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ABSTRACT
As graph data is prevalent for an increasing number of In-
ternet applications, continuously monitoring structural pat-
terns in dynamic graphs in order to generate real-time alerts
and trigger prompt actions becomes critical for many appli-
cations. In this paper, we present a new system GraphS

to efficiently detect constrained cycles in a dynamic graph,
which is changing constantly, and return the satisfying cycles
in real-time. A hot point based index is built and efficiently
maintained for each query so as to greatly speed-up query
time and achieve high system throughput. The GraphS sys-
tem is developed at Alibaba to actively monitor various on-
line fraudulent activities based on cycle detection. For a
dynamic graph with hundreds of millions of edges and ver-
tices, the system is capable to cope with a peak rate of tens
of thousands of edge updates per second and find all the
cycles with predefined constraints with a 99.9% latency of
20 milliseconds.
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1. INTRODUCTION
With the rapid development of information technology,

data generated by an increasing number of applications is
being modeled as graphs. On one hand, the graph struc-
ture is able to encode complex relationships among entities.
Examples include social networks, e-commerce transactions,
and electronic payments, etc. It is typical for such graphs
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to contain hundreds of millions of edges and vertices. So-
phisticated analytics over such large-scale graphs provides
valuable insights to the underlying dataset and interactions
among different entities. On the other hand, the structural
changes to such graphs are constant in nature, which makes
them very dynamic, together with continuous stream of in-
formation produced by the entities. It is imperative and
challenging to design an efficient graph system to store and
manage dynamic graphs at scale and provide real-time ana-
lytics to explore and mine fast-evolving structural patterns.

In this paper, we study a problem of continuous con-
strained cycle detection in large dynamic graphs. Specifi-
cally, for each incoming edge of the dynamic graph, the goal
is to identify the newly generated cycles and return them
for a set of continuous queries, respectively. Each query can
ask for cycles satisfying some predefined constraints, such as
length and attribute constraints. Detecting constrained cy-
cles in real-time turns out to be valuable for many real-world
applications. We use two simplified real-world examples in
the context of e-commerce and personal finance to illustrate
the importance of such operations.

Figure 1: A graph of a merchant-fraud example.

Figure 1 represents a simplified graph among buyers and
sellers in an e-commerce platform. We denote individual
users (buyers or sellers) and their accounts as vertices in the
graph. There are two types of edges. One type of static
edges (in solid lines) models the association of accounts to
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Figure 2: A graph of a credit-card-fraud example.

users and the relationships among different users, while on-
line transactions including payment activities are denoted as
dynamic edges (in dotted lines) for the corresponding ver-
tices. In order to increase the popularity for a merchandise
so as to improve future sales, fake transactions are placed to
artificially bump up the number of past transactions. In this
example, this is achieved through a third-party account (ver-
tex 3) from which a normal order is placed and its payment
(edge 3→ 4) is completed at time t2. However, the merchan-
dise is never shipped by the seller (vertex 5) and the money
used for the payment by the fake buyer (vertex 3) was previ-
ously transfered to him/her via the seller’s friend (vertex 1)
at time t1 using his or her own account (vertex 2). The en-
tire process is rather complicated involving multiple entities.
Interestingly, it generates a cycle (1→ 2→ 3→ 4→ 5→ 1)
in the graph, which can be served as strong indication that
a fraud may exist.

Figure 2 represents a series of credit card transactions
using graph and describes an interesting case of credit card
fraud. By using fake IDs, a “criminal” (vertex 2) may obtain
a short-term credit from a bank (vertex 4). He tries to
illegally cash out money by faking a purchase (edge 2→ 3)
at time t1 with the help of a merchant (vertex 3). Once
the merchant receives payment (edge 4→ 3) from the bank
(vertex 4), he tries to send the money back (edges 3 → 1
and 1 → 2) to the “criminal” via a middle man (vertex 1)
at time t3 and t4, respectively. If the system can detect the
cycle (2 → 3 → 1 → 2) in real time, it becomes possible to
stop such fraud in time.

In both examples, such fraudulent activities become one
of the major issues for the e-commerce platform, like Al-
ibaba’s Taobao and TMall, where the graph could contain
hundreds of millions of vertices (users) and billions of edges
(payments, transactions). In reality, the entire fraudulent
process can involve a complex chain of transactions, through
many entities, which requires complex cycle detection with
various constraints such as the length of the cycles and the
amount of a transaction (edge) to identify and monitor. In
addition, the graph is being updated at a tremendous speed
of tens of thousands of transactions per second. How to
quickly detect various constrained cycles in such large dy-
namic graph becomes critical in stopping fraud in time and
preventing potential financial loss.

Previous proposed graph processing frameworks such as
Pregel [17] and GraphX [11] perform off-line analytics by
leveraging graph partitioning and data parallelism to achieve
high throughput and good scalability. However, we are con-
fronting a task asking for a significantly lower latency. The

quantitative difference is big enough to require a qualitative
change in the architecture. Streaming systems have been a
hot research topics. Twitter Storm [4] and Apache Flink [3]
have recently been focusing on high-level programming ab-
stractions and resiliency for streaming at scale. While fault
tolerance is important, we need to perform complex graph
traversals over streaming data which, to our knowledge, is
beyond the expressiveness of today’s popular stream proces-
sors. It very likely also needs further specialization to meet
the latency goals.

Creating an index for finding shortest paths in a static
graph has been studied extensively. However, it is not di-
rectly applicable to our case, which required continuously
locating all possible cycles in highly dynamic graphs. In ad-
dition, the space and maintenance overhead of such an index
is often too high to be scalable for dynamic graphs. Alterna-
tively, a straightforward approach uses a breadth or depth-
first search to traverse the graph whenever it is changed.
The approach incurs significant overhead for repetitive com-
putation. Moreover, the skewness of real-world graphs often
leads to extremely unbalanced response times. As described
later, when a query encounters some vertices with a high de-
gree of connectivities, the approach may introduce exponen-
tially more possible paths to explore and cause significant
delays in response.

In this paper, we present a new system, called GraphS, to
take on the above challenges of continuous constrained cycle
detection over fast changing graphs. It leverages a dynamic
index structure to optimize trade-offs between memory us-
age and query efficiency, with minimized maintenance cost.
Specifically, for each query, we propose hot point based index,
which can be selectively applied to a certain portion of the
graph and exploits various heuristics (e.g., memory usage
and vertex connectivities) to balance cost and efficiency. As
the graph evolves, the system automatically adapts itself to
capture new hot points and update the index accordingly. In
order to cope with a high rate of edge updates without sacri-
ficing query performance, the index is efficiently maintained
as a by-product of search evaluation. Additional optimiza-
tion techniques are designed to evaluate constrained cycles
concurrently and optimistically to increase system through-
put while guaranteeing correctness. GraphS is a real pro-
duction system deployed at Alibaba. It has served as the
foundation for several key businesses to detect constrained
cycles in real-time and prevent fraud in a very dynamic en-
vironment. The system can handle a dynamic graph with
hundreds of millions of edges and vertices, and is capable to
cope with a peak rate of tens of thousands of edge updates
per second and find all the cycles with predefined constraints
within a few milliseconds.

The rest of the paper is organized as followed. We formally
define the problem, describe straightforward solutions, and
demonstrate the challenges in Section 2. We then present a
novel hot point based index in Section 3. In Section 4, we
describe the GraphS system and its internals systematically.
We present experiments and demonstrate the performance
improvement in Section 5. Finally, we survey the related
work in Section 6 and conclude in Section 7.

2. PRELIMINARY
In this section, we first formally introduce the problem of

constrained cycle detection in dynamic graphs, then present
a baseline solution based on the depth-first search.
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Figure 3: Real-time constrained cycle detection on dynamic
graphs.

2.1 Problem Definition
Let G = (V,E,AV , AE) denote a directed graph, where

(1) V is a set of vertices; (2) E ⊆ V ×V , in which e(u, v) ∈ E
denotes an edge from vertex u to v; and (3) AV (AE) denotes
the set of attributes of the vertices (edges). For instance, we
use t(e) to denote the timestamp (t ∈ AE) of the edge e. In
the system, we have two types of edges: static and dynamic.
For every static edge e (e.g., friend relation between two
users), we set t(e) = ∞ where the edge will never expire.
For dynamic edges (e.g., money transfers among users), we
assume they have logical/application timestamps, indicating
such as transaction time, and they arrive in order. In this pa-
per, we use the popular sliding window model to capture the
dynamic of a graph G. Particularly, we maintain a system
clock c to indicate current time, which is updated upon the
arrival of every edge. A dynamic edge e with t(e) + W ≤ c
will be expired in graph G, where W is the length of the
sliding window. Whenever the context is clear, we use G to
denote the dynamic graph under the sliding window model.
In the system, the dynamic graph G is initialized by a base
graph G0 with all vertices and static edges. Then it is con-
tinuously updated upon the arrival and expiration of the
dynamic edges.

We shall use the following notations for a dynamic graph
G. A path p from vertex v to v′ is a sequence of vertices
v = v0, v1, . . ., vn = v′ such that (vi−1,vi) ∈ E for every
i ∈ [1, n]. We may also use p(u, v) to denote a path from
vertex u to v. The length of path (cycle) p, denoted by
len(p), is the number of edges in the path (cycle). We say a
path is simple path if there is no repetitions of vertices and
edges. A cycle is a path p with v0 = vn and len(p) ≥ 3. A
cycle is a simple cycle if there is no repetitions of vertices and
edges, other than the repetition of the starting and ending
vertex.

Definition 1 (Length constraint). We say a path
or cycle p satisfy the length constraint if len(p) ≤ k where k
is a predefined number.

In the real applications, users may also impose other con-
straints based on the attribute values of the edges and ver-
tices for different business logics. In this paper, we consider
the simple predicate on individual edge and vertex as fol-
lows.

Definition 2 (Attribute constraint). Let fA() de-
note a user-defined boolean function against the attribute
values of the edges or vertices, we say an edge e (resp. a node
u) satisfies the attribute constraint if fA(e) (resp. fA(u)) is
true. And a path or cycle satisfies the attribute constraint if
every edge and node satisfies the attribute constraint.

Definition 3 (Continuous Cycle Query). A con-
tinuous cycle query q = (k, fA(.)) will incrementally report
the new simple cycles resulting from the arrival of each new
edge on the dynamic graph G, where each cycle satisfies both
length and attribute constraints.

Problem Statement. Given the dynamic graph G and
a set of continuous (constrained) cycle queries Q, for every
incoming edge e, we aim to develop a system to support
every query q ∈ Q in a real-time manner.

Example 1. Figure 3 illustrates an example of continu-
ous constrained cycle detection where three dynamic edges
{e1, e2, e3} arrive in order. Suppose the length constraint
of q is 3, and there is no attribute constraint. It is shown
that the cycle (B,D,C) will be reported upon the arrival of
e3(C,B). Note that the cycle (B,A,D,C) does not satisfy
the length constraint and hence will not be reported.

2.2 A Baseline Solution
Given the dynamic graph G and the attribute constraint

of a query q, we can easily come up with a graph Gq by
filtering the unsatisfied edges and vertices. Clearly we do not
need to materialize Gq for each individual query q since the
attribute constraint can be easily integrated into the cycle
detection algorithm by discarding the unsatisfied vertices
and edges during the search. Thus, in the following, we
focus on the length constrained cycle detection.

An incoming edge e(d, s) will result in a simple cycle with
length constrained k + 1 for every simple path p(s, d) with
len(p) ≤ k. So the key is to find all simple paths {p(s, d)}
under length constraint. The following algorithm uses a
depth-first search (DFS) to enumerate all simple paths from
a source vertex s to a destination vertex d. Upon each up-
date e(v, u), the algorithm takes as input the current snap-
shot of the directed graph G, a source vertex s = e.u and a
destination vertex d = e.v of G, and the parameter, q.k, for
length constraint. It outputs all simple paths from s to d in
G, up to length k. The search starts from the source vertex,
along the directed edges. Once it reaches the destination, a
leaf vertex or the current length is already k, it backtracks
to continue the search for other possible paths.

Algorithm 1 Baseline Solution (graph G, edge e(d, s),
length k + 1)

1: Stack S = ∅ . keeps track of current path.
2: bool visited[] = false
3: FindAllSimplePaths(G,s,d,k)

4: procedure FindAllSimplePaths(graph G, vertex s,
vertex d, length k))

5: visited[s] = true;S.push(s)
6: if s==d then
7: report the simple path, i.e., a simple cycle in-

curred by e(d, s)
8: else
9: if S.size() ≤ k then

10: for every v in G.adj(s) do
11: if !visited[v] then
12: FindAllSimplePaths(G, v, d, k)

13: S.pop(); visited[s] = false

Analysis. In Figure 4, we report the response time for a
continuous constrained cycle query with length constraint
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k = 6 against the arrival of new edges (See Section 5
for detailed data description). It is shown that there are
many spikes, where the incoming edges consume signifi-
cantly longer time than the average. These spikes will seri-
ously deteriorate the throughput of the system, and hence
are unacceptable in a real-time system. The key reason of
the phenomenon is the existence of some hot points, i.e.,
points with very high out-going degrees. The number of
edges visited in Algorithm 1 grows greatly whenever a hot
point is encountered. Figure 5 shows a clear correlation be-
tween the number of the edges visited by the query and the
response time. This motivates us to develop a hot points
based indexing technique to alleviate this issue. To further
explain why the existence of hot points hurts the system
performance, Figure 6 reports the number of paths with
length k in our real-life graph evaluated in the experiments
as well as a random graph with the same number of vertices
(518, 959, 261) and edges (2, 088, 968, 416), traversing from
10, 000 randomly selected vertices. It is shown that the num-
ber of k-length paths (i.e., edges visited) grows very quickly
on real-life graph because the existence of hot points. Par-
ticularly, when k = 3 and k = 5, around 93% and 99% of
the paths encounters at least one hot point (with out-going
degree not less than 40) respectively. Note that, intuitively,
the total number of paths in the random graph should be
larger than that of the real-life graph due to the fact that
the total number of edges is the same. However, the num-
ber of paths grows more quickly in real-life network when
the length constraint k is not large. Note that, the k values
used in our applications are not large.

Figure 4: Latency spikes of the baseline solution.

Figure 5: A clear correlation between query times and the num-
ber of edges visited.

Figure 6: Number of paths on random and real-life graphs.

Figure 7: Motivation of hot points based index.

3. HOT POINT BASED INDEX (HP-Index)
As discussed in Section 2.2, the key technique for the con-

tinuous constrained cycle detection is the length constrained
cycle detection and the key challenge is how to handle the
hot points encountered during the search. In this section,
we propose a novel hot points based indexing technique,
namely HP-Index, to support length constrained cycle de-
tection. Particularly, Section 3.1 introduces the motiva-
tion of HP-Index. Sections 3.2 and 3.3 present the index-
ing structure and corresponding searching algorithm. Sec-
tion 3.4 shows the dynamic maintenance of the HP-Index.
Section 3.5 discusses how to handle multiple continuous con-
strained cycle queries.

3.1 Motivation
As discussed in Section 2.2, the existence of hot points

(i.e., vertices with large number of out-going edges) in real-
life graph may seriously deteriorate the throughput of the
system. As illustrated in Figure 7, when the edge (u4, u1)
comes, we can enumerate the paths {p(u1, u4)} with length
constraint k = 7 by conducting a DFS search starting from
u1. A pitfall of this approach is that the search space may
quickly blow up when encountering a vertex with many out-
going edges. For instance, when the vertex h1 in Figure 7 is
visited, it may come up with a large number of paths and
many of them will not reach u4 within 7 hops.
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This motivates us to build hot points based index such
that we can avoid explicitly exploring the out-going edges
of hot points when we traverse the graph. The key idea
of the hot points based indexing technique is to continu-
ously maintain the length constrained paths for each pair
of hot points. By doing this, we can conduct DFS for u1

on the graph G. A search branch will be suspended when
a hot point (e.g., h1 and h3 in Figure 7) is encountered or
the length constraint is violated. We also conduct a DFS
from u4 on the reverse graph of G, (i.e., all edges are re-
versed, denoted by dash lines in Figure 7), and suspend a
search branch whenever we meet a hot point or the length
constraint is violated. Then we can take advantage of the
pre-computed length constrained paths among hot points to
generate the paths with length constraint, which can signif-
icantly reduce the search space.

Particularly, to meet the real-time response time require-
ment for a large dynamic graph, our proposed indexing tech-
nique should have the following properties: (1) has small in-
dex size; (2) can be quickly updated; and (3) can efficiently
enumerate all length constrained simple paths for any two
vertices.

By analysing the structure characteristics of the graph
(with 518, 959, 261 vertices and 2, 088, 968, 416 edges) used
in our case study (See Section 5 for detailed data descrip-
tion), we find it is a highly skewed scale-free graph. For
instance, there are only 5, 274 vertices with degree larger
than 4, 000. Moreover the number of paths among these
vertices with length smaller than 6 is only 1, 399, 383, which
is much smaller than the graph size. These indicate that we
can afford maintaining a considerable number of hot points
and the length constraint paths among them.

Based on the index, we develop efficient cycle detection al-
gorithm (i.e., path enumeration algorithm) for every incom-
ing edges. Meanwhile, we also show that the index mainte-
nance is by-product of the searching procedure. By doing
this, we show our indexing technique meets three properties
required. As demonstrated in our case study, our proposed
HP-Index not only significantly reduces the number of spikes
in the response times but also enhances the average process-
ing time.

3.2 Index Structure
We introduce the HP-Index structure in this subsection.

Hot point. Let d(v) be the degree for a vertex v, and t
be the threshold. Let H be a set of vertices in G satisfying
∀h ∈ H, d(v) ≥ t, called hot points. Note that we also use
reverse edges of the vertices in the search processing, so we
consider both in and out degrees of a vertex.

For every pair of hot points hi, hj ∈ H, the index contains
all the (pre-computed) paths between hi and hj which has
lengths less than or equal to k and each path does not go
through any other hot point. The paths are organized into
an index graph, denoted by Gidx. The index graph contains
only the hot points h ∈ H. Each edge represents a path,
weighted by its length.

In addition, we also maintain a reverse graph G′ to sup-
port query processing. It has the same set of vertices as G.
For the edges, e′〈v, u〉 ∈ G′ if and only if e〈u, v〉 ∈ G. Note
that we will not immediately double the storage space be-
cause the static edges are usually bi-directed. Moreover, we
do not need to duplicate the attribute values of the edges.

Figure 8: Length constrained paths enumeration using in-
dex.

3.3 Search Algorithm
For each incoming edge 〈u, v〉, we search for all simple

paths from s = v to d = u in G with lengths less than or
equal to k (abbr. as k-paths1), with the following three steps
as illustrated in Figure 8.

Step 1. Conduct a DFS search starting from the source
vertex s. A search branch stops when: i) d is reached (e.g.,
path u1u5u7u4 in Figure 7). ii) already has length k (e.g.,
path u1u2 . . . u9 in Figure 7). iii) meets a hot point (e.g.,
paths u1u2h1 and u1u5h3 in Figure 7).

Note that this is the same as straightforward approach
except that we suspend a search branch whenever a hot
point is encountered. If there is no hot point appearing
during the search procedure, it is immediate that we have
already identified all the k-paths as required. Otherwise, we
need to consider the paths involving hot points.

By L, we denote the set of hot points encountered in Step
1. For each hot point (vertex) h ∈ L, we record all paths
from source s to h, denoted by p(h). Then we go to Step 2.

Step 2. Conduct another DFS traversal from the destina-
tion vertex d in the reversed graph G′ and stop if: (i) s is
reached. (ii) already reach length k.2 (iii) meet a hot point
(e.g., h2 and h3 in Figure 7), which will be kept in a set R.

For each hot point (vertex) h ∈ R, let p′(h) records all
paths with reverse edges ending up at h in Step 2. Let
S = R ∩ L, we can identify the new k-paths with only one
hot point h ∈ S by checking all possible valid combinations
of the paths in p(h) and p′(h). For instance, we can imme-
diately identify the path u1u5h3u6u4 by considering paths
u1u5h3 in p(h3) and u4u6h3 in p′(h3).

Step 3. This step will identify the remaining paths involv-
ing more than one hot point by utilizing the index structure.
For each hot point hi ∈ L, we conduct a depth-first search
with length constraint k on the index graph Gidx to iden-
tify the hot points {hj} ⊆ R. For each pair of hot points
hi and hj , k-paths from hi to hj , denoted by Pi,j can be
identified in the above search. Then, the k-paths from s to
d can be derived by concatenating the partial paths from
p(hi), Pi,j , and p′(hj). Note that we need to reverse the
paths from p′(hj). For instance, we have u1u2h1 ∈ p(h1),
h1u8h2 ∈ P1,2, and u4u3h2 ∈ p′(h2) in Figure 7. Then we
can come up with a valid path u1u2h1u8h2u3u4.

1For presentation simplicity, we assume the length con-
straint of the cycle is k + 1
2An immediate optimization is to search for length k− lmin

only, where lmin is the shortest lengths of all paths in⋃
p(h), ∀h ∈ L.
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Remark 1. Note that we assume both s and d are not hot
points in the above algorithm description. We may simply
set L = {s} (resp. R = {d}) if s (resp. d) is a hot point in
Step 1 (resp. 2).

3.4 Index Maintenance
In this subsection, we show how to continuously maintain

the HP-Index upon the arrival and expiration of edges.

Figure 9: Index maintenance on edge insertion is a by-
product of the search algorithm.

Edge insertion. When a dynamic edge 〈u, v〉 arrives and
is inserted into the dynamic graph G, we need to add the new
k-paths among the hot points resulting from the insertion
of e. Assume that both u and v are not hot points 3. As
shown in Figure 9, let p be a new k-path from hot points
R1 to L1. Clearly, p must contain the incoming edge 〈u, v〉.
Since len(p) ≤ k, its subpath from v to L1 and the reversed
subpath from u to R1 must be retrieved in Steps 1 and
2, respectively. Thus, we can immediately identify p by
checking the paths in L1 and R1 obtained in Steps 1 and 2.
For instance, in Figure 7, we have a new path h2u3u4u1u2h1

from hot point h2 to the hot point h1 upon the arrival of
〈u4, u1〉. The subpath u1u2h1 is retrieved in Step 1 w.r.t h1,
and the reverse of subpath h2u3u4, i.e., u4u3h2, is retrieved
in Step 2 w.r.t h2.

Edge deletion. Suppose the k-paths of the index are
maintained by an inverted index based on edge Ids, we can
immediately identify relevant paths and remove them when
an edge expires. In our implementation, we adopt a lazy
strategy where a path is set invalid if any of its edge is
expired. The invalid paths can be deleted in batches later.

Adjusting the HP-Index. With the involving of the dy-
namic graph G, the degree distribution may change overtime
and hence we may need to adjust the HP-Index to accom-
modate the change. We can easily tune the threshold t to
increase or reduce the number of hot points. When a ver-
tex u is included as a new hot point, we need to enumerate
the k-paths to existing hot points by applying DFS (Algo-
rithm 1) on both G (for k-paths starting from u) and reverse
graph G′ (for k-paths ending up at u) without exploring any
hot point. Recall that a hot point can only be the start or
end vertex of the k-paths in HP-Index. Thus, we also need
to remove the k-paths x u y from the HP-Index. Note
that both x u and u y are detected in the above com-
putation. When a hot point v is removed from HP-Index,
all its relevant paths will be deleted. In addition, v may
be included in the k-paths of the hot points as a non-hot
point (i.e., not the begin or end vertex in the k-paths of
HP-Index). Let L = {x} denote the hot points which have

3The solution is trivial if one or both of u or v are hot points.

Figure 10: Architecture overview of the GraphS system.

k-paths x  v in HP-Index. Similarly, let R = {y} denote
the hot points with k-paths v  y. We concatenate every
possible paths {x v  y} and include the ones satisfying
the length constraint to HP-Index.

3.5 Coping with Multiple Continuous Con-
strained Cycle Queries

In the system, we may need to support multiple contin-
uous queries with different length or attribute constraints.
For the queries with the same attribute constraint, we only
need to take care of the query with the largest length con-
straint kmax because its outputs include all valid cycles for
other queries. Regarding the attribute constraint of a query
q, we only need to keep the valid vertices and edges , which
may result in a much smaller dynamic graph Gq and the
corresponding HP-Index. To facilitate the concurrency of
the system and support different attribute constraints, we
maintain a HP-Index for each individual query. More details
will be discussed in the next Section.

Remark 2. Similar to the length constraint, it is possible
for us to consider computing sharing of the queries with sim-
ilar attribute constraints. This will be an interesting future
research direction, and is beyond the scope of this paper.

4. SYSTEM IMPLEMENTATIONS
In this section, we first present the overall architecture for

GraphS. We then describe system internal components which
are able to efficiently store and update graph data, continu-
ously monitor the graph structures, and return constrained
cycles timely. Finally, we discuss additional system opti-
mizations to improve system throughput and provide fault
tolerance.

4.1 Architectural Overview
Figure 10 shows the architecture overview of the GraphS

system. A graph store is responsible for persistently storing
the graph data. For low-latency access, the system also
maintains a copy of the graph data in main memory using
an optimized compact representation as described below.

Users can define a query for constrained cycles and register
it to the system as a continuous query (shown as Step (1)).
For each query registered at time t, GraphS will return all
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Figure 11: An example graph.

the cycles involving at least one dynamic edge with a times-
tamp large than t. The system detects cycles incrementally
as follows. As edge updates come in continuously (shown
as Step (2)), the system first applies them to the graph
store (shown as Step (3)) and then notifies each query of
the updates (shown as Step (4)). Each query calculates for
new instances of satisfying cycles, evaluates additional con-
straints if needed, and returns the results to users (shown as
Step (5)). At any time, users can stop or abort a continuous
query.

For the rest of this section, we go through each component
and describe the implementation in details.

4.2 Graph Store
As described in Section 2, there are two types of edges in

the graph. The system stores them separately for optimized
performance.

1. Static edges. They do not change in the query lifetime,
and only get updated occasionally in a batch fashion.

2. Dynamic edges. Each of them has a timestamp and
expires after a defined time interval.

Figure 11 shows an example graph. Edges with solid lines
are static edges while the ones with dotted lines are dynamic
edges. Conceptually, the graph store maintains the following
two mappings.

• Graph topology. That is a mapping from a vertex to
its edges.

• Properties. That is a mapping from either a vertex or
an edge to its properties.

As a graph could contain hundreds of millions of edges
and vertices, it is important to maximize memory efficiency
and enable fast query performance.
Compact representation. Figures 12 and 13 show the
internal representation for static and dynamic subgraphs,
respectively, of the example graph.

For static graph, the list of edges are stored consecutively
in an array, and their starting offsets are stored in the map.
Further, we sort the edges according to their destination ver-
tex in order that more sequential memory access is possible.

Figure 12: Static graph representation.

Figure 13: Dynamic graph representation.

We use a specialized encoding for vertices only having one
edge, which has a large percentage in our dataset (nearly
67%), by storing the edge information directly in the map
without indexing to a separate memory location. This gives
about 17% of memory saving.

Each entry in the edge list contains its destination vertex,
time stamp (for dynamic edges), and a pointer to its prop-
erty values. For the property values, we introduce “schema”
for each vertex or edge, which defines the meta-data infor-
mation about their property names and value types. Then,
a schema-specific encoding is used for different types.

We group together property values of a fixed length and
keep them in consecutive memory without any gap. In this
case, their offsets just need to be calculated per schema.
For values of variable lengths, the size information has to be
stored together with the value.

As shown in Figure 13, we use a circular buffer to main-
tain the list of dynamic edges, in order of their arrival (and
expiration) times. On every edge insert, the circular buffer
is updated immediately for that particular vertex. Time-
out edges for that vertex is marked as deleted from the list,
though we defer the actual deletion of their property val-
ues as well as other timeout edges from other vertex, as
described below.
Deferred edge deletion. The removal of edge properties,
as well as edges from other vertex is deferred to a later time
using a garbage-collection mechanism running in the back-
ground when the system load is low. As every edge has a
timestamp, the obsolete edges do not affect the query cor-
rectness.

Efficient memory management for variable-length prop-
erties is challenging. The cost of frequent allocation and
deallocation is no longer negligible and can introduce mem-
ory fragmentation. Therefore, as shown in Figure 13, the
system uses a memory pool of fixed-length pages for storing
the properties of dynamic edges. Each page is tagged with
the latest expiration time of the properties it contains and
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Figure 14: Continuous query processing.

is managed by a garbage-collection process. If its expiration
time passes, the system can deallocate the page entirely, in-
stead of deallocating properties one after another.

4.3 Query Evaluation
As described earlier, the system supports multiple con-

current queries in parallel. Each query is assigned with a
dedicated process and the system provides its fault toler-
ance, independent from the others. Figure 14 uses Q1 as an
example to illustrate continuous query evaluation.

When a continuous query is submitted, the hot point in-
dex is built against the current snapshot (shown in Step
(1)). Such index is relatively small compared to the original
graph and its properties. We use simple hash maps, with
paths ordered by their length. As a new edge update comes
in (shown in Step (2)), the system evaluates if new satisfy-
ing cycles appear using the hot point index and output them
immediately (shown in Step (3)). Lastly, it also maintains
the hot point index as the last step of the process (shown in
Step (4)).

As edge updates come in order, the system can concep-
tually consume each edge update one by one. However, the
process is done in serial and may not be able to cope with
a spike of incoming edge updates. In order to improve the
overall throughput, the system maintains a pool of threads
to handle different edge updates optimistically without wait-
ing for previous edge updates to finish. The size of the
thread pool can be dynamically adjusted as needed.

For most of the cases when two edge updates involves
different parts of the graph and hot points, they can be
processed independently and concurrently without affecting
the result correctness.

Occasionally, the subsequent edge update could rely on
the index maintenance from the earlier edge update. If that
happens, a compensation query is issued to evaluate pos-
sible missing cycles. For instance, for a given edge update
sequence ..., e1, e2, ..., before e1 updates the hot point in-
dex, the system assigns a thread to evaluate e2 using the
current version of the hot point index and returns results
without waiting. The system also records which hot points

Figure 15: Concurrent query processing.

are involved when evaluating e2. When e1 is finally com-
pleted, the system checks if the modified hot point index
intersects with the set of hot points that e2 depends on. If
so, a new compensation query is performed as follows: e2
is re-evaluated and only satisfying cycles containing edges
with a timestamp of e1 are returned.

Figure 15 shows an example of applying two concurrent
edge updates. We assume ..., e8, e9, ... as the sequence of
added new edges. Before applying e8 to the hot point index,
the system issues new threads to applying update e9. It
uses an old version of the hot point index before the e8
update and return satisfying cycles promptly. In this case,
updating e9 relies on the paths between the hot point h2

and h4. If applying e8 does not add any new path between
the two points, there is no potential conflicts and both the
updates can be performed concurrently without missing any
results. If applying e8 does add a new path, for instance
ei in this example, applying e9 could miss some potential
cycles. Once e8 updates the hot point index, a compensation
query is issued for e9 to calculate cycles with an edge whose
timestamp is larger than the timestamp of the operated hot
point index.

4.4 Fault Tolerance
The GraphS system achieves high availability by running

multiple instances of the system with the graph replicated
among them. Incoming edges are persisted using a reliable
store before being consumed by all the instances. This en-
sures a deterministic order for events in order to generate
consistent results in case of failures.

Within each instance, we separate different continuous
queries and their HP-index into different processes. The
graph is accessed through shared memory. If one continu-
ous query fails, we take a snapshot of one of the remaining
healthy instances, record the sequence number of the cor-
responding input, and use that information to recover the
computation, possibly on a different server.

To detect a failure, GraphS monitors CPU, memory, and
network resource utilization, as well as query response times,
among many other metrics. The information is also used
to tune performance-critical configurations such as the fre-
quency of garbage collection to minimize impact to query
latency while ensuring enough memory available.

4.5 Additional Optimizations
Hash map is used extensively throughout the implementa-

tion of GraphS to efficiently store and query vertex property,
edge information and indexed paths. The default hash map
implementation in our library uses linear probing to resolve
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Figure 16: Hash map optimization.

conflicts, which is to find the next available slot in an array.
Such an implementation is very memory efficient as shown
in Figure 16. But when we try to fit a very large graph
into limited memory, the conflict rate increases significantly,
which results in poor latency. Another common approach
for hash conflict resolution is to chain the conflicted entries
in a linked list. Since our vertex set remains stable (though
the edges come and go on the fly), the overhead of linked list
could be significant, as shown in the figure, because there
are additional pointers to maintain and it is unlikely for
consecutive accesses to fit in a CPU cache line.

We combine the two strategies in our implementation for
hash map. We first try to resolve any conflicts using linear
probing. If the conflict remains after m (a configurable pa-
rameter) probes, we switch to use a linked list for conflicts.
Such design improves memory efficiency and access latency
(as it is more friendly to CPU cache line than chaining), as
shown in Figure 16.

5. EVALUATION
The GraphS is developed using Rust [24] at Alibaba. The

system is deployed in production to actively monitor con-
strained cycles for dynamic graphs in different business sce-
narios. The detected cycles are streamed in real time to
the control center, which classifies them into several groups
based on other data analysis and estimated degree of sever-
ity. Further actions are then applied accordingly, includ-
ing tagging problematic transactions for review, automat-
ically canceling fraudulent transactions, blacklisting suspi-
cious personnels, etc. The detailed description of various
business logics and policies is out of the scope of this paper.
Nevertheless, such constrained cycle detection has played a
critical role in the entire process.

The following report uses constrained cycle queries chosen
from a real workload and evaluated on a production cluster.
All the queries are performed on an Intel(R) Xeon(R) E5-
2650 server with 32 cores (at 2.60GHz) and 128GB of mem-
ory. In Section 5.1, we present the dynamic graph and out-
line its characteristics. We describe the chosen queries and
their properties in Section 5.2. In Section 5.3, we systemati-
cally evaluate the performance of such queries in production,
including the choice of HP-Indexes and their impact on the
query performance. Finally, we demonstrate the scalability

Figure 17: Degree distribution of graph vertices.

of the system in Section 5.4 and discuss the impact of high
frequency updates on the system performance in Section 5.5.

5.1 Dynamic Graph
The dynamic graph dataset is based on activities on the

Alibaba’s e-commerce platform, including different types of
entities, real-time transaction and payments among them.
The graph data contains both static and dynamic informa-
tion. For instance, the vertices represent individual users
and accounts. Static edges denote relationships among users
(such as friends) as well as the mapping from accounts to
their owners. Real-time transactions and payments are mod-
eled by dynamic edges.

For a given day, this particular graph is being updated
at an average rate of 3, 000 edges per second. At the
peak, over 20,000 new edges are added per second. From
a random snapshot, we observe 518, 959, 261 vertices and
2, 088, 968, 416 edges. They consume about 73GB of mem-
ory, including vertex and edge properties.

Figure 17 shows the complete distribution of vertex de-
grees (including both in- and out-edges). 80% vertices have
a degree less than 10 while the largest vertex degree is over
78, 000.

5.2 Cycle Detection Queries
A variety of queries with different constraints are per-

formed continuously against the dynamic graph. Specifi-
cally, we chose a representative continuous query from pro-
duction and study its performance. It detects 6-hop cycles
in the above graph, over a sliding window of 48 hours. There
is an additional constraint on the edge to filter out certain
types of transactions.

The query is used to monitor fake transactions involving
particular types of user activity. A subgraph satisfying the
constraint has 12,243,538 vertices and 33,826,783 edges. By
leveraging the constraint, the system builds HP-Index from
this smaller graph. However for query processing, the fil-
tering is still performed by traversing the original graph at
runtime.

To repeat experiments under varying conditions, we col-
lect a trace of 500,000 updates from real production and use
that for the rest of the evaluation.
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5.3 Performance Evaluation
We evaluate the performance of the HP-Index in this

subsection. Figure 18 and Figure 19 show the number of
hot points and indexed paths (with memory sizes) respec-
tively, where the degree threshold t varying from 10 to
5, 120. As expected, the number of hot points decreases
when the threshold t increases. As expected, the number
of hot points and index size decrease when the threshold t
increases. Moreover, the index size is very small compared
to the graph size under our settings.

Figure 18: Number of hot points under different thresholds.

Figure 19: Number of indexed paths and memory sizes un-
der different thresholds.

Figure 20 shows query response times using HP-Index un-
der different thresholds t varying from 10 to 100. We report
the 99.9% time, which is a commonly used metric for on-
line system performance evaluation. Under each setting, we
report the overall latency in Figure 20 and more detailed
query response time (of Step 1, 2, and 3 as described in
Section 3.3) and index maintenance time in Figure 21. Not
surprisingly, the maintenance cost is close to zero and can
hard seen from the figure. Surprisingly however, the index
look-up time is quite significant and even dominate the to-
tal query time, especially when a search encounter more hot
points (as it has to check all their combinations).

Even though, with the look-up cost in place, our algorithm
can achieve a pretty good overall performance against the
straightforward approach (in Algorithm 1) without index.
Figure 22 details the performance comparison by showing
a cumulative distribution of response times of the baseline
algorithm and best numbers of using index (at t = 40). For

Figure 20: Overall latency using HP-Index under different
thresholds.

Figure 21: Detailed performance using HP-Index under dif-
ferent thresholds.

bad cases defined by 99.9% (and above) latency, HP-Index
achieves an order of magnitude of improvement.

In Figure 23, we show the response times for the same
update/query trace used in Figure 4. It is shown that our
algorithm alleviates the latency spikes significantly.

Figure 22: A comparison of query performance: baseline vs
HP-Index.

5.4 Scalability
As described in Section 4, we leverage a thread pool to op-

timistically apply edge updates concurrently. Such design
improves the system throughput and demonstrates good
scalability. In Figure 24, we report the throughput of GraphS
with the growth of the number of cores. It is shown that
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Figure 23: Latency spikes using using HP-Index.

Figure 24: Dynamic scaling of input rate using multi-core.

GraphS scales almost linearly using multi-core to process in-
coming updates concurrently.

5.5 Coping with Graph Changes
Although we discuss the techniques to adjust the

HP-Index against the involving of the graph in Section 3.4,
the degree distribution of the network does not change much
upon the incoming and expiration of the edges in our appli-
cations. Figure 25 confirms this by reporting the percent of
hourly change of the number of hot points (including both
addition and removal, at t = 40) over 24 hours.

6. RELATED WORK

Figure 25: Percent of hourly change of number of hot points
over 24 hours.

A large number of previous work focused on cycle enumer-
ation, pattern match, and shortest path, etc. In this section,
we briefly review closely related work.

6.1 Path and Cycle Enumeration
There is a long history of study on enumerating all sim-

ple paths or cycles on a graph [20, 15, 18]. Another line
of research (e.g., [19]) is to count or estimate the number
of paths between two given vertices, which is a well-known
#P hard problem. But these techniques cannot be trivially
extended to large scale dynamic graph to solve our problem
in this paper due to the matrix operations involved or the
sampling techniques for approximate solution. The problem
of incremental cycle detection has been studied in the litera-
ture (e.g., [16, 22, 5]). Nevertheless, the technique proposed
cannot be trivially extended to detect cycles with length con-
straint in large scale real-life network due to some stringent
assumptions such as acyclic graph [22] and low-dimensional
graph [16].

6.2 Pattern Match
Pattern match has been widely studied in the literature

(See [10] for a survey) in a variety of computing environ-
ments. Some research efforts have been devoted to the prob-
lem of continuous exact pattern matching which aims to
incrementally identify desired subgraph patterns upon the
update of the graph. In [9], IncIsoMat is proposed to contin-
uously identify subgraph matching upon the update of the
graph where a candidate subgraph region is computed to re-
duce the research space. Graphflow [14] applies a worst-case
optimal join algorithm to incrementally evaluate subgraph
matching for each update. SJ-Tree [8] constructs the left-
deep tree for the query graph and continuously maintain the
partial matching in the tree nodes.

By regarding the cycles with length not larger than k as a
set of patterns, we can apply the continuous pattern detec-
tion algorithms to identify length constraint cycles (LCCs).
Nevertheless, since every path p with 2 ≤ len(p) ≤ k − 1
may be a partial solution, it is infeasible to use the partial
solution based techniques as such SJ-Tree [8].

6.3 Reachability and Shortest Path
Given two vertices u and v in a graph, the point-to-

point reachability and shortest path queries are two of the
most important types of queries in graph (see [27] and [23]
for a survey). Existing main-memory algorithms working
on reachability queries can be divided into two categories:
Label-Only and Online-Search. Label-only approaches fo-
cus on compressing the graph transitivity to get a smaller
index size for fast query processing. Recent studies include
TF-Label [6] and DL [13]. Online-Search methods answer
reachability queries by performing DFS from source vertex
at run-time with help of a set of pruning strategies. Rep-
resentative works include GRAIL [26], FERRARI [21], and
IP+ [25]. Recently, a new DAG reduction approach is pro-
posed in [28] to further speed up the reachability computa-
tion. Regarding the shortest path computation, the existing
main-memory algorithms can also be classified into Label-
only and Online-search techniques. In scale-free networks,
the most efficient method for a distance query is based on
the 2-hop index. Pruned Landmark Labeling [1] and Hop-
Doubling Labeling [12] are two state-of-the-art algorithms.
Recently, the computation of reachability and shortest path
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on dynamic graph have been investigated in [29] and [2],
respectively.

None of the above works considers the length constraint.
As to our best knowledge, [7] is the only existing work
which investigate the reachability problem with k-length
constraint, where a set of vertices in a vertex cover of the
graph are chosen as hubs and the reachability of each pair of
hubs is pre-calculated. Note that, the indexing techniques
for reachability and shortest path may be used for prun-
ing purpose in the computation of length constraint cycles
(LCCs). It is immediate that the incoming edge (u, v) can-
not contribute a k-path if v cannot reach u with in (k-1)
hops or the shortest path from v to u is larger than k-1.
In addition to that fact that we still need to continue the
computation if the pruning fails, the expensive index main-
tenance cost makes these solutions infeasible in a large dy-
namic graph environment.

7. CONCLUSION
In this paper, we present a graph analytical system GraphS

developed at Alibaba to efficiently detect constrained cy-
cles in dynamic graphs. The system supports large graphs
with hundreds of millions of edges and vertices, and allows
ad-hoc continuous queries to identify constrained cycles in
a fast changing graph in real-time. For each query, a hot
point based index is constructed and efficiently maintained
to greatly speed up cycle evaluation. In addition, the system
utilizes optimized data layout and efficient memory man-
agement to improve performance and uses optimistic query
evaluation to increase the system throughput. The GraphS

system is deployed in production at Alibaba to actively mon-
itor fraudulent activities based on cycle detection for several
businesses. For a large dynamic graph with hundreds of mil-
lions of edges and vertices and a peak rate of tens of thou-
sands of edge updates per second, the system is able to find
newly formed cycles under a millisecond.

Although we focus on cycle detection in this paper, the
GraphS system is able to support querying various struc-
tural patterns with complex constraints, for instance, tree-
like graph patterns, etc. Pattern-specific indexes are needed
for each query to speed up pattern evaluation whenever the
graph changes. Another future work is to share indexes
among different queries to minimize index maintenance cost
without sacrificing individual query performance.
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