
F1 Query: Declarative Querying at Scale

Bart Samwel John Cieslewicz Ben Handy Jason Govig Petros Venetis
Chanjun Yang Keith Peters Jeff Shute Daniel Tenedorio Himani Apte

Felix Weigel David Wilhite Jiacheng Yang Jun Xu Jiexing Li Zhan Yuan
Craig Chasseur Qiang Zeng Ian Rae Anurag Biyani Andrew Harn Yang Xia

Andrey Gubichev Amr El-Helw Orri Erling Zhepeng Yan Mohan Yang
Yiqun Wei Thanh Do Colin Zheng Goetz Graefe Somayeh Sardashti

Ahmed M. Aly Divy Agrawal Ashish Gupta Shiv Venkataraman
Google LLC

f1-query-paper@google.com

ABSTRACT
F1 Query is a stand-alone, federated query processing platform
that executes SQL queries against data stored in different file-
based formats as well as different storage systems at Google (e.g.,
Bigtable, Spanner, Google Spreadsheets, etc.). F1 Query elimi-
nates the need to maintain the traditional distinction between dif-
ferent types of data processing workloads by simultaneously sup-
porting: (i) OLTP-style point queries that affect only a few records;
(ii) low-latency OLAP querying of large amounts of data; and (iii)
large ETL pipelines. F1 Query has also significantly reduced the
need for developing hard-coded data processing pipelines by en-
abling declarative queries integrated with custom business logic.
F1 Query satisfies key requirements that are highly desirable within
Google: (i) it provides a unified view over data that is fragmented
and distributed over multiple data sources; (ii) it leverages datacen-
ter resources for performant query processing with high throughput
and low latency; (iii) it provides high scalability for large data sizes
by increasing computational parallelism; and (iv) it is extensible
and uses innovative approaches to integrate complex business logic
in declarative query processing. This paper presents the end-to-end
design of F1 Query. Evolved out of F1, the distributed database
originally built to manage Google’s advertising data, F1 Query has
been in production for multiple years at Google and serves the
querying needs of a large number of users and systems.

PVLDB Reference Format:
B. Samwel, J. Cieslewicz, B. Handy, J. Govig, P. Venetis, C. Yang, K. Pe-
ters, J. Shute, D. Tenedorio, H. Apte, F. Weigel, D. Wilhite, J. Yang, J. Xu,
J. Li, Z. Yuan, C. Chasseur, Q. Zeng, I. Rae, A. Biyani, A. Harn, Y. Xia,
A. Gubichev, A. El-Helw, O. Erling, Z. Yan, M. Yang, Y. Wei, T. Do, C.
Zheng, G. Graefe, S. Sardashti, A. M. Aly, D. Agrawal, A. Gupta, and S.
Venkataraman. F1 Query: Declarative Querying at Scale. PVLDB, 11 (12):
1835-1848, 2018.
DOI: https://doi.org/10.14778/3229863.3229871

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3229871

1. INTRODUCTION
The data processing and analysis use cases in large organiza-

tions like Google exhibit diverse requirements in data sizes, la-
tency, data sources and sinks, freshness, and the need for custom
business logic. As a result, many data processing systems focus on
a particular slice of this requirements space, for instance on either
transactional-style queries, medium-sized OLAP queries, or huge
Extract-Transform-Load (ETL) pipelines. Some systems are highly
extensible, while others are not. Some systems function mostly as a
closed silo, while others can easily pull in data from other sources.
Some systems query live data, but others must ingest data before
being able to query it efficiently.

In this paper, we present F1 Query, an SQL query engine that
is unique not because of its focus on doing one thing well, but in-
stead because it aims to cover all corners of the requirements space
for enterprise data processing and analysis. F1 Query effectively
blurs the traditional distinction between transactional, interactive,
and batch-processing workloads, covering many use cases by sup-
porting: (i) OLTP point queries that affect only a few records, (ii)
low-latency OLAP querying of large amounts of data, and (iii)
large ETL pipelines transforming and blending data from different
sources into new tables supporting complex analysis and report-
ing workloads. F1 Query has also significantly reduced the need
for developing hard-coded data processing pipelines, by enabling
declarative queries integrated with custom business logic. As such,
F1 is a one-size-fits-all querying system that can support the vast
majority of use cases for enterprise data processing and analysis.

F1 Query has evolved from F1 [55], a distributed relational
database for managing revenue-critical advertising data within
Google, which included a storage layer as well as an engine for
processing SQL queries. In its early stages, this engine executed
SQL queries against data stored in only two data sources: Span-
ner [23, 55] and Mesa [38], one of Google’s analytical data ware-
houses. Today, F1 Query runs as a stand-alone, federated query
processing platform to execute declarative queries against data
stored in different file-based formats as well as different remote
storage systems (e.g., Google Spreadsheets, Bigtable [20]). F1
Query has become the query engine of choice for numerous critical
applications including Advertising, Shopping, Analytics, and Pay-
ments. The driving force behind this momentum comes from F1
Query’s flexibility, enabling use cases large and small, with sim-
ple or highly customized business logic, and across whichever data
sources the data resides in. We note that in many ways, F1 Query

1835

re-implements functionality that is already present in commercial
DBMS solutions. It also shares design aspects with Dremel [51],
a Google query engine optimized for analytical queries. The main
innovation that F1 Query brings in the technology arena is how
it combines all of these ideas, showing that in modern datacenter
architecture and software stacks, it is possible to fully disaggre-
gate query processing from data storage, and to serve nearly all use
cases with that approach.

In this paper, we discuss the overall design of F1 Query. The
following key requirements have influenced its overall architecture:
Data Fragmentation. Google has many options for data manage-
ment that cater to a wide range of use cases with often conflicting
requirements, including replication, latency, consistency, etc. As
a result, the underlying data for even a single application is often
fragmented across several storage systems, some stored in a rela-
tional DBMS engine like Spanner storage, some in key-value stores
like Bigtable, and some stored as files in a variety of formats on
distributed file systems. F1 Query satisfies the need for analysis of
data across all such storage systems, providing a unified view of
data fragmented across individual silos.
Datacenter Architecture. F1 Query was built for datacenters in-
stead of individual servers or tightly-coupled clusters. This de-
sign abstraction fundamentally differs from classical shared noth-
ing [57] database management systems that attempt to keep com-
putation and processing of data localized where the data resides
at all times. Furthermore, the classical paradigm tightly couples
the database storage subsystem with the query processing layer,
often sharing memory management, storage layout, etc. In con-
trast, F1 Query decouples database storage from query processing,
and as a result, it can serve as an engine for all data in the data-
center. Advances in datacenter networking at Google [56] largely
remove the throughput and latency differential in accessing local
versus remote data, at least for data that resides in secondary stor-
age. In our context, local disks are neither a point of contention
nor a throughput bottleneck, since all the data is distributed in
small chunks across the Colossus File System (the successor to the
Google File System [33]). Similarly, remote data management ser-
vices such as Spanner are widely distributed and less sensitive to
contention when subjected to balanced access patterns. In spite of
these technological advances, latency for requests to the underlying
data sources is subject to high variance even in a controlled data-
center environment [25]. Mitigating this variability is one of the
major challenges that F1 Query addresses.
Scalability. Client needs vary widely, not only in the sizes of
datasets being processed, but also in latency and reliability require-
ments, and allowable resource cost. In F1 Query, short queries
are executed on a single node, while larger queries are executed in
a low-overhead distributed execution mode with no checkpointing
and limited reliability guarantees. The largest queries are run in
a reliable batch-oriented execution mode that uses the MapReduce
framework [26]. Within each of these modes, F1 Query mitigates
high latencies for large data sizes by increasing the computational
parallelism used for query processing.
Extensibility. Clients should be able to use F1 Query for any
data processing need, including those not easily expressible in
SQL or requiring access to data in new formats. To meet this
need, F1 Query is highly extensible. It supports user-defined func-
tions (UDFs), user-defined aggregate functions (UDAs), and table-
valued functions (TVFs) to integrate complex business logic writ-
ten in native code into query execution.

In the rest of this paper, we present the end-to-end design of F1
Query. We first provide an overview of F1 Query architecture in
Section 2. We then dive into its execution kernel and the inter-

Figure 1: Overview of F1 Federated Query Processing Platform

active execution modes in Section 3, and the MapReduce-based
batch execution mode in Section 4. In Section 5, we describe the
F1 Query optimizer, followed by Section 6 that covers the various
extensibility options in F1. Section 7 covers the advanced topics of
execution cliff avoidance and structured data handling in F1. We
present production metrics in Section 8, the related work in section
9, and some concluding remarks in Section 10.

2. OVERVIEW OF F1 QUERY
Architecture. F1 Query is a federated query engine that supports
all OLTP, OLAP, and ETL workloads. Figure 1 depicts the ba-
sic architecture and communication among components within a
single datacenter. Users interact with F1 Query through its client
library that sends requests to one of several dedicated servers we re-
fer to hereafter as F1 servers. The F1 Master is a specialized node
within the datacenter that is responsible for the run-time monitor-
ing of query execution and maintenance of all F1 servers at that
datacenter. Small queries and transactions begin executing on the
immediate F1 server that receives the requests. F1 schedules larger
queries for distributed execution by dynamically provisioning exe-
cution threads on workers from a worker pool. The largest queries
are scheduled for execution in a reliable batch execution mode that
uses the MapReduce framework. Final results are collected on the
F1 server and then returned to the client. F1 servers and workers
are generally stateless, allowing a client to communicate with an
arbitrary F1 server each time. Since F1 servers and workers do not
store data, adding new F1 servers or workers does not trigger any
data redistribution cost. Therefore an F1 Query deployment at a
datacenter can easily scale out by adding more servers or workers.
Query Execution. Users interact with F1 Query through its client
library. A client’s query request may arrive at one of many F1
servers. Upon arriving at an F1 server, the F1 server first parses
and analyzes the SQL query, then extracts the list of all data sources
and sinks that the query accesses. If any data sources or sinks are
not available in the local datacenter, and there are F1 servers at
other datacenters closer to the data sources or sinks, the F1 server
sends the query back to the client with information about the opti-
mal set of datacenters available for running the query. The client
then resends the query to an F1 server at the target datacenter for
execution. We note that while disaggregation of storage and com-
pute and a high-performance network fabric have obviated many
locality concerns within the datacenter, choosing a datacenter close
to data from a set of many geographically distributed datacenters
still has a large impact on query processing latency.

1836

Query execution begins on the F1 server with a planning phase
in which the optimizer converts the analyzed query abstract syn-
tax tree into a DAG of relational algebra operators that are then
optimized at both logical and physical levels. The final execution
plan is then handed off to the execution layer. Based on a client-
specified execution mode preference, F1 Query executes queries on
F1 servers and workers in an interactive mode or in a batch mode
(using the MapReduce framework) as shown in Figure 2.

Figure 2: Query Execution Phases in F1

For interactive execution, the query optimizer applies heuris-
tics to choose between single-node centralized execution and dis-
tributed execution. In centralized execution, the server analyzes,
plans, and executes the query immediately at the first F1 server
that receives it. In distributed mode, the first F1 server to receive
the query acts only as the query coordinator. That server sched-
ules work on separate workers that then together execute the query.
The interactive execution modes provide good performance and
resource-efficient execution for small and medium-sized queries.

Batch mode provides increased reliability for longer-running
queries that process large volumes of data. The F1 server stores
plans for queries running under batch mode in a separate execution
repository. The batch mode distribution and scheduling logic asyn-
chronously runs the query using the MapReduce framework. Query
execution in this mode is tolerant to server restarts and failures.
Data Sources. F1 servers and workers in a datacenter can ac-
cess data not just in the datacenter where they reside, but also in
any other Google datacenter. The disaggregation of processing
and storage layer enables data retrieval from a variety of sources,
ranging from distributed storage systems like Spanner and Bigtable
to ordinary files with varying structures such as comma-separated
value text files (CSV), record-oriented binary formats, and com-
pressed columnar file formats such as ColumnIO [51] and Capac-
itor [6]. F1 Query provides consistent and/or repeatable reads for
data sources that support it, including data managed by the Spanner
storage service.

To support queries over heterogeneous data sources, F1 Query
abstracts away the details of each storage type. It makes all data
appear as if it is stored in relational tables (with rich structured
data types in the form of Protocol Buffers [9]; see Section 7.2) and
enables joining data stored in different sources. It uses a global cat-
alog service to maintain and retrieve meta-information about data
sources stored in different formats and systems. F1 Query also
allows querying sources not available through the global catalog
service. In such cases, the client must provide a DEFINE TA-
BLE statement that describes how to represent the underlying data
source as a relational database table. Below, we show an example
for retrieving data from a Colossus file in CSV format. F1 Query
must know the location and type of the file as well as the names
and types of the columns contained within. Note that different data

sources may require different information to describe their struc-
ture depending on their unique properties.

DEFINE TABLE People(
format = ‘csv’,
path = ‘/path/to/peoplefile’,
columns = ‘name:STRING,

DateOfBirth:DATE’);
SELECT Name, DateOfBirth FROM People
WHERE Name = ‘John Doe’;

While F1 Query natively supports the most widely-used data
sources within Google, clients occasionally need to access data
through a mechanism that is not known in advance. For this pur-
pose F1 supports adding a new custom data source using an ex-
tension API called the Table-Valued Function (TVF) described in
greater detail in Section 6.3.
Data Sinks. The output of queries can be returned to the client,
but a query can also request that its output should be stored into an
external data sink. Sinks may comprise files in various formats or
otherwise use a variety of remote storage services. As with data
sources, sinks may be either tables managed by the catalog ser-
vice or manually specified targets. Managed tables are created by
a CREATE TABLE statement. They are by default implemented as
files stored on the Colossus file system. Manually specified storage
targets are specified using the EXPORT DATA statement, using a
specification that is similar to the corresponding DEFINE TABLE
specification for reading back the same data. In addition to these
options, queries can also create session-local temporary tables.
Query Language. F1 Query complies with the SQL 2011 stan-
dard, with extensions to support querying nested structured data.
F1 Query supports standard SQL features including left/right/full
outer joins, aggregation, table and expression subqueries, WITH
clauses, and analytic window functions. For structured data, F1
Query supports variable length ARRAY types, as well as STRUCTs
which are largely similar to SQL standard row types. Array types
are well supported, including features like UNNEST(array) that
pivots an array into a table with rows. F1 Query also provides sup-
port for Protocol Buffers [9], a format for exchange of structured
data that used pervasively at Google. Section 7.2 covers this sup-
port in detail. [12] describes the shared SQL dialect used by F1
Query, Dremel [51]/BigQuery [3] and Spanner SQL [12], allowing
users and applications to move between these systems with mini-
mal overhead.

3. INTERACTIVE EXECUTION
By default, F1 Query executes queries in a synchronous online

mode called interactive execution. F1 Query supports two types
of interactive execution modes: central and distributed. During the
planning phase, the optimizer analyzes the query and determines
whether to execute it in central or distributed mode. In central
mode, the current F1 server executes the query plan immediately
using a single execution thread. In contrast, in distributed mode,
the current F1 server acts as the query coordinator. It schedules
work on other processes known as F1 workers that then together
execute the query in parallel. In this section, we describe F1 Query
interactive execution in detail.

3.1 Single Threaded Execution Kernel
Figure 3 depicts a SQL query and the resulting query plan for

central mode execution. In this mode, F1 Query uses a single-
threaded execution kernel. The rectangular boxes shown are opera-
tors within the execution plan. Single-threaded execution processes
tuples in batches of 8 KiB using a recursive pull-based model. The

1837

Figure 3: Central Query Execution on an F1 Server

execution operators recursively call GetNext() on the underly-
ing operators until the leaf operators retrieve batches of tuples. The
leaves are typically Scan operators that read from data sources.
Each data source has its own scan operator implementation with
feature sets depending on the type of data source. Some sources
only allow full-table scans while others also support key-based in-
dex lookups. Some sources also support pushdown of simple filter
expressions on non-key fields. A separate ARRAY scan operator
produces rows from an array-typed expression as needed. For in-
put data that may contain protocol buffers, all scan operators sup-
port protocol buffer decoding immediately at the data source scan
node, ensuring the executor does not pass large encoded protocol
buffer blobs around unless they are needed in their entirety. Instead,
each scan operator immediately extracts the minimal set of fields
the query requires (this is discussed in more detail in Section 7.2).
F1 Query also supports several high performance columnar data
sources that store the fields of protocol buffers or SQL structs sep-
arately and do not require any protocol buffer decoding at all.

F1 Query supports several join operators including lookup join
(index nested-loop join), hash join, merge join, and array join. The
hash join operator implements a multi-level recursive hybrid hash
join with disk spilling to the Colossus distributed filesystem. The
lookup join operator reads rows containing keys from its left input,
and uses these keys to perform index lookups on its right input
(which must be a scan operator). The merge join operator merges
two inputs that share the same sort order. F1 Query also has an
integrated scan/join operator for Spanner tables that implements a
merge join on data streams from the underlying tables. An array
join is a correlated join to an array scan where the array expression
refers to the left input of the join, written in the SQL query as T
JOIN UNNEST(f(T)) for array-valued expression f().

Besides scans and joins, F1 Query has operators for projection,
aggregation (both sort-based and disk spilling), sorting, unioning,
and analytic window functions. All execution operators, including
scans and joins, include built-in support for applying filter predi-
cates on their output rows and for LIMIT and OFFSET operations.

3.2 Distributed Execution
The optimizer generates a distributed execution plan when it de-

tects that such a plan is best for the input tables to be scanned with
high parallelism using partitioned reads. In this case, the query exe-
cution plan is split into query fragments as shown in Figure 4. Each
fragment is scheduled on a group of F1 worker nodes. The frag-
ments execute concurrently, with both pipelining and bushy par-
allelism. The worker nodes are multi-threaded and some workers
may execute multiple independent parts of the same query.

The optimizer employs a bottom-up strategy to compute the plan
fragment boundaries based on the input distribution requirements

Figure 4: Fragments in Distributed Query Execution

of each operator in the query plan. Each individual operator can
have a requirement for distribution of its input data across the work-
ers. If present, the requirement is usually hashed on some set of
fields. Typical examples include grouping keys for aggregations
or join keys for hash joins. When this requirement is compatible
with the distribution of tuples from the input operator, the opti-
mizer plans both operators inside the same fragment. Otherwise,
it plans an exchange operator between two operators to generate a
fragment boundary.

The next step is to select the number of parallel workers for each
fragment (see Figure 4). Fragments operate with independent de-
grees of parallelism. The underlying data organization within table
scans of leaf operators determines the initial parallelization, with
an upper bound. A width calculator then recursively propagates
this information up the query plan tree. For instance, a hash join
between a 50-worker and a 100-worker fragment will be executed
using 100 workers, to accommodate the larger of the two inputs.

The following query illustrates distributed execution:

SELECT Clicks.Region, COUNT(*) ClickCount
FROM Ads JOIN Clicks USING (AdId)
WHERE Ads.StartDate > ‘2018-05-14’ AND

Clicks.OS = ‘Chrome OS’
GROUP BY Clicks.Region
ORDER BY ClickCount DESC;

This query involves two tables: Ads is a Spanner table for stor-
ing advertisement information, and Clicks is a table that stores
ad clicks, defined in Mesa, one of Google’s analytical data ware-
houses. This query finds all ad clicks that happened on Chrome OS
with ad starting date after 2018-05-14. It then aggregates the qual-
ifying tuples to find the clicks per region, and sorts by descending
number of clicks.

A possible plan for this query is shown in Figure 5. During
execution, data streams bottom up through each of the operators
until reaching the aggregation and sort operators. One thousand
workers each scan data from the Clicks table. The query plan-
ner pushes down the filter Clicks.OS = ‘Chrome OS’ into
the Mesa scan itself such that only rows satisfying the filter are
returned from Mesa to F1 workers. Two hundred workers han-
dle scanning of the Ads table with filter Ads.StartDate >
‘2018-05-14’. Data from both scans flows into a hash join
operator and then the same F1 worker performs a partial aggrega-
tion over the join results. Finally, the F1 server performs the full
aggregation and returns sorted output to the client.

3.3 Partitioning Strategy
In the distributed execution mode, F1 Query executes multiple

fragments in parallel. The execution and data flow can be viewed
as a DAG as shown in Figure 4. The data moves across each frag-
ment boundary by being repartitioned using an exchange operator.

1838

For each tuple, the sender applies a partitioning function to deter-
mine the destination partition for that tuple. Each partition number
corresponds to a specific worker in the destination fragment.

The exchange operation is implemented using direct Remote
Procedure Calls (RPCs, for short) from each source fragment par-
tition to all destination fragment partitions, with flow control be-
tween each sender and receiver. This RPC-based communica-
tion mode scales well up to thousands of partitions per fragment.
Queries requiring higher parallelism generally run in batch execu-
tion mode (described in Section 4). F1 Query’s exchange opera-
tor runs locally within a datacenter, taking advantage of Google’s
Jupiter network [56]. Jupiter allows each server in a cluster of tens
of thousands of hosts to communicate with any other server in the
same cluster with sustained bandwidth of at least 10 Gb/s.

The query optimizer plans each scan operator as a leaf in the
query execution plan along with a desired parallelism of N work-
ers. To execute a scan in a parallelized way, the work must be dis-
tributed so that each scan worker produces a non-overlapping sub-
set of the tuples, and all the workers together produce the complete
output. The query scheduler then asks the scan operator to partition
itself across N partitions. In response, the scan operator produces
N or more partition descriptions. To achieve this, the scheduler
then schedules copies of the plan to run on N workers, and sends
each worker one of the partition descriptions obtained previously.
Each worker then produces the subset of the data described by its
partition description. In some cases, the actual number of partitions
(for example, the number of data files for a file-based table) may
exceed N , in which case the query executor dynamically assigns
partitions to available workers over time. This approach avoids
long tail latency for a scan arising from skew.

Some operators are executed in the same plan fragment as one
of their inputs. For instance, lookup join is executed in the same
fragment as its left input, processing lookups only for the tuples
produced by the same partition of this input. In contrast, as shown
in Figure 5, the execution of a hash join generally requires multiple
fragments, each with multiple partitions. The query optimizer plans
each input scan operator (or other subplan) in a separate fragment
unless the input operator’s data distribution is already compatible
with the hash join keys. Each of these source fragments (SCAN
Clicks and SCAN Ads in Figure 5) sends its data to the same
destination fragment (shown on the right in Figure 5) that contains
the hash join operator. Both input fragments send their data using
the same partitioning function that is based on a hash of the join

Figure 5: Distributed Query Execution Example

keys. This ensures that all rows with the same join keys end up in
the same destination partition, allowing each hash join partition to
execute the join for a particular subset of the key space.

The aggregation operator also generally requires a repartitioning.
For aggregation with grouping keys, the query plan repartitions the
input tuples by a hash of the grouping keys, and sends these tuples
to a destination fragment with the aggregation operator. For aggre-
gation without grouping keys, all tuples are sent to a single destina-
tion. Figure 5 contains an example of aggregation without grouping
keys. As can be seen in the figure, the aggregation is optimized by
adding a second aggregation operator before the exchange opera-
tor which performs best-effort in-memory partial aggregation. This
reduces the amount of data transferred, and for aggregation with
grouping keys it mitigates the adverse impact of hot grouping keys
during the full aggregation at the destination fragment.

As discussed earlier, the execution plans in F1 are DAG shaped,
potentially with multiple roots. For forks in the data flow DAG, a
plan fragment repartitions to multiple destination fragments, each
with different partitioning functions. These DAG forks implement
run-once semantics for SQL WITH clauses and identical subplans
that are deduplicated by the optimizer. The DAG forks are also
used for other complex plans e.g., analytic functions and multiple
aggregations over DISTINCT inputs. DAG forks are sensitive to
different data consumption speeds in consumer fragments, as well
as to distributed deadlocks if multiple branches block when merg-
ing again later. Examples include self hash-joins from DAG forks
that attempt to initially consume all tuples during the build phase.
Exchange operators that implement DAG forks address these prob-
lems by buffering data in memory and then spilling data to Colossus
when all consumers are blocked.

3.4 Performance Considerations
Primary causes for query performance issues in F1 Query in-

clude skew and sub-optimal data source access patterns. Hash join
can be especially sensitive to hot keys from both inputs. Hot keys
in the input that are loaded into the hash table (the build input) can
lead to spilling, because one worker will need to store more tuples
than others. Hot keys in the other input (the probe input) can gener-
ate CPU or network bottlenecks. For cases when one input is small
enough to fit in memory, F1 Query supports a broadcast hash join
that reads a small build input and broadcasts copies of all resulting
tuples to all hash join workers. Each worker then builds an identi-
cal copy of the hash table. This broadcast hash join is not sensitive
to skew, although it is sensitive to unexpectedly large build inputs.

During query execution, all lookup joins retrieve remote data us-
ing index keys. A naive key-by-key implementation would result
in very slow execution due to the long tail in latency distribution
of the underlying data sources, which are generally distributed sys-
tems themselves. For this reason F1 Query’s lookup join operator
uses large batches of outer rows. Such large batches allow for dedu-
plication if the same lookup key is requested multiple times in the
same batch. Scan operator implementations can also use the larger
batches for optimizing data retrieval. For instance, partitioned data
sources use the larger batch to find multiple keys that must be read
from the same remote data source partition, merging them into a
single efficient data source access. If the number of required re-
mote requests for a batch exceeds the maximum number of parallel
requests to the data source, tail latency from the underlying storage
system is hidden, as requests can complete out of order, and longer-
running requests do not block progress of other, shorter requests.

Skew and undesirable access patterns also frequently arise when
placing lookup joins directly over their left inputs. Depending on
the input data distribution, the data source access pattern can be ar-

1839

bitrary, and there may be no deduplication at all because requests
for the same keys are spread across the fragment partitions. Stack-
ing multiple lookup joins results in skew when certain keys join
with disproportionately more rows than others during the sequence.
To counter these effects, the query optimizer has the capability to
repartition the left input using one of several partitioning functions.
The choice of partitioning function determines the data source ac-
cess pattern of the lookup join, which has a strong impact on per-
formance. For instance, hash partitioning ensures that each key
originates from only one node, enabling deduplication of lookups,
but for a data source the access patterns from each node will still
look like random accesses. Range partitioned data sources such as
Spanner and Bigtable benefit heavily from key space locality dur-
ing lookups: when keys are concentrated in a small range of the key
space, they are likely to reside on the same data source partition
and can be returned to the F1 server as part of one single remote
data source access. One way to exploit this is to use an explicit
static range partitioning to assign a fixed key range to each destina-
tion fragment’s partition, but this strategy is sometimes sensitive to
skew. A better range-based strategy called dynamic range reparti-
tioning computes an individual range partitioning function in each
sender based on local distribution information. This is based on the
principle that the distribution observed at one input plan fragment
partition often closely approximates the overall data distribution.
In many cases this results in a lookup pattern with much higher
locality in the key space than other partitioning strategies. In ad-
dition, it produces a perfectly even workload distribution over the
workers that perform the lookups. We have observed this strategy
outperforms statically determined ideal range partitionings based
on the key distribution in the lookup data source, in particular in
cases when the left input is skewed and uses only a subset of the
key space. Dynamic range repartitioning also adaptively responds
to temporarily hot keys in the input data stream by spreading them
out over more destination nodes as opposed to static range parti-
tionings which create temporary hotspots.

F1 Query operators generally execute in memory without check-
pointing to disk and stream data as much as possible. This avoids
the cost of saving intermediate results to disk and lets queries run
as fast as it is possible to consume input data. When combined
with aggressive caching in data sources, this strategy enables com-
plex distributed queries to run to completion in tens or hundreds of
milliseconds [50]. In-memory execution is sensitive to F1 server
and worker failures. The client library combats this by transpar-
ently retrying failed queries. In practice, queries that run for up to
an hour are sufficiently reliable, but queries with longer runtimes
may fail repeatedly. F1 Query’s batch execution mode becomes a
superior choice in these cases, as described in the next section.

4. BATCH MODE EXECUTION
F1 Query supports both interactive analysis as well as large-

scale transformations over large amounts of data running for an
extended time. These large-scale transformations typically process
ETL (Extract-Transform-Load) workflows. Many of these ETL
processing pipelines at Google were historically developed using
MapReduce or FlumeJava [19], using mostly custom code for data
transformation. Although customized ETL processing pipelines are
effective, they incur a high development and maintenance cost. In
addition, custom pipelines are not very amenable to many useful
optimizations that a SQL query optimizer can perform, such as
filter pushdown or attribute pruning. For instance, hand-written
pipelines may needlessly pass large data structures between stages
when only a small number of fields are needed, because the ad-
ditional effort to optimize this is prohibitive and adds too much

maintenance overhead. The declarative nature of SQL makes such
manual optimizations unnecessary, and therefore it is preferable to
use SQL for such pipelines.

The in-memory processing model of the interactive modes is not
suited to handle worker failures, which are likely to occur during
long-running queries. To address this challenge, F1 Query added
a new mode of execution, called batch mode. Batch mode allows
long-running queries to execute reliably even when there are F1
server or worker failures. In addition, it also handles client failures,
by allowing clients to submit queries for asynchronous processing
and then disconnecting.

Built on top of the F1 Query framework shown in Figure 2, F1
Query batch mode shares the same query specification, query opti-
mization, and execution plan generation components with the two
interactive modes. The key difference between the modes happens
during execution scheduling. In the interactive modes, the query
executes synchronously. The F1 server oversees the progress of the
entire query until it completes. In contrast, for batch mode, the F1
server asynchronously schedules the query for execution. A central
registry records progress of the query. This architecture imposes
the following challenges:

• In batch mode, query plan execution operators must com-
municate differently since the query plan fragments execute
asynchronously. In the distributed interactive mode, all frag-
ments are active at the same time, and communicate using
remote procedure calls. This not feasible in batch mode since
different fragments of a query execute at different times.

• Since batch queries are long-running, we must account for
the possibility of transient failures during execution, includ-
ing machine restarts. This requires a fault-tolerant mecha-
nism to persist intermediate states of the queries and guaran-
tee forward progress.

• A new higher-level service framework is required to track the
execution of thousands of batch queries at different execution
stages to ensure that all are eventually completed.

In Section 4.1, we discuss in detail how F1 Query batch mode
tackles the first two challenges, and then we cover the service
framework in Section 4.2.

4.1 Batch Execution Framework
Batch mode uses the MapReduce (MR) framework as its execu-

tion platform. At an abstract level, each plan fragment (see Fig-
ure 4) in a query plan can be mapped to a MapReduce stage. Each
stage in the processing pipeline stores its output to the Colossus
file system. This communication model enables asynchronous ex-
ecution of different MapReduce stages while providing the neces-
sary fault-tolerance. When entire MapReduce stages fail, they can
be restarted because their inputs are stored on Colossus. Failures
during a MapReduce stage are tolerated due to the inherent fault-
tolerance provided by the MapReduce framework.

In its most simplified form, one can map the plan fragments in
the F1 Query execution plan to a MapReduce stage. However,
F1 Query optimizes that in a way that is similar to the MSCR
fusion optimization of FlumeJava [19]. In this optimization, leaf
nodes are abstracted as a map operation, while internal nodes are
be abstracted as a reduce operation. This mapping, however, re-
sults in a map-reduce-reduce type of processing, which does not
completely correspond to the MapReduce framework. F1 Query
batch mode resolves this problem by inserting a special map op-
erator that is an identity function. This way, a map-reduce-reduce
processing can be split into two MapReduce stages: map-reduce
and map<identity>-reduce. Figure 6 illustrates this mapping from

1840

Figure 6: Mapping a Physical Plan to a Batch Mode MapRe-
duce Plan

a regular physical execution plan to a batch mode MapReduce
plan. As shown, the query plan on the left is mapped to only three
MapReduce stages instead of the default mapping, which would
have resulted in six MapReduce stages. A further improvement
that we have not yet implemented would be to use a framework
like Cloud Dataflow [10] that supports the map-reduce-reduce type
of processing natively.

Between fragments, F1 Query’s distributed interactive mode
sends data over the network via RPCs. Batch mode, instead, ma-
terializes the data into staging files, reads it back, and feeds into
the next plan fragment. This is achieved by a common I/O inter-
face for the plan fragment executor, which is implemented by both
modes. Furthermore, in distributed interactive mode, every node in
the query execution plan is live simultaneously, allowing for par-
allelism through pipelining. In contrast, in batch mode there is no
pipelining: MapReduce stages only start once all their inputs are
completely available. Batch mode does support bushy parallelism,
i.e., independent MR stages can execute in parallel.

Note that F1 Query batch mode operates at very large scale, and
incurs a large data materialization overhead for every exchange op-
erator in the query plan. As such, it is beneficial to reduce the num-
ber of exchange operators in the plan where possible, especially
when dealing with very large tables. One method of avoiding ex-
change operators is by replacing a hash join with a lookup join.
For joins where the smaller input is too large for a broadcast hash
join, or where there is significant skew, batch mode can materi-
alize the smaller input into disk-based lookup tables called sorted
string tables (SSTables) [20]. It then uses a lookup join operator, in
the same fragment as the larger input, to look up into these tables,
thereby avoiding a costly repartitioning on the larger input. The
lookups use a distributed caching layer to reduce disk I/O.

4.2 Batch Service Framework
The F1 Query batch mode service framework orchestrates the

execution of all batch mode queries. It is responsible for register-
ing incoming queries for execution, distributing queries across dif-
ferent datacenters, and scheduling and monitoring the associated
MapReduce processing. Figure 7 shows the service framework ar-
chitecture. When an F1 Client issues a query for running in batch
mode, one of the F1 servers receives it. It then generates an execu-
tion plan, and registers the query in the Query Registry, which is a
globally distributed Spanner database that tracks the metadata for
all batch mode queries. The Query Distributor component of the
service then assigns the query to a datacenter, choosing the data-

Figure 7: Batch Mode Service Framework

center based on load balancing considerations and the availability
of data sources needed for execution.

The query is then picked up by the framework components that
run in the target datacenter. Each datacenter has a Query Sched-
uler that periodically retrieves new assigned queries from the Query
Registry. The scheduler creates a dependency graph of the query
execution tasks, and when a task is ready to execute and resources
are available, the scheduler sends the task to a Query Executor. The
Query Executor then uses the MapReduce worker pool to execute
the task.

The service framework is robust, with resilience features at every
level. All of the components have redundancy, including the global
Query Distributor which is replicated and master-elected, and the
Query Scheduler which has multiple redundant instances per dat-
acenter. All execution state of a query is maintained in the Query
Registry, which allows all components to be effectively stateless
and replaceable. Within a datacenter, failed MapReduce stages are
retried several times. If a query stalls entirely, e.g. due to a dat-
acenter outage, the Distributor reassigns the query to an alternate
datacenter, which restarts execution from the beginning.

5. QUERY OPTIMIZER ARCHITECTURE
Query optimizer development is notoriously complex. F1 Query

mitigates this by reusing the same logic for planning all queries
regardless of execution mode. Even though interactive and batch
execution modes use significantly different execution frameworks,
both use the same plans and the same execution kernel. In this way
all query planning features implemented in the F1 Query optimizer
automatically work for both execution modes.

The high level structure of the F1 Query optimizer is shown in
Figure 8, and draws inspiration from Cascades [35] style optimiza-
tion. This infrastructure shares some design principles and termi-
nology with Spark’s Catalyst planner [11] because of early conver-
sations on this topic between members of the F1 Query and Catalyst
teams. The first step is to call Google’s SQL resolver to parse and
analyze the original input SQL and produce a resolved abstract syn-
tax tree (AST). The optimizer then translates each such AST into a
relational algebra plan. A number of rules execute on the relational
algebra until reaching a fixed-point condition to produce a heuris-
tically determined optimal relational algebra plan. The optimizer

Figure 8: F1 Optimizer

1841

then converts the final algebra plan into a physical plan including
all data source access paths and execution algorithms. The opti-
mizer completes its work by converting the physical plan into final
data structures suitable for query execution, and passes them to the
query coordinator for execution.

It should be noted that the F1 Query optimizer is based mainly
on heuristic rules. It uses statistical data properties to some extent
when present. However, due to diversity in data sources the typical
F1 query only uses statistics from certain sources depending on
what is feasible to collect in advance.

5.1 Optimizer Infrastructure
All stages of the optimizer are based on a common infrastructure

layer for representing plan trees of various kinds, and transforma-
tions that operate on them. All plan tree structures are immutable:
transformation stages must build new operators to change the query
plan. This property enables exploratory planning as well as sub-
tree reuse. To mitigate negative performance impact from multiple
constructions and destructions of data structures, the optimizer con-
structs all data structures in a memory arena and destructs it outside
the critical path of the query.

The optimizer has separate tree hierarchies for expressions, log-
ical plans, and physical plans. The boilerplate code for the hun-
dreds of tree node kinds is generated from only ~3K lines of Python
code accompanied by ~5K lines of Jinja2 [7] templates, resulting
in ~600K lines of C++. The generated code enables a domain spe-
cific language (DSL) for query planning and contains methods to
compute a hash for each tree node, to perform tree equality compar-
isons, as well as other helpers suitable for storing trees in standard
collections and representing them in testing frameworks. The use
of code generation saves F1 Query engineers considerable time, re-
duces mistakes during development, and enables the effective roll-
out of new features across tree hierarchies.

All relational algebra rules and plan conversion stages inspect
and manipulate trees using a C++ embedded DSL for tree pattern
matching and building. Because of code generation and C++ tem-
plates, tree pattern expressions perform as well as optimized hand-
written code. At the same time, they are more concise than hand
written code and more clearly express the intent of each rewrite.

5.2 Logical Query Plan Optimization
When the SQL query analyzer receives the original query text,

it produces a resolved abstract syntax tree (AST). The F1 Query
optimizer then converts this AST into a relational algebra tree. It
then applies logical rewrite rules to apply heuristic updates to im-
prove the query plan. Rules are organized into batches and each
batch runs either exactly once or until reaching a fixed point. Rules
applied include filter pushdown, constant folding, attribute prun-
ing, constraint propagation, outer join narrowing, sort elimination,
common subplan deduplication, and materialized view rewrites.

Data sources in F1 Query may include structured protocol buffer
data within relational table columns, and all rules have first-class
knowledge of protocol buffers. For example, the core attribute
pruning rule recursively pushes down extraction operation expres-
sions for individual protocol buffer fields down the query plan as
far as possible. If such extractions travel all the way to the leaves
of the query plan, it often becomes possible to integrate them into
scan operations to reduce the number of bytes read from the disk or
transferred over the network.

5.3 Physical Query Plan Construction
Based on the relational algebra plan, the optimizer then creates

a physical plan tree, which represents the actual execution algo-

rithms and data source access paths. Physical plan construction
logic is encapsulated in modules called strategies. Each strategy
attempts to match against one specific combination of relational al-
gebra operators. The strategy then produces physical operators to
implement the matched logical operators. For example, one strat-
egy handles lookup joins only, detecting logical joins of tables with
suitable indexes and then producing physical lookup join operators
between them. Each resulting physical operator is represented as
a class that tracks multiple data properties, including distribution,
ordering, uniqueness, estimated cardinality, and volatility (among
others). The optimizer uses these properties to determine when to
insert an exchange operator to repartition input tuples to a new data
distribution required by the next operator. The optimizer also uses
the physical plan properties to decide whether to run a query in
central or distributed mode. When any scan is deemed to be too
expensive for a central query, e.g. because it is a full table scan,
then the entire query is planned as a distributed query.

5.4 Execution Plan Fragment Generator
The final stage of the query optimizer converts the physical

query plan into a series of plan fragments suitable for direct ex-
ecution. This execution plan fragment generator converts physi-
cal plan tree nodes into corresponding execution operators with a
fragment boundary at each exchange operator. The generator also
takes responsibility for computing a final degree of parallelism for
each fragment, starting at leaf fragments containing distributed ta-
ble scans and propagating upwards to the root of the query plan.

6. EXTENSIBILITY
F1 Query is extensible in various ways: it supports custom data

sources as well as user defined scalar functions (UDFs), aggrega-
tion functions (UDAs), and table-valued functions (TVFs). User
defined functions can use any type of data as input and output, in-
cluding Protocol Buffers. Clients may express user-defined logic
in SQL syntax, providing them with a simple way of abstracting
common concepts from their queries and making them more read-
able and maintainable. They may also use Lua [42] scripts to
define additional functions for ad-hoc queries and analysis. For
compiled and managed languages like C++ and Java, F1 Query in-
tegrates with specialized helper processes known as UDF servers
to help clients reuse common business logic between SQL queries
and other systems.

UDF servers are RPC services owned and deployed separately by
F1 Query clients. They are typically written in C++, Java, or Go,
and execute in the same datacenters as the F1 servers and workers
that call them. Each client maintains complete control over their
own UDF server release cycle and resource provisioning. The UDF
servers expose a common RPC interface that enables the F1 server
to find out the details of the functions they export and to actually
execute these functions. To make use of the extensions provided by
a UDF server, the F1 Query client must provide the address of the
UDF server pool in the query RPC that it sends to the F1 server.
Alternatively, owners of F1 databases may configure default UDF
servers that will be made available to all queries that run in the con-
text of that database. Even though F1 will communicate with UDF
servers during query execution, they remain separate processes and
isolate the core F1 system from failures in the custom functions.

SQL and Lua scripted functions do not use UDF servers, and
there is no single central repository for their definitions. Instead,
clients must always supply their definitions as part of the RPC that
they send to F1 Query. Client tools, such as the F1 Query command
line interface, gather function definitions from configuration files

1842

and other sources loaded explicitly, and also from immediate com-
mands. They subsequently pass all relevant function definitions as
part of every RPC sent to F1 Query. F1 Query does provide a mech-
anism to group multiple SQL UDFs, UDAs and TVFs into modules.
Client teams use modules to structure their custom business logic,
improving maintainability and promoting reuse. Modules are pre-
sented to F1 Query in the same way as individual UDFs, through
the query RPC that is sent to F1 Query.

6.1 Scalar Functions
F1 Query supports scalar UDFs written in SQL, Lua, and as

compiled code through UDF servers. SQL UDFs allow users to
encapsulate complex expressions as reusable libraries. They are
expanded in-place where they are used in the query. For script-
ing languages like Lua, the query executor maintains a sandboxed
interpreter to evaluate scripted functions at runtime. For example,
the Lua UDF shown below converts a date value encoded as a string
into an unsigned integer representing the corresponding Unix time:

local function string2unixtime(value)
local y,m,d = match("(%d+)%-(%d+)%-(%d+)")
return os.time({year=y, month=m, day=d})

end

Functions exported by UDF servers can be evaluated only within
the projection execution operator. When parsing each query, the
system generates a function expression for each UDF. The opti-
mizer then moves all such expressions into projections. During
execution, the projection operator buffers input rows and calcu-
lates their associated UDF argument values, up to a size limit. The
worker then dispatches an RPC to the associated UDF server. UDF
server latency is hidden by pipelining multiple RPCs. This allows
for fairly high latency UDF implementations without impacting
query latency.

6.2 Aggregate Functions
F1 Query also supports user-defined aggregate functions, which

combine multiple input rows from a group into a single result. As
with scalar functions, users can define UDAs in SQL and the query
optimizer expands the definition at each call site. For compiled
and managed languages, the system also supports hosting UDAs in
UDF servers. A UDF server-based UDA definition must implement
the typical UDA processing operations Initialize, Accumulate, and
Finalize [31,43,44]. In addition, it must implement the Reaccumu-
late operation that is used to combine multiple aggregation buffers
from partial aggregation (see Figure 5).

During execution, the aggregation operator processes input rows
and buffers aggregation input for each UDA aggregate value in
memory. When the sum of memory usage from all such buffered
inputs in the hash table exceeds a certain size, the executor sends
the existing aggregate values and the new inputs for each group
over to the UDF server. The UDF server then calls the appropriate
UDA operations to produce a new aggregate value for each group.
The UDF servers are stateless, letting each F1 server distribute re-
quests to many UDF server processes in parallel.

6.3 Table-Valued Functions
Finally, F1 Query exposes table-valued functions (TVF), a

framework for clients to build their own user-defined database exe-
cution operators. Table-valued functions serve a variety of purposes
to help extend the power of F1 Query. Salient examples include in-
tegrating machine-learning steps like model training during SQL

query execution, which lets users consume data and then run ad-
vanced predictions in a single step. Development teams throughout
the company can also add new TVF data sources as needed with-
out any requirement to interact with core F1 Query developers or
to restart running database servers.

A TVF can accept entire tables as well as constant scalar values
as input, and uses those inputs to return a new table as output. A
query can call the TVF by invoking it in the FROM clause, passing
in scalar parameters, tables from the database, or table subqueries.
For instance, this calls a TVF with scalar parameter and a database
table to calculate advertising click activity for the past 3 days:

SELECT * FROM EventsFromPastDays(
3, TABLE Clicks);

As with UDFs and UDAs, it is possible to define a TVF using
SQL. Such TVFs are similar to parameterized views, where the pa-
rameters can be entire tables. They are expanded into the query
plan before query optimization, so that the optimizer can fully op-
timize the TVF. The UDF called above might be defined using SQL
as follows:

CREATE TABLE FUNCTION EventsFromPastDays(
num_days INT64, events ANY TABLE) AS
SELECT * FROM events
WHERE date >= DATE_SUB(

CURRENT_DATE(),
INTERVAL num_days DAY);

Note that this example uses ANY TABLE to specify that the
function can accept any table as an argument. In this situation,
the TVF dynamically computes an output schema based on the ac-
tual input table of each query at analysis time, after which point the
output schema remains fixed for the duration of that query’s exe-
cution. It is also possible to specify that input tables must have a
specific schema, in which case F1 Query enforces this invariant at
query analysis time.

More complicated TVFs can be defined using UDF servers. A
UDF server exposes a TVF definition using a function signature.
This signature may include generic parameters like in the SQL TVF
example. The TVF definition also provides a function to compute
the output table schema for a specific call. Interestingly, this out-
put schema may depend not only on the input table column types
but also on the values of scalar constant arguments. Hence, the
TVF uses this function to compute the output schema even if the
signature contains no generic parameters. The TVF definition also
exposes execution properties for the optimizer, such as whether a
TVF on an input table can be parallelized by partitioning the input
table by certain keys and then calling the TVF implementation on
each partition separately.

The query optimizer chooses one of two operators to evaluate
remotely-hosted TVFs over the network. The first operator applies
specifically when the TVF contains no input table arguments. In
this case, it represents a remote data source, and it is planned and
executed like other data sources, including support for partitioned
scans and lookup joins. Functions with input table arguments are
handled by a specialized TVF execution operator. For both types of
TVFs, the optimizer may push down filters, limits, and aggregation
steps into the TVF itself, which may use them to reduce work.

The RPC protocol for remote TVF evaluation uses a persistent
bidirectional streaming network connection to send input rows to
the UDF server and receive output rows back, as shown in Figure 9.
For remote data sources, the optimizer also sends an RPC call to the

1843

UDF server to retrieve partition descriptions for the TVF so that
multiple workers can scan the data source in parallel.

7. ADVANCED FUNCTIONALITY

7.1 Robust Performance
F1 Query identifies robustness of performance as a crucial issue

in database query processing, and an important third dimension af-
fecting user experience beyond efficiency and scalability. Robust-
ness requires that performance gracefully degrades in the presence
of unexpected input sizes, unexpected selectivities, and other fac-
tors. Without graceful degradation, users may see a performance
cliff, i.e., a discontinuity in the cost function of an algorithm or
plan. For example, the transition from an in-memory quicksort to
an external merge sort can increase end-to-end sorting runtime by a
factor of two or more once the entire input begins spilling into tem-
porary files. Figure 10 shows an example of this discontinuity in the
performance of the F1 Query sort operation with a cliff (measured
before) and with the cliff removed (measured after). Cliffs create
several problems, including unpredictable performance and a poor
experience for the user; optimizer choices become error-prone be-
cause a small cardinality estimation error may be amplified into a
large cost calculation error; and in parallel query execution, small
load imbalances between compute nodes may turn into large dis-
parities in elapsed runtimes.

F1 Query employs robust algorithms to prevent performance
cliffs. The principal idea is that instead of using a binary switch
at optimization time or at execution time, the execution operator
incrementally transitions between modes of operation. For exam-
ple, its sort operator spills only as much data from its in-memory
workspace as required to make room for additional input in mem-
ory. Another example in sorting occurs during the transition to
multiple merge steps, where one additional input byte could force
all input records to go through two merge steps instead of only
one [36]. F1 Query eliminates both of these cliffs from its im-
plementation of sorting and aggregation. Successful examples of
cliff avoidance or removal include SmoothScan [16] and dynamic
destaging in hash joins [52]. Dynamic re-optimization would in-
troduce a huge cliff if a single row "too many" will stop execution
and re-start the compile-time optimizer.

7.2 Nested data in Google Protocol Buffers
Within Google, Protocol Buffers [9] are ubiquitous as a data in-

terchange and storage format. Protocol Buffers are a structured data
format with record types called messages and support for array-
valued or repeated fields. Protocol Buffers have both a human-
readable text format and a compact, efficient binary representation.
They are a first-class data type in the F1 Query data model, and

Figure 9: Remote TVF Evaluation

0

1000

2000

3000

0 50 100 150 200 250

M
e
a
s
u
re

d
 C

P
U

 T
im

e
 (

m
s
)

#Rows (thousand)

Before After

Figure 10: Cliff from Internal to External Sort

its SQL dialect has extensions for querying and manipulating in-
dividual messages, e.g. msg.field for field access, and NEW
Point(3 AS x, 5 AS y) to create a new message. F1 Query
also supports correlated subquery expressions and joins over re-
peated fields.

Querying protocol buffers presents many of the same challenges
as semi-structured data formats like XML [18] and JSON [21], for
which there is a rich body of research. Some key differences ex-
ist, however. Where JSON is entirely dynamically typed and of-
ten stored in human readable format, protocol buffers are statically
typed and typically stored in a compact binary format, enabling
much more efficient decoding. The binary encoding of protocol
buffers is somewhat similar to the binary encoding of JSON ob-
jects used in MongoDB [2], but it is more efficient because fields
are statically typed and identified by integers instead of strings. In
addition, some data sources vertically decompose the messages into
a columnar format [51], in a way similar to vertical shredding of
documents in XML databases [29].

The exact structure and types of all protos referenced in a query
are known at query planning time, and the optimizer prunes away
all unused fields from data source scans. Within columnar data
sources, this reduces I/O and enables efficient column-wise evalu-
ation of filters. For record-oriented data sources that uses the row-
wise binary format, F1 Query uses an efficient streaming decoder
that makes a single pass over the encoded data and extracts only the
necessary fields, skipping over irrelevant data. This is enabled only
by the fixed definition of each protocol buffer type, and the integer
field identifiers that are fast to identify and skip over.

8. PRODUCTION METRICS
In this section, we report query processing performance and vol-

ume metrics for a representative subset of the F1 Query production
deployment. F1 Query is highly decentralized and replicated over
multiple datacenters, using hundreds to thousands of machines at
each datacenter. Although we do not report the proprietary details
of our deployment, the reported metrics in this section are compre-
hensive and demonstrate the highly distributed, large scale nature
of the system. We show the metrics over multiple days to demon-
strate both their variability and stability. We also show our QPS
growth metric and query latencies over multiple quarters, to illus-
trate how the system scales to support increasing demand without

400k

450k

500k

550k

Figure 11: Mean Number of Queries per Second in Interactive
Modes for Each Day of a Two-Week Period

1844

1

10

10
2

10
3

10
4

C
e

n
tr

a
liz

e
d

 (
m

s
)

1

10

10
2

10
3

10
4

D
is

tr
ib

u
te

d
 (

m
s
)

 1
 1 1.2 1.4 1.6 1.8 2

50%-tile latency 90%-tile latency 99%-tile latency

Figure 12: Latency of Interactive Queries (Centralized & Dis-
tributed Execution, y-axes are log scale)

performance degradation. F1 Query blurs the lines between work-
loads, so it is not feasible to report which fraction of traffic repre-
sents OLTP, OLAP, or ETL. However, the latency metrics reported
across the execution modes show how F1 Query scales to process
queries at every scale from tiny to huge, regardless of query intent.

F1 Query is used within Google by over 10,000 users each
week. These users include both individuals performing ad hoc
analysis and system users that represent the activity of entire prod-
ucts. F1 Query also serves as the SQL layer for 100s of produc-
tion F1/Spanner databases. Figures 11 and 12 report the aggregate
throughput and latency metrics of the F1 Query interactive execu-
tion subsystem. As shown in Figure 11, the mean throughput of the
interactive subsystem over multiple days is around 450,000 queries
per second which amounts to approximately 40 billion queries
daily. We have observed that the system can easily handle peak
throughput of up to 2X of the mean throughput without adversely
impacting query latency. Figure 12 reports the latency numbers for
both centralized and distributed interactive query execution. The
50th percentile, 90th percentile, and 99th percentile latencies for
centralized queries are under 10 ms, under 50 ms, and under 300
ms, respectively. The latency numbers for the distributed execution
are higher: 50 ms, 200 ms, and 1000+ ms. As the figure depicts,
the 99th percentile for distributed execution exhibits much higher
variability due to the large variance of long-running ad-hoc queries.

45k

50k

55k

60k

65k

 8

 10

 12

 14

 16

N
u
m

b
e
r

o
f
Q

u
e
ri
e
s

P
e
ta

b
y
te

s

Queries per day Data processed per day

Figure 13: Batch Mode Daily Metrics

Figure 13 reports the number of queries executed in batch mode
and the volume of data processed. The mean query throughput for
batch mode execution is around 55,000 queries per day which is
considerably smaller than the throughput of interactive execution.
The main reason for the demand for batch mode query execution
is much lower in that batch mode is only needed for running very
large analysis queries and for running ETL pipelines. The mean
query latency in batch mode is well below 500 seconds (under 10
minutes) and the maximum latency is as high as 10,000+ seconds

1.00

1.25

1.50

1.75

2.00

Q1 Q2 Q3 Q4

G
ro

w
th

 F
a

c
to

r

Mean QPS

Figure 14: Long-term QPS Growth

1

10

10
2

10
3

10
4

Q1 Q2 Q3 Q4

C
e

n
tr

a
liz

e
d

 (
m

s
)

1

10

10
2

10
3

10
4

Q1 Q2 Q3 Q4

D
is

tr
ib

u
te

d
 (

m
s
)

 1
 1 1.2 1.4 1.6 1.8 2

50%-tile latency 90%-tile latency 99%-tile latency

Figure 15: Latency of Interactive Queries over Multiple Quar-
ters (y-axes are log scale)

(multiple hours). The query latency is higher in batch mode than
interactive mode due to the complexity and the volume of data pro-
cessed by such queries. Batch mode queries process about 8 to 16
petabytes of total input data per day. These numbers clearly estab-
lish the scale at which F1 Query operates within Google.

We conclude this section with a summary of long term query
throughput growth in F1 Query over multiple quarters. As shown
in Figure 14 in relative terms, the query throughput almost dou-
bled in four quarters, and the scalable design of F1 Query allows
it to handle this increased throughput without adversely impacting
query latency as evident in Figure 15.

9. RELATED WORK
Distributed query processing has a long history in the database

research literature [14,30,47,49,61]. In the late seventies and early
eighties, the advent of computer networks allowed researchers
to envision a database architecture distributed over multiple ma-
chines. Notable efforts include SDD-1 (A System for Distributed
Databases) [14] initiated at the Computer Corporation of America
and System R* [49] initiated at IBM Research in San Jose. While
both projects resulted in significant advances in the areas of dis-
tributed transaction management, concurrency control, recovery,
query processing, and query optimization, the final outcome from
both projects was that distributed databases were not feasible pri-
marily due to bandwidth and latency constraints in the network. In
the same vein, there exists a large body of work in the area of paral-
lel query processing in relational databases [15,27,28,32,34,41,45]
in the context of multiprocessor and data-parallel architectures with
multiple physical disk storage. Unlike distributed query process-
ing, parallel databases have been highly successful. Much of the
research carried out in the context of parallel databases has been
commercialized by large DBMS vendors, especially for building
large data warehouses for processing analytical queries.

Much of the early work as well as current efforts in the re-
search arena have been primarily in the context of classical system
architectures: client-server architectures as well as cluster-based
architectures. As far as we are aware, relatively few comprehen-
sive efforts exist to design a distributed and parallel database that
leverages the computing and storage resources at the datacenter
scale. Commercial DBMS vendors are starting to offer DBMS so-
lutions [8, 13, 17, 37, 59] that are cloud-enabled with support for
partitioning over multiple machines in the datacenter and process-
ing queries against these partitions. Other parallel databases like
Snowflake [24] also separate storage from computation similar to
the design principles that originally shaped F1 [55]. However, these
systems are all still tightly-coupled, even if they physically decou-
ple storage from computation. They expect that data is natively
stored in their own storage layer that they fully control, or that they
can ingest data before processing it. On the other hand, F1 Query
can be used to process queries against datasets stored in any format
in any datacenter, with no assumptions on formats or need for ex-
traction steps. Also, these systems often focus on one use case,

1845

most commonly analytical query processing, whereas F1 Query
covers all use cases. For instance, Impala [46] claims to be in-
spired by Google F1, and decouples storage from computation like
F1 Query, but it was also created as an analytics query engine from
the ground up, and supports no OLTP-style queries with associated
constructs like F1 Query’s lookup join.

Similar to F1 Query batch execution mode, systems like Pig
Latin [53], Hive [58], and, until recently, Spark [62] implement
query processing systems using a batch processing paradigm sim-
ilar to MapReduce. Such systems provide mostly-declarative ab-
stractions, with extensibility using custom code. The main benefit
that F1 Query has over batch oriented systems lies in its versatil-
ity: in F1 Query, the same SQL queries can be applied to smaller
amounts of data using the interactive execution modes, or applied
to a huge amount of data and run in a reliable batch oriented mode.
Some of these systems require using a custom data flow language
and do not support SQL, which means that queries written for these
systems also cannot easily be run on other systems, for instance on
low-latency oriented systems.

Relational database management systems have long supported
user-defined functions that consume and return values within SQL
query execution [48, 60]. SQL/MapReduce [31] explored the idea
of running TVFs in a separate process, running co-located with
the database worker. F1 Query expands on this by disaggregat-
ing its UDF servers from the database entirely, allowing them to
be deployed and scaled independently, and to be shared by F1
servers, workers, and batch mode MapReduce workers. Optimiza-
tion support for opaque TVFs has also been explored in [54]. AWS
Lambda [1] and Google Cloud Functions [5] use serverless archi-
tectures [40] to implement user-defined functions written in inter-
preted and managed languages only. F1 Query also supports the use
of fully compiled languages like C++ and Go in its UDF servers to
help run interactive queries with low latency, but in principle UDF
servers could be implemented with a serverless architecture as well.

9.1 Related Google Technologies
F1 Query has some features in common with externally available

Google systems Spanner and BigQuery. One critical similarity of
all three systems is their shared SQL dialect, helping developers
and analysts move between the systems with minimal overhead.

Spanner SQL [12] and F1 Query share many aspects, but they
are different in one important area. The former is a single-focus
SQL system operating on a transactional core whereas F1 Query is
loosely coupled to its data sources. Spanner SQL also offers very
fine grained query restartability whereas F1 Query’s restartability
is more coarse-grained.

BigQuery is Google’s cloud data warehouse. Queries are served
by Dremel [51], a widely used query engine for ad-hoc analysis
within Google. It is optimized for analytic queries on columnar
data and is capable of large-scale aggregations and joins. F1 Query
supports these use cases and provides additional support for OLTP-
style queries on data sources that support key lookups.

PowerDrill [39] is a query engine used at Google for interactive
data analysis and exploration. It is a tightly coupled system that
pre-processes data for a particular class of queries. In compari-
son, F1 Query has a much broader scope, but does not yet have an
equivalent level of optimization for the data exploration use case.

The Tenzing system [22] used the MapReduce framework to ex-
ecute SQL queries. Queries served by Tenzing have been migrated
to either Dremel or F1 Query, with long running ETL style queries
primarily served by F1 Query batch mode today. Similar to Tenz-
ing, F1 Query batch mode uses MapReduce as its execution frame-
work. Compared to the Tenzing service, the F1 Query batch mode

service provides better fault tolerance, user isolation, and schedul-
ing fairness. As a result, it provides higher throughput, and its
query latency under high load is roughly 45% of Tenzing’s.

FlumeJava [19] and Cloud Dataflow [4, 10] are modern replace-
ments for MapReduce that allow pipeline operations to be specified
at a higher level of abstraction, similar to e.g. Pig Latin. As batch
oriented systems, they do not support interactive query execution.
They do not natively support SQL. They do support some optimiza-
tion of the data flow, though and they lack the ability to do certain
optimizations like attribute pruning. Work is presently underway
to extend F1 Query batch mode to take advantage of FlumeJava’s
improvements over classic MapReduce.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated that it is possible to build

a query processing system that covers a significant number of data
processing and analysis use cases on data that is stored in any data
source. By combining support for all of these use cases in a single
system, F1 Query achieves significant synergy benefits compared
to the situation where many separate systems exist for different use
cases. There is no duplicated development effort for features that
would be common in separate systems like query parsing, analysis,
and optimization, ensuring improvements that benefit one use case
automatically benefit others. Most importantly, having a single sys-
tem provides clients with a one-stop shop for their data querying
needs and removes the discontinuities or “cliffs” that occur when
clients hit the boundaries of the supported use cases of more spe-
cialized systems. We believe that it is the wide applicability of F1
Query that lays at the foundation of the large user base that the
product has built within Google.

F1 Query continues to undergo active development to address
new use cases and to close performance gaps with purpose-built
systems. For instance, F1 Query does not yet match the perfor-
mance of vectorized, columnar execution engines (e.g. Vector-
wise [63]) because of its row-oriented execution kernel. A transi-
tion to a vectorized execution kernel is future work. F1 Query also
does not support local caches for data in the query engine’s native
format, such as one naturally finds in shared-nothing architectures,
since all data sources are disaggregated and remote. Currently,
F1 Query relies on existing caches in the data sources, or remote
caching layers such as TableCache [50]. To support in-memory or
nearly-in-memory analytics, such as offered by PowerDrill [39],
F1 Query would need to support local caching on individual work-
ers and locality-aware work scheduling that directs work to servers
where data is likely to be cached. The use of remote data sources
also makes it harder to collect statistics for use in query optimiza-
tion, but we are working to make them available so that F1 Query
can use cost based optimization rules. And while F1 Query has
excellent support for scaling out, we are working on techniques to
improve how F1 scales in, for example, by running medium-sized
distributed queries on only a few servers, thereby reducing the cost
and latency of exchange operations.

Acknowledgements
We would like to thank Alok Kumar, Andrew Fikes, Chad
Whipkey, David Menestrina, Eric Rollins, Grzegorz Czajkowski,
Haifeng Jiang, James Balfour, Jeff Naughton, Jordan Tigani, Sam
McVeety, Stephan Ellner, and Stratis Viglas for their work on F1
Query or feedback on this paper. We also thank interns and post-
docs Michael Armbrust, Mina Farid, Liam Morris, and Lia Guy for
their work on F1 Query. Finally, thank you to to the F1 SRE team
for amazing F1 Query production support and help in scaling the
service to 1000s of users.

1846

11. REFERENCES
[1] AWS Lambda. https://aws.amazon.com/lambda/.
[2] BSON (binary JSON). http://bsonspec.org.
[3] Google BigQuery.

https://cloud.google.com/bigquery.
[4] Google Cloud Dataflow.

https://cloud.google.com/dataflow.
[5] Google Cloud Functions.

https://cloud.google.com/functions/docs/.
[6] Inside Capacitor, BigQuery’s next-generation columnar

storage format.
https://cloud.google.com/blog/big-
data/2016/04/inside-capacitor-bigquerys-
next-generation-columnar-storage-format.

[7] Jinja. http://jinja.pocoo.org.
[8] Oracle database cloud service.

https://cloud.oracle.com/database.
[9] Protocol Buffers. https:

//developers.google.com/protocol-buffers.
[10] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,

R. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, and S. Whittle. The Dataflow model: A
practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing.
PVLDB, 8(12):1792–1803, 2015.

[11] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark SQL: Relational data processing in Spark.
In SIGMOD, pages 1383–1394, 2015.

[12] D. F. Bacon, N. Bales, N. Bruno, B. F. Cooper, A. Dickinson,
A. Fikes, C. Fraser, A. Gubarev, M. Joshi, E. Kogan,
A. Lloyd, S. Melnik, R. Rao, D. Shue, C. Taylor, M. van der
Holst, and D. Woodford. Spanner: Becoming a SQL system.
In SIGMOD, pages 331–343, 2017.

[13] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan,
G. Kakivaya, D. B. Lomet, R. Manne, L. Novik, and
T. Talius. Adapting Microsoft SQL server for cloud
computing. In ICDE, pages 1255–1263, 2011.

[14] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and
J. B. Rothnie, Jr. Query processing in a system for distributed
databases (SDD-1). TODS, 6(4):602–625, 1981.

[15] D. Bitton, H. Boral, D. J. DeWitt, and W. K. Wilkinson.
Parallel algorithms for the execution of relational database
operations. TODS, 8(3):324–353, 1983.

[16] R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski,
and C. Fraser. Smooth scan: Statistics-oblivious access
paths. In ICDE, pages 315–326, 2015.

[17] D. G. Campbell, G. Kakivaya, and N. Ellis. Extreme scale
with full SQL language support in Microsoft SQL Azure. In
SIGMOD, pages 1021–1024, 2010.

[18] D. Chamberlin. Xquery: A query language for XML. In
SIGMOD, pages 682–682, 2003.

[19] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry,
R. Bradshaw, and N. Weizenbaum. Flumejava: Easy, efficient
data-parallel pipelines. In PLDI, pages 363–375, 2010.

[20] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured
data. TOCS, 26(2):4:1–4:26, 2008.

[21] C. Chasseur, Y. Li, and J. M. Patel. Enabling JSON document
stores in relational systems. In WebDB, pages 1–6, 2013.

[22] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,
V. Lychagina, Y. Kwon, and M. Wong. Tenzing: A SQL
implementation on the MapReduce framework. PVLDB,
4(12):1318–1327, 2011.

[23] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. C. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd,
S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao,
L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and
D. Woodford. Spanner: Google’s globally-distributed
database. In OSDI, pages 261–264, 2012.

[24] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,
A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,
M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A. Q.
Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and
P. Unterbrunner. The Snowflake elastic data warehouse. In
SIGMOD, pages 215–226, 2016.

[25] J. Dean and L. A. Barroso. The tail at scale. CACM,
56(2):74–80, 2013.

[26] J. Dean and S. Ghemawat. MapReduce: A flexible data
processing tool. CACM, 53(1):72–77, 2010.

[27] D. J. DeWitt and J. Gray. Parallel database systems: The
future of database processing or a passing fad? ACM
SIGMOD Record, 19(4):104–112, 1990.

[28] D. J. DeWitt and J. Gray. Parallel database systems: The
future of high performance database systems. CACM,
35(6):85–98, 1992.

[29] F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML
documents in relational databases. In VLDB, pages
1297–1300, 2004.

[30] R. Epstein, M. Stonebraker, and E. Wong. Distributed query
processing in a relational data base system. In SIGMOD,
pages 169–180, 1978.

[31] E. Friedman, P. Pawlowski, and J. Cieslewicz.
SQL/MapReduce: A practical approach to self-describing,
polymorphic, and parallelizable user-defined functions.
PVLDB, 2(2):1402–1413, 2009.

[32] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of
the system software of a parallel relational database machine
GRACE. In VLDB, pages 209–219, 1986.

[33] S. Ghemawat, H. Gobioff, and S. Leung. The Google file
system. In SOSP, pages 29–43, 2003.

[34] G. Graefe. Encapsulation of parallelism in the Volcano query
processing system. In SIGMOD, pages 102–111, 1990.

[35] G. Graefe. The cascades framework for query optimization.
IEEE Data Engineering Bulletin, 18(3):19–29, 1995.

[36] G. Graefe. Implementing sorting in database systems. ACM
Computing Surveys (CSUR), 38(3), 2006.

[37] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, and V. Srinivasan. Amazon Redshift and the case
for simpler data warehouses. In SIGMOD, pages 1917–1923,
2015.

[38] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai,
S. Wu, S. G. Dhoot, A. R. Kumar, A. Agiwal, S. Bhansali,
M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute,
A. Gubarev, S. Venkataraman, and D. Agrawal. Mesa:
Geo-replicated, near real-time, scalable data warehousing.
PVLDB, 7(12):1259–1270, 2014.

[39] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and
M. Nunkesser. Processing a trillion cells per mouse click.
PVLDB, 5(11):1436–1446, 2012.

1847

[40] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Serverless
computation with OpenLambda. In HotCloud, pages 33–39,
2016.

[41] W. Hong. Parallel query processing using shared memory
multiprocessors and disk arrays. PhD thesis, University of
California, Berkeley, 1992.

[42] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho.
Lua—an extensible extension language. Software: Practice
and Experience, 26(6):635–652, 1996.

[43] M. Jaedicke and B. Mitschang. On parallel processing of
aggregate and scalar functions in object-relational DBMS. In
SIGMOD, pages 379–389, 1998.

[44] M. Jaedicke and B. Mitschang. User-defined table operators:
Enhancing extensibility for ORDBMS. In VLDB, pages
494–505, 1999.

[45] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Relational
algebra machine GRACE. In RIMS Symposia on Software
Science and Engineering, pages 191–214. Springer, Berlin,
Heidelberg, 1983.

[46] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li,
I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder.
Impala: A modern, open-source SQL engine for Hadoop. In
CIDR, 2015.

[47] D. Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys (CSUR),
32(4):422–469, 2000.

[48] V. Linnemann, K. Küspert, P. Dadam, P. Pistor, R. Erbe,
A. Kemper, N. Südkamp, G. Walch, and M. Wallrath. Design
and implementation of an extensible database management
system supporting user defined data types and functions. In
VLDB, pages 294–305, 1988.

[49] G. M. Lohman, C. Mohan, L. M. Haas, D. Daniels, B. G.
Lindsay, P. G. Selinger, and P. F. Wilms. Query processing in
R*. In Query Processing in Database Systems, pages 31–47.
Springer, Berlin, Heidelberg, 1985.

[50] G. N. B. Manoharan, S. Ellner, K. Schnaitter, S. Chegu,
A. Estrella-Balderrama, S. Gudmundson, A. Gupta,
B. Handy, B. Samwel, C. Whipkey, L. Aharkava, H. Apte,
N. Gangahar, J. Xu, S. Venkataraman, D. Agrawal, and J. D.
Ullman. Shasta: Interactive reporting at scale. In SIGMOD,
pages 1393–1404, 2016.

[51] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

[52] M. Nakayama, M. Kitsuregawa, and M. Takagi.
Hash-partitioned join method using dynamic destaging
strategy. In VLDB, pages 468–478, 1988.

[53] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for data
processing. In SIGMOD, pages 1099–1110, 2008.

[54] A. Pandit, D. Kondo, D. E. Simmen, A. Norwood, and T. Bai.
Accelerating big data analytics with collaborative planning
in Teradata Aster 6. In ICDE, pages 1304–1315, 2015.

[55] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina,
S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte.
F1: A distributed SQL database that scales. PVLDB,
6(11):1068–1079, 2013.

[56] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
A. Kanagala, H. Liu, J. Provost, J. Simmons, E. Tanda,
J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat. Jupiter
rising: A decade of Clos topologies and centralized control
in Google’s datacenter network. CACM, 59(9):88–97, 2016.

[57] M. Stonebraker. The case for shared nothing. IEEE Database
Engineering Bulletin, 9(1):4–9, 1986.

[58] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: a
warehousing solution over a Map-Reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[59] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon Aurora: Design
considerations for high throughput cloud-native relational
databases. In SIGMOD, pages 1041–1052, 2017.

[60] H. Wang and C. Zaniolo. User defined aggregates in
object-relational systems. In ICDE, pages 135–144, 2000.

[61] C. T. Yu and C. C. Chang. Distributed query processing.
ACM Computing Surveys (CSUR), 16(4):399–433, 1984.

[62] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J.
Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica.
Apache Spark: a unified engine for big data processing.
CACM, 59(11):56–65, 2016.

[63] M. Zukowski, M. van de Wiel, and P. A. Boncz. Vectorwise:
A vectorized analytical DBMS. In ICDE, pages 1349–1350,
2012.

1848

