semantic interpretations of each of the conditions in the rules
in one context and adapts them to the target context. Efficient algo-
rithms are used to identify the most effective rule adaptations w.r.t
a given cost-benefit metric. We showcase GOLDRUSH through a
reenactment of a real-life fraud detection event. Our demonstration
will engage the VLDB’18 audience, allowing them to play the role
of experts collaborating in the fight against financial frauds.
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1. INTRODUCTION
Financial frauds are unauthorized financial operations (called trans-

actions) that obtain money or goods illegally from accounts. Fi-
nancial frauds are a billion dollar industry and financial companies
(banks, credit card companies, etc.) invest significant resources to
detect frauds and prevent them. Online fraud detection systems
monitor incoming transactions and use models based on data min-
ing and machine learning (ML) techniques to detect frauds [5]. A
typical approach is to score each transaction and every transaction
whose score is above a threshold is classified as fraudulent. How-
ever, such approaches may still not achieve high precision and re-
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call as legitimate transactions may be misclassified as fraudulent
and, likewise, fraudulent transactions may be missed. Also, the
derived threshold does not provide a semantic explanation of the
underlying causes of the frauds like the ways rules do. For this rea-
son, financial companies typically rely on rules crafted by domain
experts, in addition to the ML models.

Writing rules to capture precisely fraudulent transactions is a
challenging task where domain experts spend significant effort and
time. A key observation is that much of this difficulty is due to
the fact that experts typically work as “lone rangers” or in isolated
groups to define the rules, or work on detecting frauds in one con-
text in isolation from frauds in another context. However, in prac-
tice there is a lot of commonality in what different experts are trying
to achieve. Very often, rules defined by experts in one context may
be useful for understanding how to detect frauds in another con-
text. The goal of GOLDRUSH is to facilitate knowledge sharing
via adaptation of fraud detection rules from one context to another.

We examine the conditions of the rules and the context to map
rules from one context to another. The possible semantic interpre-
tations of each condition are abstracted and then instantiated to the
target context. As the number of possible abstractions (and corre-
sponding instantiations) may be large, each rule may be mapped to
the target context in many different ways. The efficient algorithms
underlying GOLDRUSH identify the most effective ones, in terms
of improving the fraud detection accuracy in the target context.

To illustrate, let us consider the following example.

EXAMPLE 1.1. Consider two fraud detection experts, A and B,
working in two collaborating companies, located in the USA and
Germany, respectively. Figures (1) and (2) show, resp., a small
portion of the transaction relations in the two companies. The re-
lation records for each transaction the (local) time in which it was
issued, its amount in local currency, the transaction type and the
country from which the transaction was issued. The last column in-
dicates whether the transactions were confirmed as fraudulent (F)
or legitimate (L).

𝜙𝐴 :Type = “𝑆𝑡𝑜𝑐𝑘 𝑇𝑟𝑎𝑑𝑒” ∧ Amt ≥ 100𝐾 ∧
Time ≥ 16:00 ∧ Country ∈ {𝐷𝑖𝑛𝑜𝑡𝑜𝑝𝑖𝑎, 𝐽𝑎𝑚𝑜𝑛𝑖𝑎}

The above rule is designed by expert A to detect the frauds in Fig-
ure 1. In practice each rule also includes a threshold (not shown)
on the score for each transaction as derived by a Machine Learning
module, i.e., the degree of confidence that the transaction is fraud-
ulent, as well as additional conditions on the user/settings/etc. We
will omit the scores and the additional conditions for simplicity and
focus on only the rules in this example.

The rule defined by expert A in her context may be useful, af-
ter some appropriate adaptation, for the context of expert B, and
different interpretations may yield different target conditions. Ob-
serve that the condition over Time may refer to the local time or
the time after the closing of the local Stock Exchange Market (i.e.,
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Time Amount Type Country
15:58 107K Stock Trade Dinotopia L
16:01 104K Stock Trade Dinotopia F
16:02 111K Stock Trade Jamonia F
16:04 102K Stock Trade Dinotopia F
16:15 96K Stock Trade Dinotopia L

: : : : :
Figure 1: Expert A Transactions

Time Amount Type Country
19:53 140K Stock Trade Orsinia L
20:02 97K Stock Trade Orsinia F
20:03 230K Stock Trade Orsinia F
20:05 92K Stock Trade Orsinia L
20:07 206K Stock Trade Orsinia F

: : : : :
Figure 2: Expert B Transactions

16:00 for the New York Stock Exchange). A time-zone adapta-
tion should be applied for the former interpretation (+6 hours)
to adapt it to the time in Germany. However, the target condi-
tion should be Time ≥ 20:00 if it is the latter interpretation. Simi-
larly, Country ∈ {𝐷𝑖𝑛𝑜𝑡𝑜𝑝𝑖𝑎, 𝐽𝑎𝑚𝑜𝑛𝑖𝑎} may refer to all over the
world attacks originating from these two specific (fictional) coun-
tries, in which case an identity mapping should be employed. Con-
versely, if the condition deals with a specific attack against the lo-
cal market (USA in this case), we should map it by the rule target
country market attackers, e.g. Orsinia. Finally, Amt ≥ 100𝐾
may be a condition in terms of the local currency, in which case a
translation from US dollars to Euro may be applied (translates to
about 95𝐾). Or, it may be a condition that captures “exceptionally
large amounts”, which, considering the trade amounts distribution
in context B, should be mapped to 200𝐾 Euro. A resulting possible
translation for rule 𝜙𝐴 then may be the following:

𝜙𝐵 :Type = “𝑆𝑡𝑜𝑐𝑘 𝑇𝑟𝑎𝑑𝑒” ∧ Amt ≥ 95𝐾 ∧
Time ≥ 20 : 00 ∧ Country ∈ {𝑂𝑟𝑠𝑖𝑛𝑖𝑎}

The goal of the GOLDRUSH system is to facilitate meaningful
and effective rules mappings between different contexts. A fun-
damental challenge is that rule semantics is often undocumented.
To overcome this, we focus on the individual rule conditions and
derive a set of candidate value abstraction and concretization func-
tions that may capture the possible mappings between the condi-
tions in the given contexts. These include common built-in map-
pings (e.g. currency and distribution-based mappings) as well as
semantic-aware mappings, derived by analyzing the given data in-
stance. To choose between the possible mappings we define an
intuitive cost-benefit model that reflects the improvement in fraud
detection that the resulting rules may bring. Finally we provide
a set of efficient algorithms to choose the best translation among
the candidates set. We show that finding the optimal rule adap-
tation is NP-hard (intuitively, as all the combinations between the
conditions adaptation candidate values need to be considered), but
the problem can be modeled as an Integer Linear Programming
(ILP) problem. As the performance of ILP solvers often deterio-
rates for large number of variables (which is the case here), GOL-
DRUSH employs a dedicated data reduction technique that clus-
ters together transactions that “behave uniformly” w.r.t the condi-
tions in the rule, dramatically reducing the number of variables and
yielding efficient performance 1. Our experiments on real-world
datasets (reported in the full paper [4]) demonstrate the efficiency
of our solution and the great benefits it brings in real life scenarios.

Demonstration Overview We will demonstrate the operation
of GOLDRUSH through the reenactment of a real-life fraud de-
tection scenario where GOLDRUSH’s rule adaptation was used
to stop an actual large-scale fraud attack. We will use the real
(anonymized) financial transactions of three collaborating compa-
nies and demonstrate the course of the attack and its prevention: the
early attack detection by one of the institutes, the (institute-specific)
prevention rules written by its expects, and the rules adaptation via
GOLDRUSH which allowed to block the attack also in the other
(not yet suspecting) institutes. We will invite VLDB’18 attendees
1While the ILP solver still goes through exponentially many com-
binations, we have found that it gives very good performance in
practice on the reduced data.

to play the role of domain experts in this scenario and explain the
operation of GOLDRUSH through its workflow.

2. TECHNICAL BACKGROUND
We briefly overview the model and algorithms underlying GOL-

DRUSH. Full details presented in [4].
Transaction relation Our model consists of a relation 𝑅(𝐴1, . . . , 𝐴𝑚),
called the transaction relation, where each tuple denotes a transac-
tion over the attributes 𝐴1, . . . , 𝐴𝑚. In a financial context, each
tuple denotes an operation (i.e. transfer, payment) made through
some bank or credit card. The transaction relation is appended
with more transactions over time. Attributes can have a numeri-
cal domain (i.e. 𝐴𝑚𝑜𝑢𝑛𝑡 in example 1.1) or a categorical one (i.e.
𝐶𝑜𝑢𝑛𝑡𝑟𝑦). Each domain may have a semantic partial order asso-
ciated with it. A transaction may be classified fraudulent which
means that the transaction was carried out illegally. Otherwise, it
will be classified as legitimate. For simplicity we will assume that
all the collaborating parties use the same relation schema. Other-
wise a schema matching component can be added.
Rules Fraud detection experts specify rules that can be applied
to a transaction relation to discover fraudulent transactions. For
simplicity and efficiency of execution, the rules are typically writ-
ten over a single relation, which is a universal transaction relation
that includes all the necessary attributes (possibly aggregated or de-
rived from many other database relations) for fraud detection [6].
Hence, it is not necessary to consider explicit joins over different
relations in the rule language. A rule 𝜙 is defined as a conjunction
of conditions over the attributes of the transaction relation, i.e., is
is of the form 𝜙 =

⋀︀
1≤𝑖≤𝑚 𝛼𝑖 where 𝛼𝑖 is a condition of the

form ‘𝐴𝑖 𝑜𝑝𝑖 𝑧𝑖’ , 𝑜𝑝𝑖 ∈ {=, ̸=, <,>,≤,≥,∈, /∈}. For simplic-
ity, each rule includes only one condition over each attribute, but
multiple disjunctive conditions over the same attribute can be ex-
pressed using multiple rules. Other extensions to the rule language
are possible but will not be considered here. Note that the rule lan-
guage that we consider, albeit simple, forms the core of common
rule languages used by actual systems[6].

More formally, if 𝜙 is a rule that is specified over a transaction
relation 𝑅, then 𝜙(𝑅) denotes the set of all tuples in relation 𝑅
that satisfies 𝜙. We say that 𝜙(𝑅) are the transactions in 𝑅 that are
captured (and suspected as fraud) by 𝜙. If Φ denotes a set of rules
over 𝑅, then Φ(𝑅) =

⋃︀
𝜙∈Φ 𝜙(𝑅). In other words, Φ(𝑅) denotes

the union of results of evaluating every rule in Φ over 𝑅.
Attribute-mappings While there might be many ways to map
rules from a source context to a target, we center our attention here
on mappings that consider the individual conditions of the rule,
substituting (when needed) the values 𝑧𝑖 used in the rule conjuncts
by those that best match the target context. As we will see, such
value-based mappings are extremely effective.

More formally, given a rule 𝜙 =
⋀︀

1≤𝑖≤𝑚 𝐴𝑖 𝑜𝑝𝑖 𝑧𝑖, defined
by an expert for some source context 𝑐𝑠 (consisting of the com-
pany transactions relation, existing rules and other data regarding
the company), we want to map it into a rule 𝜙′ for a target context
𝑐𝑡. An abstraction-based attribute mapping is a pair (𝑔, ℎ) that
consists on an abstraction function (𝑔) and a concretization func-
tion (ℎ). The function 𝑔 provides the way to generalize an attribute
value 𝑧 in 𝜙 from its concrete value in 𝑐𝑠 to a general concept that
should be semantically meaningful independently of the context.
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𝑆𝐴𝑚𝑜𝑢𝑛𝑡 ={100𝐾(ID), 95𝐾(CC), 200𝐾(VP)}
𝑆𝑇𝑖𝑚𝑒 ={16:00(ID), 20:00(CT), 19:00(VP), 22:00(LT)}

𝑆𝐶𝑜𝑢𝑛𝑡𝑟𝑦 ={{Dinotopia, Jamonia}(ID), {Orsinia}(MA)}
𝑆𝑇𝑦𝑝𝑒 ={”Stock Trade”(ID)}

Figure 3: Translation values for 𝜙𝐴

The function ℎ takes a generalized concept and maps it to a con-
crete attribute value in 𝑐𝑡.

For an attribute 𝐴𝑖 in 𝜙 with value 𝑧𝑖, and a set of possible
abstraction-based attribute mappings (𝑔𝑖1 , ℎ𝑖1), . . . , (𝑔𝑖𝑘 , ℎ𝑖𝑘 ) for
𝐴𝑖, the set 𝑆𝑖 =

⋃︀
1≤𝑗≤𝑘 ℎ𝑖𝑗(𝑔𝑖𝑗(𝑧𝑖)) represents the possible value

translations for 𝑧𝑖. Then a possible translation of 𝜙 to context 𝑐𝑡 is
a rule a of the form 𝜙′ =

⋀︀
1≤𝑖≤𝑚 𝐴𝑖 𝑜𝑝𝑖𝑧

′
𝑖, where 𝑧′𝑖 ∈ 𝑆𝑖.

EXAMPLE 2.1. Continuing with example 1.1, we can use dif-
ferent abstraction-based attribute mappings for each one of the
attributes. Figure 3 shows some of the possible mapped values
for the attributes of 𝜙𝐴 (after applying both the relevant abstrac-
tion and concretization functions). For the amount attribute, one
possible mapping is currency conversion - the abstraction function
here maps the local amount to some general agreed upon currency;
a conversion to Euro is then used as the concretization function
(marked in the figure as CC). Another distribution-based mapping
maps the value to its corresponding percentile (i.e. upper 5%)
in the amounts appearing the transactions in context A. The con-
cretization function then maps the abstract percentile to a concrete
value threshold in the target context B (marked in the figure as VP).
For the time attribute, we may use in a similar manner local time
conversion (LT) or distribution based conversion (VP). Alterna-
tively, we can use a semantics abstraction that maps it to the Stock
Market closing time concept, with mapping to Frankfurt Stock Mar-
ket closing time for concretization (CT).

Cost & Benefit model To compare between the different trans-
lation candidates and determine which is the most suitable one,
we need to measure the “cost & benefit” it entails. Intuitively, the
gain from a new rule can be measured by the increase in the num-
ber of fraudulent transactions that are captured by adding it (i.e.
the fraudulent transactions that were not captured by the existing
rules), minus the number of legitimate transactions that it misclas-
sifies (i.e. legitimate transactions that were correctly classified by
previous rules). We omit the formal definition of the cost-benefit
formula here, but note that our goal is identify the translation that
maximizes its value.

The main algorithms behind GOLDRUSH There are two main
challenges to overcome to yield good rule translations: (1) the
choice of suitable abstraction/concretization functions that will al-
low to build an effective yet not too large set of candidate mappings
for each rule attribute, and (2) the design of efficient algorithms to
identify the best, cost-benefit wise, rule translations. We will first
discuss (2), assuming that the set of possible mappings for every
attribute value is given, then explain what mappings are used.

Identifying optimal translations. As mentioned in the introduc-
tion, finding the rule translation that maximizes the cost-benefit
score can be shown to NP-hard. However, the problem may be
modeled as an Integer Linear Programming (ILP) problem. While
this still NP-hard, ILP solvers are known to be efficient in prac-
tice for a not too large number of variables. As this not the case
in our setting (the variables in the ILP formulation correspond to
the number of transactions, which may be millions in common sce-
narios), we first employ a dedicated preprocessing data-reduction
step. Our technique clusters together transactions that “behave uni-
formly” w.r.t the conditions in the rule, representing them as a sin-
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Figure 4: GOLDRUSH architecture

gle tuple, thereby significantly reducing the ILP problem space and
yielding efficient performance.

Intuitively, our reduced ILP problem consists of a 0-1 variable
for every value in each 𝑆𝑖 (with the value 1 symbolizing that the
corresponding translation was chosen) and a 0-1 variable corre-
sponding to every transactions cluster tuple (with the value 1 sym-
bolizing that the cluster is captured by the chosen translation). The
objective function allows to weight the benefit of the correctly iden-
tified fraudulent transactions vs. the cost of the misclassified legit-
imate transactions. We also have a constraint for every attribute 𝐴𝑖

in the rule, ensuring that a single value is selected from 𝑆𝑖, and a
pair of constraints that ensure that the cluster variables are set to
1 if-and-only-if all the clauses of the rule are satisfied by the cho-
sen combination of selected values. Our solution also provides the
user with the option to add more specific requirements such as a
precision threshold, misclassification threshold, etc.

Building Attribute mappings We employ in GOLDRUSH three
classes of mappings that may be used. The first class consists of a
standard set of value-based mappings. These include for instance
currency, temperature, time zone, length and weight metrics map-
pings. The identity mapping also belongs to this set, and so is a
special “True” mapping (that allows to remove conditions from the
rule). The second class includes distribution-based mappings such
as percentile and frequency (top/bottom-k). The third class is data
driven and employs an ontological knowledge base (constructed
by importing data from DBPedia [2]). To determine possible ab-
stractions, the semantic properties that the attribute values satisfy
in relation to the given context, are mined. For instance, in our
running example we can see that all countries mentioned in the
Country attribute are related to the US by a common-scam rela-
tion. The concretization mapping then maps the identified pattern
to its instantiation in the target context (the set of countries that
are related to Germany by the same common-scam relation). This
module is extensible and additional methods for identifying rele-
vant abstractions/concretizations may be added. As an example we
implemented an interactive module that consults the experts to get
additional mappings.

3. SYSTEM AND DEMONSTRATION
GOLDRUSH is implemented in Python (backend service), PH-

P/JavaScript (frontend) and uses MySQL as the database engine.
The system architecture is depicted in Figure 4. The Manager
module acts as the dispatcher for the rule translation task. When a
new set of rules is received, it triggers the Rule Translator module,
which builds the rule translation candidates set and pass it to At-
tribute Mapping modules. Once the relevant attribute mappings are
computed, they are sent to the Data Reducer which clusters the rel-
evant transactions relation, builds the corresponding ILP model and
solves it using the 3rd-party libraries ([1], [7]). Finally, the best rule
translations are added to the Recommended Rules DB from where
they are continuously pushed to the experts through the UI (as pop
ups or upon request).
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Figure 5: GOLDRUSH UI: Mappings (concretization)

Demonstration scenario As mentioned, we will demonstrate the
functionalities of GOLDRUSH through a reenactment of a real-
life fraud detection scenario where GOLDRUSH’s rule adapta-
tion is used to stop a large-scale fraud attack. In the demonstrated
scenario, an online attack is launched against gas-stations’ conve-
nience stores of different chains in several countries, issuing small-
amount fraudulent money-transfer transactions around the stores’
closing time. The attack is hard to detect as the transactions are
of varying amounts and are are distributed, with only few trans-
actions per store, across multiple stores in the chain. Due to this
difficulty, only one company identified the incident, battling it by
(chain-specific) prevention rules written by its domain expects. It is
only the rules adaptation via GOLDRUSH which allowed to block
the attack also in the other (not yet suspecting) companies, saving
large amounts of money.

We will run the demonstration over a snapshot of three real-
world transaction relations obtained from our industrial collabo-
rators, belonging to to companies 𝐴, 𝐵 and 𝐶 (identity is not given
for privacy considerations) from the above scenario. The trans-
action datasets contain attributes similar to the ones presented in
Figure 1 and more. We will use a masked version of the datasets in
which sensitive information such as user/company names, account
IDs and IPs are masked. Some of the transactions are identified as
fraudulent and others as legitimate. We will start the demonstration
by presenting GOLDRUSH, its interface and the system’s main
goal, then briefly describe the scenario that we are about to reen-
act, and the context characteristics (country, currency, work hours,
etc.) of each of the three chains. We will use in the demo three
laptops, one per company and show the users the incoming flow of
the company transactions, with the reported fraudulent transactions
highlighted. We will also explain what made the experts of com-
pany 𝐴 suspect the individual fraudulent transactions to belong to
a coordinated attack.

We will then ask the users to play the role of the experts and
add, through the system UI, rules to prevent the attack in company
𝐴. For users lacking relevant background we will provide a cheat
sheet with the actual rules written by the company experts, which
they can copy/modify. A screen with a visualization of the different
attribute value abstractions will then be shown, allowing the user to
mark the more relevant ones, if desired (as shown in Figure 5). The
system will then analyze whether the rules may be shared by the
other companies and adapted to their context. Whenever success-
ful, a rule suggestion will pop-up on the corresponding laptop, also
showing the different concretizations built for the attribute values.
Once the suggested rules are accepted, we will see how the incom-
ing fraudulent transactions are identified and the attack is blocked.
Importantly, the audience will be able to observe how the adapta-
tion of the same 𝐴 rule differs in companies 𝐵 and 𝐶, following
their specific context.

To illustrate what happens behind the scene, we will also al-
low the audience to examine the different steps of our solution:
the compressed tuple clusters (compared to the original tuples set
they represent), the reduced-size ILP model, and finally the recom-

Figure 6: GOLDRUSH UI: Recommended Translations

mended rule displayed to the users, along with relevant information
such as the particular semantic abstractions employed, statistics on
the number of fraudulent transactions captured/missed by the rule
at the target context, its precision and recall, etc. (Figure 6). We
also provide for comparison similar statistics regarding the perfor-
mance of the original rule in its source context.
Related work Fraud detection typically employs ML and data
mining methods (e.g., [5]). As the main focus of our work is trans-
lating rules from one context to another (by using different trans-
lation methods), it is closely related to transfer learning (e.g. [8]).
However as demonstrated in the full paper ([4]), their target func-
tion is different and the resulting rules that are less effective for the
given context and often not meaningful in terms of semantics and
readability.

Conceptually, the work on query reformulation (e.g., [3]) is close
to ours. But while they reformulate queries written over a source
schema to a target one (under a given set of tuple/equality gen-
erating dependencies), we replace the rule conditions over a sin-
gle schema using source to target condition mappings. Further-
more, our objective function to best capture frauds is different from
the query optimization goal which aims to minimize the size of
the query. Similarly, schema matching (e.g.,[9]) can be seen as a
“translation” between two schemas. However, the result of schema
matching tools is a set of correspondences between schema ele-
ments, while we map the condition values from the source and the
target conditions. Finally, existing work on incremental mainte-
nance of rules in response to new incoming data (including own
work in [6]) performs only an optimization of the existing rules
within a given single context and does not consider knowledge shar-
ing in multiple contexts. The two lines of works are thus compli-
mentary.
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