
MSQL+: A Plugin Toolkit for Similarity Search under Metric
Spaces in Distributed Relational Database Systems

Wei Lu†, Xinyi Zhang†, Zhiyu Shui†, Zhe Peng†, Xiao Zhang†, Xiaoyong Du†,
Hao Huang‡, Xiaoyu Wang§, Anqun Pan§, Haixiang Li§

†School of Information and DEKE, MOE, Renmin University of China, Beijing, China
‡School of Computer Science, Wuhan University, Wuhan, China

§Tencent Inc., China
Contact:{luwei, duyong}@ruc.edu.cn, haohuang@whu.edu.cn

ABSTRACT
Similarity search is a primitive operation in various database
applications. Thus far, a large number of access methods
have been proposed to accelerate the similarity query pro-
cessing. Nonetheless, these methods mostly focus on devel-
oping standalone systems by proposing new indices. Given
the fact that existing RDBMS merely support traditional
indices, it is of great necessity and practical importance to
develop a standard RDBMS built-in index based approach
to speeding up the query processing. In this demonstration,
we introduce MSQL+, a plugin toolkit that enable users
to answer similarity queries in metric spaces simply using
standard SQL statements. This toolkit can help existing
RDBMS to effectively and efficiently handle with big data
due to the following three advantages. First, MSQL+ en-
ables users to find similar objects by submitting SELECT-
FROM-WHERE statements so that it can be easily inte-
grated into existing RDBMS. Second, MSQL+ works in a
more general data space. Objects of any type can be in-
dexed by B+-trees and the query processing can be boosted
by using index seeks, as long as the similarity function is
metric. Third, MSQL+ supports the parallelization of both
pre-processing and query processing in distributed RDBMS.

PVLDB Reference Format:
Wei Lu, Xinyi Zhang, Zhiyu Shui, Zhe Peng, Xiao Zhang, Xi-
aoyong Du, Hao Huang, Xiaoyu Wang, Anqun Pan, Haixiang Li.
MSQL+: A Plugin Toolkit for Similarity Search under Metric
Spaces in Distributed Relational Database Systems. PVLDB, 11
(12): 1970-1973, 2018.
DOI: https://doi.org/10.14778/3229863.3236237

1. INTRODUCTION
Similarity search works as a primitive operation in many

database applications, such as approximate string search in
text databases [1], location based services in spatial databases

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236237

[11], face recognition in multimedia databases [10], and struc-
tural motif discovery in protein databases [9]. Given a query
object q and a collection of objects R, similarity search re-
turns the set of objects from R whose distances to q are no
greater than a user-defined threshold θ. A naive approach
to answering similarity queries is to sequentially scan each
object r ∈ R, and compute the similarity between r and
q. As this naive approach is inefficient, a large number of
access methods have been proposed to speed up the query
performance. Nevertheless, these methods still suffer from
either of the following three drawbacks.
• Standalone. Most of existing access methods focus on de-
veloping standalone systems by proposing new indices, such
as M-Tree [4], D-Index [5], kd-tree, Quadtree, and Tries
[2], to improve the efficiency. However, integrating these
new indices into RDBMS is difficult, since existing RDBMS
merely support built-in indices, typically including B+-tree,
R-tree, and hash index. Some other solutions [6, 12, 7, 3]
index the data with B+-trees and answer similarity queries
by probing B+-trees. Nonetheless, these solutions require
new index probing mechanisms which are not supported by
existing RDBMS unless new APIs are implemented. Fur-
thermore, as discussed in [8], even if these solutions can be
integrated into RDBMS with newly introduced APIs, their
performance may be degraded to table scans.
• Working in restricted data spaces. Many existing access
methods try to improve their efficiency with new pruning
rules. Nevertheless, each of these methods works in a spe-
cific data space, and extending them to other data spaces is
often infeasible. For example, methods that are proposed to
answer string similarity queries [12, 7] work in text spaces
only, and cannot be extended to Euclidean spaces or pro-
tein spaces. As a primitive operation, a similarity search
approach should be general enough to deal with various
database applications in RDBMS.
• Running on centralized systems only. In the era of big
data, it is imperative to utilize distributed systems to man-
age the ever-increasing data. In many big internet enter-
prises nowadays like Tencent, data are split across multiple
compute nodes, and both OLTP/OLAP queries are executed
over the distributed data directly. Hence, using distributed
similarity processing approaches is an inevitable trend, while
existing methods work in centralized systems only.

To avoid the above three drawbacks, we propose MSQL+,
a plugin toolkit based on our previous work [8] that is able to

1970

answer similarity queries in distributed RDBMS fully using
SQL statements. MSQL+ consists of two main phases.
• Index building. As long as the similarity function is met-
ric, MSQL+ generates pair-wise comparable signatures for
objects, and builds B+-trees to index objects. Objects with
signatures within a set of intervals are taken as candidates
for similarity search.
•Query processing. MSQL+ enables users to find similar ob-
jects by merely submitting SELECT-FROM-WHERE state-
ments with two predicates. One predicate involves in the
similarity function which is implemented as an user-defined
function. The other predicate specifies signatures in a cer-
tain set of ranges. The latter predicate triggers multiple
index seeks to filter out false positives, while the former
predicate verifies the candidates.

Compared with existing solutions, MSQL+ has the fol-
lowing three advantages. (1) MSQL+ answers similarity
queries simply using SQL statements. (2) MSQL+ works in
a more general data space. (3) MSQL+ can run on both
centralized and distributed RDBMS.

2. TECHNICAL BACKGROUND

2.1 Similarity Search in Metric Spaces
MSQL+ adopts the divide-and-conquer paradigm to pro-

cess similarity queries. The rationale of MSQL+ is to first
select m objects as pivots and assign each object r ∈ R to
one and only one pivot according to a certain strategy (e.g.,
the pivot leading to a minimal distance). Then, the data
space is split into m disjoint partitions. Let P be the set
of selected pivots. ∀pi ∈ P, PR

i denotes the partition whose
objects take pi as their pivot. The distance |r, pi| in each
partition PR

i is also maintained (r ∈PR
i). Then, similarity

search is conducted by checking each partition PR
i individu-

ally. Following the filter-and-verify paradigm, according to
Theorem 1, objects in PR

i with their distances to pi within
interval [LBi, UBi] are taken as candidates. In this way, all
the candidates are verified and similar objects are obtained.

Theorem 1. Given a partition Pi, ∀r ∈ Pi, the necessary
condition for |q, r| ≤ θ is as follows.

LBi = |pi, q| − θ ≤ |pi, r| ≤ |pi, q|+ θ = UBi.

2.2 Pivot Selection
Theorem 1 shows that the search range [LBi, UBi] for

each PR
i relies on pivot pi. Therefore, it is necessary to select

a set of good pivots which can enhance the pruning power of
Theorem 1. So far, there are four types of commonly used
methods for pivot selection.
• Random method randomly extracts a set of objects from
the collection of objects R, and takes them as pivots.
• MaxVariance method selects pivots from R so that the
variance of objects in R w.r.t. the pivots is maximized.
• MaxProb method selects pivots from R so that the ex-
pected number of objects taken as candidates is minimized.
• Heuristic method works like k-means and adopts a heuris-
tic approach to selecting pivots so that the overall distances
among queries to the pivots are approximately minimized.

2.3 Processing similarity queries in RDBMS
We assume that there exists an M -attribute schema for

data set R, in which the similarity is measured on a subset
of M attributes (denoted as A:{A1, A2, ..., AN} N ≤ M).

Given r ∈ R, let r[A] be the set of attribute values of r over
A. To support B+-tree boosted similarity queries, MSQL+
executes in two stages, namely (1) the offline index building
and (2) the online query processing. The first stage gener-
ates a B+-tree index over attributes A, and the second stage
runs the query processing using index seeks.

2.3.1 Index Building
We build the index over the attributes with two require-

ments. First, the attribute values must be comparable so
that it is able to be indexed by B+ trees. Second, it is able
to figure out candidates for the similarity queries by simply
comparing the attribute values. Apparently, by building the
index with the above two requirments, it is able to answer
similarity queries by probing the index. For this purpose,
we propose a signature generation scheme with which we
generate a signature S(r[A]) for each record r ∈ R. Re-
call that in Section 2.1, R is split into |P| partitions, i.e.,

R =
⋃|P|

i+1 P
R
i , where PR

i denotes the ith partition with pi

as the pivot. Given a partition PR
i in R, ∀r ∈ PR

i , S(r[A])
is defined as a pair shown below:

S(r[A]) = 〈i, |r, pi|〉 (1)

where i is the partition ID and |r, pi| is the distance be-

tween r and pi. Given two signatures 〈i, d〉 and 〈j, d
′
〉, the

comparison rule is as follows.
〈i, d〉 > 〈j, d

′
〉, if i > j or (i = j and d > d

′
),

〈i, d〉 = 〈j, d
′
〉, if i = j and d = d

′
,

〈i, d〉 = 〈j, d
′
〉, otherwise

Instead of directly building a B+-tree over A, we append
a new attribute I (i.e., signatures) to R, build a B+-tree
over I. ∀r ∈ PR

i , we update r[I] to its correspondingly sig-
nature 〈i, |r, pi|〉. Clearly, our index satisfies the above two
requirements shown below. (1) ∀r1, r2 ∈ R, S(r1[A]) and
S(r2[A]) are comparable. (2) Records with their signatures
in an interval, i.e., ∀r ∈ R,S(r[A] ∈ [LB,UB]), are taken
as candidates. Additionally, because there is no intersection
between ranges of signatures from different partitions, dupli-
cated traversal of the index is avoided during the candidate
identification.

2.3.2 Query Processing
We answer similarity queries in RDBMS using index seeks.

First, we implement the commonly used similarity functions
as user-defined functions. A distance function denoted as
DIST(r[A], q[A], θ) returns true when the distance between
r[A] and q[A] does not exceed θ. A naive approach to an-
swering similarity queries using SQL is as follows.

SELECT R.A1,...,R.AN

FROM R
WHERE DIST(r[A], q[A], θ)

Second, we apply index seeks to find candidates, which are
then verified by computing the similarity. Based on Theo-
rem 1, for each partition PR

i , we can figure out an inter-
val [LBi, UBi] (LBi = 〈i, |r, pi| − θ〉, UBi = 〈i, |r, pi| +
θ〉), and records with signatures in this interval are con-
sidered as candidates. Towards this, we maintain a list of

1971

Global ExecutorsGlobal Executors

Routing
Node

ZooKeeperZooKeeper

Local Executors

PTable
PID Coord
1
2

(1,0)
(2,2)

R
ID Name Coord
1 Jimmy (10,8)
2 James (2,5)

PTable
PID Coord
1
2

(1,0)
(2,2)

R
ID Name Coord
5 Susan (0,0)
6 Tom (1,7)

PTable
PID Coord
1
2

(1,0)
(2,2)

R
ID Name Coord
3 Mary (3,0)
4 Linda (7,7)

DDL:
CALL PROCEDURE CreateSimIndex
('R','Coord','L1');

DML:
1.Select Query
 CALL PROCEDURE SelectSimQuery
 ('R','Coord','(3,4)','L1');
2.Update
 Update R set Coord ='(10,9)' where ID = 1;
3.Delete
 Delete R where ID = 1;

① Global Executor
Selection

② Query-executiion
Plan

③ Local Computation

④ Local Results

⑤ Results

Meta Data
Partition Info,

Schemas,
Indices,

...

Figure 1: Overview of MSQL+ implemented on TDSQL

LBi, UBi for each pivot pi ∈ P in a temporary relation,
namely PivotsRangeSet, and process similarity queries us-
ing the following SQL statement.

SELECT R.A1,...,R.AN

FROM R, PivotsRangeSet PRS
WHERE I BETWEEN PRS.LB and PRS.UB AND

DIST(r[A], q[A], θ)

Since relation PivotsRangeSet is small, the query opti-
mizer always invokes index seek to identify candidates and
then refines them by the filter DIST.

3. OVERVIEW OF MSQL+
We implement MSQL+ on top of Tencent TDSQL 1, a

distributed RDBMS 2. We suppose that relation R is split
and stored across multiple data nodes, pivots are maintained
in a table, namely PTable. Now our objective is to build a
distributed B+-tree index over A of R and use the index to
speed up similarity queries.

3.1 System Architecture
As a typically distributed RDMBS, TDSQL mainly con-

sists of four components that are shown in Figure 1. Local
executors, which also work as data nodes, are responsible
for storing/fetching tuples locally, shuffling/receiving tuples
to/from other local executors, and executing local compu-
tation, like join, filter, etc. Zookeeper maintains meta data,
such as schemas, indices, relation partitioning information,
etc. By taking the user-submitted SQL statements as the in-
put, Global executors analyze the statements, generate and
execute the query-execution plan based on the meta data.
Following the execution plan, global executors coordinate
local executors to accomplish local computation and shuffle
data among them if necessary. The routing node accepts
users’ requests and selects a global executor to answer the
request by taking into consideration workload balance.

1http://tdsql.org
2Note that MSQL+ can be integrated into other distributed
RDBMS in a similar way.

MSQL+ is implemented as a pluggable toolkit with multi-
ple user-defined functions and stored procedures, and hence
it can be seamlessly integrated into TDSQL. In MSQL+,
the only meta data is PTable that is a collection of selected
pivots. As presented in Section 2, PTable helps build the in-
dex and generate intervals for index seeks. Similar to other
meta data, PTable is maintained in Zookeeper, and synchro-
nized to all local executors. To help boost similarity queries,
MSQL+ provides two stored procedures to build indices and
answer queries, respectively.

3.2 Index Building
We provide a stored procedure CreateSimIndex encapsu-

lated with DDL statements to build indices. CreateSimIndex
takes relation name, attributes, similarity function name,
pivot selection strategy, and pivot number as input param-
eters. We set defaulted values for the latter two parameters
which can be omitted in the procedure. Either pivot selec-
tion, signature generation, or index building is implemented
as user-defined functions. A global executor coordinates the
local executors to build indices. First, each local execu-
tor is scheduled to select a certain number of pivots. The
global executor aggregates all pivots, which are then stored
in Zookeeper and synchronized to local executors. Second,
based on these pivots, local executors are requested to gen-
erate signatures for the local records over the corresponding
attributes, and build the local index once the generation
stage completes.

3.3 Query Processing
We provide a stored procedure SelectSimQuery to pro-

cess similarity queries. SelectSimQuery takes relation name,
query, attributes, similarity function name, θ as input pa-
rameters, and query results as output parameters. When a
user calls the procedure SelectSimQuery, the routing node
selects one global executor, which translates the procedure
into a set of SQL statements. The global executor executes
the execution plan, coordinates local executors to first create
a temporary relation PivotsRangeSet maintaining the in-
tervals LBi, UBi (shown in Section 2.3.2) for each partition
PR
i , and then do similarity query processing locally. In this

way, each similarity query processing is fully parallelized.

1972

Figure 2: GUI of MSQL+

4. DEMONSTRATION
We demonstrate MSQL+ over text, Euclidean, and pro-

tein spaces, through the web interface shown in Figure 2. In
this demonstration, the main modules are listed as follows.
• Query processing. Users can navigate relations under the
schema directory. By clicking a relation, the query inter-
face shows on the right of the window. After users type
the input parameters and click the submit button in the
query submission panel, the interface returns the statistics
of the query execution, query results, distributed execution
plan visualization, as well as the statistics of the query re-
sults among local executors. These functions are designed
to help users to better understand how MSQL+ runs in
distributed RDBMS, whether the execution over local ex-
ecutors is skewed, and the other execution information.
• Index building. Under the directory of a relation, users
can click the index link to build or browse indices over the
current relation. To build the indices, users need to input
the attribute(s), similarity function, pivot selection strategy
and pivot number (the latter two are optional), ending by
clicking build button. Similar to operating result in query
processing, the interface returns both the overall, and local
statistics of the execution.
• Others. Other necessary functions include client con-
nection, cluster monitoring, data import and export, user-
defined function, stored procedure management, etc.

5. CONCLUSION
In this demonstration, we present MSQL+, a pluggable

toolkit that enables RDBMS to process similarity queries
using SELECT-FROM-WHERE statements. As a system-
atic solution, MSQL+ works in a more general data space.
As long as the similarity function is metric, objects of any
type can be indexed and the query process can be boosted
using index seeks. MSQL+ supports queries in distributed
systems, and is proposed as a complementary to existing
RDBMS for the big data era.
Acknowledgements. This work was supported by the Na-
tional Key Research and Development Program of China
(No. 2018YFB1004401)Beijing Municipal Science and Tech-
nology Project (No.Z171100005117002), and Tecent Research

Grant (RUC).The National Natural Science Foundation of
China in part supports Wei Lu’s work under Grant No.
61502504, U1711261 and 61702432, Xiaoyong Du’s work un-
der Grant No. 61732014 and U1711261, and Hao Huang’s
work under Grant No. 61502347. Hao Huang is the corre-
sponding author.

6. REFERENCES
[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. ACM Press / Addison-Wesley, 1999.

[2] A. Behm, S. Ji, C. Li, and J. Lu. Space-constrained
gram-based indexing for efficient approximate string search.
In ICDE, pages 604–615, 2009.

[3] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen.
Efficient metric indexing for similarity search. In ICDE,
pages 591–602, 2015.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In
PVLDB, pages 426–435, 1997.

[5] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index:
Distance searching index for metric data sets. Multimedia
Tools Appl., 21(1):9–33, 2003.

[6] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.

idistance: An adaptive B+-tree based indexing method for
nearest neighbor search. ACM Trans. Database Syst.,
30(2):364–397, 2005.

[7] W. Lu, X. Du, M. Hadjieleftheriou, and B. C. Ooi.
Efficiently supporting edit distance based string similarity
search using B+-Trees. IEEE Trans. Knowl. Data Eng.,
26(12):2983–2996, 2014.

[8] W. Lu, J. Hou, Y. Yan, M. Zhang, X. Du, and
T. Moscibroda. MSQL: efficient similarity search in metric
spaces using SQL. VLDB J., 26(6):829–854, 2017.

[9] M. S. Waterman. Introduction to computational biology -
maps, sequences, and genomes: interdisciplinary statistics.
CRC Press, 1995.

[10] A. Yoshitaka and T. Ichikawa. A survey on content-based
retrieval for multimedia databases. IEEE Trans. Knowl.
Data Eng., 11(1):81–93, 1999.

[11] R. Zhang, P. Kalnis, B. C. Ooi, and K.-L. Tan. Generalized
multidimensional data mapping and query processing.
ACM Trans. Database Syst., 30(3):661–697, 2005.

[12] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and
D. Srivastava. Bed-tree: an all-purpose index structure for
string similarity search based on edit distance. In
SIGMOD, pages 915–926, 2010.

1973

