
Provenance Summaries for Answers and Non-Answers

Seokki Lee
Illinois Institute of Technology

slee195@hawk.iit.edu

Bertram Ludäscher
University of Illinois, Urbana-Champaign

ludaesch@illinois.edu

Boris Glavic
Illinois Institute of Technology

bglavic@iit.edu

ABSTRACT
Explaining why an answer is (not) in the result of a query
has proven to be of immense importance for many applica-
tions. However, why-not provenance, and to a lesser degree
also why-provenance, can be very large, even for small input
datasets. The resulting scalability and usability issues have
limited the applicability of provenance. We present PUG, a
system for why and why-not provenance that applies a range
of novel techniques to overcome these challenges. Specifi-
cally, PUG limits provenance capture to what is relevant to
explain a (missing) result of interest and uses an efficient
sampling-based summarization method to produce compact
explanations for (missing) answers. Using two real-world
datasets, we demonstrate how a user can draw meaningful
insights from explanations produced by PUG.

PVLDB Reference Format:
Seokki Lee, Bertram Ludäscher, Boris Glavic. Providing Prove-
nance Summaries as Explanations for Answers and Non-Answers.
PVLDB, 11 (12): 1954-1957, 2018.
DOI: https://doi.org/10.14778/3229863.3236233

1. INTRODUCTION
Provenance for relational queries [4] explains how results

of a query depend on the query’s inputs. Recently, prove-
nance-like techniques have been applied to explain how miss-
ing inputs cause a tuple to be missing from a query’s result
(e.g., [5, 8]). In prior work, we have shown that why and
why-not questions can be treated uniformly as provenance
for first-order (FO) queries via non-recursive Datalog with
negation. We have implemented these techniques in our
PUG (Provenance U nification through Graphs) [6] system.

Most approaches for why-not provenance [5, 6] enumerate
all failed ways of how a result could have been derived. This
type of provenance is often too large to compute, e.g., the
why-not provenance graph over a small relation (1000s of
tuples) may already consist of billions of nodes [6]. While
why provenance is typically much smaller, it may still be
too large to be explored manually. PUG overcomes these

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236233

r1 : T(C) : - C(I, theft, L, C, Y),¬ A(I)

r2 : AL(L) : - C(I, arson, L, garfield ridge, Y),¬ A(I)

Crimes (input)

Id Type Location Community Year
2446 theft street austin 2014
1046 arson residence garfield ridge 2016
3144 arson alley garfield ridge 2016
4255 theft street west lawn 2015
4302 theft department store west lawn 2017

Arrest (input)

Id
3144
4255

Thefts (output)

Community
austin

west lawn

ArsonLoc (output)

Location
residence

Figure 1: Crime database, query r1 and r2, and outputs

usability and scalability issues using novel techniques that
we explain in the following.

Adjustable Level of Detail. Detailed types of provenance
information are useful for understanding the intricacies of
how an outcome came to be, but are potentially an overkill
for the initial phase of exploration where a user just wants
to get a rough understanding of what has happened. PUG
supports several types of provenance that range from sim-
ple data dependencies to detailed provenance types which
expose how results have been derived by a query.

Limit Provenance to What is Relevant. Typically, only
a subset of the provenance (which we call an explanation)
is relevant to explain the existence or absence of a query
result. PUG generates explanations for a (missing) result
by instrumenting the input query to capture only relevant
provenance. This idea has also been employed by SelP [2].
The main difference to our work is that we support negation,
but no recursion which SelP supports.

Sample-based Summarization of Provenance. While
explanations are useful, the resulting provenance graphs may
still overwhelm users with too much information and waste
computational resources. Approaches for summarizing prove-
nance (e.g., [1]) assume that the full provenance is available
as an input to the summarization process. While these ap-
proaches address some usability issues of provenance, they
fail to address scalability issues. PUG uses a sample-based
technique to efficiently compute provenance summaries with-
out generating the full (why-not) provenance.

In this demonstration, we present PUG’s web-based prove-
nance explorer which enables users to browse provenance
summaries for (missing) query results of interest. Using

1954

Crimes(4302, theft, department store,west lawn, 2017)

g1
1(4302, theft, department store,west lawn, 2017)

Thefts(west lawn)

g2
1(4302)

Arrest(4302)

r1(west lawn, 4302, theft, department store, 2017)

Figure 2: Explanation for why Thefts(west lawn)

Chicago crime1 (∼ 6M entries) and movielens data2 (∼ 20M
entries), we will demonstrate how to gain new insights us-
ing provenance summaries. PUG generates such summaries
within 10s of seconds for these datasets, even for why-not
questions (preliminary experiments are presented in [7]).

Example 1. Consider a simplified version of the crime
dataset shown in Figure 1 (called S-Crime from now on).
The Crimes table records for each crime an id, type and lo-
cation (e.g., theft on a street), community, and year. Rela-
tion Arrest stores the ids of crimes that led to arrests. Con-
sider the following scenario: Alice wants to identify mea-
sures for reducing thefts. She first runs query r1 in Figure 1
to determine in which communities there were unarrested
thefts. For S-Crime, r1 returns the communities austin and
west lawn, because some thefts in these communities (ids
2446 and 4302) have not led to arrests. Over the full dataset
(which we refer to as F-Crime), this query returns all Chicago
communities. Alice then tries a different angle by running a
query to determine the most common locations of thefts. It
turns out that streets account for 2/3 of all thefts in S-Crime
and ∼ 28% in F-Crime. Based on this result, Alice recom-
mends to increase police presence on public streets. With
the exception of community west lawn, this turns out to be
effective. Alice investigates this outcome by requesting PUG
to explain why Thefts(west lawn).

2. PROVENANCE-BASED EXPLANATIONS
PUG [6] supports several graph-based provenance mod-

els which correspond to well known provenance types from
the literature. Here, we limit the discussion to two of these
types. For positive queries, the most informative type of
provenance graphs in PUG corresponds the most general
form of provenance in the semiring framework. This type
of graph consists of rule nodes (boxes with a rule-id and
the constant arguments of a rule derivation), goal nodes
(rounded boxes with a rule-id and the goal’s position in
the rule body), and tuple nodes (ovals). Nodes are either
green (successful/existing) or red (failed/missing). The sec-
ond type of graph we consider here only records tuple de-
pendencies (only contains tuple nodes). For positive queries,
this graph type corresponds to Lineage. Given a question
about the existence (absence) of a result, our system gener-
ates an explanation, i.e., a subgraph of the provenance graph
for a query that contains only facts and rule derivations rel-
evant for deriving (or failing to derive) the result.

Example 2. Continuing with Example 1, Alice requested
an explanation for the result Thefts(west lawn). This tu-
ple is in the result because some theft(s) in west lawn have
not led to arrests yet. In S-Crime (Figure 1), there is one

1https://data.cityofchicago.org/Public-Safety/
Crimes-2001-to-present/ijzp-q8t2
2https://grouplens.org/datasets/movielens/20m/

ArsonLoc(alley)

r1(alley, 3144, arson, garfield ridge, 2016)

g2
1(3144)

Arrest(3144)

ArsonLoc(alley)

r1(alley, I, arson, garfield ridge, Y)(6, 1)

g2
1(I)

Arrest(I)

Figure 3: Partial explanation (left) and summarized expla-
nation (right) for whynot ArsonLoc(alley)

such theft, the highlighted crime with id 4302. The prove-
nance graph returned by PUG (Figure 2) contains a single
rule node representing the successful derivation of the result
through rule r1. A successful rule node is connected to suc-
cessful goal nodes (e.g., r1 is connected to g11, the first goal
in the rule’s body). Successful positive goals are connected to
nodes that represent existing tuples (green) while successful
negated goals are connected to missing tuples (red). Figure 5
shows a provenance graph that records data dependencies for
Alice’s question. This is one of the provenance types sup-
ported in PUG. Thefts(west lawn) is in the result, because
a theft happened in west lawn (the Crimes tuple shown on
the left), but no arrest was made (the corresponding Arrest

tuple does not exist). Alice, using F-Crime (∼ 6M entries),
faces the problem that the provenance contains 7, 984 rule
derivations (i.e., 7, 984 unarrested thefts in west lawn). The
size of this graph motivates the need for summarization.

Missing Answers. A user may also want to understand
why an expected result is not returned. A provenance graph
for a missing answer enumerates all potential ways of how
the result could have been derived by the query’s rules and
explains for each such alternative why it failed. In the prove-
nance graph, only failed goals (which are causes for the fail-
ure of a derivation) are connected to the failed rule deriva-
tions explaining missing answers. For why-not questions and
negation, we allow the user to associate a domain with each
attribute in the database. Missing tuples are constructed
using values from these associated domains (see [6]).

Example 3. Alice runs query r2 from Figure 1 to deter-
mine the locations of unsolved arsons in garfield ridge. She
knows that several arsons occurred in alleys in this commu-
nity. She is surprised not to see alley in the result and, thus,
requests PUG to explain whynot ArsonLoc(alley). Part of
the explanation for S-Crime is shown in Figure 3 (left). The
full provenance graph for the example would already con-
tain more than 60 nodes. The subgraph shown in this figure
records that there was an arson with id 3144 in an alley in
garfield ridge. However, the perpetrator was arrested. That
is, the existence of the tuple Arrest(3144) caused the rule
derivation to fail. For F-Crime, the provenance graph con-
tains ∼ 18 · 109 nodes, which would be of little use to Alice,
further underlining the need for summarization.

3. SUMMARIZING PROVENANCE
We address the computational and usability challenges of

large provenance graphs by creating summaries based on
structural commonalities in the provenance. An initial ver-
sion of these techniques was presented in [7]. To produce a
summary from a provenance graph, we identify subgraphs
(derivations) that share a common structure and some com-
mon data values, and replace such subgraphs with patterns.

1955

https://data.cityofchicago.org/Public-Safety/ Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/ Crimes-2001-to-present/ijzp-q8t2
https://grouplens.org/datasets/movielens/20m/

Derivation Patterns. A derivation pattern is a mapping
from the variables of a rule to constants and variables. Re-
call that in PUG the user can associate domains with at-
tributes. These domains are used to define what derivations
are represented by a pattern. For simplicity, assume a fixed
domain D for all attributes. Consider a pattern p and let
X̄ denote the set of variables in p. A valuation ν for p is
a mapping from X̄ to the elements of D. We use ν(p) to
denote the result of replacing the variables in p based on ν.
For a pattern p and a derivation d, we say that p matches d
if there exists a valuation ν such that ν(p) = d. A pattern p
represents the set of all derivations that match p. Note that
a rule derivation corresponds to a subgraph in the prove-
nance. Thus, a derivation pattern represents a set of graph
fragments - one for each derivation that matches the pattern.
For instance, Figure 4 shows a provenance summary corre-
sponding to a single pattern that contains two variables I
and Y representing the crime id and year, respectively. One
valuation of this pattern is I = 4302 and Y = 2017 corre-
sponding to the provenance graph in Figure 2.

Measuring Pattern Quality. We measure the quality of
a pattern using: 1) recall: how much provenance does it
cover, and 2) informativeness: how much new informa-
tion is provided by the pattern. To define recall, we have
to decide what derivations are considered to be provenance.
For why questions, these are all successful derivations. For
why-not questions, we group failed rule derivations into sub-
sets based on which goals in their body are failed. The user
can (optionally) designate one of these subsets as provenance
(e.g., only the first goal is failed). We use #Prov(p) to de-
note the number of derivations in the provenance matching
pattern p, and #Prov to denote the total number of deriva-
tions in the provenance. For 2), we use arity(p) to denote
the arity a pattern p. Intuitively, variables in patterns are
not informative since they do not provide any information
about the data contained in the provenance. Thus, we con-
sider patterns with more constants to be more informative.
However, constants which come from the query or user ques-
tion have to be part of the pattern and, thus, also do not
convey any new information. For a pattern p, we use C(p)
to denote the number of arguments of p that are constants
and QC(p) to denote the number of arguments that store
constants which come from the query or user question. For
example, for pattern p1 = r1(west lawn,I,theft,department
store,Y) from Figure 4, we have arity(p1) = 5, C(p1) = 3
(west lawn, theft, and department store), and QC(p1) = 2
(west lawn and theft were provided by the user). Using
this notation, we define the recall rc(p) and informativeness
info(p) of a pattern p:

rc(p) =
#Prov(p)

#Prov
info(p) =

C(p)−QC(p)

arity(p)−QC(p)

Generating Pattern-based Summaries. Ideally, we want
provenance summaries to be concise (small graphs), com-
plete (rc(p) = 1.0), and informative (info(p) = 1.0). Ob-
viously, fulfilling all three criteria at the same time is not
always possible. Consider two extreme cases: 1) any prove-
nance graph is also a provenance summary (one without
variables). Provenance graphs are complete and informa-
tive, but not concise; 2) at the other end of the spectrum, we
may represent an arbitrary number of derivations of a rule
r as a single pattern resulting in a maximally concise sum-
mary with recall 1.0. However, unless these rule derivations

Crimes(I, theft, department store,west lawn, Y)

g1
1(I, theft, department store,west lawn, Y)

Thefts(west lawn)

g2
1(I)

Arrest(I)

r1(west lawn, I, theft, department store, Y)(2886, 0.361)

Figure 4: Summ. explanation for why Thefts(west lawn)

are quite homogeneous in terms of constants, such a sum-
mary will not be informative at all. The approach employed
by PUG [7] guarantees conciseness by returning a summary
that contains a configurable number of patterns and tries to
maximize recall and informativeness. Specifically, we gener-
ate a set of candidate patterns from a representative sample
of the provenance, and then return a summary that consists
of the top-k patterns ranked based on their geometric mean
of recall and informativeness. Note that quality measures in
PUG are configurable. Currently, we support any weighted
combination of recall and informativeness, but plan to im-
plement additional quality metrics in the future. PUG’s
candidate generation step is similar to how [3] generates
candidate patterns from a dataset. However, a major differ-
ence is that we face the additional challenge that it may be
computationally infeasible to compute the full provenance
as an input to summarization. PUG’s provenance sampling
technique addresses this challenge.

Example 4. Given the large size of the explanation for the
question why Thefts(west lawn) (Example 2), Alice requests
PUG to generate a provenance summary for this question.
The subgraph of the summary generated by PUG correspond-
ing to the top-1 pattern p1 = r1(west lawn,I,theft,department
store,Y) is shown in Figure 4. The pattern p1 represents
any derivation of the form r1(west lawn,i,theft,department
store,y) for some crime id i and year y. Alice is surprised
to find that ∼ 36% of all thefts in west lawn happened in
department stores (pattern p1) and only ∼ 15% happened on
public streets (the 2nd ranked pattern omitted from Figure 4).
Note that PUG shows the match count and the recall for each
pattern ((2886, 0.361) in the figure). Given this result, it is
obvious why her original recommendation was not effective
in west lawn. Based on this new insight, Alice recommends
to increase surveillance of stores in west lawn.

Sampling for Approximate Summarization. To gener-
ate a summary of a provenance graph for a user question, we
need to access successful and failed rule derivations to gener-
ate candidate patterns and compute their recall. Instead of
generating the full set of derivations which may be computa-
tionally infeasible, PUG applies sampling during provenance
capture. When generating the sample, we want to ensure
that 1) it contains derivations that match representative pat-
terns and 2) it allows us to closely approximate the actual
recall. The approach applied by PUG is based on the obser-
vation that the union of the successful and failed derivations
of a rule r is the cross-product of the associated domains of
the attributes accessed by r. Thus, we can compute the
number of failed derivations by computing the size of the
cross-product of the domains and subtracting the number
of successful derivations. Furthermore, the number of the
successful derivations is typically several orders of magni-
tude smaller than the number of failed derivations. Hence,
uniform random sampling from the cross-product will yield

1956

Figure 5: PUG explorer showing an explanation

PUGDatalog
frontend

Datalog to RA
Translator

SQL Code
Generator

Q(X) :- R(X,Y).
WHY(Q(1)).

Database Backend SELECT *
FROM ...

Provenance Graph
Rewriter

Q(X) :- Fire(X,Y,Z).
Fire(X,Y,Z :-…

Summarization
Rewriter

Figure 6: PUG system overview

an unbiased sample of failed derivations with high probabil-
ity. PUG’s sampling algorithm exploits these observations
to efficiently generate a representative sample without hav-
ing to compute all failed rule derivations.

Example 5. Assume Alice wants to understand whether
alley is missing from the query result because all arsons in
alleys in garfield ridge have led to arrests. She requests PUG
to summarize the provenance for whynot ArsonLoc(alley) re-
stricted to the case where only the second goal failed (there
was such a crime, but the crime led to an arrest). Alice
configures the quality measure to put more weight on recall.
Figure 3 (right) shows the summary for this question over
F-Crime. PUG returns a summarized explanation in about
20 sec (sampling 1000 tuples). This pattern has recall 100%
((6, 1) in the figure), confirming Alice’s conjecture.

4. THE PUG PROVENANCE EXPLORER
Explorer Interface. Figure 5 shows a screenshot of our
PUG explorer. Queries optionally followed by a provenance
question are entered into a textbox Query (1©). The sys-
tem shows the list of relations in the database on the right-
side of the GUI to help the user formulate queries (not
shown in the screenshot). Given a provenance question
(e.g., WHY(Thefts(west lawn))), the user can select the type
of provenance graph (2©) or manually specify it as part of
the request (1©). As mentioned above, we support multiple
graph types that differ in complexity and informativeness.
Furthermore, the user can request PUG to return a sum-
mary by entering the number of top ranked patterns that
should be included in the summary (4©) and the sample size
(5©). For why-not questions, the user can optionally pro-
vide the failure pattern (which goals failed) of interest us-
ing FOR FAILURE OF (b1 ... bm) where each bi is a boolean
value indicating whether we are only interested in deriva-
tions where the ith goal failed. We maintain a history of
user requests. The provenance graph for any of these re-
quests can be restored from the dropdown menu (6©). The
Run Query button (3©) is used to evaluate a query.

System Implementation. The web-based explorer sends
user requests to PUG [6] (available as open source at https:
//github.com/IITDBGroup/PUG). An overview of PUG’s ar-
chitecture is shown in Figure 6. PUG features a parser for

Datalog enriched with provenance requests. The system
instruments the input Datalog program query to capture
provenance relevant to the user question (see [6] for details).
Afterwards, the instrumented Datalog program is translated
into relational algebra. If summarization is requested, PUG
adds additional instrumentation to generate a provenance
summary. The resulting algebra expression is then trans-
lated into SQL and executed using a standard relational
database backend. The instrumented query computes the
edge relation of the provenance graph. We render the result
using graphviz (https://www.graphviz.org/).

5. DEMONSTRATION OVERVIEW
We will demonstrate the functionality of PUG by execut-

ing example queries (e.g., r1 and r2 in Figure 1) over the
real-life crime and movie datasets (∼ 6M and ∼ 20M en-
tries, respectively). Using subsets of these datasets, we first
generate detailed explanations for why (e.g., Figure 2) and
why-not (e.g., left in Figure 3) questions over the example
queries. Afterwards, we generate summarized explanations
for the same questions over the full datasets (e.g., Figure 4
and right in Figure 3) to demonstrate the scalability and us-
ability of our sample-based summarization technique. Based
on the summaries returned by PUG, we explain the mean-
ing of top-k patterns and what new insights can be derived
from them. If interested, attendees can also ask their own
provenance questions over our example queries or write their
own queries over the crime and movie datasets.

6. CONCLUSIONS
We present a web-based provenance explorer that allows

users to browse (summarized) explanations for why and why-
not provenance questions. The explorer uses our open-source
PUG system to capture parts of the provenance that are
relevant for explaining a (missing) answer. PUG integrates
sample-based summarization with provenance capture to ef-
ficiently produce meaningful and compact explanations.

Acknowledgments. This work was supported by NSF
Awards OAC-{1640864,1541450} and SMA-1637155. Opin-
ions and findings expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

7. REFERENCES
[1] D. Deutch, N. Frost, and A. Gilad. Provenance for natural

language queries. PVLDB, 10(5):577–588, 2017.

[2] D. Deutch, A. Gilad, and Y. Moskovitch. Selective
provenance for datalog programs using top-k queries.
PVLDB, 8(12):1394–1405, 2015.

[3] K. El Gebaly, P. Agrawal, L. Golab, F. Korn, and
D. Srivastava. Interpretable and informative explanations of
outcomes. PVLDB, 8(1):61–72, 2014.

[4] T. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31–40, 2007.

[5] M. Herschel and M. Hernandez. Explaining Missing Answers
to SPJUA Queries. PVLDB, 3(1):185–196, 2010.

[6] S. Lee, S. Köhler, B. Ludäscher, and B. Glavic. A
SQL-middleware unifying why and why-not provenance for
first-order queries. In ICDE, pages 485–496, 2017.

[7] S. Lee, X. Niu, B. Ludäscher, and B. Glavic. Integrating
approximate summarization with provenance capture. In
TaPP, 2017.

[8] A. Meliou, W. Gatterbauer, K. Moore, and D. Suciu. The
Complexity of Causality and Responsibility for Query
Answers and non-Answers. PVLDB, 4(1):34–45, 2010.

1957

https://github.com/IITDBGroup/PUG
https://github.com/IITDBGroup/PUG
https://www.graphviz.org/

	Introduction
	Provenance-based Explanations
	Summarizing Provenance
	The PUG Provenance Explorer
	Demonstration Overview
	Conclusions
	References

