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ABSTRACT
JedAI is an Entity Resolution toolkit that can be used in
three ways: (i) as an open-source library that combines state-
of-the-art methods into a plethora of end-to-end workflows,
(ii) as a user-friendly desktop application with a wizard-
like interface that provides complex, out-of-the-box solu-
tions even to lay users, and (iii) as a workbench for com-
paring the performance of numerous workflows over both
structured and semi-structured data. Here, we present its
significant upgrade, JedAI 2.0, which enhances the original
version in three important respects: (i) time efficiency, as
the running time has been drastically reduced with the use
of high performance data structures and multi-core process-
ing, (ii) effectiveness, since we enriched its library with more
established methods, a new layer that exploits loose schema
binding as well as the automatic, data-driven configuration
of individual methods or entire workflows, and (iii) usabil-
ity, as the GUI now enables users to manually configure any
method based on concrete guidelines, to store the match-
ing results into any of the supported data formats and to
visually explore both input and output data.
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1. INTRODUCTION
Entity Resolution (ER) constitutes a core task for data in-

tegration, identifying entity profiles that correspond to the
same real-world objects, but are located in different data
collections. Yet, the functionality of the available ER sys-
tems is significantly restricted by the format of the various
data collections. We can actually distinguish the existing
systems into two major categories: one crafted for struc-
tured data, which are described by a well-defined schema and
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Figure 1: JedAI’s architecture, with the extensions
highlighted in red.

reside in relational databases or CSV files, and one apply-
ing exclusively to semi-structured data, which are associated
with loose, diverse schemata and are located in XML/RDF
repositories or SPARQL endpoints. The former category
is mainly represented by Magellan1, Febrl2 and Dedoop3,
while the latter is dominated by LIMES4 and Silk5. A de-
tailed overview of each category can be found in the ex-
tended version of [8] and in [10], respectively.

To facilitate researchers, practitioners and simple users in
applying ER to any type of data, we presented the Java
gEneric DAta Integration (JedAI)6 toolkit in [14]. At
its core lies a novel end-to-end ER workflow that applies
uniformly to structured and semi-structured data. As shown
in Figure 1, this workflow is implemented by JedAI’s back
end, called JedAI-core7, which is an open-source library that
includes several state-of-the-art ER methods for each step.
In more detail, these steps are the following:

i) Data Reading loads from the disk into main memory
the data collection(s) to be processed along with the respec-
tive golden standard. It supports the following data formats:
CSV, XML, OWL, RDF and relational databases. It accom-
modates all of them via a simple name-value pairs model.

1https://sites.google.com/site/anhaidgroup/
projects/magellan
2https://sourceforge.net/projects/febrl
3https://dbs.uni-leipzig.de/dedoop
4http://aksw.org/Projects/LIMES.html
5http://silkframework.org
6http://jedai.scify.org
7Code available under Apache License V2.0 at:
https://github.com/scify/JedAIToolkit.

1950

https://sites.google.com/site/anhaidgroup/projects/magellan
https://sites.google.com/site/anhaidgroup/projects/magellan
https://sourceforge.net/projects/febrl
https://dbs.uni-leipzig.de/dedoop
http://aksw.org/Projects/LIMES.html
http://silkframework.org
http://jedai.scify.org
https://github.com/scify/JedAIToolkit


Figure 2: Evaluation screen. Figure 3: Workbench screen. Figure 4: Manual configuration.

ii) Block Building clusters very similar entities into blocks
so as to drastically reduce the candidate match space and
to cut down on the running time. It includes 7 established
methods that achieve high recall through redundancy [11],
i.e., they extract several schema-agnostic signatures from
every entity, placing it into multiple blocks.

iii) Block Cleaning further improves time efficiency by
cleaning the original set of overlapping blocks from those
dominated by redundant or superfluous comparisons (the
former are repeated across different blocks, while the lat-
ter involve non-matching entities) [11]. This step includes 3
methods that are complementary to each other.

iv) Comparison Cleaning includes 7 competitive methods
that serve the same purpose as Block Cleaning, but operate
at the level of individual comparisons. They offer a more
accurate functionality at the cost of lower time efficiency.

v) Entity Matching conveys several methods for carrying
out all comparisons in the final set of blocks. Then, it creates
a similarity graph, with one node for every entity and a
weighted edge for every pair of compared entities.

vi) Entity Clustering involves 7 established methods [6]
that partition the nodes of the similarity graph into equiv-
alence clusters such that every cluster contains all entities
corresponding to the same real-world object.

vii) Evaluation estimates the performance of the identified
equivalence clusters with respect to the golden standard that
was specified in Step 1. To this end, it employs a series of
measures for effectiveness and time efficiency.

Regarding the front end, it consists of JedAI-gui8, an
open-source desktop application with an intuitive GUI that
is suitable for both expert and lay users. It is based on a
user-friendly wizard that allows to build ER workflows in a
straightforward way, simply by selecting among the available
methods for every workflow step. No manual fine-tuning is
required from the user, since every method in JedAI-core in-
volves an unsupervised functionality, independent from do-
main knowledge, and is associated with a default parameter
configuration that consistently achieves high performance
[13] - the only exception is the Data Reading step, where
the user has to specify the format of the input data.

JedAI-gui can also be used as a workbench: the available
methods result in more than 4,000 different combinations,
i.e., ER workflows, whose performance can be easily com-
pared through the GUI. Figure 2 illustrates the performance
report for an individual workflow, while Figure 3 depicts the
workbench functionality, with every line reflecting the per-
formance of a different workflow run.

8Code available Apache License V2.0 at https://github.
com/scify/jedai-ui.

2. NEW FEATURES IN JEDAI 2.0
In this demonstration, we will present JedAI 2.0, which

extends the original version in three respects. First of all, we
have significantly enhanced the time efficiency in two ways:

1) We have replaced the inverted indexes of Lucene9 as
well as the native data structures of Java with the high per-
formance structures of GNU Trove10. The new library
operates on primitive data types instead of objects, reduc-
ing the memory footprint of JedAI-core’s data structures by
up to 75%. For example, collections of integer values are
handled through the 4-byte int type instead of the 16-byte
Integer objects. Most importantly, Trove conveys signif-
icant gains in running time, as demonstrated in Figure 5:
compared to Lucene, the running time of the Block Build-
ing step has been reduced by almost an order of magnitude
(by 85% on average, across all methods), whereas compared
to native Java, it has been reduced at least to the half (by
58% on average). Similar gains apply to the methods of all
other workflow steps.

2) To further curtail the running time of JedAI, we have
enabled the in-memory multi-core execution of every
method supported by JedAI. This was accomplished by gen-
eralizing the parallelization approach that achieved the high-
est speedup in [12]. Thus, JedAI 2.0 is able to fully exploit
the processing power of any multi-core CPU simply by spec-
ifying the number of available cores.

Second, we upgraded the effectiveness of JedAI as follows:
3) We have enriched every workflow step with new meth-

ods. Data Reading now supports SPARQL endpoints, while
Block Building has been extended with a schema-agnostic
version of LSH blocking. Block Cleaning now incorporates
a clustering-based approach for controlling block sizes [4].
In Comparison Cleaning, we have added the state-of-the-
art meta-blocking method BLAST [15] along with schema-
agnostic Canopy Clustering [11]. The latter is typically con-
sidered as a block building method that depends on the
blocks provided by Q-Grams Blocking [2]. JedAI 2.0 decou-
ples Canopy Clustering from Q-Grams Blocking to render
it compatible with any Block Building method, essentially
treating it as a generic Comparison Cleaning method. Fi-
nally, Entity Matching is extended with an adapted version
of the greedy algorithm SiGMa [9].

4) A new step has been added at the start of JedAI’s
end-to-end workflow, called Schema Clustering (see Fig-
ure 1). Its functionality is similar to Schema Matching in
the sense that it yields a mapping between attributes based

9https://lucene.apache.org/core
10 https://bitbucket.org/trove4j/trove
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Figure 5: The overall time in seconds that is
required on average, after 10 repetitions, for ap-
plying every Block Building method supported
by JedAI 2.0* to all datasets provided in our data
repository**. The experiments were performed on
a laptop with an Intel i7-4710MQ (2.50GHz) and
16GB RAM, running Windows 10.
*These methods are (Extended) Q-Grams Blocking
- (E)QGr, (Extended) Sorted Neighborhood - (E)SN,
(Extended) Suffix Arrays - (E)Sur and Standard
Blocking - SB.
**https://github.com/scify/JedAIToolkit/tree/

mavenizedVersion/jedai-core/data

on their relatedness, as inferred from the similarity of their
structure, name and values. Yet, its purpose is fundamen-
tally different: instead of seeking semantically identical at-
tributes (e.g., “profession” and “job”), its goal is to improve
the creation and processing of schema-agnostic blocks. This
is accomplished by splitting large blocks into smaller ones
according to the schema clusters that are associated with
every signature. For example, consider a signature “Wash-
ington” that has been extracted from the attribute “name”
of entities e1 and e2 and from the attribute “location” of
entities e3 and e4; in a completely schema-agnostic func-
tionality, all these entities will be placed in the same block,
yielding (4-1)·4/2=6 comparisons, while in JedAI 2.0, there
will be two different blocks, {e1-e2} and {e3-e4}, with each
one containing a single comparison; the only requirement is
that “name” and “location” are placed in different clusters,
irrespective of the semantics of the other attributes that are
associated with each one of them. In this way, precision is
significantly enhanced as long as there is a limited (if any)
impact on recall. This idea has been successfully applied to
blocking via Attribute Clustering [13] and to meta-blocking
via BLAST [15]. JedAI 2.0 generalizes it to cover all work-
flow steps. This new layer includes some state-of-the-art
methods from the literature [3] plus Attribute Clustering.

5) We have added the automatic parameter configu-
ration of individual methods and entire workflows, enabling
users to investigate the impact of fine-tuning on the qual-
ity of results through JedAI’s workbench functionality. The
automatic configuration applies grid search [1]; yet, instead
of an exhaustive trial of all valid values, every parameter
is associated with a limited set of reasonable settings that
are typically used by experts in practice [13]. For meth-
ods with multiple parameters, random search can be used
to find the best balance between effectiveness and time effi-
ciency [1]. The same procedure is extended to cover entire
workflows, allowing users to examine the interplay among
the configuration of consecutive methods. This approach is

scalable, thanks to JedAI’s enhanced time efficiency (Trove
& multi-core processing).

Finally, JedAI 2.0 goes beyond the original version in terms
of usability . The following new features have been added:

6) Both the back and the front end have been extended to
support the manual fine-tuning of every available method.
JedAI-core has enriched every method with a JSON file that
provides information about its parameter configuration; this
information includes the name and a short description of
each parameter, the type of values it receives (e.g., an inte-
ger or real number), the range of acceptable values as well as
the default value that was found to consistently achieve high
performance through an extensive experimental study [13].
JedAI-gui presents this information to the user in the form of
tooltips that pop-up in the configuration windows. An ex-
ample of these new windows is shown in Figure 4. Through
the workbench functionality, the user can then observe the
effect of every parameter value to the overall performance.

7) A new step has been added at the end of JedAI’s ER
workflow, called Data Writing (see Figure 1). Its goal is
to store all pairs of identified matches into any of the sup-
ported data formats. In case a structured format is selected
(CSV or relational database), the output retains the original
entity ids. When selecting a semi-structured format (XML,
RDF or SPARQL endpoint), the user has to specify the URI
prefix in case it is not available, i.e., when the original data
were structured. To store the output to relational databases
or SPARQL endpoints, the user should also provide the nec-
essary credentials, if applicable, along with the table and the
dataset namespace, respectively.

8) JedAI-gui now offers a data exploration functionality.
After selecting the data to be processed, the user is able to go
through the entity profiles that have been loaded in memory,
observing their schema and attribute values as well as the
level of noise and heterogeneity they contain. Similarly, by
the end of the workflow execution, the user can examine the
equivalence clusters that have been formed, assessing the
quality of the results.

3. DEMONSTRATION SCENARIO
This demonstration presents JedAI through a live interac-

tion with users, highlighting most new features.
Using JedAI-gui, the user is asked to select among several

pairs of data collections that are overlapping, containing du-
plicate entities. Each pair consists of a structured data col-
lection (in CSV or SQL), a semi-structured one (in RDF,
OWL, XML or SPARQL) and the corresponding golden
standard. After loading the entity profiles in memory, the
user examines them through the data exploration function-
ality, and forms an ER workflow of arbitrary complexity to
process them. This is done in four iterations:

1) In the first execution, the default configuration parame-
ters for all methods of the user-defined workflow is employed.
The execution uses the multi-core setting.

2) In the second iteration, the automatic parameter con-
figuration is applied independently to every selected method.
Again, the multi-core setting is employed.

3) In the third round, the automatic parameter config-
uration of the entire ER workflow is applied, investigating
whether it yields significantly better effectiveness. Due to
the multi-core processing and the high efficiency provided
by Trove, this iteration is completed within a few minutes.
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4) The workflow with the optimal performance is formed
and fine-tuned via the manual configuration provided by
JedAI-gui and then is carried out using serial processing.

Finally, the identified matches are seen through the data
exploration functionality, and are stored in the data format
that is chosen by the user.

In a nutshell, our demonstration scenario aims to teach
users how to make the most of JedAI’s functionalities, em-
phasizing the new features of version 2.0 that take JedAI to
the next level. Indeed, users will be able to evaluate the
effect of parameter configuration in individual methods or
entire workflows on the overall ER performance and to assess
the speedup achieved by end-to-end multi-core processing.
Through the workbench functionality, they will also examine
the relative performance of different state-of-the-art work-
flows and will investigate the role played by any individual
method in a particular ER workflow.

4. RELATION TO OTHER TOOLS
As explained above, two types of Entity Resolution sys-

tems have been developed so far. The first one includes Link
Discovery frameworks, which are crafted for semi-structured
data. The most prominent representatives are LIMES and
Silk, while 8 more tools are surveyed in [10]. Unlike JedAI,
none of them is applicable to structured data, while half
of them lack a GUI. Most importantly, though, these tools
typically implement only the method(s) introduced by their
creators and are suitable only for experts: they require the
manual configuration of matching rules, or a labeled dataset
for learning such rules in a supervised way [7].

The second category involves ER tools that apply ex-
clusively to structured data. The extended version of [8]
provides a thorough list of 18 non-commercial and 15 com-
mercial systems. Most of them suffer from one or more of
the following problems [8]: they cover the Entity Resolution
pipeline partially, they constitute stand-alone systems that
are hard to extend with new functionality, even though they
offer a limited variety of methods, or they are exclusively
meant for expert users, providing insufficient guidelines to
lay users on how to perform ER efficiently and effectively.
Magellan, which lies at the core of BigGorilla’s Data Match-
ing process (https://www.biggorilla.org), resolves these
issues [8], but is restricted to relational data, lacks a GUI
(it offers a command-line interface) and requires heavy user
involvement, as its goal is actually to facilitate the develop-
ment of tailor-made methods for the data at hand.

On the whole, JedAI is the only system that applies uni-
formly to structured and semi-structured data, while con-
veying one of the largest libraries with state-of-the-art ER
methods. No other toolkit exploits the benefits of schema-
agnostic blocking, which minimizes user involvement, while
maximizing recall [11], nor does it include the Block and
Comparison Cleaning steps, which are indispensable for en-
hancing the time efficiency by orders of magnitude [13].
JedAI is also one of the few ER systems that are suitable
for lay users, providing an intuitive GUI, and one of the few
systems to support hands-off ER, as the default configura-
tion of every method saves the cost of parameter fine-tuning.

5. CONCLUSIONS
We presented JedAI 2.0, the enhanced version of a user-

friendly toolkit that bridges the gap between ER methods

for structured and semi-structured data. We have improved
its time efficiency by at least an order of magnitude, we ex-
tended its effectiveness with more methods, layers and con-
figuration options and we enriched its GUI with advanced
functionalities. All these new capabilities will be exhibited
through a live demonstration that involves user interaction.
Our demonstration will also stress how JedAI fulfills the two
main challenges that arise in data integration [5], i.e., the
development of extensible, open-source tools and the provi-
sion of solutions that apply not only to structured, but also
to semi- or even un-structured data.

In the future, we plan to extend JedAI with more methods
per workflow step (e.g., support for NoSQL databases and
JSON files in Data Reading) and to exploit Apache Spark
for massive parallelization. We will also examine the possi-
bility to include more specialized methods, e.g., for product
deduplication [16, 17, 18].
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