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ABSTRACT 

To address the need for extreme OLTP performance on commodity 

multi-core hardware supporting large amounts of memory, SAP 

ASE is re-architected to tightly integrate an In-Memory Row Store 

(IMRS) within the existing database engine. The IMRS is both a 

store and a caching layer to host “hot” rows in-memory, in a row-

oriented format. The IMRS is an extension to the traditional buffer-

cache which deals with data in a page-oriented storage format 

(referred to as the page-store). Data in individual tables marked as 

IMRS-enabled can be fully memory-resident or can straddle the 

page store and the IMRS. Cold data in the IMRS is organically 

identified, harvested, and “packed” back to the page store. SQL 

statements and transactions can access data transparently from both 

stores for the same table. All Transact-SQL capabilities and 

language constructs are supported with no application or stored 

procedure code changes required. Full durability for in-memory 

data is provided, including support for backup and restore of 

database archives and periodic transaction dumps. 

The high-level system design supporting this architecture, along 

with experimental results and performance benefits is presented. 
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1. INTRODUCTION 
OLTP performance at a low TCO has been a key differentiating 

offering for the SAP ASE database server. Recent product 

enhancements [21][22][23] have focused on delivering Extreme 

OLTP (xOLTP) performance and extreme scalability on 

commodity multi-core hardware. 

Many commercial offerings [2][24][26] in this area require a 

database or a table to be fully in-memory. With ever-increasing 

transactional data being generated continuously, customer database 

sizes tend to grow faster than memory capacities, however OLTP 

transactions tend to actively use only about 20% of the data [20].   

To better understand the run-time contention issues experienced by 

transactional workloads, we deeply analyzed the execution metrics 

of two OLTP workloads, by a technique we call transaction log 

mining. First, we studied profiles from transaction logs of a large 

Sales Distribution (SD) benchmark, which has become one of the 

standard for SAP's platform partners. Second, we also analyzed the 

transaction logs and footprint from a TPCC benchmark. Both 

benchmarks were executed on an SAP ASE server running with 

traditional page-storage and the buffer cache. For this investigation, 

the benchmark configuration, and machine details are not relevant 

here as we only wish to show how transaction log mining helps us 

understand concurrency issues and profile of OLTP transactions. 

Results from SD Benchmark Analysis: In our internal testing, we 

analyzed the logging traces of a 35+ minute 8000+ SD users run 

run on a 120GB page-store database, with about 50GB of data. The 

transaction log examined was 20GB, containing 1.3+ million 

transactions generating 90+ million log records. There were less 

than 0.002% transaction aborts. The average elapsed time of the 

transactions was 36 milliseconds. The distribution of log records 

per transaction seen in this profile is given below. 

Table 1. # of log records across all transactions in SD 

Benchmark 

Minimum Average Std. dev Maximum 

1 63 107 46,496 

 

This shows that although there are a few big transactions generating 

a large number of log records, for the most part in this workload, 

the average size and the time-span of the transaction is small.  

For this workload, the following Figure 1 shows the distribution of 

number of transactions by number of log records generated (not 

including the begin / end transaction log records). 

We note from Figure 1 that about 41% of all transactions generate 

10 or fewer log records, 82% of all transactions generate 80 or 

fewer log records. A very small percentage of transactions generate 

very large numbers of log records (say, over 1000 or more). 

We then examined the log activity to identify active tables. We 

considered 0.5% of the log activity as a low-watermark threshold 

to qualify a table as being an “active” table in the workload. This 

translates to about 500,000 log records. A count of tables with about 

>= 0.5% log activity identifies 22 tables. The remaining activity 
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was spread over the remaining  ~180 tables in the database where 

each table had activity less than 0.5% of the total work load. We 

  

 

Fig. 1. Number of log records / transaction in SD Benchmark 

 

interpret this to mean that the bulk of the SD benchmark activity is 

directed towards a small set of tables, which are very active, and a 

larger set of tables which are comparatively less active. 

Identifying conflicts through log records: For the same 

workload, we analyzed the old and new database time stamps 

(DBTS) in the log records, matching them with the affected page 

ID to infer the degree of conflict encountered due to transactions 

concurrently active on pages. Every change to any database page 

generates a monotonically increasing DBTS value.  

Figure 2 shows a pictorial representation of “events”, i.e., the log 

records, generated by two concurrently executing transactions, 

affecting some set of pages.  

 

 

Fig. 2. Timeline representation of changes done by 

concurrently executing transaction 

 

We mined the affected page IDs, and the old / new DBTS caused 

by the “event” from the log record to know the time-span when the 

change was done affecting a said page. If a transaction T1 has 

updated a page, and before it has committed, if another transaction 

T2 updates some other row on the same page, this results in a page-

conflict to T1.  
Logging in the page store [23]: To understand the impact of page 

conflicts, we diverge slightly to describe at a high-level how buffer 

management and transaction processing is performed in SAP ASE. 

For every change affecting pages, in anticipation of the transaction 

committing, log records are generated, in-line with the change, in 

every task’s private cache of log records, aka, Private Log Cache 

(PLC), and then the PLC contents are flushed to the log page at 

commit-time. (We refer to this scheme of generating log records 

through the life of the transaction as drip logging.) PLC is provided 

to reduce the frequency of writing log records and instead to flush 

a batch of log records for one transaction to the log. This results in 

reducing the contention of access to the last-log page, which 

typically is the main bottleneck in a database system. In order to 

facilitate Write-Ahead logging (WAL), the modified buffers are 

pinned to the PLC. As described in [23], page conflicts cause buffer 

unpinning, resulting in prematurely flushing of the tasks’ PLC to 

the database log. These arise due to updates by concurrent 

transactions to different rows that may simply be residing on the 

same data buffer. Space allocation in syslogs, which is done as part 

of transaction commit, causes spikes of performance degradation. 

Finally, the shared last-log page insertion point for new log records 

appended to syslogs by concurrently committing transactions is an 

omnipresent performance and scalability bottleneck [23]. 

In the work load analyzed, we found the following metrics: 

Table 2. Distribution of page-conflicts in SD Benchmark 

 Item Value Comment 

(a) Total # of transactions 

processed 

1,374,232  

(b) # of transactions of type 

“DML%” 

804,697 58% of (a) 

(c) # of distinct pages not 

involved in conflicts 

495,892 Split nearly 

equally, 54-

46%, across 

the workload (d) # of distinct pages involved 

in any conflict 

430,921 

(e) # of “events” (log records) 

generating conflicts 

5,524,349 4X (a) 

>6X (b) 

 

Using the overlapping DBTS analysis, we observed the folowing 

distribution of conflicts per affected conflicted-page. 

Table 3. Distribution of conflicts per modified page 

Min Avg Stddev Max 

1 12 111 45,943 

 

This implies that a very large number of pages ran into a pretty 

steep number of conflicts. On an average, across all pages accessed 

in this benchmark [sum of (c) and (d) in Table 2], each page can be 

expected to run into an average of 6 conflicts. Each conflict can 

result in concurency issues. 

We also do note that identifying page-conflicts through log record 

mining does not capture read activity on tables; only modifications. 

Therefore any inference from this conflict-metric is only meant to 

be a lower-bound on potential contention issues. The scalability 

issues due to shared access to pages is further examined in the 

section on Performance Evaluation (Sec. 5.1.1). 

We performed the same log mining on TPC-C transaction log and 

concluded that most transactions have a small foot-print of average 

18 log records, completing in less than 300 milliseconds. 
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1.1 Our Contributions 
Our motivation behind this work is to build a transaction processing 

engine which can deliver scalable and high performance using in-

memory processing, and overcomes the contention issues in a page-

oriented storage model, described earlier. Historically, some of 

these scalability limitations have been improved in recent versions 

of SAP ASE, as noted in [23], but there is still scope to deliver 

enhanced OLTP performance using in-memory computing. 

In the BTrim architecture, which stands for “Business 

Transactions In-Memory”, we provide a hybrid storage model 

where the existing buffer-cache based page-store layer is tightly-

integrated with an In-Memory Row Store (IMRS). The IMRS is 

used to host “hot” data for business transactions. Full indexing 

support is provided for data that can reside either in the page-store 

or in the IMRS. Concurrent accessors to rows that simply share the 

data page no longer run into contention [1][9] when the data is 

decoupled from the page and stored as individual rows in-memory. 

For VLDBs much larger than available memory, the buffer cache 

already provides a “working set” of hot pages. In this layout, the 

IMRS is seen as providing an extended caching layer for “hot rows” 

on top of the buffer cache, for improved performance. If the main 

memory is large enough to host the entire VLDB (i.e. fully 

memory-resident database), we still run into the contention issues 

described earlier due to the page-oriented storage, and logging 

overheads. In this layout, providing any extra memory to the buffer 

cache yields no further gains. However, this extra available 

memory can be deployed to the IMRS, where “hot” rows are 

processed without being hindered by page-oriented contention 

issues. 

Nomenclature: Existing databases using traditional page-based 

(buffer-cache resident) storage are referred to as page-store 

databases. In the BTrim architecture, individual databases 

configured to use the IMRS are referred to as IMRS-enabled 

database(s). In an IMRS-enabled database, individual tables 

altered to use the IMRS for storing “hot” data, supporting data row 

caching, are referred to as IMRS-enabled tables. An IMRS-

enabled database can still contain ordinary tables, i.e., not enabled 

for data row caching, and such tables are referred to as page-store 

tables. Transactional data typically goes through 4 stages in its life-

cycle – Insert, Select, Update, Delete – and this collection of 

statements is referred to as ISUDs. Pack refers to an internal 

operation that removes cold rows from the IMRS and stores them 

back in the page-store. On a multi-core system, SAP ASE can be 

configured to run with multiple OS native threads. Designs to 

overcome multi-core scalability issues in this configuration are 

referred to as thread-local techniques. 

Our contributions from this work are as follows. These 

enhancements are deeply integrated within the core SAP ASE 

DBMS engine [24] and can be deployed without destabilizing 

existing installations and without requiring any application rewrite. 

The IMRS provides the backbone for new performance-oriented 

capabilities added to the ASE product. A new technique called Data 

Row Caching (DRC) is added to the product. The storage choices 

incorporate Information Life Cycle Management (ILM) [19] which 

is intrinsic to certain kinds of transaction workloads. High-

performance is delivered by storing the rows either in-memory or 

on the disk-based page-store. Hash-indexes spanning data in the 

IMRS are provided as a fast-path accelerator for point queries using 

a unique index access method. Full durability is provided to the data 

modified in the IMRS in a new logging system that overcomes 

many of the shortcomings of the existing transaction log. 

Replication is fully supported for IMRS-enabled tables. 

The BTrim architecture is also the foundation for supporting 

industry-standard snapshot isolation using in-memory versioning 

offering MVCC capability; a functionality that is now available in 

the ASE capability set. 

The rest of the paper is organized as follows. Section 2 presents the 

overall architecture and key design choices we made along the way. 

Section 3 discusses internal changes to how index scans work. In 

section 4, we discuss the durability layer of the IMRS, another key 

contribution from this work. In section 5, we present performance 

results from in-house experiments using micro-benchmarking and 

high-end OLTP workloads. In section 6, we study related work in 

this area, and finally present our conclusions. 

2. BTRIM ARCHITECTURE 
The BTrim architecture extends the capabilities of the existing 

engine to deliver enhanced performance, even while maintaining 

full compatibility for existing databases and T-SQL constructs. It 

is neither a separate product nor a bolt-on. 

 

Fig. 3. BTrim architecture for In-Memory Processing 

 

Figure 3 shows the salient components of the new architecture and 

how data is organized and accessed. Existing storage components 

such as the disk-based store, page-formatted buffer cache, and the 

redo/undo transaction logging, referred to as syslogs in the product, 

remain unchanged. The database storage space and buffer cache is 

“extended” with the In-Memory Row Store, used to both cache 

existing rows and store new data. In Fig. 5, the box labelled 

IMRS-enabled tables that straddles the buffer cache and the IMRS 

reflects the behavior that, over time, only some part of a table may 

be in-memory. The arrows represent movement of hot / cold rows 

to / from the IMRS. It is not necessary for an entire table to be in-

memory. Access methods transparently locate the row from one of 

the two stores using internal scan methods, which are discussed in 

later sections. A single ISUD statement, and consequently any 

transaction, may access some rows from the IMRS and some from 

the page-store, without any limitations. A single transaction can 

also access / change data from IMRS-enabled and page-store tables 

without any restrictions. 

Redo/Undo 

Transaction Log 

R/W Buffer Cache 

IMRS 
Paged I/O 

Hot Data 

Inserts 

RID-Map Table 

Redo-Only 
Transaction Log 

for In-Memory DMLs 
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Page-based BTree indexes continue to be supported in this 

architecture, however, they are enhanced to transparently scan rows 

either in the page-store or in the IMRS. BTree indexes are further 

enhanced to use a latch-free concurrency control [21] mechanism 

for enhanced performance. In-memory hash-indexes, shown to the 

left of the IMRS, span only the in-memory rows of a table. 

ILM – Row-level Data Ageing: A key differentiating feature of 

the BTrim architecture is a tight integration with the data life-cycle 

patterns for transactional workloads to assign efficiently in-

memory storage to “hot” rows [19]. ILM is a set of strategies, rules 

and heuristics designed to efficiently use IMRS resources for 

frequently accessed “hot” data rows. The decision to use the IMRS 

for row caching leverages run-time access patterns to optimally 

store “hot” rows in the IMRS. When hot data becomes less 

frequently used in the IMRS, it may be replaced back in the page 

store, by one or more background Pack threads.  

Persistence and durability to data updated in the IMRS is provided 

through a new redo-only logging device, named in the Fig. 3 by its 

system catalog, sysimrslogs. Sysimrslogs is the logging 

counterpart for the existing redo / undo transaction log, syslogs; the 

latter used to persist changes to data in the page-store. The vertical 

arrows from the IMRS and the page-store tables to the two logs, 

respectively, indicate that changes to in-memory rows are logged 

in sysimrslogs and those to page-store rows in syslogs. 

A key new sub-system supporting the IMRS is a high-performance 

fragment-memory manager which is highly optimized for best-fit 

memory allocation and reclamation on multiple cores. The memory 

manager supports allocation of fixed-length fragments, such as 

those needed by metadata structures, and variable-length 

fragments, such as those needed by row versions. Efficiency is 

achieved by managing memory fragments in multiple like-sized 

buckets, load-balanced and distributed across multiple cores. 

Multi-threaded, non-blocking Garbage collection (IMRS-GC) is 

provided to efficiently reclaim memory from older versions without 

affecting transaction performance. Pack is a new sub-system that in 

cooperation with the memory manager and based on ILM-rules, 

relocates cold data out of the IMRS to the page-store. Multiple pack 

threads are provided to guarantee stable memory utilization. The 

details of the Pack/ILM sub-system are presented in [19]. 

Row Identity: In-memory rows are identified uniquely similar to 

existing page-store rows; i.e. using a (page-ID, row#) pair. The 

fabricated RID for inserted rows is referred to as a Virtual RID 

(VRID). A RID is easily identified as a physical RID (for page-

store rows) or a VRID by examining the row# component, which, 

for VRIDs, will be beyond the valid value for page-store rows. 

An ISUD accessing data rows may find the row either in the page-

store or in the IMRS, however logical row protection is provided 

using row-locks on the RID. We did not change the existing 

pessimistic row-level locking when accessing data rows from an 

IMRS-enabled table. ANSI Isolation levels, which are currently 

implemented based on the lock manager, are, thus, fully supported 

on IMRS-enabled tables. These design choices thereby ensure no 

changes to application behavior.  

Minor DDL extensions are provided to configure new or existing 

databases with IMRS resources, such as the IMRS-cache and 

sysimrslogs and to create new IMRS-enabled tables or to alter 

existing tables to make them IMRS-enabled. All table schemas 

and properties, such as identity columns, unique and non-unique 

indexes, triggers and rules, defaults, check constraints etc., are fully 

supported for IMRS-enabled tables.  

2.1 ISUDs and Data Row Caching 
Row caching is a table-level property that can be enabled for 

datarows locked tables in an IMRS-enabled database.  

Each in-memory row has an immutable header structure, 

IMRHDR, off which hang multiple in-memory versions, 

IMRVERS, created by updates. Figure 4 shows a pictorial layout 

of an in-memory row, with multiple versions created by updates to 

a row. Each row version may be of differing sizes when updates 

cause the row size to change. Once minted, the row version memory 

is immutable and only used for reads (or memory reclamation). The 

memory for older versions is periodically reclaimed by the GC 

threads. 

The older versions of all rows are read-only and are used to support 

snapshot isolation.  This shared design of row layouts with 

versioning is chosen so that for the same IMRS-enabled table we 

can support ANSI isolation levels (by acquiring a lock on the latest 

version of the row), and to also support timestamp based snapshot 

isolation scanners to locate their “seen” version. 

 

Figure 4. Layout of in-memory structures for one data row 

 

Three types of rows can be stored in the IMRS for each data 

partition in a table – inserted, cached and migrated rows, as 

discussed below. All strategies to maintain such rows, including 

memory usage, row count and other metrics are all tracked finely 

per the row type, using thread-local, contention-free counters. 

Inserts are performed directly in the IMRS and such rows are 

referred to as inserted rows. Newly inserted rows have no foot-print 

in the page-store. By directly inserting new rows to the IMRS, all 

the overheads associated with page-oriented storage are removed. 

Costs of page allocation is exchanged with the cost of memory 

allocation, which is highly-optimized and cheaper in contrast.  

Selects of inserted rows are returned directly from the IMRS, 

without needing to access the page store as the row is found only in 

the IMRS. BTree indexes have the intelligence to locate the latest 

version of rows from the IMRS using a mapping table called RID-

map lookup, a technique which is described further on.  

Selects driven by fully-qualified unique index scan returning a 

single row (point-queries) from the page-store portion of an IMRS-

enabled table [usually] cache the row to the IMRS. Such rows are 

referred to as cached rows. As point-query access by unique index 

is commonly seen in OLTP workloads, the design principle is that 

by caching such rows in the IMRS, subsequent scans to rows 

cached in-memory, done without any page-latching concurrency 

protocols, will be more efficient.  

IMRHDR 

IMRVERS Data Row Latest Version 

(Packed when row gets Cold) 

Older Versions maintained 

to support Snapshot isolation  

scanners. 

GC thread reclaims memory 

from these older versions. 
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Cached rows are initially read-only rows but can subsequently be 

updated in-memory if required. Only the in-memory version of the 

cached row is updated, whereas the page-store image may remain 

stale. Updating cached rows only in-memory again avoids page-

concurrency issues [1] that will arise when multiple rows residing 

on the same data page are updated frequently and concurrently. 

Updates of existing rows residing on the page-store are usually 

performed in the IMRS by first re-locating the rows to the IMRS. 

This process is referred to as row migration and such (updated) 

rows are referred to as migrated rows. For example, point updates 

qualifying a single-row with a fully-qualified unique index will 

always cause row migration. Such updates are very common in 

transactional systems, and, thus, are optimized to be performed in-

memory. The trade-off made here is to optimally use IMRS 

memory for “hot” rows, thereby single-row update statements 

cause migration. To avoid flooding the IMRS with rows 

occasionally updated by a single batch-update statement, not all but 

only some number of the affected rows are migrated. 

Updates producing new row-versions do not cause the rows’ 

identity (RID or virtual RID) to change. Only the in-memory row-

image is updated with a new row version. 

Updates (and deletes) to in-memory rows produce a new version 

efficiently slotted-in to this chain off the header using CAS. This 

scheme has several advantages. The expectation is that concurrent 

transactions are busily chasing after non-intersecting rows, each of 

which goes through this update sequence on different cores, 

without causing scalability issues. Another key aspect of our design 

is that scanners of these row versions do not need any form of 

latching or reference count to provide stable access to the row 

versions. Hence, multiple readers of “hot” data on different cores 

also do not run into cache-line invalidation issues. 

Deletes of inserted rows is performed entirely in-memory, 

producing a stub delete-version as the post-image of the delete. 

Deletes of migrated rows is performed similarly, with the 

additional work of deleting the data row from its page-store 

location deferred to background Pack processing. 

2.1.1 In-Memory Row Formats and IMRS Garbage 

Collection  
For compressed tables, rows are stored in a compressed form on the 

page. This results in additional costs of decompression while 

reading, and compression, following an update. To avoid these 

overheads, we chose a design of storing in-memory rows in an 

uncompressed format. This may result in an increased memory 

consumption for row versions, in exchange for improved run-time 

performance.  Finally, when the cold rows are packed to the page-

store, they will be compressed. This scheme retains the storage cost 

gains of data compression in large tables while improving the 

performance of accessing uncompressed rows from the IMRS.  

IMRS-GC and transaction management collaborate to reclaim 

memory from older versions that are no longer “seen” or required 

in the system. In our experiments, we have seen that for TPCC-like 

OLTP workloads generated by 240 users, about 2 IMRS-GC 

threads were able to keep up with this work of reclaiming older 

version memory. Any overheads due to GC activity is greatly 

amortized over the work done by multiple user connections. 

2.1.2 Information Life Cycle Management and Pack 
Various Information Lifecycle Management (ILM) schemes to 

retain only the hot data in memory and colder data in traditional 

page-store are described in detail in [19]. The hotness of data is 

measured using frequency of access, and the contention caused 

while accessing it through page store. While the high-level 

characteristic of partitions is considered, the decision on whether to 

have data in IMRS or page store is made during every ISUD 

operation on a row. When memory utilization crosses a threshold, 

the cold data is moved back to page store using the Pack operation. 

To facilitate harvesting cold rows easily, rows are maintained using 

relaxed LRU queue based on their hotness. A novel technique 

referred to as Timestamp Filter (TSF) is also used for determining 

coldness. The ILM checks, queue management and operations such 

as TSF are optimized to have minimal performance impact to user 

transactions. Our experiments show that, with the help of ILM 

techniques, the performance gains of in-memory processing are 

realized without requiring that all data be in-memory [19].  

3. INDEX MANAGEMENT 
In-memory data is fully indexed and accessible using existing page-

based BTree indexes. All index properties, such as unique and non-

unique indexes, primary key constraints, identity columns in 

indexes, Latch-Optimized BTree indexes [21], compressed 

indexes, local and global indexes on partitioned tables are fully 

supported for indexes on IMRS-enabled tables. All index 

operations such as inserts, deletes, splits, shrinks etc. continue to be 

logged in the page store; i.e. syslogs. 

 

 

Figure 5. Index spanning rows in IMRS or in page-store 

 

We evaluated the design of changing the leaf-row formats to 

contain the in-memory row address, but this would lead to 

migration issues for existing indexes. The leaf level of the index 

continues to hold {key-values, RID}. The RID in the index leaf row 

is a Virtual RID (VRID) for inserted rows, while it is a physical 

RID for page-store rows. This allows existing databases to easily 

migrate to the new storage architecture without having to unload – 

reload the data or perform an index rebuild before altering page-

store tables to become IMRS-enabled tables. Figure 5 shows two 

forms of a BTree index spanning rows in the two stores. 

For access to in-memory rows, index scans use a RID-Map lookup 

table to map the RID to a memory address. Every row in the IMRS 

is guaranteed to have an entry in the RID-map table. Figure 6 shows 

the multi-level segmented-array layout of the RID-map table.  

Each level of this table maps to contiguous chunks of pages in the 

database’s space map. As the IMRS is designed to hold “hot” active 

rows, only some small percentage of rows are expected to be in the 

RID-Map table. This is a sparse table blossoming out to allocate 

and fill-out sub-arrays at each level holding pointers to sub-arrays 

at the next level. Over time, as rows are removed from the IMRS, 

(b) Index points to 
some rows in the IMRS 

and some rows in the page-store 

(a) Index points to 
all rows in the IMRS 
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the structures at each level are de-allocated, and this table shrinks 

to maintain sparseness. For rows that are not in-memory, the RID-

Map probe typically returns early without having to traverse non-

existent sub-levels. This table is managed using very efficient 

lockless lookups and CAS-based updates to grow and shrink the 

memory at different levels. RID-map probes are not expected to be 

a performance bottleneck, which has also been validated in our 

internal benchmarking. Two RID-map lookup tables are provided 

– one holding addresses of inserted rows, and the other for migrated 

and cached rows. The RID itself is self-identifying as a VRID or a 

RID, simplifying which RID-map table to lookup. 

Inserted rows only exist in the IMRS. Therefore, the RID-Map 

lookup will always return the row’s in-memory address. The 

handling of migrated or cached rows is slightly different.  For every 

access to rows in the page-store, an additional probe in the RID- 

 

Figure 6. RID-Map Table: Multi-level segmented array access 

 

Map lookup table is needed to ascertain if the (latest version of the 

migrated or cached) data row may be in the IMRS. If the probe fails 

to find the RID, then the latest copy of the row is guaranteed to be 

on the page-store. Scan reverts to normal page-based scan methods.  

3.1 Hash-Cached Indexes 
In highly-concurrent OLTP workloads driven by multi-level BTree, 

index scans are known to encounter scalability issues due to access 

to index pages from different cores. BTree index scan takes 

significant part of the overall data access time. Latch-Free BTree 

[21] indexes improve this situation to some extent. In our 

architecture, “hot” rows are in the IMRS, thus data row access can 

be much faster than before. 

It is efficient to support a full hash index if all data rows reside in 

memory. However, for cases that only some small percentage of 

data rows reside in-memory, building a hash index on the full table 

may result in extra memory consumption without reaping any 

benefits from the hash-index on data that is never referenced. Thus, 

keeping in line with the “hot” rows concept of this architecture, we 

chose to not build a hash-index on the full table; i.e. on the page-

store data as well. 

Many OLTP tables are seen to have unique indexes, and selects / 

updates using such indexes to return one row are common. We 

designed in-memory hash indexes to address this spectrum of 

OLTP workloads. In the BTrim architecture, we support a feature 

called “index hash caching” where, for a unique BTree index, an 

in-memory non-logged hash index on in-memory rows of the table 

is created. Such an index is called Hash Cached BTree (HCB) 

index. BTree index continues spanning all data rows that are in the 

IMRS and the page-store, and is still the access method for range 

queries. Hash index scans are designed as fast-path accelerator 

under fully-qualified unique BTree index scans.  

The hash index is initially empty when created. New data inserted 

to the IMRS will not be loaded into the hash index, till the time 

such rows are accessed. For a point query, before traversing the 

possibly multiple levels of a BTree index, a light-weight hash-index 

probe is performed to locate the (one) row in-memory. If this probe 

succeeds, return the row from the IMRS, thereby the potentially 

expensive BTree search is completely avoided. If the probe fails, 

the query continues with the BTree search. When “hot” data rows 

are accessed from the IMRS by the BTree search, new rows will be 

loaded as entries in the hash index. We expect that over-time, as 

data rows that are stored in the IMRS are scanned, the 

corresponding hash index will be populated. Thus, for frequently 

scanned in-memory rows, the hash-index lookup will return rows 

faster than via an index scan. Finally, when cold data rows are 

evicted from the IMRS, or they are deleted, the corresponding hash 

nodes will be deleted. 

As we show in our experimental results (Sec. 5.1.1), re-directing 

BTree scans to the hash index greatly reduces the code-path of 

index scans, thereby improving performance. This hash index 

design has several multi-core scalability and performance benefits: 

1. The hash index is built on top of lock-free hash table, and all 

changes to it are done using compare-and-swap (CAS).  

2. No extra logging is done for hash table maintenance.  

3. The payload of a hash node (e.g., information about the 

corresponding IMRS data row, hash value, timestamp used for 

memory reclamation, row identity, linkage pointers) is 

designed to be cache-line friendly, and fits within 64-bytes. 

4. All hash nodes mapped to one bucket are ordered. This permits 

short-circuiting scans if no matching hash node is found. 

4. IMRS DURABILITY 
Transactions affecting in-memory rows are fully durable and 

recoverable. Crash recovery and recovery from archives (dump / 

load of database and / or series of transaction logs) is fully 

integrated into the product. This section discusses changes made to 

the transaction management, and to the logging and recovery layers 

to make transactions affecting in-memory rows fully durable. 

4.1 IMRS Log – Sysimrslogs 
Sysimrslogs is the [database-specific] disk-based transaction log 

holding full row-images of committed rows residing in the IMRS. 

It is used both for durability of committed changes at run-time and 

eventually as the data source to re-instantiate the contents of the 

IMRS during crash recovery, or recovery from database / 

transaction log archives. 

4.2 Logging and Transaction Management 
Transactions and ISUDs are allowed to span ordinary tables and 

IMRS-enabled tables. A single DML statement on an IMRS-

enabled table may affect both in-memory rows and page-store 

rows. As an example, a simple insert to the IMRS for a table with 

a single index produces an in-memory data row and a page-store 
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RID: (4532,2) 

Level-0 
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Level-2 
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resident index row. Another example is an update statement 

updating some rows in the page-store and others in the IMRS.  

Each portion of the statement’s execution, or more generally the 

transactions’, affecting in-memory rows or page-store rows is made 

durable in the corresponding transaction log. For the prior 

examples, a single row insert will log the insert of the data row in 

sysimrslogs and log the insert of the index row in syslogs. Thus, a 

transaction affecting IMRS-enabled tables may have a set of 

changes committing to syslogs and another set of changes 

committing to sysimrslogs. 

A transaction is deemed to be committed only when both sets of 

changes are made durable. The reason for this design choice of two-

legged logging is to overcome bottlenecks traditionally seen in 

syslogs-based logging. One example is the way run-time rollback 

is implemented. Rollback of changes to rows in the page-store is 

performed by scanning log records in syslogs. However, 

transaction rollback and rollback to savepoint for changes to in-

memory rows is performed by scanning the in-memory versions 

created as part of a transaction, thereby improving performance. 

4.3 Commit-Time Logging – No Undo 
New designs are introduced in sysimrslogs to overcome existing 

scalability bottlenecks seen with syslogs in the page store. 

Logging in sysimrslogs: Firstly, as in-memory rows are not 

resident in data buffers, the overheads of dirtying buffers, pinning 

dirty buffers to the PLC, or to syslogs, unpinning buffers etc. are 

automatically non-existent. Even for updates to migrated rows, 

the home-buffer holding the migrated row is no longer involved in 

the update. That holding data buffer could well have been 

decoupled from the in-memory row and recycled out of the buffer 

cache, and does not participate in the update transaction. Secondly, 

a new technique called aggregate logging is employed for in-

memory updates. If multiple updates are done to an in-memory row 

in a transaction, only the final after-image is logged to sysimrslogs. 

(Contrastingly, such multiple updates in a transaction to the same 

page-store row generate a log record for each update.) Next, only 

commit-time logging is performed. At commit-time, the in-

memory versions, which are located easily off the transaction 

descriptor, are scanned, and log records are generated directly into 

sysirmslogs for the final images of modified rows. This way, at 

transaction run-time, no intermediate copies of log records are 

generated (in PLC) and the double-copying, like in syslogs, is 

avoided. Commit-only logging has significant advantages to crash 

recovery where only redo-processing is needed and the undo phase 

is completely avoided. Also, we claim that commit-time logging 

strategy is eminently suited for the IMRS. Implementing this for 

the page-store rows is practically unviable as we would have to hunt 

down potentially several buffers which were changed as part of a 

single transaction. This would introduce another degree of 

contention on buffer / page management. 

4.4 Log Space Management 
All the bottlenecks discussed earlier for syslogs are overcome by 

basic changes in the way space management and logging is done to 

sysimrslogs. 

The space on the imrslog device is dedicated to one sysimrslogs of 

one database and is not shared by other objects. Space on the 

imrslog device is serially allocated to sysimrslogs as contiguous 

pages. This space remains allocated. No page allocation or 

deallocation ever occurs once the space has been allocated to the 

imrslog in the database. Transactions do not have to contend with 

allocation costs at run-time. The dynamically active portion of 

sysimrslogs is tracked using metadata structures, while the first/last 

pages of the space map remain fixed. Serial allocation facilitates 

space pre-reservation at commit time, as explained next. 

The last-log page contention point problem is overcome by a 

scheme termed as transaction blocking which provides multiple 

insertion points to the sysimrslogs page stream to concurrently 

committing transactions.  

Figure 7 shows the log record streams for different transactions, T1, 

T2, … T6, that have committed on different log pages P1, P2, P3 

etc. All the log records from a transaction appear in a contiguous 

chunk of space, shown in hashed regions, referred to as the 

transaction block. At run-time, while row versions are created, 

simple counters are maintained off the transaction descriptor for the 

total logging space that is going to be required at commit time. 

When a transaction commits, under briefly held exclusive access 

protection to the current end of the active portion of sysimrslogs, 

sufficient space is reserved and assigned to one committing 

transaction, following which the exclusive access is released. 

Subsequently other committing transactions serially get access to 

the new active end of the page chain to reserve the space for their 

log records. Once this space is made available, multiple 

transactions can commit simultaneously generating their log 

records directly into this reserved set of pages, without any further 

concurrency issues. 

 

 

Figure 7. Transaction Blocking in sysimrslogs 

 

In the case where a transaction block contains more than one page 

(as in T2 and T5 above), only the boundary pages (first and last 

page) of the transaction block may be shared among transactions. 

Since the transaction block space of different transactions assigned 

to the same page is also disjoint, writing log records in these 

transaction blocks is done concurrently without holding any 

exclusive access to the buffer (e.g. T2, T3 and T4 can be writing 

their log records concurrently to the same page P2). For small 

transactions committing few rows, log pages can be shared between 

committing threads, in which case traditional group-commit 

methods are used to ensure I/O efficiencies during logging.  

Conventional WAL techniques are needed for logging changes to 

page-oriented rows, whereas in sysimrslogs, as we do not have to 

deal with dirty’ing pages due to changes to in-memory rows, WAL 

is essentially moot. 

For large transactions, there may appear to be significant “extra 

work” at commit time to generate all the records and to persist them 

to the log pages. Drip logging in the page-store which is amortized 

over the transaction’s code path by the use of WAL is, perhaps, 

more needed for disk systems that were prevalent when such 

techniques were first introduced to databases. Currently, we believe 

with availability of devices and SSDs capable of supporting very 
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T4 T2 T3 T5 T1 T6 
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high I/O rates, commit-time latency should no longer be an issue. 

This is confirmed in our experiments where we did not notice any 

measurable commit-time latency arising from this design. 

4.5 Crash Recovery – IMRS Recovery 
IMRS recovery using sysimrslogs as the durable store is performed 

as follows. As only commit-time logging is performed, only a redo-

phase is required for processing all committed changes found in the 

log. No undo is needed, therefore logging of CLRs or other such 

scheme is skipped (both at run-time and at recovery time). 

Unlike for the page store where checkpoint writes out all dirty 

buffers including log and data to the disk, no data in the IMRS will 

be written to disk. Only some book-keeping information is 

persisted to enable recovery processing. 

Recovery of the sysimrslogs starts from the transaction that inserted 

the oldest row in the IMRS cache. Earlier sections in the 

sysimrslogs will not be used by recovery since the rows created by 

those transactions no longer exist in the IMRS cache.  

Recovery is done by transactions. Since transactions are grouped in 

disjoint blocks in sysimrslogs, if there were any transaction blocks 

that were reserved but not yet fully committed at the time of crash, 

those invalid transaction blocks will be skipped over by recovery.  

5. PERFORMANCE EVALUATION 
The objective of our performance evaluation was to understand the 

costs of in-memory processing and whether the benefits overcome 

the bottlenecks seen in high-volume transactional workloads run 

against the page-store. In all experiments, we ensured that the page-

store data is fully-cached in the buffer cache, thereby, avoiding any 

I/O costs. Therefore, no further gains can be obtained by providing 

any more memory to the buffer cache. Instead, we show that any 

additional memory can be deployed to the IMRS to deliver 

enhanced performance for large classes of workloads. 

Using the same version of the software, we conducted a series of 

micro-benchmarks and end-to-end OLTP benchmarking tests. For 

each experiment, we uniformly performed a warm-up run followed 

by 3 runs. The metrics from the warm-up run were discarded.  

In all our experiments, we observed that the throughput metric 

across the 3 runs were within 10%, therefore we used the median 

value of the metric across these runs for comparison between the 

page store and the IMRS.  

To reiterate, in this section, a page-store table refers to ordinary 

tables which have data stored in pages, and use the buffer cache. 

IMRS refers to tables enabled with the row-caching feature and 

store rows in-memory. HCB refers to the addition of hash-indexes 

on such IMRS-enabled tables, where the hash-index is used as a 

performance accelerator under unique BTree indexes. In general, 

as the goal of our experiments was to study the benefits of the 

IMRS, built as the new architecture, we did not pursue any further 

optimizations to the page-store code even though it may appear that 

there are low-hanging short-comings in the current page-store 

machinery that are easily fixable. (We consider that as a never-

ending game of cat-and-mouse performance tuning!) 

5.1 Micro-benchmarks 
We performed a series of micro-benchmarks to study the execution 

behavior of inserts, selects and updates. These operations constitute 

the bulk of OLTP workloads. The benchmarks focused on overall 

throughput (e.g. number of transactions / minute, or number of 

selects / minute). As our focus was to measure the gains from in-

memory processing on the server-side, all experiments were 

conducted using stored procedures. This, therefore, eliminates any 

network traffic of result sets to the client. We did not focus on 

measuring latency, for example, the time to return the 1st row from 

a select, as that was not the areas re-designed in this work.  

The RID-map lookup and hash-index probes done for in-memory 

rows could appear to be an additional overhead, but we did not find 

these to be of any noticeable cost. In any of the CPU profiles done 

in all our experiments (including end-to-end benchmarking), we 

noted the relevant functions to be consuming less than 2% of the 

overall CPU cycles. Similarly, we noticed that the overheads of 

IMRS-GC, which runs as a background thread, is not significant, 

contributing less than 3% of overall CPU usage even in high-end 

OLTP workloads. Thus, we did not perform specific micro-

benchmarking to further evaluate the impact of these new 

techniques. 

We used the stock table of the standard TPCC benchmark for all 

micro-benchmarks, designed for 240 warehouses. The stock table 

has 17 fixed-length columns – 6 integer columns and 11 char 

columns, with a fixed row-size of 312 bytes. The choice of a fixed 

row-size for this table allowed us to accurately measure logging 

overheads and log space consumption in both the transaction logs. 

The table has a composite clustered index on two integer columns 

(warehouse_id and item_id), for an index row-size of 12 bytes.  For 

each warehouse, the stock table has 100K item IDs, for a total of 

24 million rows. In our implementation on 16K database page sizes, 

for 24 million rows, the height of the index was three (root and two 

levels). For the select and update micro-benchmarks, the table was 

fully loaded, but the activity was focused on about 5 – 100+ pages 

of the table. This reflects the usage pattern where we expect to see 

benefits from the IMRS; i.e. highly concurrent activity on data. The 

thin slice chosen of the (large) stock table is meant to represent 

either a small but very active table, or some “hot” slice of data of 

large tables. For the insert micro-benchmark the table was initially 

empty and multiple clients insert rows concurrently. 

We designed the micro-benchmarking experiments to evaluate the 

additional benefits of using HCB in conjunction with the IMRS as 

follows. For the select micro-benchmark, we measured the select 

throughput for (a) just the IMRS (no HCB) and (b) IMRS plus 

HCB. For inserts, the stock table did have HCB enabled, but as the 

HCB is not maintained (or affected) during inserts, it was not 

necessary to separately measure insert throughputs for the IMRS-

only case. 

For updates, we anticipate that the scan portion of an update of in-

memory rows will be benefitted by the presence of an HCB. We 

performed the update micro-benchmark with both the IMRS and 

HCB to study the combined gains in comparison to the costs of 

performing the updates in the page-store.  

For all experiments, the scalability was tested up to 64 CPUs (using 

64 ASE threads). Since these are all throughput workloads, the 

experiments were executed using as many users as needed to drive 

maximum throughput on the server-side. 

The experiments presented in this section were performed on a 

machine with an Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz 

processor, having 4 sockets, 112 cores (224 logical CPUs), with 

1TB RAM. All concurrent clients and the server were run from the 

same box, which eliminates any network overhead for client-server 

communication. 
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5.1.1 Highly Concurrent selects of hot rows 
We designed this experiment to measure the performance and 

scalability with increasing number of concurrent selects. In this 

experiment, we varied the number of ASE threads from 2 to 64, and 

had multiple clients repeatedly select a row each from the stock 

table using fully qualified index predicate. As each client’s select 

was driven through stored procedures (i.e. without any network 

overheads), it was sufficient to have the number of concurrent 

clients in each experiment be the same as the number of ASE 

threads. Each client repeatedly selects the same row corresponding 

to its client-id, so different rows are selected across clients. In the 

warm-up run of this experiment, selects done by individual clients 

cause their affected rows to be cached in the buffer cache or in the 

IMRS. Effectively, this experiment compares the performance 

between selects of rows fully cached in the buffer-cache versus 

rows fully cached in the IMRS.  

Even though this is a read-only workload, in the page-store we 

maintain reference counts on the accessed data or index pages. 

Additionally, shared-latches are required to ensure physical 

consistency while accessing the page. On multi-core systems, these 

primitives cause cache-line invalidation, even though multiple 

clients are accessing different rows, when they happen to be stored 

on the same data page.  This results in increased contention, 

resulting in degraded scalability.  

Figure 8 shows the performance gains with IMRS alone and then, 

with HCB on top of it, at various number of CPUs. 

 

 

Figure 8: Performance gains for concurrent selects 

 

At lower thread counts (2, 4), there is not much contention in page 

store runs. The gains observed with IMRS, and especially with 

HCB (2 – 2.5X) are due to (a) short circuiting the multi-layer B-

tree access by HCB and (b) the code-path improvements of faster 

access of rows in the IMRS. Beyond 16 thread counts, we observed 

a significant drop in the page store performance, largely due to the 

contention issues noted above.  

As access to in-memory rows is latch-free and completely avoids 

the page cache, these contention points for data pages are overcome 

by the IMRS. This results in an improved performance (18X at 64 

engines). With HCB in the picture, we then completely eliminate 

this contention even on index pages. At high core counts, for the 

highly concurrent select workload, with IMRS + HCB, we were 

able to deliver significantly improved performance gains as 

compared to the page-store –  57X at 64 core-counts. 

5.1.2 Highly Concurrent inserts  
We designed this experiment to measure the performance of highly-

concurrent inserts on ASE with 64 threads. For a fixed number of 

concurrently inserting 240 clients, starting from an empty table, 

each client inserts 100 K rows to its assigned warehouse ID. We 

varied the transaction size by changing the number of rows inserted 

per transaction. This allows us to study the impact of transaction 

size on overall insert throughput and any commit-latency due to 

logging. 

For inserts to the page-store, the presence of a clustered index on 

(warehouse_id, item_id) attempts to guide the insertion from 

different clients to different data page. However, at high 

concurrency, we observed that different clients may end up 

inserting into a small set of target data pages at a time which causes 

page-level contention.  

Inserts to the IMRS are independent of the clustered index as we do 

not attempt to maintain any sort of in-memory “clustering” of 

newly inserted rows. Insert into the IMRS-enabled stock table still 

logs the index insert in the page store. So, we performed two set of 

experiments – one without the index and one with the index. The 

results are showin in Figure 9. 

 

 

Figure 9: Performance gains for concurrent inserts  

 

Certain aspects of transaction performance, such as the perceived 

commit-time latency that may occur due to the generation of log 

records while logging to sysimrslogs, is measured indirectly, and is 

subsumed in the overall throughput metric. 

There are multiple interesting data-points highlighted from these 

experiments: 

1. Larger transaction sizes cause greater degree of conflicts 

across transaction. As the inserts into the page-store are 

impacted by page-level contention, the performance is 

affected negatively by larger transaction sizes. In contrast, 

IMRS runs keep improving with larger transaction sizes. 

2. At lower transaction sizes (especially size of 1), for both page 

store and IMRS, the performance is bottlenecked by the 
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commit-time behavior. However, for IMRS, with the design 

of performing only the space reservation under a semaphore, 

and due to multiple insertion points to concurrently 

committing transactions, the performance is greatly improved. 

Even for the simplest case of 1-row inserts / transaction, insert 

performance in IMRS is 1.8-2X better than in the page-store. 

As the transaction size increases, the benefits from multiple 

insertion points to sysimrslogs are accentuated, resulting in 

higher relative throughput. For example, at a transaction size 

of 100 rows, each commit independently writes to, and 

flushes, slightly more than 2 IMRS log pages. This allows 

several concurrently committing transactions to drive the 

imrslog I/O system. Also, as commit-time logging in 

sysimrslogs generates logging directly to the log page, we 

avoid the overhead of double-copying seen in the case of 

logging in syslogs. 

3. The increased IMRS performance gains over the page-store 

for the no-index inserts v/s inserts-with-index case is 

explained as follows. (For example, for the transaction size of 

10K rows, we are comparing 3.7X v/s 1.94X.) Index inserts 

are logged in syslogs, and the known contention issues with 

syslogs degrades the performance of insert throughput for the 

case with index in comparison to without an index.  

Note that the amount of log generated for page store versus IMRS 

for insert workload is in the same ballpark and the difference in 

performance is not due to the difference in the amount of log 

generated (unlike in the case of update workload, which we will 

study next).  

In conclusion, we observed that highly-concurrent inserts perform 

significantly better in the IMRS. We do note that the overheads of 

inserting to the page-store can also be partly overcome by 

partitioning the table n-ways, thereby providing multiple insertion 

points. In practice, however, this would require DBA intervention 

on a case-by-case basis to partition selected tables, which is 

detrimental to the overall TCO of the product. Therefore, we did 

not pursue the experiments to verify the potential gains from 

partitioning. 

5.1.3 Highly Concurrent updates of hot rows 
We designed the experiments to measure the difference in 

throughput due to: 

a) Varying degree of contention on updated pages 

b) Varying transaction sizes (# of updates per transaction) 

c) Varying update width; narrow v/s wide updates. i.e. updates 

of 1 column v/s several or all columns, respectively. 

We used the stock table for this experiment, again for the reason 

that the logging overhead is deterministic due to the fixed row-size. 

Updates to different rows are performed by 240 clients. Initially we 

performed narrow updates; i.e., update of a single non-index 

column. The server was run using 64 threads. Non-intersecting 

rows were updated by different clients so that we do not run into 

logical locking issues and focus only on update throughput. In page 

store, the updated rows may reside on the same page. 

For dimension (a), fixed non-overlapping chunks of rows to be 

updated are “assigned” to a client, and we varied the size of this 

chunk from 1 row to 5, 25, 125 contiguous rows. Recall that on a 

16K data page, about 50 rows fit on a page. Therefore, the average 

number of clients updating rows on the same page in the page store 

runs correspondingly varies from 50 (chunk size of 1) to 10, 2 and 

0.4 (chunk size of 125). The former extreme would have maximum 

page contention in page store runs whereas the latter would have 

least page contention, as each client works on a separate page. With 

this distribution, 240 clients updating a single row each affects 5 

pages, whereas all clients updating 125 rows each affects 600 

pages. This simulates the variation in the size of “hot” pages in the 

workload. This distribution is captured in Table 4. 

For dimension (b), we varied the number of updates done by a client 

within a transaction, from 1, 10 to 100. Note that, in an experiment, 

the chunk of rows assigned to a client remains fixed. So, all updates 

within a transaction get done on random rows within this chunk of 

assigned rows, and, in some cases, a row may get updated more 

than once within a transaction. For example, with a chunk size of 1 

row, and a transaction size of 10 updates, the same row will be 

updated 10 times. (We realize this may not be a common case, but 

is included to study the overall distribution.) On the other hand, 

with a chunk size of 25, and transaction size of 10 updates, on an 

average, every other row in the chunk assigned to a client will be 

updated. For completeness of the spectrum of combinations, we 

still examine the throughput when some rows may be updated 

multiple times within the same transaction. 

 

Table 4. Distribution of page contention v/s chunk size 

Chunk sizes (Rows assigned to a 

client) 

1 5 25 125 

Total number of distinct pages in 

the updated “working set” 

5 24 120 600 

Concurrent clients updating per 

page 

50 10 2 0.4 

Page contention decreases  

 

Figure 10 shows the throughput of single-column updates for page-

store and IMRS for all combinations of transaction size and update 

chunks considered. In the legend of this figure, PS-1 indicates the 

page-store run with transaction size of 1. Likewise, IMRS-10 

indicates the IMRS-run with a transaction size of 10 updates. 

 

 

Figure 10: Performance gains for 1-column updates 
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We observed the following performance characteristics: 

1. Across the page store run, as expected, with fewer concurrent 

clients updating on the same page, the performance keeps 

improving as there are lesser page contention. In contrast, for 

the IMRS the performance is relatively constant. 

2. With a transaction size of 1 (PS-1, IMRS-1), the throughput is 

lower in all experiments, because the commit time bottlenecks 

dominate the performance. However, IMRS performs 

relatively better (~3X over PS-1) due to the improved 

sysimrslogs strategies, explained in the previous section. 

3. For cases where the same row is updated multiple times in a 

transaction, IMRS updates benefit due to aggregate logging. 

(For example, in IMRS-10 with chunk sizes of 1 and 5, and 

for IMRS-100, with chunk sizes of 1, 5 and 25.) For IMRS, 

only one log record representing the net change gets logged 

for a row, thus the amount of log generated is lesser. 

Lastly, note that in the absence of page contention i.e. at chunk size 

of 125 (0.4 clients/page), the IMRS actually performs poorer than 

page store. This is due to the full-image logging done in IMRS 

versus the delta-logging done in the page store. Recall that this 

workload involves updating a single column in the table. IMRS 

logging would involve writing a new image for the entire row 

whereas page store logging involves writing only the modify log 

record for the updated column. Beyond micro-benchmarking, this 

is not really seen as a drawback for user-workloads.  

 

Figure 11: Performance gains for all-columns update 

 

For several cases, such as replicated tables, for tables with triggers, 

for some classes of multi-row updates driven by a join or, more 

commonly, when a large number of columns in the row are updated, 

updates in the page store do generate full before/after image 

logging. In fact, in such cases, the log record volume is double for 

page-store changes as compared to changes in the IMRS because 

we only log the after-image for changes affecting rows in the 

IMRS. To demonstrate this behaviour we repeated the experiments 

with all the 15 non-index columns updated. The results are shown 

in Figure 11. 

In conclusion, for highly concurrent updates in small transactions, 

on small tables and for narrow or wide updates, IMRS out-performs 

the page store by factor of 3. 

5.2 End-to-end benchmarks 
While micro-benchmarks are useful to demonstrate particular 

aspects of the design, what matters finally is the improvements seen 

in an end-to-end workload.  Our end-to-end OLTP benchmark is 

based on TPCC. The experiments in this section were performed 

on a machine with an Intel Xeon E7-4880 @ 2.50 GHz processor, 

having 4 sockets / 60 cores / 120 logical CPUs, with 1TB RAM. 

On 64-CPUs, with 250 users performing a mix of ISUD 

transactions, similar to those in the TPCC benchmark, we are able 

to deliver close to 3X gains for throughput metric (total 

transactions / minute), when comparing the OLTP benchmark 

running in the page-store v/s in the IMRS. To conform to low 

TCO and usability considerations, minimal tunings were used 

which can be implemented primarily through configuration 

changes without needing extensive table-, index- or cache-specific 

tuning. It is important to note that the entire stored-procedures 

based benchmarking code ran with no need for any code changes 

when executed against the IMRS. 

 

 

 

Figure 12 shows the throughput scalability for this workload across 

multiple. While both architectures scale similarly at lower number 

of cores, the page-store is not able to scale beyond 32 cores. IMRS 

is able to scale almost linearly till 64 cores. 

In this workload, the order_line and orders tables have similar 

highly concurrent insertion pattern as seen in the insert 

microbenchmark earlier and thus page store has similar 

bottlenecks. The warehouse and district tables which are small 

tables and are frequently updated, have similar page conflicts in 

case of page store as observed in the concurrent update 

microbenchmark. IMRS is able to resolve these scaling issues in 

the end-to-end workload resulting in significant performance gains. 

We anticipate other real-life OLTP workloads to also have similar 

access patterns and, thus, the resulting gains by use of IMRS. 

In future, we plan to investigate the performance characteristics of 

the SAP SD Benchmark when run against the IMRS. 

6. RELATED WORK 
Several commercial in-memory database engines are available in 

the market, with different capabilities. SAP Hana [5] [20], [24], 

Oracle TimesTen [15], [17], Oracle RDB [12], Microsoft Hekaton 

[2],  [3] and VoltDB [26] are a few comparable offerings. There are 

notable differences between existing offerings and our work. 
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Many of the existing offerings, such as SAP HANA, Microsoft’s 

Hekaton, and VoltDB require that the entire database or table be 

fully memory-resident. Our offering does not have this 

requirement, and allows for smaller portion of “hot” rows from 

some tables to be in-memory. Oracle TimesTen is more on the lines 

of an application-tier caching system, which can be deployed with 

an application like a library or as an extension of the database 

engine. Although it is similar in capability with our offering, it is 

still a separate product needing its own installation and 

administration in addition to that of the core database engine. 

Oracle RDB has a feature set of data row caching similar to our 

offering, but it was not clear from available literature if support is 

provided for identifying cold rows and moving them from the in-

memory cache to the database physical storage. Organic integration 

of ILM rules within the database engine and IMRS is a key 

differentiator of our offering. However, Oracle Rdb also offers 

caching of index rows, which is currently not supported in BTrim. 

Our offering is very similar to Microsoft’s Hekaton offering 

integrated with SQL Server, both using in-memory versioning 

offering snapshot isolation. However, there are significant 

differentiating aspects. Hekaton requires that tables marked as in-

memory be fully memory-resident, whereas in BTrim this is not a 

requirement. For very large tables, the design of Hash-Cache BTree 

indexes under unique indexes in our design provides high-

performance for point-query access to “hot” data in-memory 

without the need for large memory footprint for a hash index 

spanning all the table’s data in the cache (as is the design in 

Hekaton). As of this writing, we believe Hekaton does not offer 

schemes to organically harvest cold rows from the cache and 

migrate the cold-data to disk-based storage. Some work in the area 

of cold-data management has been published in this area (Siberia 

[5] and by Levandoski et’ al’ [13]), but is not, yet, commercially 

integrated with the core dbms engine. Also, the techniques rely on, 

howsoever efficient, off-line analysis of log streams which then can 

lead to identifying cold rows. In contrast, organically identifying 

and packing cold rows out of the IMRS to the page-store is an 

integral and differentiating part of our offering. The overheads of 

this cold-data harvesting is very minimal and is not seen to impact 

OLTP performance in our experimental results [19]. 

In [3], techniques referred to as Anti-Caching; i.e. moving cold data 

from in-memory to disk storage, are presented as an extensible 

alternative to fully in-memory databases. The anti-caching aspects 

of this work is close to our Pack design however, their storage 

model starts initially in-memory and then pushes cold data to disk-

storage. This is different from BTrim where we support a hybrid 

storage model for existing databases which already have on-disk 

data and augment that with in-memory storage for faster 

processing. In the Anti-caching work, access to cold data that was 

evicted (i.e. access from page-store) results in rolling back certain 

transactions while the system retrieves relevant tuples in the 

background. This approach seems quite non-user-friendly. Our 

scheme has no such issues with application outages. 

Since the early editions of Hekaton offering with SQL Server, there 

have been serious limitations on features that could be supported 

on in-memory tables. Some of these have been bridged with later 

editions of the product. However, literature [14] suggests that there 

still are limitations to SQL usage with in-memory tables. Features 

such as Replication, data compression, non-clustered indexes, 

partitioning of memory-optimized tables are unsupported on in-

memory tables. Our offering is feature-compatible in all these areas 

with existing versions of the product. With Hekaton, there are 

documented limitations [15] on the types of accesses that can be 

done to in-memory tables from natively-compiled stored 

procedures. As an example: Natively compiled T-SQL modules do 

not support the FROM clause and do not support subqueries in 

UPDATE statements (they are supported in SELECT). In our 

offering, no such limitations exist on what language constructs can 

be used in any part of the system. Although full support for 

natively-compiled SQL is not offered, SAP ASE [21] does offer 

performance improvements by generating compiled code for 

optimizing execution of tight-loops in search and index 

qualification code. There is no distinction made when native 

compiled plan is generated and executed while scanning data for 

IMRS-enabled tables or page-store tables. Choice of pessimistic 

locking in our offering allows complete support for ANSI isolation 

levels on in-memory tables, and full application compatibility. 

Contrastingly, choice of optimistic locking for Hekaton in-memory 

tables can result in changes in application logic to retry transactions 

that may fail due to concurrency conflicts. 

In [7], Graefe et al present an architecture that optimizes buffer pool 

designs to support “big data” workloads which cannot fit in 

available memory sizes. This work manages buffer pool usage 

using pointer swizzling, but does not address areas considered by 

this work around contention issues arising from page-oriented 

storage and row-level in-memory processing. 

7. CONCLUDING REMARKS 
In this work, we presented a novel in-memory row-oriented storage 

extension tightly integrated with the page-based storage, buffer 

cache and access methods of the traditional SAP ASE database 

engine, to offer high-performance overcoming contention and 

scalability issues seen in typical database servers, including those 

seen in previous editions of this product. Tight and deep integration 

to the existing architecture delivers full language and application 

compatibility to existing and migrating customers, allowing better 

use of available memory and multi-core resources for higher-end 

OLTP workloads, and more importantly, of human-resources 

needed for any migration effort.  

The new architecture does not require that all table data, or much 

worse, the entire database be fully memory-resident. Capturing the 

patterns of data-ageing, the hybrid architecture allows for data to 

flow through the storage layers (disk, buffer cache or in-memory 

store), and tightly integrates the in-memory storage techniques to 

existing access methods.  

We believe this technology, with its performance gains, and 

compatibility levels enabled by the deep integration with the 

existing product is fundamentally different than any other 

enterprise-class commercial database engine available today. 
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