
A Demonstration of PERC: Probabilistic Entity Resolution
With Crowd Errors

Xiangyu Ke, Michelle Teo, Arijit Khan, Vijaya Krishna Yalavarthi
Nanyang Technological University, Singapore

{xiangyu001,C140137}@e.ntu.edu.sg, {arijit.khan,yalavarthi}@ntu.edu.sg

ABSTRACT
This paper demonstrates PERC — our system for crowdsourced
entity resolution with human errors. Entity Resolution (ER) is a
critical step in data cleaning and analytics. Although many machine-
based methods existed for ER task, crowdsourcing is becoming in-
creasingly important since humans can provide more insightful in-
formation for complex tasks, e.g., clustering of images and natural
language processing. However, human workers still make mistakes
due to lack of domain expertise or seriousness, ambiguity, or even
malicious intent. To this end, we present a system, called PERC
(probabilistic entity resolution with crowd errors), which adopts
an uncertain graph model to address the entity resolution problem
with noisy crowd answers. Using our framework, the problem of
ER becomes equivalent to finding the maximum-likelihood cluster-
ing. In particular, we propose a novel metric called “reliability” to
measure the quality of a clustering, which takes into account both
the connected-ness inside and across all clusters. PERC then auto-
matically selects the next question to ask the crowd that maximally
increases the “reliability” of the current clustering.

This demonstration highlights (1) a reliability-based next crowd-
sourcing framework for crowdsourced ER, which does not require
any user-defined threshold, and no apriori information about the er-
ror rate of the crowd workers, (2) it improves the ER quality by 15%
and reduces the crowdsourcing cost by 50% compared to state-of-
the-art methods, and (3) its GUI can interact with users to help them
compare different crowdsourced ER algorithms, their intermediate
ER results as they progress, and their selected next crowdsourcing
questions in a user-friendly manner. Our demonstration video is at:
https://www.youtube.com/watch?v=rQ7nu3b8zXY.
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1. INTRODUCTION
When dealing with real-world datasets, there exist many dif-

ferent representations for the same entity, which are non-trivial
to identify in many cases. For example, there could be different
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ways of addressing the same person in text, or several photos of
a particular landmark. Entity Resolution (ER) is the task of dis-
ambiguating manifestations of such real-world entities in various
records by linking and clustering [5], which has attracted a great
deal of attention in the database research. While various machine-
based techniques were proposed for ER, it is often difficult to de-
sign a uniform solution for all kinds of datasets (e.g., images, texts,
videos), and their qualities can hardly be guaranteed when faced
with more complex tasks such as image classification, video tag-
ging, optical character recognition, and natural language process-
ing. Crowdsourcing is thus a more general approach with human’s
insightful information for these difficult problems [6]. The existing
crowdsourcing services, e.g., Amazon’s Mechanical Turk (AMT)
and CrowdFlower allow individuals and commercial organizations
to set up tasks that humans can perform for certain rewards [10].
When the size of the dataset is large, it would be too expensive to
ask the crowd about every pair of records, therefore bulk of the lit-
erature aims at minimizing the cost of crowdsourcing, while also
maximizing the ER result quality.

However, human workers can still make mistakes due to lack
of domain expertise, individual biases, task complexity and am-
biguity, or simply because of tiredness, and malicious behaviors.
As an example, even considering answers from workers with high-
accuracy statistics in AMT, we find that the average crowd error
rate can be up to 25% [15, 17]. Many works bypass this issue as
an orthogonal problem to crowdsourced ER, because there are var-
ious approaches to compute and reduce crowdsourcing biases and
errors, including [9, 8, 2]. Other works elude this severe concern
by majority voting [16, 13, 14], or by assigning a universal error
rate for crowd workers [12]. Unfortunately, the majority voting ap-
proach is often unreliable because spammers and low-paid workers
may collude to produce incorrect answers [9], and it is unrealis-
tic to determine the universal error rate precisely since the worker
crowd is large-scale and highly transient. Recent works by Ver-
roios et. al. [12], Gruenheid et. al. [7], and Wang et. al. [15]
are the most similar to ours, since they assign edge probability (or
weight) between a record pair as the ratio of crowd workers who
voted Yes on the question if those two records are the same entity.
However, these methods consider only local features, such as indi-
vidual paths, nodes, or the set of positive and negative edges, to de-
cide next crowdsourcing questions. Without capturing the strength
of the entire clustering, their crowdsourcing cost becomes too high
for achieving a reasonable ER accuracy.

In practise, given a current clustering, it is critical to identify the
best record pair to crowdsource next. We propose a novel metric,
called the “reliability”, to measure the quality of a clustering, taking
into account the connected-ness inside and across the clustering.
Our method, PERC, selects the record pair to crowdsource next that
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Table 1: Crowdsourcing cost reduction by PERC over state-
of-the-art approaches: We present the number of crowdsourc-
ing questions required to achieve a certain accuracy (0.8 F1-
measure for Cora dataset, and 0.9 for others) for various meth-
ods. A detailed description about our datasets, accuracy mea-
sure and experiment setting is shown in our full paper [17].

# crowdsourced questions % crowdsourcing cost
datasets MinMax bDense PERC reduction by PERC over

[7] [12] [this work] MinMax bDense

Allsports 13.6K 16.0K 11.7K 13.97% 26.87%
Gymnastics 1.3K 1.5K 0.8K 38.46% 46.67%
Landmarks 11.0K 8.0K 5.9K 46.36% 26.25%

Cora 22.5K 14.0K 7.2K 68.00% 48.57%

maximally increases the reliability of the current clustering. This
significantly reduces the overall crowdsourcing cost — by 50%, as
well as improves its quality by 15%, which is demonstrated in our
empirical results (Table 1 and [17]).

To the best of our knowledge, this is the first demonstration pro-
posal on crowdsourced entity resolution with human errors, aim-
ing to present an uncertain graph-based solution, which is effi-
cient, effective, and user-friendly in practice. Other recent demos
in this area include NADEEF/ER [3], KATARA [1], and Crowd-
Cleaner [11]. In particular, NADEEF/ER is a rule-based and inter-
active ER system without crowdsourcing, whereas both KATARA
and CrowdCleaner are crowdsourced ER systems without explic-
itly considering crowd errors. Hence, these past demonstrations are
different from ours.

2. FRAMEWORK OVERVIEW
Figure 1 presents PERC’s architecture and the interaction be-

tween modules. The core modules of PERC — Entity Resolution
(ER) and Next Crowdsourcing (NC) modules — are implemented
in C++. The Displayer module, which provides the visualization of
dynamic and interactive clustering results and next question select-
ing results, is developed with D3.js library (http://d3js.org/). We
introduce the four modules of the PERC system in the following.

Interactor. The Interactor receives input datasets of various types
(e.g., images, text, video), and pre-processes them to identify the
records set R. It selects, uniformly at random, a small number
record pairs. The Record Pairs-HITs Transformer component then
publishes these pairs as HITs (Human Intelligent Tasks) on AMT
platform. The Interpreter generates or updates the uncertain graph
once the crowd answers are obtained. In particular, to identify
whether two records belong to the same entity, we create an HIT
for the pair, and publish it to AMT with possible binary answers:
A worker submits ‘Yes’ if she thinks that the record pair is match-
ing, and ‘No’ otherwise. For mitigating crowd errors, we allow
multiple workers to perform the same HIT. We then assign an edge
with probability p(ri, rj) between two records ri and rj , where
p(ri, rj) ∈ (0, 1) denotes the ratio of crowd workers who voted
Yes on the question if ri and rj are same entity. We denote by E
the set of edges as formed above.

Entity Resolution Processor. On receiving an uncertain graph G =

(R,E, p) as formed above, our Entity Resolution processor ap-
plies a greedy correlation clustering algorithm (e.g., the spectral-
connected-components method [12]) to generate the maximum like-
lihood clustering (MLC) of the uncertain graph. After every crowd-
sourcing task, we add an uncertain edge between the respective
record pair, thereby updating G. Then, the MLC Update Detector
verifies if the previous MLC needs to be updated or not.

Next Crowdsourcing Questions Selector. After the initial MLC
generation, the Next Crowdsourcing Questions Selector iteratively
finds the best record pair 〈ri, rj〉 and crowdsources it, until our bud-
get is exhausted, or we already find a complete (uncertain) graph
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Figure 1: The architecture of PERC system

over the records set R. If MLC remains the same in successive it-
erations, the priority queue consisting of next crowdsourcing ques-
tions remains the same, and the question to ask in the current round
is easy to decide by simply selecting the best (e.g., top-most) pair
from the queue. Otherwise, the Reliability Evaluator re-computes
the priority queue based on the metric called “reliability” of the new
MLC. We shall formally introduce this novel criteria in Section 3.2.

Displayer. Our system also contains a user-friendly Displayer
module for interactive visualization. The ER Result Displayer shows
the dynamic changes of the graph and the clustering result based
on the crowd answers obtained so far, and the NC Result Displayer
presents the next questions to be published in the crowdsourcing
platform. Users are allowed to rollback for visualizing every batch
of questions asked previously and their corresponding ER result. If
the ground-truth answer is provided, PERC will color the record
nodes and presents it together with the real-time ER result.

3. CORE ALGORITHMS
Two primary modules of PERC rely on each other, as illustrated

in Figure 2, and run their own algorithms.

3.1 Entity Resolution Processor
The task of ER Processor is to find the maximum likelihood

(and transitively-closed) clustering for a given uncertain graph G =
(R,E, p). The likelihood of a clustering C = {R1, R2, . . . , Rm}
is defined as the probability that (1) all edges inside every cluster
Ri exist, and (2) all edges across every pair of clusters Rj , Rk do
not exist. Since an edge can exist independent of others (i.e., each
HIT can be performed by a different set of workers), we compute
the likelihood L(C) as:

L(C) =
∏

Ri∈C

 ∏
e∈E∩(Ri×Ri)

p(e)


×

∏
Rj ,Rk∈C

j<k

 ∏
e∈E∩(Rj×Rk)

(1− p(e))


Therefore, the entity resolution problem is equivalent to find-

ing the maximum likelihood clustering (MLC) over the uncertain
graph constructed by the input records set. It can be performed by
employing state-of-the-art correlation clustering algorithms [12,
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Figure 2: Workflow of PERC

4]. The users can select among the following algorithms: Best,
First, Pivot and Spectral-Connected-Components (SCC). Usually
we suggest SCC, since it performs the best in our empirical evalu-
ation, compared to other approaches. It starts from the record pair
having the highest probability of being the same entity, given the
answers for these two records. If this probability is higher than 0.5,
SCC merges the two records into one cluster. In each successive
step, the algorithm finds the clusters with the highest probability
of being the same entity, given the answers between them. If this
probability is higher than 0.5, the two clusters are merged into one
cluster. Otherwise, SCC stops and returns the current set of clus-
ters as output. Given two clusters Ri and Rj , SCC computes the
probability Pr(Ri, Rj) of merging them as given below.

Pr(Ri, Rj)

=

∏
(rk,rl)∈(Ri×Rj)∩E

p (rk, rl)∏
(rk,rl)∈(Ri×Rj)∩E

p (rk, rl) +
∏

(rk,rl)∈(Ri×Rj)∩E

(1− p (rk, rl))

3.2 Next Crowdsourcing Processor
Once the MLC is constructed, the Next Crowdsource processor

iteratively finds the the best entity pair 〈ri, rj〉 to crowdsource next.

3.2.1 Reliability of a Clustering
Intuitively, our objective is to identify a pair 〈ri, rj〉 6∈ E, that

can improve the quality of the given MLC as much as possible. To
this end, we identify the two following “connectedness”-based cri-
teria that determine the quality of a clustering C = {R1, R2, ..., Rm}.
(1) How well each clusterRi is connected? (2) How well every pair
of clusters Rj , Rk (j < k) is disconnected?

Given a clustering C = {R1, R2, ..., Rm} and the uncertain
graph G = (R,E, p), all edges inside a cluster are called YES
edges, whereas the edges across two clusters are referred to as NO
edges. If e is an YES edge, we define its existence probability
pY (e) = p(e). On the other hand, if e is a NO edge, we compute
its existence probability as pN (e) = 1− p(e). We derive an YES-
NO graph GY |N from the uncertain graph G as follows. GY |N has
the same set of nodes and edges as G, but each edge e in GY |N
has a binary label L(e), which can be either YES or No, as defined
above. For a YES edge e, its probability pY |N (e) = pY (e). For a
NO edge e, its probability pY |N (e) = pN (e).
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B C

0.8 0.9

D

0.2 0.6

YES, 0.8 YES, 0.9

0.8 NO, 0.4NO,

Uncertain Graph Yes-No Graph
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CB
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Figure 3: Reliability of a clustering

Given a clustering C = {R1, R2, . . . , Rm} and the YES-NO
graph GY |N , the reliability of C is defined as the probability that
every cluster Ri is connected and every pair of clusters Rj , Rk

(j < k) is disconnected, i.e.,

Rel(C) =
∑
i

log (Connect (Ri)) +
∑
j<k

log (Discon (Rj , Rk))

Connect(Ri) =
∑

GvGY |N

[I(Ri, G)× P (G)]

Discon(Rj , Rk)

=

{
0 ; if (Rj ×Rk) ∩ E = φ

1−
∏

(ri,rl)∈(Rj×Rk)∩E
(1− pN (ri, rl)) ; otherwise

In the above equation, I(Ri, G) is an indicator function over a pos-
sible deterministic graphG v GY |N taking value 1 if records inRi

are all connected (by YES edges) in G, and 0 otherwise.
EXAMPLE 1. In Figure 3, we compute the reliability of the

MLC C∗ = {(A,B,C), (D)}. We first construct the YES-NO
graph on the right. Then, we have: Connect(A,B,C) = 0.72,
Connect(D) = 1.0, and Discon ((A,B,C) , (D)) = 1 − (1 −
0.8)(1 − 0.4) = 0.88. Hence, Rel(C∗) = log 0.72 + log 1 +
log 0.88 ≈ −0.20.

3.2.2 Next Crowdsourcing Question Selection
The Next Crowdsourcing Question Selector computes, for every

record pair 〈ri, rj〉 6∈ E, the improvement in reliability of the cur-
rent MLC C∗, if one crowdsources the pair, and thereby assigns the
corresponding edge probability p(ri, rj). Unfortunately, one does
not know p(ri, rj) apriori, therefore we consider an optimistic sce-
nario. We study this in [17], and show thatRel(C) increases mono-
tonically as we have larger value of pY |N (e), where e is the newly
added edge. Thus, pY |N (e) = 1 leads to the optimal gain. In other
words, we select the record pair that maximally increasesRel(C∗),
under such optimistic assumption. Also, we found that the priority
of the following record pairs 〈rk, rl〉 ∈ (Ri×Rj)\E, for a certain
Ri and Rj , are the same in a specific round, which helps us avoid
redundant computation for pairs across the clusters. Finally, we de-
velop efficient algorithms [17] based on the Monte-Carlo sampling,
and omit the details here due to lack of space.

4. DEMOSTRATION
4.1 User Interface and Interactiveness

For demonstration, we will present a web app on a laptop (demon-
stration video: https://www.youtube.com/watch?v=rQ7nu3b8z
XY). Figure 4 presents the user interface of PERC. The top panel
is designed for user to provide the input dataset, ground-truth an-
swer file (which is optional, and used for the visualization of ac-
curacy), correlation clustering algorithm (default as SCC), and the
next crowdsourcing algorithm (default as PERC).

The monitor window in the middle shows the real-time uncertain
graph generated by crowd answers (gray edges). Users can tick at
the top right boxes to view the intermediate ER clustering results
and the next questions selected (red edges). Each node here rep-
resents a record in the input dataset. Those nodes being grouped
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Figure 4: User interface of PERC

(a) (b) (c)

Figure 5: PERC demonstration scenario with AllSports dataset

together are considered as the same entity by PERC. The red edges
are the batch of questions to be asked next, while the grey ones rep-
resent the questions that were already asked (for clarity, we only
draw the edges with probability over 0.5 here. The higher the prob-
ability on the edge, the darker and the thicker it will be). If the
ground-truth is given, the nodes will be colored (each color stands
for an entity based on the ground-truth), thereby providing a better
visualization of accuracy. When the cursor is hovered for a second,
the details for the corresponding item will be displayed in the left
panel. For nodes, it would be the detailed content, e.g. an image.
For edges, it would be the two records that it connects and the cor-
responding probability of being the same (as shown in Figure 4).
Users are allowed to rollback or forward the process bar at the top
of the monitor to dynamically view the crowdsourcing process in
an interactive manner and to terminate the process at any moment.
Finally, the users can also employ our system to visualize the re-
sults of other existing crowdsourced ER techniques, e.g., MinMax
[7] and bDense [12], for an effective comparison.

From the right panel, user can view the ER results, together with
all the crowd answers, and the next crowdsourcing questions. Also,
users may download them in files for further analysis.

4.2 Demonstration with AllSports Dataset
The AllSports dataset (stanford.edu/~verroios/datasets/

allsports.zip) [12] consists of athlete images from different
sports, with each image showing a single athlete. It contains 267
records, which can be divided into 86 distinct entities. We crowd-
sourced all the 35 511 record pairs, and each question is answered
by 10 different human workers. For this dataset, the average crowd
error rate is 5.67%.

The sub-figures in Figure 5 demonstrate an intuitive ER and Next
Crowdsourcing evaluation procedure. From Figures 5(a) to 5(c),
they correspond to 5K, 10K, and 15K record pairs, respectively,
being crowdsourced. With more evidence added, more clusters are

found. Figure 5(c) corresponds to the convergence state [17] in our
algorithm. It can be observed here that many triangles and rect-
angles have been formed (in the ground-truth of AllSports dataset,
most clusters have sizes of 2, 3, or 4).

PERC is a general framework for various kinds of data. Its per-
formance on text data can be found in our full paper [17].
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