
REGAL+: Reverse Engineering SPJA Queries

Wei Chit Tan§ Meihui Zhang¶ Hazem Elmeleegy† Divesh Srivastava‡
§Singapore University of Technology and Design, ¶Beijing Institute of Technology,

†Amobee, ‡AT&T Labs-Research
weichit tan@mymail.sutd.edu.sg, meihui zhang@bit.edu.cn,

hazem.elmeleegy@amobee.com, divesh@research.att.com

ABSTRACT
The goal of query reverse engineering is to re-generate the
SQL query that produced a given result from some known
database. The problem has many real world applications
where users need to better understand the lineage and trust-
worthiness of various data reports even when the authors of
those reports are no longer reachable or are unable to pro-
vide the required explanations anymore. It gets more chal-
lenging as the complexities of both the query and database
schema increase. Prior work has addressed the reverse engi-
neering of constrained types of SQL queries and sometimes
on constrained schemas, such as single-table schemas. In
this demonstration, we present a framework called REGAL+,
which builds upon, and extends prior work to enable the
discovery of Select-Project-Join-Aggregation (SPJA) queries
over arbitrary schemas. Without any prior schema knowl-
edge or SQL expertise, the user only needs to upload a data
report (e.g., as a spreadsheet), and the system will automat-
ically compute and display the queries capable of generating
that report from the database.

PVLDB Reference Format:
Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Sri-
vastava. REGAL+: Reverse Engineering SPJA Queries. PVLDB,
11 (12): 1982-1985, 2018.
DOI: https://doi.org/10.14778/3229863.3236240

1. INTRODUCTION
To understand structured data, numerous techniques are

available via either commercial products or recent research
works. However, most of them expect some prerequisites
from the users, principally the skills to read the schema or
to write the SQL queries. On the other hand, query re-
verse engineering opens up a new perspective about rela-
tional databases, where it can provide an explanation for a
given table in the form of the query that was used to gen-
erate it in the first place. For example, Alice who works
as a business analyst, has obtained plenty of query results
that are presented in spreadsheet tables from her colleagues

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236240

where some of this information is incomplete or inaccurate
because either i) the original queries are not available, or
ii) the created table/column names are not annotated prop-
erly. Instead of asking her colleagues individually for clar-
ifications, since Alice is authorized to access the company
database, she can re-generate those actual SQL queries from
the given query results without any other specialized skills
by utilizing a tool that can resolve her problem.

Since the users often construct SPJA queries that involve
both joins and OLAP-style aggregations to extract insightful
statistical summaries over the data warehouses, where these
queries cover a wide range of SQL expressions (with multiple
joins, group-by columns, aggregates and selections), it would
be beneficial to them if they had access to a framework that
can discover these potential queries without possessing spe-
cific knowledge about the data. Besides, there are other
good side effects that result from query reverse engineering.
For instance, given a query answer, users can learn about
multiple equivalent SQL queries that generate the same an-
swer, and hence improve their understanding of both SQL
and the database schema.

Recent works that are pertinent to reverse engineering
SPJ queries over relational databases mostly depend on the
schema graph, where both [7] and [5] only consider the dis-
covery of simple join queries while [9] enables the discovery
of arbitrarily complex join query graphs. Comparatively,
only a few solutions such as [3, 8] focus on reverse engineer-
ing OLAP-style aggregation queries. However, these discov-
ered queries are limited to contain a pair of columns where
one column lists the distinct values for a schema attribute
as groups and another column summarizes the numeric data
for another schema attribute based on these groups.

Our recent work, named REGAL [6], enables the discovery
of more general OLAP queries which contain multiple group-
by and aggregation operations. Nevertheless, the source
database is limited to a base (denormalized) table. To over-
come these limitations, we extend the three-phase REGAL
algorithm with join discovery to allow for reverse engineering
SPJA queries, with the SQL HAVING clause which constrains
the groups that will be present in an OLAP query output
table.

In this demonstration, we showcase REGAL+, a novel
framework for reverse engineering SPJA queries, which adds
the important join functionality to the REGAL algorithm [6].
We list our main contributions as follows:

1. We reverse engineer SPJA queries by combining the
functionality of reverse engineering SPJ queries and
the REGAL algorithm.

1982

REGION

NATION

SUPPLIER

LINEITEM

CUSTOMER

ORDERS

PARTSUPP

PART

(a) Schema graph of TPC-H

SELECT	 R_NAME,	O_ORDERSTATUS,	MAX(C_ACCTBAL),	SUM(O_TOTALPRICE),	COUNT(*)
FROM	 REGION,	NATION,	CUSTOMER,	ORDERS
WHERE R_REGIONKEY	 =	N_REGIONKEY	 AND	N_NATIONKEY	=	C_NATIONKEY	AND	

C_CUSTKEY	=	O_CUSTKEY	 AND	C_ACCTBAL	>	0	AND	C_ACCTBAL	<=	9000
GROUP	BY								R_NAME,	O_ORDERSTATUS	
HAVING	 COUNT(*)	<	119000;

(b) SQL query

3. We provide a visual interface to enable the users to load the
query output table as input to the system and also to explore
the generated SPJA queries by interrogating the discovered
groups.

2. THE BODY OF THE PAPER
Typically, the body of a paper is organized into a hierarchical

structure, with numbered or unnumbered headings for sections,
subsections, sub-subsections, and even smaller sections. The com-
mand \section that precedes this paragraph is part of such a
hierarchy.1 LATEX handles the numbering and placement of these
headings for you, when you use the appropriate heading commands
around the titles of the headings. If you want a sub-subsection or
smaller part to be unnumbered in your output, simply append an
asterisk to the command name. Examples of both numbered and
unnumbered headings will appear throughout the balance of this
sample document.

Because the entire article is contained in the document environ-
ment, you can indicate the start of a new paragraph with a blank
line in your input file; that is why this sentence forms a separate
paragraph.

2.1 Type Changes and Special Characters
We have already seen several typeface changes in this sample.

You can indicate italicized words or phrases in your text with the
command \textit; emboldening with the command \textbf
and typewriter-style (for instance, for computer code) with \texttt.
But remember, you do not have to indicate typestyle changes when
such changes are part of the structural elements of your article;
for instance, the heading of this subsection will be in a sans serif2

typeface, but that is handled by the document class file. Take care
with the use of3 the curly braces in typeface changes; they mark the
beginning and end of the text that is to be in the different typeface.

You can use whatever symbols, accented characters, or non-English
characters you need anywhere in your document; you can find a
complete list of what is available in the LATEX User’s Guide[5].

2.2 Math Equations
You may want to display math equations in three distinct styles:

inline, numbered or non-numbered display. Each of the three are
discussed in the next sections.

2.2.1 Inline (In-text) Equations
A formula that appears in the running text is called an inline or

in-text formula. It is produced by the math environment, which can
1This is the second footnote. It starts a series of three footnotes that
add nothing informational, but just give an idea of how footnotes
work and look. It is a wordy one, just so you see how a longish one
plays out.
2A third footnote, here. Let’s make this a rather short one to see
how it looks.
3A fourth, and last, footnote.

AFRICA F 8999.87 17818116338.21 118393
AFRICA O 8999.87 17868819851.84 118898
AFRICA P 8999.87 1147519283.61 6238
AMERICA F 8998.09 17951296302.56 118907
AMERICA O 8998.09 17888552356.66 118995
AMERICA P 8997.42 1155448262.19 6281
ASIA P 8999.00 1181720045.64 6360
EUROPE P 8999.10 1152682690.58 6278
MIDDLE EAST F 8999.60 17722542616.25 118162
MIDDLE EAST P 8993.25 1147581412.03 6215

be invoked with the usual \begin. . .\end construction or
with the short form $. . .$. You can use any of the symbols
and structures, from ↵ to !, available in LATEX[5]; this section will
simply show a few examples of in-text equations in context. Notice
how this equation: limn!1 x = 0, set here in in-line math style,
looks slightly different when set in display style. (See next section).

2.2.2 Display Equations
A numbered display equation – one set off by vertical space from

the text and centered horizontally – is produced by the equation
environment. An unnumbered display equation is produced by the
displaymath environment.

Again, in either environment, you can use any of the symbols and
structures available in LATEX; this section will just give a couple
of examples of display equations in context. First, consider the
equation, shown as an inline equation above:

lim
n!1

x = 0 (1)

Notice how it is formatted somewhat differently in the display-
math environment. Now, we’ll enter an unnumbered equation:

1X

i=0

x + 1

and follow it with another numbered equation:
1X

i=0

xi =

Z ⇡+2

0

f (2)

just to demonstrate LATEX’s able handling of numbering.

2.3 Citations
Citations to articles [1, 3, 2, 4], conference proceedings [3] or

books [7, 5] listed in the Bibliography section of your article will
occur throughout the text of your article. You should use BibTeX to
automatically produce this bibliography; you simply need to insert
one of several citation commands with a key of the item cited in the
proper location in the .tex file [5]. The key is a short reference
you invent to uniquely identify each work; in this sample document,
the key is the first author’s surname and a word from the title. This
identifying key is included with each item in the .bib file for your
article.

The details of the construction of the .bib file are beyond the
scope of this sample document, but more information can be found
in the Author’s Guide, and exhaustive details in the LATEX User’s
Guide[5].

This article shows only the plainest form of the citation com-
mand, using \cite. This is what is stipulated in the SIGS style
specifications. No other citation format is endorsed.

2.4 Tables
Because tables cannot be split across pages, the best placement

for them is typically the top of the page nearest their initial cite.
To ensure this proper “floating” placement of tables, use the envi-
ronment table to enclose the table’s contents and the table caption.
The contents of the table itself must go in the tabular environment,
to be aligned properly in rows and columns, with the desired hor-
izontal and vertical rules. Again, detailed instructions on tabular
material is found in the LATEX User’s Guide.

Immediately following this sentence is the point at which Table
1 is included in the input file; compare the placement of the table
here with the table in the printed dvi output of this document.

To set a wider table, which takes up the whole width of the page’s
live area, use the environment table* to enclose the table’s contents

2
(c) Query output table

Figure 1: An illustrative example with database schema, query and spreadsheet table.

2. We guarantee that the algorithm generates queries of
the lowest complexity, i.e. it can find the smallest con-
nected subgraph from the schema graph and the filter
predicates with the lowest dimensionality.

3. We provide a visual interface to enable the users to
load the query output table as an input to the system
and also to explore the generated SPJA queries by
interrogating the discovered groups.

2. PRELIMINARIES
Given a database D that consists of n relations, where

each relation is denoted as Ri, i ∈ [1, n], a schema graph
SG = (R, ζ) is constructed where the nodes represent the
relations and the (undirected) edges represent the foreign
key references. In our problem setting, a query output table
Out is generated from D by an unknown SPJA query Q.
The first goal is to identify a minimal join subgraph J (G) of
the schema graph SG, such that it contains multiple schema
tables where its leaves should cover every column of Out.
The set of schema attributes of the relations in this mini-
mal join subgraph is denoted as A. The subsequent goal is
to discover the group-by and aggregations with the optional
selection and HAVING conditions that are applied on J (G).
Specifically, we express SPJA queries in SQL as:

SELECT A1 AS Out1 , ... , Ak AS Outk,
F1 AS Outk+1 , ... , Fm AS Outk+m

FROM J (G)
WHERE J1 ∧ ... ∧ Jγ ∧ C1 ∧ ... ∧ C`
GROUP BY A1, ..., Ak
HAVING Fi op ρ
The SELECT clause is used to determine each column of

Out, as Outi, i ∈ [1, k + m] in which Ai, i ∈ [1, k] is a
group-by attribute that corresponds to Outi, i ∈ [1, k] and
Fi, i ∈ [1,m] is an aggregation that corresponds to Outi, i ∈
[k + 1, k + m]. Each aggregation Fi, is equal to AGG(A)
where AGG is one of the basic aggregate operators, i.e.
COUNT, SUM, AVG, MAX, and MIN, which can be applied on
any relational attribute, A ∈ A. The WHERE clause com-
prises the conjunction of both join predicates and selection
predicates. The join predicates are denoted as J1 ∧ ... ∧ Jγ
where each Ji, i ∈ [1, γ] is one of the edges from J (G) and
γ is the number of the edges in the subgraph J (G). The
selection predicates are denoted as C1 ∧ ... ∧ C` where each
Ci, i ∈ [1, `] is expressed as A op X, where A is a relational
attribute, op is a comparison operator and X is a constant
value. As in the REGAL algorithm [6], filter discovery is
based on numerical attributes for a conjunction of range
predicates. The HAVING clause contains a condition Fi op
ρ, where Fi, i ∈ [1,m] is one of the aggregation columns
that is controlled by a parameter ρ, which can be either a
constant value X or another aggregation column Fj , j 6= i
and j ∈ [1,m]. Figure 1 gives an illustrative example of a

query output table Out that is generated from the TPC-H
database D with its schema graph SG and its generating
query Q where Q(D) = Out.

3. SYSTEM ARCHITECTURE
Figure 2 shows the architecture of our system. For a

given database, the column-level inverted indexes are pre-
computed over all relational attributes to optimize the query
search. The system takes a spreadsheet table as input which
is provided by the user. The input spreadsheet, denoted as
query output table Out, is analyzed by the system given
a database instance D whose schema graph SG is used to
discover the join queries. The system operates in a step-by-
step fashion, where the schema ofOut has to be first outlined
through the column mapping. After that, given the schema
graph, a set of minimally connected subgraphs is generated
through join discovery. For the remaining query discovery,
the prior work of REGAL [6] is applied to find out both
OLAP group-by and aggregation candidates, together with
the possible filter predicates. Nevertheless, if the discovered
queries generate additional groups which are not present in
Out, they are filtered out by adding HAVING conditions to the
discovered queries upon any constrained output columns.

During the column mapping, every columnOuti, i ∈ [1, k+
m] is examined to find a corresponding set of schema at-
tributes where each attribute is denoted as φ(Outi) = A,
and it covers all distinct column values. For each φ(Outi), its
source relation thus becomes the node that must be included
in the candidate subgraphs. If there is a duplicate φ(Outi),
it means that a pair of similar nodes must be present in the
candidate subgraphs so that the schema table/attribute is
joined twice to generate the query output table Out.

3.1 Distinct Tree Semantics
Determining the join tables and the join predicates are

the most crucial tasks in join discovery. Among the vari-
ous possibilities, the schema-based approach is known as a
very promising solution which takes the database schema as
a graph and does not perform any join execution for can-
didate enumeration. In this paper, we adopt the distinct
tree semantics (as defined in [4]), which was first proposed
by DISCOVER keyword search [1], and later implemented
in most of the recent works for reverse engineering queries
(see [2, 5, 7, 8]).

In this approach, given a schema graph SG, we take a ta-
ble Ri as a leaf node since φ(Outi) = Ri.A so that there
will be a set of leaf nodes to be used to generate the can-
didate subgraphs. To guarantee the candidate subgraphs
are minimally connected, one of the leaf nodes is selected as
the root node to explore the schema graph via breadth first
search traversal in order to connect the other leaf nodes to
form a candidate subgraph J (G). If there are duplicate leaf
nodes, the graph nodes are allowed to be visited more than

1983

Column-level	
Inverted	
Indexes

Database	
Schema	

!"#$ %(!"#$)
Out1 …

Out2 …

… …

Column	Mapping

Join	subgraphs
via	

schema	graph	
traversal

Group-by	Discovery

Grouping	and	Aggregates	
Pruning

Filter	Discovery

Group	
Selection

SQL	
Generation

Spread-
sheet	
Table

Figure 2: System architecture.

once to compute the candidate subgraphs. Note that we do
not determine the arbitrary join graphs using the distinct
root semantics [9], where each leaf node is used as a root
to build a tree up to the pre-defined depth and a candidate
graph is built upon a starred node among the trees that
interconnects all disjoint paths from the leaf nodes.

Moreover, one needs to consider the possibility that one
or more columns of Out is/are not related with any schema
attribute for the column mapping. Thus, the current schema
of a candidate subgraph is explored to determine whether
these columns can be described as aggregations, especially
for the aggregates that transform a set of values into a new
scalar value, such as AVG, SUM and COUNT. For any schema
attribute A, its statistical properties are examined for the
possibility that Fi = AGG(A), where AGG is an aggregate
operator. The current schema must satisfy all these pre-
requisites to generate the given Out; otherwise an alternate
option is to expand this candidate subgraph into its indi-
vidual neighbour nodes until the desired schema is found.

3.2 Instance Verification via Group-by Lattice
The resulting schema is used to compute a join instance

using the join indices. It is important to verify this join
schema by checking the rows of Out against the join in-
stance, which can be very costly if it requires table scans.
Since it involves OLAP-style aggregations, constructing a
group-by lattice as proposed by REGAL [6] helps to reduce
this cost by quickly pruning the invalid group-by candidates.
A group-by lattice is built upon a set of schema attributes
from the column mapping, where its nodes represent all pos-
sible combinations of group-by columns and its edges rep-
resent the parent-child relationships between two nodes. A
parent node indicates a combination of group-by columns
that can subsume its children nodes.

Before the instance verification, some invalid candidate
nodes can be pruned by keyness checking, which is used
to check the uniqueness of group-by columns of Out at the
instance level. For a node that passes the keyness check,
containment checking is used to prove that its group-by tu-
ples can be output from the join instance, which is also
the instance verification. The containment check makes its
traversal from the lattice root in a top-down fashion, where
if an ancestor node passes the check, all its descendants will
also pass without extra checks. Besides, in order to min-
imize the number of table scans, the group-by tuples of a
candidate node are clustered into minimal sets where each
set of group-by tuples contains a single column tuple in-
stance. Thus, among those group-by columns, the specific
column with the fewest distinct tuples is used to cluster the
others at row-level. By knowing the row indexes of a single
column tuple instance, these indexes are used to find out

the clustered group-by tuples; however, the group-by node
is considered invalid if any one of these tuples isn’t found.
The invalid tuples thus become the negative witness tuples
to speed up the candidate assessment.

3.3 Group Selection
Once the group-by candidates are confirmed, the query

discovery process continues for OLAP aggregations and filter
predicates. However, the discovered queries might not be
enough to compute Out as their results may represent a
superset of Out. In this case, it is necessary to introduce a
new SQL clause in the query discovery, namely the HAVING

clause which is used to specify a selection condition for the
groups of Out, using Fi op ρ, where ρ is a parameter that
controls an aggregate column Fi, so that any group whose
Fi value satisfies the condition will be output in Out.

To guarantee the correctness of a candidate SQL query,
all the tuples of Out must be included in its current query
answer, and this current query answer must be examined
to remove any extra groups that are not covered by Out
through the discovery of HAVING condition. Intuitively, by
using the current query answer that will output a superset
of Out, denoted as Q′(D), the groups of Q′(D) are sorted
by each individual aggregate column respectively. Hence,
if the HAVING condition can be determined in the case that
the subset (Out ⊂ Q′(D)) is found either within or beyond a
certain threshold, then it can be determined as HAVING Fi op
X, where op is a comparison operator and X is a constant.

Alternatively, the parameter ρ can also be another ag-
gregate column, Fj . In lieu of sorting the groups based
on an individual column, two aggregate columns are com-
pared pairwise, so that there will be a clear relationship to
distinguish the subset (Out ⊂ Q′(D)). Consequently, this
condition can be stated as HAVING Fi op Fj .

4. SYSTEM DEMONSTRATION
Our REGAL+ framework is implemented in Java with

Swing using WindowBuilder to create an interface that runs
on top of MySQL. In this demonstration, we showcase how
REGAL+ can efficiently regenerate SPJA queries from the
TPC-H benchmark dataset, with the scale factor of 1 (1GB
size). We design the user interface by separating the func-
tionalities into three aspects: first, the spreadsheet table
that is loaded and can be viewed; second, the whole process
of query discovery will be shown; third, the OLAP groups
in the spreadsheet table can be analyzed.

4.1 Loading Spreadsheet Table
First, to initiate the REGAL+ framework, the user loads a

spreadsheet table that might be exported from any previous
SQL result in other formats. After loading the spreadsheet
table, it can be viewed again in the user interface for ref-
erence, as shown in Figure 3. For demonstration purpose,
we use the spreadsheet example in Figure 1(c) to showcase
how our proposed framework can discover SQL queries that
are similar to the query example in Figure 1(b). Note that
the column names are replaced by the characters in alpha-
betical order to avoid any misinterpretation, assuming their
original names might be mislabeled.

4.2 Query Discovery
In the second tab “Queries”, the process of query discov-

ery begins by clicking the button “Start”. In order to give

1984

Figure 3: Loading spreadsheet table.

Figure 4: Query discovery.

the user some preliminary details, the column mapping and
the discovered join schema are delineated in the top-left sec-
tion. Hence, she can gain some basic understanding about
the database schema. Subsequently, the bottom-left section
lists all the schema attributes for filter discovery, which are
divided into either categorical or numerical attributes. The
user can optionally select and narrow down the intended
schema attributes to generate the filter predicates. After
the selection, the button “Build” is clicked to build the SQL
queries. As the purpose is to discover the SPJA queries, the
discovered queries support multiple SQL features like joins,
selections, aggregates (e.g., MAX, MIN, AVG, SUM and COUNT),
the GROUP BY clause and the HAVING clause.

For the discovered queries that contain range predicates,
we show them in two different versions, which are shown in
the right section. The first version represents the tightest
queries and contains the range predicates with comparison
operators like “≥” and “≤”, which means that the inner
fuzzy bounding box (see [6] for more details) of a multi-
dimensional filter is used in the WHERE clause. In contrast,
the second version represents the most loose queries and
contains the range predicates with comparison operators like
“>” and “<”, which means that the outer fuzzy bounding
box of a multi-dimensional filter is used in the WHERE clause.
By learning about these two extremes, the user can come up
with other valid, and perhaps more meaningful, SQL queries
to re-generate the data in the input spreadsheet.

Figure 4 illustrates the above descriptions. From the dis-
covered SQL queries, both versions are valid if compared
to the query example in Figure 1(b) since they all have
the same query structure, i.e., the join structure and ag-
gregations. Besides, the discovered SQL queries can be
validated through the constant values used for the range
predicates. For instance, the constant values of the predi-
cate “C ACCTBAL” are placed within both inner and outer
bounding boxes, for example, the value 0 ∈ (−0.11, 0.02] and
the value 9000 ∈ [8999.87, 9000.02). Therefore, the user can

Figure 5: Group interpretation.

opt for either of these discovered queries for further analysis.
Since this step involves the overall query discovery process,
it took over a minute to discover the queries in Figure 4.
The system performance depends on not only the size of
database instance, but also the query structures being used
in the input spreadsheet. An extensive study over a single
relation from TPC-H dataset can be found in [6].

4.3 Group Interpretation
In the third tab “Groups”, the user can select an OLAP

group presented in the spreadsheet table and then click the
button “Analyze” to inspect each aggregate result for the
selected group.

Every aggregate value within the selected group is anal-
ysed for more details. This is because in the process of
filter generation, each aggregate value could have its own
inner and outer fuzzy bounding boxes, and all of these fuzzy
bounding boxes are intersected to finalize the filter pred-
icates, which are included in the discovered queries. By
knowing this information, the user can verify the correct-
ness of both data and queries. Furthermore, for each aggre-
gate result corresponding to a given group, we report both
the maximum and minimum feasible regions of the schema
attributes that are used for selection conditions. Figure 5
depicts the analyzed results for a selected OLAP group.

5. CONCLUSION
In summary, our REGAL+ framework demonstrates both

the practicality and usefulness of providing complex query
reverse engineering features to database users, which would
enhance database usability in general.

6. REFERENCES
[1] V. Hristidis and Y. Papakonstantinou. DISCOVER: keyword

search in relational databases. In VLDB, pages 670–681, 2002.

[2] D. V. Kalashnikov, L. V. S. Lakshmanan, and D. Srivastava.
Fastqre: Fast query reverse engineering. In SIGMOD, pages
337–350, 2018.

[3] K. Panev and S. Michel. Reverse engineering top-k database
queries with PALEO. In EDBT, pages 113–124, 2016.

[4] L. Qin, J. X. Yu, and L. Chang. Keyword search in databases:
the power of RDBMS. In SIGMOD, pages 681–694, 2009.

[5] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik.
Discovering queries based on example tuples. In SIGMOD,
pages 493–504, 2014.

[6] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava. Reverse
engineering aggregation queries. PVLDB, 10(11):1394–1405,
2017.

[7] Q. T. Tran, C. Chan, and S. Parthasarathy. Query by output. In
SIGMOD, pages 535–548, 2009.

[8] Q. T. Tran, C. Y. Chan, and S. Parthasarathy. Query reverse
engineering. VLDB J., 23(5):721–746, 2014.

[9] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava.
Reverse engineering complex join queries. In SIGMOD, pages
809–820, 2013.

1985

	Introduction
	Preliminaries
	System Architecture
	Distinct Tree Semantics
	Instance Verification via Group-by Lattice
	Group Selection

	System Demonstration
	Loading Spreadsheet Table
	Query Discovery
	Group Interpretation

	Conclusion
	References

