

BTrim – Hybrid In-Memory Database Architecture for
Extreme Transaction Processing in VLDBs

Aditya Gurajada
Hyderabad, India

adityagurajada@y
ahoo.com

Dheren Gala
SAP Labs

Pune, India

dheren.gala@sap.
com

Fei Zhou
Chicago, USA

feizhou111@gmail
.com

Amit Pathak
SAP Labs

Pune, India

amit.pathak@sap.
com

Zhan-Feng, Ma
SAP China Co. Ltd.
Shanghai, China

zhan-
feng.ma@sap.com

ABSTRACT

To address the need for extreme OLTP performance on commodity

multi-core hardware supporting large amounts of memory, SAP

ASE is re-architected to tightly integrate an In-Memory Row Store

(IMRS) within the existing database engine. The IMRS is both a

store and a caching layer to host “hot” rows in-memory, in a row-

oriented format. The IMRS is an extension to the traditional buffer-

cache which deals with data in a page-oriented storage format

(referred to as the page-store). Data in individual tables marked as

IMRS-enabled can be fully memory-resident or can straddle the

page store and the IMRS. Cold data in the IMRS is organically

identified, harvested, and “packed” back to the page store. SQL

statements and transactions can access data transparently from both

stores for the same table. All Transact-SQL capabilities and

language constructs are supported with no application or stored

procedure code changes required. Full durability for in-memory

data is provided, including support for backup and restore of

database archives and periodic transaction dumps.

The high-level system design supporting this architecture, along

with experimental results and performance benefits is presented.

PVLDB Reference Format:

Aditya P. Gurajada, Dheren Gala, Fei Zhou, Amit Pathak, Zhan-

Feng Ma. BTrim – Hybrid In-memory Database Architecture for

Extreme Transaction Processing in VLDBs. PVLDB, 11(12) :

1889-1901, 2018.

DOI: https://doi.org/10.14778/3229863.3229875

1. INTRODUCTION
OLTP performance at a low TCO has been a key differentiating

offering for the SAP ASE database server. Recent product

enhancements [21][22][23] have focused on delivering Extreme

OLTP (xOLTP) performance and extreme scalability on

commodity multi-core hardware.

Many commercial offerings [2][24][26] in this area require a

database or a table to be fully in-memory. With ever-increasing

transactional data being generated continuously, customer database

sizes tend to grow faster than memory capacities, however OLTP

transactions tend to actively use only about 20% of the data [20].

To better understand the run-time contention issues experienced by

transactional workloads, we deeply analyzed the execution metrics

of two OLTP workloads, by a technique we call transaction log

mining. First, we studied profiles from transaction logs of a large

Sales Distribution (SD) benchmark, which has become one of the

standard for SAP's platform partners. Second, we also analyzed the

transaction logs and footprint from a TPCC benchmark. Both

benchmarks were executed on an SAP ASE server running with

traditional page-storage and the buffer cache. For this investigation,

the benchmark configuration, and machine details are not relevant

here as we only wish to show how transaction log mining helps us

understand concurrency issues and profile of OLTP transactions.

Results from SD Benchmark Analysis: In our internal testing, we

analyzed the logging traces of a 35+ minute 8000+ SD users run

run on a 120GB page-store database, with about 50GB of data. The

transaction log examined was 20GB, containing 1.3+ million

transactions generating 90+ million log records. There were less

than 0.002% transaction aborts. The average elapsed time of the

transactions was 36 milliseconds. The distribution of log records

per transaction seen in this profile is given below.

Table 1. # of log records across all transactions in SD

Benchmark

Minimum Average Std. dev Maximum

1 63 107 46,496

This shows that although there are a few big transactions generating

a large number of log records, for the most part in this workload,

the average size and the time-span of the transaction is small.

For this workload, the following Figure 1 shows the distribution of

number of transactions by number of log records generated (not

including the begin / end transaction log records).

We note from Figure 1 that about 41% of all transactions generate

10 or fewer log records, 82% of all transactions generate 80 or

fewer log records. A very small percentage of transactions generate

very large numbers of log records (say, over 1000 or more).

We then examined the log activity to identify active tables. We

considered 0.5% of the log activity as a low-watermark threshold

to qualify a table as being an “active” table in the workload. This

translates to about 500,000 log records. A count of tables with about

>= 0.5% log activity identifies 22 tables. The remaining activity

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 11, No. 12

Copyright 2018 VLDB Endowment 2150-8097/18/8.

DOI: https://doi.org/10.14778/3229863.3229875

1889

mailto:feizhou111@gmail.com
mailto:feizhou111@gmail.com
mailto:amit.pathak@sap.com%0EZhan-Feng
mailto:amit.pathak@sap.com%0EZhan-Feng
mailto:amit.pathak@sap.com%0EZhan-Feng

was spread over the remaining ~180 tables in the database where

each table had activity less than 0.5% of the total work load. We

Fig. 1. Number of log records / transaction in SD Benchmark

interpret this to mean that the bulk of the SD benchmark activity is

directed towards a small set of tables, which are very active, and a

larger set of tables which are comparatively less active.

Identifying conflicts through log records: For the same

workload, we analyzed the old and new database time stamps

(DBTS) in the log records, matching them with the affected page

ID to infer the degree of conflict encountered due to transactions

concurrently active on pages. Every change to any database page

generates a monotonically increasing DBTS value.

Figure 2 shows a pictorial representation of “events”, i.e., the log

records, generated by two concurrently executing transactions,

affecting some set of pages.

Fig. 2. Timeline representation of changes done by

concurrently executing transaction

We mined the affected page IDs, and the old / new DBTS caused

by the “event” from the log record to know the time-span when the

change was done affecting a said page. If a transaction T1 has

updated a page, and before it has committed, if another transaction

T2 updates some other row on the same page, this results in a page-

conflict to T1.
Logging in the page store [23]: To understand the impact of page

conflicts, we diverge slightly to describe at a high-level how buffer

management and transaction processing is performed in SAP ASE.

For every change affecting pages, in anticipation of the transaction

committing, log records are generated, in-line with the change, in

every task’s private cache of log records, aka, Private Log Cache

(PLC), and then the PLC contents are flushed to the log page at

commit-time. (We refer to this scheme of generating log records

through the life of the transaction as drip logging.) PLC is provided

to reduce the frequency of writing log records and instead to flush

a batch of log records for one transaction to the log. This results in

reducing the contention of access to the last-log page, which

typically is the main bottleneck in a database system. In order to

facilitate Write-Ahead logging (WAL), the modified buffers are

pinned to the PLC. As described in [23], page conflicts cause buffer

unpinning, resulting in prematurely flushing of the tasks’ PLC to

the database log. These arise due to updates by concurrent

transactions to different rows that may simply be residing on the

same data buffer. Space allocation in syslogs, which is done as part

of transaction commit, causes spikes of performance degradation.

Finally, the shared last-log page insertion point for new log records

appended to syslogs by concurrently committing transactions is an

omnipresent performance and scalability bottleneck [23].

In the work load analyzed, we found the following metrics:

Table 2. Distribution of page-conflicts in SD Benchmark

 Item Value Comment

(a) Total # of transactions

processed

1,374,232

(b) # of transactions of type

“DML%”

804,697 58% of (a)

(c) # of distinct pages not

involved in conflicts

495,892 Split nearly

equally, 54-

46%, across

the workload (d) # of distinct pages involved

in any conflict

430,921

(e) # of “events” (log records)

generating conflicts

5,524,349 4X (a)

>6X (b)

Using the overlapping DBTS analysis, we observed the folowing

distribution of conflicts per affected conflicted-page.

Table 3. Distribution of conflicts per modified page

Min Avg Stddev Max

1 12 111 45,943

This implies that a very large number of pages ran into a pretty

steep number of conflicts. On an average, across all pages accessed

in this benchmark [sum of (c) and (d) in Table 2], each page can be

expected to run into an average of 6 conflicts. Each conflict can

result in concurency issues.

We also do note that identifying page-conflicts through log record

mining does not capture read activity on tables; only modifications.

Therefore any inference from this conflict-metric is only meant to

be a lower-bound on potential contention issues. The scalability

issues due to shared access to pages is further examined in the

section on Performance Evaluation (Sec. 5.1.1).

We performed the same log mining on TPC-C transaction log and

concluded that most transactions have a small foot-print of average

18 log records, completing in less than 300 milliseconds.

0
25,000
50,000
75,000

100,000
125,000
150,000
175,000
200,000 197,891

N
u

m
b

er
 o

f
tr

an
sa

ct
io

n
s

Number of log records per transaction

176,958

151,122

Each arrow represents a log record generated by transaction T1.

DBTS Timeline

in the log

Each arrow represents a log record generated by concurrently

executing transaction T2.

1890

1.1 Our Contributions
Our motivation behind this work is to build a transaction processing

engine which can deliver scalable and high performance using in-

memory processing, and overcomes the contention issues in a page-

oriented storage model, described earlier. Historically, some of

these scalability limitations have been improved in recent versions

of SAP ASE, as noted in [23], but there is still scope to deliver

enhanced OLTP performance using in-memory computing.

In the BTrim architecture, which stands for “Business

Transactions In-Memory”, we provide a hybrid storage model

where the existing buffer-cache based page-store layer is tightly-

integrated with an In-Memory Row Store (IMRS). The IMRS is

used to host “hot” data for business transactions. Full indexing

support is provided for data that can reside either in the page-store

or in the IMRS. Concurrent accessors to rows that simply share the

data page no longer run into contention [1][9] when the data is

decoupled from the page and stored as individual rows in-memory.

For VLDBs much larger than available memory, the buffer cache

already provides a “working set” of hot pages. In this layout, the

IMRS is seen as providing an extended caching layer for “hot rows”

on top of the buffer cache, for improved performance. If the main

memory is large enough to host the entire VLDB (i.e. fully

memory-resident database), we still run into the contention issues

described earlier due to the page-oriented storage, and logging

overheads. In this layout, providing any extra memory to the buffer

cache yields no further gains. However, this extra available

memory can be deployed to the IMRS, where “hot” rows are

processed without being hindered by page-oriented contention

issues.

Nomenclature: Existing databases using traditional page-based

(buffer-cache resident) storage are referred to as page-store

databases. In the BTrim architecture, individual databases

configured to use the IMRS are referred to as IMRS-enabled

database(s). In an IMRS-enabled database, individual tables

altered to use the IMRS for storing “hot” data, supporting data row

caching, are referred to as IMRS-enabled tables. An IMRS-

enabled database can still contain ordinary tables, i.e., not enabled

for data row caching, and such tables are referred to as page-store

tables. Transactional data typically goes through 4 stages in its life-

cycle – Insert, Select, Update, Delete – and this collection of

statements is referred to as ISUDs. Pack refers to an internal

operation that removes cold rows from the IMRS and stores them

back in the page-store. On a multi-core system, SAP ASE can be

configured to run with multiple OS native threads. Designs to

overcome multi-core scalability issues in this configuration are

referred to as thread-local techniques.

Our contributions from this work are as follows. These

enhancements are deeply integrated within the core SAP ASE

DBMS engine [24] and can be deployed without destabilizing

existing installations and without requiring any application rewrite.

The IMRS provides the backbone for new performance-oriented

capabilities added to the ASE product. A new technique called Data

Row Caching (DRC) is added to the product. The storage choices

incorporate Information Life Cycle Management (ILM) [19] which

is intrinsic to certain kinds of transaction workloads. High-

performance is delivered by storing the rows either in-memory or

on the disk-based page-store. Hash-indexes spanning data in the

IMRS are provided as a fast-path accelerator for point queries using

a unique index access method. Full durability is provided to the data

modified in the IMRS in a new logging system that overcomes

many of the shortcomings of the existing transaction log.

Replication is fully supported for IMRS-enabled tables.

The BTrim architecture is also the foundation for supporting

industry-standard snapshot isolation using in-memory versioning

offering MVCC capability; a functionality that is now available in

the ASE capability set.

The rest of the paper is organized as follows. Section 2 presents the

overall architecture and key design choices we made along the way.

Section 3 discusses internal changes to how index scans work. In

section 4, we discuss the durability layer of the IMRS, another key

contribution from this work. In section 5, we present performance

results from in-house experiments using micro-benchmarking and

high-end OLTP workloads. In section 6, we study related work in

this area, and finally present our conclusions.

2. BTRIM ARCHITECTURE
The BTrim architecture extends the capabilities of the existing

engine to deliver enhanced performance, even while maintaining

full compatibility for existing databases and T-SQL constructs. It

is neither a separate product nor a bolt-on.

Fig. 3. BTrim architecture for In-Memory Processing

Figure 3 shows the salient components of the new architecture and

how data is organized and accessed. Existing storage components

such as the disk-based store, page-formatted buffer cache, and the

redo/undo transaction logging, referred to as syslogs in the product,

remain unchanged. The database storage space and buffer cache is

“extended” with the In-Memory Row Store, used to both cache

existing rows and store new data. In Fig. 5, the box labelled

IMRS-enabled tables that straddles the buffer cache and the IMRS

reflects the behavior that, over time, only some part of a table may

be in-memory. The arrows represent movement of hot / cold rows

to / from the IMRS. It is not necessary for an entire table to be in-

memory. Access methods transparently locate the row from one of

the two stores using internal scan methods, which are discussed in

later sections. A single ISUD statement, and consequently any

transaction, may access some rows from the IMRS and some from

the page-store, without any limitations. A single transaction can

also access / change data from IMRS-enabled and page-store tables

without any restrictions.

Redo/Undo

Transaction Log

R/W Buffer Cache

IMRS
Paged I/O

Hot Data

Inserts

RID-Map Table

Redo-Only
Transaction Log

for In-Memory DMLs

Page-Store Tables IMRS-enabled tables

1891

Page-based BTree indexes continue to be supported in this

architecture, however, they are enhanced to transparently scan rows

either in the page-store or in the IMRS. BTree indexes are further

enhanced to use a latch-free concurrency control [21] mechanism

for enhanced performance. In-memory hash-indexes, shown to the

left of the IMRS, span only the in-memory rows of a table.

ILM – Row-level Data Ageing: A key differentiating feature of

the BTrim architecture is a tight integration with the data life-cycle

patterns for transactional workloads to assign efficiently in-

memory storage to “hot” rows [19]. ILM is a set of strategies, rules

and heuristics designed to efficiently use IMRS resources for

frequently accessed “hot” data rows. The decision to use the IMRS

for row caching leverages run-time access patterns to optimally

store “hot” rows in the IMRS. When hot data becomes less

frequently used in the IMRS, it may be replaced back in the page

store, by one or more background Pack threads.

Persistence and durability to data updated in the IMRS is provided

through a new redo-only logging device, named in the Fig. 3 by its

system catalog, sysimrslogs. Sysimrslogs is the logging

counterpart for the existing redo / undo transaction log, syslogs; the

latter used to persist changes to data in the page-store. The vertical

arrows from the IMRS and the page-store tables to the two logs,

respectively, indicate that changes to in-memory rows are logged

in sysimrslogs and those to page-store rows in syslogs.

A key new sub-system supporting the IMRS is a high-performance

fragment-memory manager which is highly optimized for best-fit

memory allocation and reclamation on multiple cores. The memory

manager supports allocation of fixed-length fragments, such as

those needed by metadata structures, and variable-length

fragments, such as those needed by row versions. Efficiency is

achieved by managing memory fragments in multiple like-sized

buckets, load-balanced and distributed across multiple cores.

Multi-threaded, non-blocking Garbage collection (IMRS-GC) is

provided to efficiently reclaim memory from older versions without

affecting transaction performance. Pack is a new sub-system that in

cooperation with the memory manager and based on ILM-rules,

relocates cold data out of the IMRS to the page-store. Multiple pack

threads are provided to guarantee stable memory utilization. The

details of the Pack/ILM sub-system are presented in [19].

Row Identity: In-memory rows are identified uniquely similar to

existing page-store rows; i.e. using a (page-ID, row#) pair. The

fabricated RID for inserted rows is referred to as a Virtual RID

(VRID). A RID is easily identified as a physical RID (for page-

store rows) or a VRID by examining the row# component, which,

for VRIDs, will be beyond the valid value for page-store rows.

An ISUD accessing data rows may find the row either in the page-

store or in the IMRS, however logical row protection is provided

using row-locks on the RID. We did not change the existing

pessimistic row-level locking when accessing data rows from an

IMRS-enabled table. ANSI Isolation levels, which are currently

implemented based on the lock manager, are, thus, fully supported

on IMRS-enabled tables. These design choices thereby ensure no

changes to application behavior.

Minor DDL extensions are provided to configure new or existing

databases with IMRS resources, such as the IMRS-cache and

sysimrslogs and to create new IMRS-enabled tables or to alter

existing tables to make them IMRS-enabled. All table schemas

and properties, such as identity columns, unique and non-unique

indexes, triggers and rules, defaults, check constraints etc., are fully

supported for IMRS-enabled tables.

2.1 ISUDs and Data Row Caching
Row caching is a table-level property that can be enabled for

datarows locked tables in an IMRS-enabled database.

Each in-memory row has an immutable header structure,

IMRHDR, off which hang multiple in-memory versions,

IMRVERS, created by updates. Figure 4 shows a pictorial layout

of an in-memory row, with multiple versions created by updates to

a row. Each row version may be of differing sizes when updates

cause the row size to change. Once minted, the row version memory

is immutable and only used for reads (or memory reclamation). The

memory for older versions is periodically reclaimed by the GC

threads.

The older versions of all rows are read-only and are used to support

snapshot isolation. This shared design of row layouts with

versioning is chosen so that for the same IMRS-enabled table we

can support ANSI isolation levels (by acquiring a lock on the latest

version of the row), and to also support timestamp based snapshot

isolation scanners to locate their “seen” version.

Figure 4. Layout of in-memory structures for one data row

Three types of rows can be stored in the IMRS for each data

partition in a table – inserted, cached and migrated rows, as

discussed below. All strategies to maintain such rows, including

memory usage, row count and other metrics are all tracked finely

per the row type, using thread-local, contention-free counters.

Inserts are performed directly in the IMRS and such rows are

referred to as inserted rows. Newly inserted rows have no foot-print

in the page-store. By directly inserting new rows to the IMRS, all

the overheads associated with page-oriented storage are removed.

Costs of page allocation is exchanged with the cost of memory

allocation, which is highly-optimized and cheaper in contrast.

Selects of inserted rows are returned directly from the IMRS,

without needing to access the page store as the row is found only in

the IMRS. BTree indexes have the intelligence to locate the latest

version of rows from the IMRS using a mapping table called RID-

map lookup, a technique which is described further on.

Selects driven by fully-qualified unique index scan returning a

single row (point-queries) from the page-store portion of an IMRS-

enabled table [usually] cache the row to the IMRS. Such rows are

referred to as cached rows. As point-query access by unique index

is commonly seen in OLTP workloads, the design principle is that

by caching such rows in the IMRS, subsequent scans to rows

cached in-memory, done without any page-latching concurrency

protocols, will be more efficient.

IMRHDR

IMRVERS Data Row Latest Version

(Packed when row gets Cold)

Older Versions maintained

to support Snapshot isolation

scanners.

GC thread reclaims memory

from these older versions.

1892

Cached rows are initially read-only rows but can subsequently be

updated in-memory if required. Only the in-memory version of the

cached row is updated, whereas the page-store image may remain

stale. Updating cached rows only in-memory again avoids page-

concurrency issues [1] that will arise when multiple rows residing

on the same data page are updated frequently and concurrently.

Updates of existing rows residing on the page-store are usually

performed in the IMRS by first re-locating the rows to the IMRS.

This process is referred to as row migration and such (updated)

rows are referred to as migrated rows. For example, point updates

qualifying a single-row with a fully-qualified unique index will

always cause row migration. Such updates are very common in

transactional systems, and, thus, are optimized to be performed in-

memory. The trade-off made here is to optimally use IMRS

memory for “hot” rows, thereby single-row update statements

cause migration. To avoid flooding the IMRS with rows

occasionally updated by a single batch-update statement, not all but

only some number of the affected rows are migrated.

Updates producing new row-versions do not cause the rows’

identity (RID or virtual RID) to change. Only the in-memory row-

image is updated with a new row version.

Updates (and deletes) to in-memory rows produce a new version

efficiently slotted-in to this chain off the header using CAS. This

scheme has several advantages. The expectation is that concurrent

transactions are busily chasing after non-intersecting rows, each of

which goes through this update sequence on different cores,

without causing scalability issues. Another key aspect of our design

is that scanners of these row versions do not need any form of

latching or reference count to provide stable access to the row

versions. Hence, multiple readers of “hot” data on different cores

also do not run into cache-line invalidation issues.

Deletes of inserted rows is performed entirely in-memory,

producing a stub delete-version as the post-image of the delete.

Deletes of migrated rows is performed similarly, with the

additional work of deleting the data row from its page-store

location deferred to background Pack processing.

2.1.1 In-Memory Row Formats and IMRS Garbage

Collection
For compressed tables, rows are stored in a compressed form on the

page. This results in additional costs of decompression while

reading, and compression, following an update. To avoid these

overheads, we chose a design of storing in-memory rows in an

uncompressed format. This may result in an increased memory

consumption for row versions, in exchange for improved run-time

performance. Finally, when the cold rows are packed to the page-

store, they will be compressed. This scheme retains the storage cost

gains of data compression in large tables while improving the

performance of accessing uncompressed rows from the IMRS.

IMRS-GC and transaction management collaborate to reclaim

memory from older versions that are no longer “seen” or required

in the system. In our experiments, we have seen that for TPCC-like

OLTP workloads generated by 240 users, about 2 IMRS-GC

threads were able to keep up with this work of reclaiming older

version memory. Any overheads due to GC activity is greatly

amortized over the work done by multiple user connections.

2.1.2 Information Life Cycle Management and Pack
Various Information Lifecycle Management (ILM) schemes to

retain only the hot data in memory and colder data in traditional

page-store are described in detail in [19]. The hotness of data is

measured using frequency of access, and the contention caused

while accessing it through page store. While the high-level

characteristic of partitions is considered, the decision on whether to

have data in IMRS or page store is made during every ISUD

operation on a row. When memory utilization crosses a threshold,

the cold data is moved back to page store using the Pack operation.

To facilitate harvesting cold rows easily, rows are maintained using

relaxed LRU queue based on their hotness. A novel technique

referred to as Timestamp Filter (TSF) is also used for determining

coldness. The ILM checks, queue management and operations such

as TSF are optimized to have minimal performance impact to user

transactions. Our experiments show that, with the help of ILM

techniques, the performance gains of in-memory processing are

realized without requiring that all data be in-memory [19].

3. INDEX MANAGEMENT
In-memory data is fully indexed and accessible using existing page-

based BTree indexes. All index properties, such as unique and non-

unique indexes, primary key constraints, identity columns in

indexes, Latch-Optimized BTree indexes [21], compressed

indexes, local and global indexes on partitioned tables are fully

supported for indexes on IMRS-enabled tables. All index

operations such as inserts, deletes, splits, shrinks etc. continue to be

logged in the page store; i.e. syslogs.

Figure 5. Index spanning rows in IMRS or in page-store

We evaluated the design of changing the leaf-row formats to

contain the in-memory row address, but this would lead to

migration issues for existing indexes. The leaf level of the index

continues to hold {key-values, RID}. The RID in the index leaf row

is a Virtual RID (VRID) for inserted rows, while it is a physical

RID for page-store rows. This allows existing databases to easily

migrate to the new storage architecture without having to unload –

reload the data or perform an index rebuild before altering page-

store tables to become IMRS-enabled tables. Figure 5 shows two

forms of a BTree index spanning rows in the two stores.

For access to in-memory rows, index scans use a RID-Map lookup

table to map the RID to a memory address. Every row in the IMRS

is guaranteed to have an entry in the RID-map table. Figure 6 shows

the multi-level segmented-array layout of the RID-map table.

Each level of this table maps to contiguous chunks of pages in the

database’s space map. As the IMRS is designed to hold “hot” active

rows, only some small percentage of rows are expected to be in the

RID-Map table. This is a sparse table blossoming out to allocate

and fill-out sub-arrays at each level holding pointers to sub-arrays

at the next level. Over time, as rows are removed from the IMRS,

(b) Index points to
some rows in the IMRS

and some rows in the page-store

(a) Index points to
all rows in the IMRS

1893

the structures at each level are de-allocated, and this table shrinks

to maintain sparseness. For rows that are not in-memory, the RID-

Map probe typically returns early without having to traverse non-

existent sub-levels. This table is managed using very efficient

lockless lookups and CAS-based updates to grow and shrink the

memory at different levels. RID-map probes are not expected to be

a performance bottleneck, which has also been validated in our

internal benchmarking. Two RID-map lookup tables are provided

– one holding addresses of inserted rows, and the other for migrated

and cached rows. The RID itself is self-identifying as a VRID or a

RID, simplifying which RID-map table to lookup.

Inserted rows only exist in the IMRS. Therefore, the RID-Map

lookup will always return the row’s in-memory address. The

handling of migrated or cached rows is slightly different. For every

access to rows in the page-store, an additional probe in the RID-

Figure 6. RID-Map Table: Multi-level segmented array access

Map lookup table is needed to ascertain if the (latest version of the

migrated or cached) data row may be in the IMRS. If the probe fails

to find the RID, then the latest copy of the row is guaranteed to be

on the page-store. Scan reverts to normal page-based scan methods.

3.1 Hash-Cached Indexes
In highly-concurrent OLTP workloads driven by multi-level BTree,

index scans are known to encounter scalability issues due to access

to index pages from different cores. BTree index scan takes

significant part of the overall data access time. Latch-Free BTree

[21] indexes improve this situation to some extent. In our

architecture, “hot” rows are in the IMRS, thus data row access can

be much faster than before.

It is efficient to support a full hash index if all data rows reside in

memory. However, for cases that only some small percentage of

data rows reside in-memory, building a hash index on the full table

may result in extra memory consumption without reaping any

benefits from the hash-index on data that is never referenced. Thus,

keeping in line with the “hot” rows concept of this architecture, we

chose to not build a hash-index on the full table; i.e. on the page-

store data as well.

Many OLTP tables are seen to have unique indexes, and selects /

updates using such indexes to return one row are common. We

designed in-memory hash indexes to address this spectrum of

OLTP workloads. In the BTrim architecture, we support a feature

called “index hash caching” where, for a unique BTree index, an

in-memory non-logged hash index on in-memory rows of the table

is created. Such an index is called Hash Cached BTree (HCB)

index. BTree index continues spanning all data rows that are in the

IMRS and the page-store, and is still the access method for range

queries. Hash index scans are designed as fast-path accelerator

under fully-qualified unique BTree index scans.

The hash index is initially empty when created. New data inserted

to the IMRS will not be loaded into the hash index, till the time

such rows are accessed. For a point query, before traversing the

possibly multiple levels of a BTree index, a light-weight hash-index

probe is performed to locate the (one) row in-memory. If this probe

succeeds, return the row from the IMRS, thereby the potentially

expensive BTree search is completely avoided. If the probe fails,

the query continues with the BTree search. When “hot” data rows

are accessed from the IMRS by the BTree search, new rows will be

loaded as entries in the hash index. We expect that over-time, as

data rows that are stored in the IMRS are scanned, the

corresponding hash index will be populated. Thus, for frequently

scanned in-memory rows, the hash-index lookup will return rows

faster than via an index scan. Finally, when cold data rows are

evicted from the IMRS, or they are deleted, the corresponding hash

nodes will be deleted.

As we show in our experimental results (Sec. 5.1.1), re-directing

BTree scans to the hash index greatly reduces the code-path of

index scans, thereby improving performance. This hash index

design has several multi-core scalability and performance benefits:

1. The hash index is built on top of lock-free hash table, and all

changes to it are done using compare-and-swap (CAS).

2. No extra logging is done for hash table maintenance.

3. The payload of a hash node (e.g., information about the

corresponding IMRS data row, hash value, timestamp used for

memory reclamation, row identity, linkage pointers) is

designed to be cache-line friendly, and fits within 64-bytes.

4. All hash nodes mapped to one bucket are ordered. This permits

short-circuiting scans if no matching hash node is found.

4. IMRS DURABILITY
Transactions affecting in-memory rows are fully durable and

recoverable. Crash recovery and recovery from archives (dump /

load of database and / or series of transaction logs) is fully

integrated into the product. This section discusses changes made to

the transaction management, and to the logging and recovery layers

to make transactions affecting in-memory rows fully durable.

4.1 IMRS Log – Sysimrslogs
Sysimrslogs is the [database-specific] disk-based transaction log

holding full row-images of committed rows residing in the IMRS.

It is used both for durability of committed changes at run-time and

eventually as the data source to re-instantiate the contents of the

IMRS during crash recovery, or recovery from database /

transaction log archives.

4.2 Logging and Transaction Management
Transactions and ISUDs are allowed to span ordinary tables and

IMRS-enabled tables. A single DML statement on an IMRS-

enabled table may affect both in-memory rows and page-store

rows. As an example, a simple insert to the IMRS for a table with

a single index produces an in-memory data row and a page-store

Level-1

32 slots

Level-3

No. of rows

RID: (4532,2)

Level-0
Db-wide

Level-2

8 slots

Only come into existence when rows

from affected pages are brought in the IMRS

Represents a page holding

one or more in-memory rows

1894

resident index row. Another example is an update statement

updating some rows in the page-store and others in the IMRS.

Each portion of the statement’s execution, or more generally the

transactions’, affecting in-memory rows or page-store rows is made

durable in the corresponding transaction log. For the prior

examples, a single row insert will log the insert of the data row in

sysimrslogs and log the insert of the index row in syslogs. Thus, a

transaction affecting IMRS-enabled tables may have a set of

changes committing to syslogs and another set of changes

committing to sysimrslogs.

A transaction is deemed to be committed only when both sets of

changes are made durable. The reason for this design choice of two-

legged logging is to overcome bottlenecks traditionally seen in

syslogs-based logging. One example is the way run-time rollback

is implemented. Rollback of changes to rows in the page-store is

performed by scanning log records in syslogs. However,

transaction rollback and rollback to savepoint for changes to in-

memory rows is performed by scanning the in-memory versions

created as part of a transaction, thereby improving performance.

4.3 Commit-Time Logging – No Undo
New designs are introduced in sysimrslogs to overcome existing

scalability bottlenecks seen with syslogs in the page store.

Logging in sysimrslogs: Firstly, as in-memory rows are not

resident in data buffers, the overheads of dirtying buffers, pinning

dirty buffers to the PLC, or to syslogs, unpinning buffers etc. are

automatically non-existent. Even for updates to migrated rows,

the home-buffer holding the migrated row is no longer involved in

the update. That holding data buffer could well have been

decoupled from the in-memory row and recycled out of the buffer

cache, and does not participate in the update transaction. Secondly,

a new technique called aggregate logging is employed for in-

memory updates. If multiple updates are done to an in-memory row

in a transaction, only the final after-image is logged to sysimrslogs.

(Contrastingly, such multiple updates in a transaction to the same

page-store row generate a log record for each update.) Next, only

commit-time logging is performed. At commit-time, the in-

memory versions, which are located easily off the transaction

descriptor, are scanned, and log records are generated directly into

sysirmslogs for the final images of modified rows. This way, at

transaction run-time, no intermediate copies of log records are

generated (in PLC) and the double-copying, like in syslogs, is

avoided. Commit-only logging has significant advantages to crash

recovery where only redo-processing is needed and the undo phase

is completely avoided. Also, we claim that commit-time logging

strategy is eminently suited for the IMRS. Implementing this for

the page-store rows is practically unviable as we would have to hunt

down potentially several buffers which were changed as part of a

single transaction. This would introduce another degree of

contention on buffer / page management.

4.4 Log Space Management
All the bottlenecks discussed earlier for syslogs are overcome by

basic changes in the way space management and logging is done to

sysimrslogs.

The space on the imrslog device is dedicated to one sysimrslogs of

one database and is not shared by other objects. Space on the

imrslog device is serially allocated to sysimrslogs as contiguous

pages. This space remains allocated. No page allocation or

deallocation ever occurs once the space has been allocated to the

imrslog in the database. Transactions do not have to contend with

allocation costs at run-time. The dynamically active portion of

sysimrslogs is tracked using metadata structures, while the first/last

pages of the space map remain fixed. Serial allocation facilitates

space pre-reservation at commit time, as explained next.

The last-log page contention point problem is overcome by a

scheme termed as transaction blocking which provides multiple

insertion points to the sysimrslogs page stream to concurrently

committing transactions.

Figure 7 shows the log record streams for different transactions, T1,

T2, … T6, that have committed on different log pages P1, P2, P3

etc. All the log records from a transaction appear in a contiguous

chunk of space, shown in hashed regions, referred to as the

transaction block. At run-time, while row versions are created,

simple counters are maintained off the transaction descriptor for the

total logging space that is going to be required at commit time.

When a transaction commits, under briefly held exclusive access

protection to the current end of the active portion of sysimrslogs,

sufficient space is reserved and assigned to one committing

transaction, following which the exclusive access is released.

Subsequently other committing transactions serially get access to

the new active end of the page chain to reserve the space for their

log records. Once this space is made available, multiple

transactions can commit simultaneously generating their log

records directly into this reserved set of pages, without any further

concurrency issues.

Figure 7. Transaction Blocking in sysimrslogs

In the case where a transaction block contains more than one page

(as in T2 and T5 above), only the boundary pages (first and last

page) of the transaction block may be shared among transactions.

Since the transaction block space of different transactions assigned

to the same page is also disjoint, writing log records in these

transaction blocks is done concurrently without holding any

exclusive access to the buffer (e.g. T2, T3 and T4 can be writing

their log records concurrently to the same page P2). For small

transactions committing few rows, log pages can be shared between

committing threads, in which case traditional group-commit

methods are used to ensure I/O efficiencies during logging.

Conventional WAL techniques are needed for logging changes to

page-oriented rows, whereas in sysimrslogs, as we do not have to

deal with dirty’ing pages due to changes to in-memory rows, WAL

is essentially moot.

For large transactions, there may appear to be significant “extra

work” at commit time to generate all the records and to persist them

to the log pages. Drip logging in the page-store which is amortized

over the transaction’s code path by the use of WAL is, perhaps,

more needed for disk systems that were prevalent when such

techniques were first introduced to databases. Currently, we believe

with availability of devices and SSDs capable of supporting very

P1 P2 P3 P4 P5

T4 T2 T3 T5 T1 T6

1895

high I/O rates, commit-time latency should no longer be an issue.

This is confirmed in our experiments where we did not notice any

measurable commit-time latency arising from this design.

4.5 Crash Recovery – IMRS Recovery
IMRS recovery using sysimrslogs as the durable store is performed

as follows. As only commit-time logging is performed, only a redo-

phase is required for processing all committed changes found in the

log. No undo is needed, therefore logging of CLRs or other such

scheme is skipped (both at run-time and at recovery time).

Unlike for the page store where checkpoint writes out all dirty

buffers including log and data to the disk, no data in the IMRS will

be written to disk. Only some book-keeping information is

persisted to enable recovery processing.

Recovery of the sysimrslogs starts from the transaction that inserted

the oldest row in the IMRS cache. Earlier sections in the

sysimrslogs will not be used by recovery since the rows created by

those transactions no longer exist in the IMRS cache.

Recovery is done by transactions. Since transactions are grouped in

disjoint blocks in sysimrslogs, if there were any transaction blocks

that were reserved but not yet fully committed at the time of crash,

those invalid transaction blocks will be skipped over by recovery.

5. PERFORMANCE EVALUATION
The objective of our performance evaluation was to understand the

costs of in-memory processing and whether the benefits overcome

the bottlenecks seen in high-volume transactional workloads run

against the page-store. In all experiments, we ensured that the page-

store data is fully-cached in the buffer cache, thereby, avoiding any

I/O costs. Therefore, no further gains can be obtained by providing

any more memory to the buffer cache. Instead, we show that any

additional memory can be deployed to the IMRS to deliver

enhanced performance for large classes of workloads.

Using the same version of the software, we conducted a series of

micro-benchmarks and end-to-end OLTP benchmarking tests. For

each experiment, we uniformly performed a warm-up run followed

by 3 runs. The metrics from the warm-up run were discarded.

In all our experiments, we observed that the throughput metric

across the 3 runs were within 10%, therefore we used the median

value of the metric across these runs for comparison between the

page store and the IMRS.

To reiterate, in this section, a page-store table refers to ordinary

tables which have data stored in pages, and use the buffer cache.

IMRS refers to tables enabled with the row-caching feature and

store rows in-memory. HCB refers to the addition of hash-indexes

on such IMRS-enabled tables, where the hash-index is used as a

performance accelerator under unique BTree indexes. In general,

as the goal of our experiments was to study the benefits of the

IMRS, built as the new architecture, we did not pursue any further

optimizations to the page-store code even though it may appear that

there are low-hanging short-comings in the current page-store

machinery that are easily fixable. (We consider that as a never-

ending game of cat-and-mouse performance tuning!)

5.1 Micro-benchmarks
We performed a series of micro-benchmarks to study the execution

behavior of inserts, selects and updates. These operations constitute

the bulk of OLTP workloads. The benchmarks focused on overall

throughput (e.g. number of transactions / minute, or number of

selects / minute). As our focus was to measure the gains from in-

memory processing on the server-side, all experiments were

conducted using stored procedures. This, therefore, eliminates any

network traffic of result sets to the client. We did not focus on

measuring latency, for example, the time to return the 1st row from

a select, as that was not the areas re-designed in this work.

The RID-map lookup and hash-index probes done for in-memory

rows could appear to be an additional overhead, but we did not find

these to be of any noticeable cost. In any of the CPU profiles done

in all our experiments (including end-to-end benchmarking), we

noted the relevant functions to be consuming less than 2% of the

overall CPU cycles. Similarly, we noticed that the overheads of

IMRS-GC, which runs as a background thread, is not significant,

contributing less than 3% of overall CPU usage even in high-end

OLTP workloads. Thus, we did not perform specific micro-

benchmarking to further evaluate the impact of these new

techniques.

We used the stock table of the standard TPCC benchmark for all

micro-benchmarks, designed for 240 warehouses. The stock table

has 17 fixed-length columns – 6 integer columns and 11 char

columns, with a fixed row-size of 312 bytes. The choice of a fixed

row-size for this table allowed us to accurately measure logging

overheads and log space consumption in both the transaction logs.

The table has a composite clustered index on two integer columns

(warehouse_id and item_id), for an index row-size of 12 bytes. For

each warehouse, the stock table has 100K item IDs, for a total of

24 million rows. In our implementation on 16K database page sizes,

for 24 million rows, the height of the index was three (root and two

levels). For the select and update micro-benchmarks, the table was

fully loaded, but the activity was focused on about 5 – 100+ pages

of the table. This reflects the usage pattern where we expect to see

benefits from the IMRS; i.e. highly concurrent activity on data. The

thin slice chosen of the (large) stock table is meant to represent

either a small but very active table, or some “hot” slice of data of

large tables. For the insert micro-benchmark the table was initially

empty and multiple clients insert rows concurrently.

We designed the micro-benchmarking experiments to evaluate the

additional benefits of using HCB in conjunction with the IMRS as

follows. For the select micro-benchmark, we measured the select

throughput for (a) just the IMRS (no HCB) and (b) IMRS plus

HCB. For inserts, the stock table did have HCB enabled, but as the

HCB is not maintained (or affected) during inserts, it was not

necessary to separately measure insert throughputs for the IMRS-

only case.

For updates, we anticipate that the scan portion of an update of in-

memory rows will be benefitted by the presence of an HCB. We

performed the update micro-benchmark with both the IMRS and

HCB to study the combined gains in comparison to the costs of

performing the updates in the page-store.

For all experiments, the scalability was tested up to 64 CPUs (using

64 ASE threads). Since these are all throughput workloads, the

experiments were executed using as many users as needed to drive

maximum throughput on the server-side.

The experiments presented in this section were performed on a

machine with an Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

processor, having 4 sockets, 112 cores (224 logical CPUs), with

1TB RAM. All concurrent clients and the server were run from the

same box, which eliminates any network overhead for client-server

communication.

1896

5.1.1 Highly Concurrent selects of hot rows
We designed this experiment to measure the performance and

scalability with increasing number of concurrent selects. In this

experiment, we varied the number of ASE threads from 2 to 64, and

had multiple clients repeatedly select a row each from the stock

table using fully qualified index predicate. As each client’s select

was driven through stored procedures (i.e. without any network

overheads), it was sufficient to have the number of concurrent

clients in each experiment be the same as the number of ASE

threads. Each client repeatedly selects the same row corresponding

to its client-id, so different rows are selected across clients. In the

warm-up run of this experiment, selects done by individual clients

cause their affected rows to be cached in the buffer cache or in the

IMRS. Effectively, this experiment compares the performance

between selects of rows fully cached in the buffer-cache versus

rows fully cached in the IMRS.

Even though this is a read-only workload, in the page-store we

maintain reference counts on the accessed data or index pages.

Additionally, shared-latches are required to ensure physical

consistency while accessing the page. On multi-core systems, these

primitives cause cache-line invalidation, even though multiple

clients are accessing different rows, when they happen to be stored

on the same data page. This results in increased contention,

resulting in degraded scalability.

Figure 8 shows the performance gains with IMRS alone and then,

with HCB on top of it, at various number of CPUs.

Figure 8: Performance gains for concurrent selects

At lower thread counts (2, 4), there is not much contention in page

store runs. The gains observed with IMRS, and especially with

HCB (2 – 2.5X) are due to (a) short circuiting the multi-layer B-

tree access by HCB and (b) the code-path improvements of faster

access of rows in the IMRS. Beyond 16 thread counts, we observed

a significant drop in the page store performance, largely due to the

contention issues noted above.

As access to in-memory rows is latch-free and completely avoids

the page cache, these contention points for data pages are overcome

by the IMRS. This results in an improved performance (18X at 64

engines). With HCB in the picture, we then completely eliminate

this contention even on index pages. At high core counts, for the

highly concurrent select workload, with IMRS + HCB, we were

able to deliver significantly improved performance gains as

compared to the page-store – 57X at 64 core-counts.

5.1.2 Highly Concurrent inserts
We designed this experiment to measure the performance of highly-

concurrent inserts on ASE with 64 threads. For a fixed number of

concurrently inserting 240 clients, starting from an empty table,

each client inserts 100 K rows to its assigned warehouse ID. We

varied the transaction size by changing the number of rows inserted

per transaction. This allows us to study the impact of transaction

size on overall insert throughput and any commit-latency due to

logging.

For inserts to the page-store, the presence of a clustered index on

(warehouse_id, item_id) attempts to guide the insertion from

different clients to different data page. However, at high

concurrency, we observed that different clients may end up

inserting into a small set of target data pages at a time which causes

page-level contention.

Inserts to the IMRS are independent of the clustered index as we do

not attempt to maintain any sort of in-memory “clustering” of

newly inserted rows. Insert into the IMRS-enabled stock table still

logs the index insert in the page store. So, we performed two set of

experiments – one without the index and one with the index. The

results are showin in Figure 9.

Figure 9: Performance gains for concurrent inserts

Certain aspects of transaction performance, such as the perceived

commit-time latency that may occur due to the generation of log

records while logging to sysimrslogs, is measured indirectly, and is

subsumed in the overall throughput metric.

There are multiple interesting data-points highlighted from these

experiments:

1. Larger transaction sizes cause greater degree of conflicts

across transaction. As the inserts into the page-store are

impacted by page-level contention, the performance is

affected negatively by larger transaction sizes. In contrast,

IMRS runs keep improving with larger transaction sizes.

2. At lower transaction sizes (especially size of 1), for both page

store and IMRS, the performance is bottlenecked by the

18X

57X

0

2,000

4,000

6,000

8,000

10,000

12,000

2 4 8 16 32 64

K
 S

el
ec

ts
 /

 s
ec

of ASE threads

Highly concurrent selects of hot rows

PageStore IMRS IMRS+HCB

3.7X

1.94X

0

500

1,000

1,500

1 10 100 1000 10000

K
 In

se
rt

s/
se

c

Transaction sizes

Highly concurrent inserts (64 threads)

PS - no index IMRS - no index

PS - index IMRS - index

1897

commit-time behavior. However, for IMRS, with the design

of performing only the space reservation under a semaphore,

and due to multiple insertion points to concurrently

committing transactions, the performance is greatly improved.

Even for the simplest case of 1-row inserts / transaction, insert

performance in IMRS is 1.8-2X better than in the page-store.

As the transaction size increases, the benefits from multiple

insertion points to sysimrslogs are accentuated, resulting in

higher relative throughput. For example, at a transaction size

of 100 rows, each commit independently writes to, and

flushes, slightly more than 2 IMRS log pages. This allows

several concurrently committing transactions to drive the

imrslog I/O system. Also, as commit-time logging in

sysimrslogs generates logging directly to the log page, we

avoid the overhead of double-copying seen in the case of

logging in syslogs.

3. The increased IMRS performance gains over the page-store

for the no-index inserts v/s inserts-with-index case is

explained as follows. (For example, for the transaction size of

10K rows, we are comparing 3.7X v/s 1.94X.) Index inserts

are logged in syslogs, and the known contention issues with

syslogs degrades the performance of insert throughput for the

case with index in comparison to without an index.

Note that the amount of log generated for page store versus IMRS

for insert workload is in the same ballpark and the difference in

performance is not due to the difference in the amount of log

generated (unlike in the case of update workload, which we will

study next).

In conclusion, we observed that highly-concurrent inserts perform

significantly better in the IMRS. We do note that the overheads of

inserting to the page-store can also be partly overcome by

partitioning the table n-ways, thereby providing multiple insertion

points. In practice, however, this would require DBA intervention

on a case-by-case basis to partition selected tables, which is

detrimental to the overall TCO of the product. Therefore, we did

not pursue the experiments to verify the potential gains from

partitioning.

5.1.3 Highly Concurrent updates of hot rows
We designed the experiments to measure the difference in

throughput due to:

a) Varying degree of contention on updated pages

b) Varying transaction sizes (# of updates per transaction)

c) Varying update width; narrow v/s wide updates. i.e. updates

of 1 column v/s several or all columns, respectively.

We used the stock table for this experiment, again for the reason

that the logging overhead is deterministic due to the fixed row-size.

Updates to different rows are performed by 240 clients. Initially we

performed narrow updates; i.e., update of a single non-index

column. The server was run using 64 threads. Non-intersecting

rows were updated by different clients so that we do not run into

logical locking issues and focus only on update throughput. In page

store, the updated rows may reside on the same page.

For dimension (a), fixed non-overlapping chunks of rows to be

updated are “assigned” to a client, and we varied the size of this

chunk from 1 row to 5, 25, 125 contiguous rows. Recall that on a

16K data page, about 50 rows fit on a page. Therefore, the average

number of clients updating rows on the same page in the page store

runs correspondingly varies from 50 (chunk size of 1) to 10, 2 and

0.4 (chunk size of 125). The former extreme would have maximum

page contention in page store runs whereas the latter would have

least page contention, as each client works on a separate page. With

this distribution, 240 clients updating a single row each affects 5

pages, whereas all clients updating 125 rows each affects 600

pages. This simulates the variation in the size of “hot” pages in the

workload. This distribution is captured in Table 4.

For dimension (b), we varied the number of updates done by a client

within a transaction, from 1, 10 to 100. Note that, in an experiment,

the chunk of rows assigned to a client remains fixed. So, all updates

within a transaction get done on random rows within this chunk of

assigned rows, and, in some cases, a row may get updated more

than once within a transaction. For example, with a chunk size of 1

row, and a transaction size of 10 updates, the same row will be

updated 10 times. (We realize this may not be a common case, but

is included to study the overall distribution.) On the other hand,

with a chunk size of 25, and transaction size of 10 updates, on an

average, every other row in the chunk assigned to a client will be

updated. For completeness of the spectrum of combinations, we

still examine the throughput when some rows may be updated

multiple times within the same transaction.

Table 4. Distribution of page contention v/s chunk size

Chunk sizes (Rows assigned to a

client)

1 5 25 125

Total number of distinct pages in

the updated “working set”

5 24 120 600

Concurrent clients updating per

page

50 10 2 0.4

Page contention decreases

Figure 10 shows the throughput of single-column updates for page-

store and IMRS for all combinations of transaction size and update

chunks considered. In the legend of this figure, PS-1 indicates the

page-store run with transaction size of 1. Likewise, IMRS-10

indicates the IMRS-run with a transaction size of 10 updates.

Figure 10: Performance gains for 1-column updates

0.78X

5X

0

200

400

600

800

1,000

1,200

50 10 2 0.4

K
 U

p
d

at
es

 /
 s

ec

Concurrent updating clients / page
(Corresponds to chunk sizes of {1, 5, 25, 125})

Highly concurrent updates of 1 column

PS-1 PS-10 PS-100

IMRS-1 IMRS-10 IMRS-100

1898

We observed the following performance characteristics:

1. Across the page store run, as expected, with fewer concurrent

clients updating on the same page, the performance keeps

improving as there are lesser page contention. In contrast, for

the IMRS the performance is relatively constant.

2. With a transaction size of 1 (PS-1, IMRS-1), the throughput is

lower in all experiments, because the commit time bottlenecks

dominate the performance. However, IMRS performs

relatively better (~3X over PS-1) due to the improved

sysimrslogs strategies, explained in the previous section.

3. For cases where the same row is updated multiple times in a

transaction, IMRS updates benefit due to aggregate logging.

(For example, in IMRS-10 with chunk sizes of 1 and 5, and

for IMRS-100, with chunk sizes of 1, 5 and 25.) For IMRS,

only one log record representing the net change gets logged

for a row, thus the amount of log generated is lesser.

Lastly, note that in the absence of page contention i.e. at chunk size

of 125 (0.4 clients/page), the IMRS actually performs poorer than

page store. This is due to the full-image logging done in IMRS

versus the delta-logging done in the page store. Recall that this

workload involves updating a single column in the table. IMRS

logging would involve writing a new image for the entire row

whereas page store logging involves writing only the modify log

record for the updated column. Beyond micro-benchmarking, this

is not really seen as a drawback for user-workloads.

Figure 11: Performance gains for all-columns update

For several cases, such as replicated tables, for tables with triggers,

for some classes of multi-row updates driven by a join or, more

commonly, when a large number of columns in the row are updated,

updates in the page store do generate full before/after image

logging. In fact, in such cases, the log record volume is double for

page-store changes as compared to changes in the IMRS because

we only log the after-image for changes affecting rows in the

IMRS. To demonstrate this behaviour we repeated the experiments

with all the 15 non-index columns updated. The results are shown

in Figure 11.

In conclusion, for highly concurrent updates in small transactions,

on small tables and for narrow or wide updates, IMRS out-performs

the page store by factor of 3.

5.2 End-to-end benchmarks
While micro-benchmarks are useful to demonstrate particular

aspects of the design, what matters finally is the improvements seen

in an end-to-end workload. Our end-to-end OLTP benchmark is

based on TPCC. The experiments in this section were performed

on a machine with an Intel Xeon E7-4880 @ 2.50 GHz processor,

having 4 sockets / 60 cores / 120 logical CPUs, with 1TB RAM.

On 64-CPUs, with 250 users performing a mix of ISUD

transactions, similar to those in the TPCC benchmark, we are able

to deliver close to 3X gains for throughput metric (total

transactions / minute), when comparing the OLTP benchmark

running in the page-store v/s in the IMRS. To conform to low

TCO and usability considerations, minimal tunings were used

which can be implemented primarily through configuration

changes without needing extensive table-, index- or cache-specific

tuning. It is important to note that the entire stored-procedures

based benchmarking code ran with no need for any code changes

when executed against the IMRS.

Figure 12 shows the throughput scalability for this workload across

multiple. While both architectures scale similarly at lower number

of cores, the page-store is not able to scale beyond 32 cores. IMRS

is able to scale almost linearly till 64 cores.

In this workload, the order_line and orders tables have similar

highly concurrent insertion pattern as seen in the insert

microbenchmark earlier and thus page store has similar

bottlenecks. The warehouse and district tables which are small

tables and are frequently updated, have similar page conflicts in

case of page store as observed in the concurrent update

microbenchmark. IMRS is able to resolve these scaling issues in

the end-to-end workload resulting in significant performance gains.

We anticipate other real-life OLTP workloads to also have similar

access patterns and, thus, the resulting gains by use of IMRS.

In future, we plan to investigate the performance characteristics of

the SAP SD Benchmark when run against the IMRS.

6. RELATED WORK
Several commercial in-memory database engines are available in

the market, with different capabilities. SAP Hana [5] [20], [24],

Oracle TimesTen [15], [17], Oracle RDB [12], Microsoft Hekaton

[2], [3] and VoltDB [26] are a few comparable offerings. There are

notable differences between existing offerings and our work.

4.4X 1.5X

0

500

1,000

1,500

50 10 2 0.4

K
 U

p
d

at
es

 /
 s

ec

Concurrent updating clients / page
(Corresponds to chunk sizes of {1, 5, 25, 125})

Highly concurrent updates with all columns
updated

PS-1 PS-10 PS-100

IMRS-1 IMRS-10 IMRS-100

Figure 12: Multi-core scaling for an E2E workload

1899

Many of the existing offerings, such as SAP HANA, Microsoft’s

Hekaton, and VoltDB require that the entire database or table be

fully memory-resident. Our offering does not have this

requirement, and allows for smaller portion of “hot” rows from

some tables to be in-memory. Oracle TimesTen is more on the lines

of an application-tier caching system, which can be deployed with

an application like a library or as an extension of the database

engine. Although it is similar in capability with our offering, it is

still a separate product needing its own installation and

administration in addition to that of the core database engine.

Oracle RDB has a feature set of data row caching similar to our

offering, but it was not clear from available literature if support is

provided for identifying cold rows and moving them from the in-

memory cache to the database physical storage. Organic integration

of ILM rules within the database engine and IMRS is a key

differentiator of our offering. However, Oracle Rdb also offers

caching of index rows, which is currently not supported in BTrim.

Our offering is very similar to Microsoft’s Hekaton offering

integrated with SQL Server, both using in-memory versioning

offering snapshot isolation. However, there are significant

differentiating aspects. Hekaton requires that tables marked as in-

memory be fully memory-resident, whereas in BTrim this is not a

requirement. For very large tables, the design of Hash-Cache BTree

indexes under unique indexes in our design provides high-

performance for point-query access to “hot” data in-memory

without the need for large memory footprint for a hash index

spanning all the table’s data in the cache (as is the design in

Hekaton). As of this writing, we believe Hekaton does not offer

schemes to organically harvest cold rows from the cache and

migrate the cold-data to disk-based storage. Some work in the area

of cold-data management has been published in this area (Siberia

[5] and by Levandoski et’ al’ [13]), but is not, yet, commercially

integrated with the core dbms engine. Also, the techniques rely on,

howsoever efficient, off-line analysis of log streams which then can

lead to identifying cold rows. In contrast, organically identifying

and packing cold rows out of the IMRS to the page-store is an

integral and differentiating part of our offering. The overheads of

this cold-data harvesting is very minimal and is not seen to impact

OLTP performance in our experimental results [19].

In [3], techniques referred to as Anti-Caching; i.e. moving cold data

from in-memory to disk storage, are presented as an extensible

alternative to fully in-memory databases. The anti-caching aspects

of this work is close to our Pack design however, their storage

model starts initially in-memory and then pushes cold data to disk-

storage. This is different from BTrim where we support a hybrid

storage model for existing databases which already have on-disk

data and augment that with in-memory storage for faster

processing. In the Anti-caching work, access to cold data that was

evicted (i.e. access from page-store) results in rolling back certain

transactions while the system retrieves relevant tuples in the

background. This approach seems quite non-user-friendly. Our

scheme has no such issues with application outages.

Since the early editions of Hekaton offering with SQL Server, there

have been serious limitations on features that could be supported

on in-memory tables. Some of these have been bridged with later

editions of the product. However, literature [14] suggests that there

still are limitations to SQL usage with in-memory tables. Features

such as Replication, data compression, non-clustered indexes,

partitioning of memory-optimized tables are unsupported on in-

memory tables. Our offering is feature-compatible in all these areas

with existing versions of the product. With Hekaton, there are

documented limitations [15] on the types of accesses that can be

done to in-memory tables from natively-compiled stored

procedures. As an example: Natively compiled T-SQL modules do

not support the FROM clause and do not support subqueries in

UPDATE statements (they are supported in SELECT). In our

offering, no such limitations exist on what language constructs can

be used in any part of the system. Although full support for

natively-compiled SQL is not offered, SAP ASE [21] does offer

performance improvements by generating compiled code for

optimizing execution of tight-loops in search and index

qualification code. There is no distinction made when native

compiled plan is generated and executed while scanning data for

IMRS-enabled tables or page-store tables. Choice of pessimistic

locking in our offering allows complete support for ANSI isolation

levels on in-memory tables, and full application compatibility.

Contrastingly, choice of optimistic locking for Hekaton in-memory

tables can result in changes in application logic to retry transactions

that may fail due to concurrency conflicts.

In [7], Graefe et al present an architecture that optimizes buffer pool

designs to support “big data” workloads which cannot fit in

available memory sizes. This work manages buffer pool usage

using pointer swizzling, but does not address areas considered by

this work around contention issues arising from page-oriented

storage and row-level in-memory processing.

7. CONCLUDING REMARKS
In this work, we presented a novel in-memory row-oriented storage

extension tightly integrated with the page-based storage, buffer

cache and access methods of the traditional SAP ASE database

engine, to offer high-performance overcoming contention and

scalability issues seen in typical database servers, including those

seen in previous editions of this product. Tight and deep integration

to the existing architecture delivers full language and application

compatibility to existing and migrating customers, allowing better

use of available memory and multi-core resources for higher-end

OLTP workloads, and more importantly, of human-resources

needed for any migration effort.

The new architecture does not require that all table data, or much

worse, the entire database be fully memory-resident. Capturing the

patterns of data-ageing, the hybrid architecture allows for data to

flow through the storage layers (disk, buffer cache or in-memory

store), and tightly integrates the in-memory storage techniques to

existing access methods.

We believe this technology, with its performance gains, and

compatibility levels enabled by the deep integration with the

existing product is fundamentally different than any other

enterprise-class commercial database engine available today.

8. ACKNOWLEDGEMENTS
We would like to express our sincere appreciation to all members

of the ASE Product development and Server Performance

Engineering teams who have contributed to making this integrated

product offering a reality. Aditya Gurajada and Fei Zhou, among

the primary authors of this work, have since retired from SAP.

Contributions by Rahul Mittal, Jay Sudrik and Graham Ivey who

delivered key pieces of this architecture (but are currently not at

SAP) is duly acknowledged. Contributions by Piyush Dungarwal

in the area of performance enhancements and benchmarking are

duly acknowledged.

1900

9. REFERENCES
[1] Ailamaki A., DeWitt J. David, Hill D.M., Wood A. D.,

DBMSs On A Modern Processor: Where Does Time Go? In

VLDB, pages 266-277, 1999.

[2] Delaney K. Online White Paper. SQL Server In-Memory

OLTP Internals for SQL Server 2016, June 2016.

[3] DeBrabant J., Pavlo A., Tu S., Stonebraker M. and Zdonik S.

Anti-Caching: A new approach to Database Management

System Architecture. PVLDB, 6(14):1942-1953, 2013.

[4] Diaconu C., Freedman C., Ismert E., Larson P., Mittal P.,

Stonecipher R., Verma N., Zwilling, M. Hekaton: SQL

Server’s Memory-Optimized OLTP Engine. In SIGMOD,

pages 1243-1254, 2013.

[5] Eldawy Ahmed, Lavendoski Justin and Larson Per-Ake.

Trekking through Siberia: Managing Cold Data in an In-

memory Database. PVLDB, 7(11):931-942, 2014.

[6] Farber Franz, May Norma et al. The SAP HANA Database –

An Architecture Overview. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, 2012.

[7] G. Graefe, et al. In-Memory Performance for Big Data.

PVLDB, 8(1):37-48, 2014.

[8] Grund M., Kruger J., Plattner H., Zeier A., Cudre-Mauroux

P. and Madden S. HYRISE – A Main Memory Hybrid Storage

Engine. PVLDB, 4(2):105-116, 2010.

[9] Harizopoulos, S., Abadi, Daniel J., Madden, Samuel,

Stonebrake, Michael. OLTP Through the Looking Glass, and

What we Found There. In SIGMOD, pages 981-992, 2008.

[10] Hobbs, L., Smith I., England K. Rdb: A Comprehensive

Guide, 3rd edition. Digital Press, Oxford, 1999, 167-169.

[11] Johnson R., Pandis I., Hardavellas N., Ailamaki A., Falsafi

B. Shore-MT: A Scalable Storage Manager for the Multicore

Era. In ACM, 2009.

[12] Lastovica, N., Oracle Rdb Technology Group. Guide to

Database Performance and Tuning: Row Cache

Enhancements, A feature of Oracle Rdb. Rdb Journal, Aug

2003.

[13] Levandoski Justin, Laron Per-Ake, Stoica Radu. Identifying

Hot and Cold Data in Main-Memory Databases. In ICDE,

2013.

[14] Microsoft SQL Server Online Docs, Transact SQL

Constructs Not Supported by In-Memory OLTP.

https://docs.microsoft.com/en-us/sql/relational-databases/in-

memory-oltp/transact-sql-constructs-not-supported-by-in-

memory-oltp, Nov 2017.

[15] Microsoft SQL Server online docs, Migration Issues for

Natively compiled procedures. www.microsoft.com, 2017.

[16] Oracle TimesTen White paper, Using Oracle TimesTen

Application-Tier Database Cache to Accelerate the Oracle

Database, Oct 2014.

[17] Oracle TimesTen online documentation, various.

www.oracle.com

[18] Oracle Rdb online documentation, Guide to Database

Performance and Tuning: Row Cache Enhancements, 2003.

[19] Pathak A., Gurajada A. P., Khadilkar P. Life Cycle of

Transactional Data in In-memory Databases, ICDE, Joint

Workshop of HardBD and Active, April 2018.

[20] Plattner H., Zeier A.. In-Memory Data Management: An

Inflection Point for the Enterprise Applications. Springer

publication, 2011, Chap. 5, pages 89-95.

[21] SAP ASE Product Documentation, What’s New in SAP ASE

1602, dd. Dec. 2016.

[22] SAP ASE Whitepaper, www.sap.com, What’s New in SAP

Adaptive Server Enterprise 16.0 SP02, MemScale Option.

dd. 2015.

[23] SAP ASE Technical Whitepaper, www.sap.com,

Performance Scalability Enhancements in SAP ASE.

Discussion on Scalability Enhancements in ASE 16.0, dd.

2014.

[24] SAP ASE 16.0.3 online documentation, SAP ASE In-

Memory Database User's Guide, June 2017.

[25] Sikka V., Farber F., Lehner W., Cha S. Kyun, Peh T.,

Bornhovd C., Efficient Transaction Processing in SAP

HANA Database – The End of a Column Store Myth. In

SIGMOD, pages 731-741, 2012.

[26] Stonebraker M., Madden S., Abadi D.J et al. The End of an

Architectural Era (It’s time for a complete rewrite). In

VLDB, pages 1150-1160, 2007.

[27] VoltDB. http://www.voltdb.com

1901

http://www.voltdb.com/

