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ABSTRACT
In the past, resource sharing has been extensively studied for
OLAP workloads. Naturally, the question arises, why studies
mainly focus on OLAP and not on OLTP workloads? At first
sight, OLTP queries – due to their short runtime – may not
have enough potential for the additional overhead. In addi-
tion, OLTP workloads do not only execute read operations but
also updates. In this paper, we address query sharing for OLTP
workloads. We first analyze the sharing potential in real-world
OLTP workloads. Based on those findings, we then present an
execution strategy, called OLTPShare that implements a novel
batching scheme for OLTP workloads. We analyze the shar-
ing benefits by integrating OLTPShare into a prototype version
of the commercial database system SAP HANA. Our results
show for different OLTP workloads that OLTPShare enables
SAP HANA to provide a significant throughput increase in
high-load scenarios compared to the conventional execution
strategy without sharing.
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1. INTRODUCTION
Motivation: Until now, the topic of sharing query resources

for OLAP workloads has been studied and many different tech-
niques such as materialized views [15], multi-query optimiza-
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tion [16], as well as shared scans [6] and shared plans [12]
have already been proposed. The question is, why existing
work has mainly focused on OLAP workloads and has not
yet investigated the resource sharing potential of OLTP work-
loads.

In OLAP workloads, the sharing potential arises from the
fact that long-running and complex queries with multiple joins
need to be executed. To that end, the aforementioned sharing
techniques for OLAP workloads all try to reduce the query
overhead by avoiding to re-execute common expensive sub-
expressions for each incoming query. Materialized views, on
one hand, pre-compute the results of common sub-expressions
a priori and store the results as derived tables. On the other
hand, in the context of multi-query optimization, shared plans
and shared scans try to merge incoming queries that have shar-
ing potential at runtime by using some form of batching. That
way, common sub-expressions in a batch of queries only need
to be executed once.

At first sight, sharing in OLTP workloads does not seem to
be beneficial, because of small (touching only a few tables)
and short running (only a few milliseconds) individual point
queries. Another challenge is the fact that OLTP workloads
need to execute not only read, but write operations as well.
Especially, write-heavy workloads render sharing techniques
such as materialized views useless due to the high overhead of
keeping the latter up-to-date.

It is also commonly not well understood if there is enough
sharing potential between different transactions to make re-
source sharing by merging query fragments attractive, since
there is typically no overlap between individual statements.

Thus, is this the end of this paper? To answer this question
we first analyzed more than 7000 real-world OLTP workloads
of the CMU database application catalog [23]1. An interesting
first observation is that 89% of all these workloads use less
than 10 distinct READ statement strings in all their transac-
tions. These READ statements make about 80% of a com-

1The details of the analysis are discussed in Figure 2.
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Figure 1: Throughput increase of our micro-benchmark

mon OLTP workload [9]. Even more interestingly, 50% of all
the transactions are composed of a distinct single-key lookup
query of the form SELECT atts FROM table WHERE
key=? that can take different input key parameters.

To assess whether sharing of resources in OLTP workloads
generally makes sense or not, we first consider a best-case sce-
nario consisting of a single statement type. For this, we run
a simple synthetic benchmark using only single-key lookup
queries (which is the most common statement type, accord-
ing to the analysis above). For the benchmark, we use only a
single table with 10 million rows where each query randomly
selects a parameter for the key.

In order to analyze the sharing potential, we extended the
commercial database SAP HANA so that incoming queries
can be batched within a queue. We use in total 5 execution
threads on a 10 core machine (which had other threads that
were reserved for other purposes such as session handling).
To merge queued queries, the execution threads poll the queue
in regular intervals and merge all queued queries into a sin-
gle statement; this results in a merged statement with IN-lists.
That merged statement is then compiled and executed. For
the efficient execution of merged statements, we leverage the
fact that SAP HANA, as most modern DBMSs, offers a bulk
lookup interface for indexes which is used to support queries
with IN-lists. The results of our motivating benchmark com-
paring the execution strategy with merging and without merg-
ing (i.e., conventional SAP HANA) are depicted in Figure 1.
The y-axis shows the throughput increase of the system when
scaling up the number of clients.

The reported increase in Figure 1 uses the throughput of
running the workload with a single client where merging is
disabled as a baseline. We observe that merging has a negative
impact for a relative small number of clients where the DBMS
still has enough resources. For example, with 30 clients, merg-
ing introduces an overhead that halves the throughput. How-
ever, at this point the resources of the conventional DBMS are
already saturated: the throughput of the no-merging approach
stagnates while the throughput of the merging strategy con-
tinues to increase up to 300 clients and achieves a throughput
that is up to 2× higher than the non-merging execution. As

expected in both cases, the throughput drops as soon as too
many clients are connected.

Although we know that this workload is far from being real-
istic, it shows that sharing may have a huge potential in OLTP
workloads to better scale a DBMS in high-load scenarios.

Contributions: In this paper, we systematically investigate
a considerable body of OLTP workloads and present an execu-
tion strategy, called OLTPShare, that implements a query shar-
ing scheme for OLTP workloads. In a nutshell, the execution
strategy batches all incoming transactions using a queue-based
approach, similar to the setup described before. In OLTP-
Share, we only merge READ statements of single-statement
transactions, since they provide a high benefit as shown before
and can be efficiently as well as effectively merged. We also
noticed that these types of workloads are common for many
web-based application scenarios that use the database system
as a key-value store and implement most of the application
logic within the application server. In contrast to the sim-
ple setup used in our previous benchmark, OLTPShare main-
tains multiple query queues - one for each distinct statement
type. In order to limit the number of queues, we only batch
the most frequent statement types. Obviously, the presence of
OLTPShare does not prevent the processing of arbitrary trans-
actions including updates as well as multi-statement transac-
tions. For those cases, OLTPShare efficiently separates these
types of transactions from the “mergable” ones and executes
them without merging.

An important aspect is to find an optimal batching strategy
for the mergeable part of the workload. To do so, we leverage a
queuing-model that allows OLTPShare to find a batching strat-
egy that aims to maximize the throughput for the given work-
load and a given system setup (number of queues and available
execution threads). The queuing model takes statistics about
the workload (e.g., arrival rate, average execution latencies)
into account and derives an assignment of execution threads to
queues as well as an optimal poll interval per queue.

We show for a number of different OLTP workloads that
OLTPShare is capable of providing a significant throughput
increase in high-load scenarios. The overall performance in-
crease for all of these workloads is in the range of the numbers
reported before even for workloads that include update state-
ments and queries that do not only execute single-key lookups.

To put it into a nutshell we make the following main contri-
butions in this paper:

• To the best of our knowledge, this is the first paper to
analyze resource sharing opportunities for pure OLTP
workloads.
• Moreover, we provide an implementation of our execu-

tion strategy called OLTPShare in SAP HANA.
• We use an analytical queuing-model which allows OLTP-

Share to derive an optimal batching strategy for a given
workload.
• Using our prototypical implementation in SAP HANA,

we show an extensive evaluation using different OLTP
workloads such as the YCSB and the TATP benchmark
as well as micro-benchmarks to evaluate the accuracy of
our analytical model.
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Figure 2: The frequency of number of distinct statement
strings in OLTP applications of CMDBAC.

Outline: The remainder of this paper is structured as follows:
Section 2 shows the results of our analysis of real-world OLTP
workloads from the CMU Application Catalog [23]. We then
give an overview of OLTPShare in Section 3 and discuss the
details of the queuing model in Section 4. Thereafter, Section
5 details the implementation of OLTPShare, while Section 6
presents our evaluation. Finally, Section 7 discusses preceding
work before we conclude our paper in Section 8.

2. WORKLOAD ANALYSIS
In this section, we analyze typical OLTP applications re-

garding two important questions:

1. How many distinct query statements are used by a typi-
cal OLTP application?

2. Which statement patterns are most frequently used?

The motivation of the first question is to identify the shar-
ing potential in real OLTP workloads: if the number of dis-
tinct statements is low then the sharing potential in general
may be considered high. Furthermore, as motivated in the
introduction, merging single-statement read-only transactions
bears some high sharing potential without increasing the com-
plexity of the multi-query framework within the DBMS. There-
fore, the aim of the second question is to see if these types of
transactions are dominant in many real-world OLTP applica-
tions or if the workload in reality is far more complex and
typically consists of multi-statement transactions or exhibits a
high update ratio.

2.1 Real-World Workloads
The Carnegie Mellon Database Application Catalog (CMD-

BAC) [23] lists a wide range of open-source real-world data-
base applications crawled from on-line source code reposito-
ries. The CMDBAC deploys and executes these applications
and lists some important statistics of those applications on its
website. By the time, we have analyzed the results in CMD-
BAC, there were 7383 projects, which could be deployed and
executed without any failure.

We analyzed the statistics of those 7383 projects which in-
cluded a log of all executed transactions. In order to be able
to extract all distinct queries from those transaction logs, we
first extracted the query and update statements and replaced all
parameter values within the extracted statements by question
marks. Figure 2 depicts the resulting distribution of distinct
statements per application.

The x-axis shows the number of distinct statement strings
found in the log after replacing the parameter values by a place-
holder. The y-axis shows how many applications have that
number of distinct statement strings. We observe that approx-
imately 3.600 applications have a workload that consists of
only one distinct statement string.

Overall, by analyzing our results we found out that 89% of
all applications in CMDBAC have 10 distinct statement strings
or less and 50% of the applications only use a single distinct
statement string. Furthermore, it is important to note that all
these applications only use single-statement transactions and
more than 80% of all statements are simple key-based lookup
queries. This underpins the significant sharing potential in
many of those applications.

We are aware that CMDBAC only lists more simple web-
based applications and does not focus on enterprise-level ap-
plications. It is therefore worthwhile to mention that another
study [9] has already analyzed real-world OLTP workloads of
enterprise-level applications. Interestingly, the study showed
similar results: more than 80% of all transactions of those
OLTP applications are single-statement read-only queries and
more than 50% are simple key-based lookup queries.

2.2 Synthetic Workloads
In addition to actual workloads from many open source pro-

jects, we also studied the query types of synthetic benchmark
scenarios, specifically, the YCSB, TATP, and TPC-C Bench-
mark. The overall goal of analyzing the synthetic benchmarks
is to see how well these benchmarks align with the real-world
applications with regard to their sharing potential and thus to
justify that the findings obtained in our experimental section
reflect the results that could be obtained with real-world work-
loads as well.

The Yahoo! Cloud Serving Benchmark (YCSB) [3] simu-
lates cloud applications, targeting typical No-SQL workloads.
The benchmark consists of six workloads, each being a mix
of four query types (READ, SCAN, INSERT and UPDATE)
with a specified ratio of different query types running at the
same time, e.g. workload A consists of 50% READ and 50%
UPDATE queries. All queries of a kind are the same, i.e., all
read queries are the same, which translates to all read queries
have sharing potential. The analysis of the number of distinct
read queries therefore perfectly fits our observation in Fig-
ure 2, which shows that the largest group of applications only
exhibits a single query type, obviously with varying parameter
values during runtime.

The Telecommunication Application Transaction Process-
ing Benchmark (TATP) [17] simulates a telco application and
consists of four tables, five distinct READ statements, three
distinct UPDATE statements plus one insert and one delete
statement. The ratio of read statements to update statements
is 80:20. We can see that with a workload consisting of 80%
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Figure 3: Overview of the OLTPShare Execution Strategy in SAP HANA

read statements, of which there are only five distinct statement
strings, we have a large sharing potential also in this bench-
mark. This matches the results of [9], who showed that real-
world scenarios consist of workloads with approximately 80%
read queries.

Finally, the TPC-C Benchmark [19] is probably the best
known and most accepted benchmark in the database com-
munity, when it comes to the evaluation of OLTP systems.
According to its specification, the benchmark consists of five
distinct multi-statement transactions with overall 19 distinct
READ, nine distinct UPDATE and four distinct INSERT state-
ments. Two of the five transactions – namely the Order-Status
and the Stock-Level transactions – are read-only, the latter
consisting of only two distinct READ statements. Compared
to the other workloads analyzed before, this benchmark has
a more complex workload. For that reason, we excluded the
TPC-C from our experimental evaluation, because it contains
range READ statements, which we currently do not support.
We leave the extensions and evaluation of TPC-C for future
work.

2.3 Discussion
Since merging queries in OLTP workloads is only beneficial

when there is sharing potential, we analyzed the real-world
workloads of 7383 open source projects, gathered by CMD-
BAC. We show that 89% of the open-source on-line projects
in CMDBAC are running a workload of at most 10 distinct
statement strings. Based on the work of Krueger et al. [9], we
also see that 80% of a common enterprise application work-
load consists of read-only queries. Krueger et al also show
that most of those read-only queries are simply single-point
lookup queries. In addition, we showed that important OLTP
benchmarks, such as the YCSB, TATP or the TPC-C bench-
mark, follow a similar pattern and also typically use only a
small set of distinct statement strings. As a result, we conclude
that OLTP workloads have a huge yet unexploited potential for
sharing. The next sections discuss, how we are going to effi-
ciently leverage this potential.

3. SYSTEM OVERVIEW
After having motivated the sharing potential of typical OLTP

applications, we now present the main building blocks of our
novel evaluation strategy called OLTPShare that leverages the
sharing potential in OLTP workloads. The main idea of the
OLTPShare execution strategy is depicted in Figure 3.

In a first step, we need to decide whether an incoming state-
ment of a client is mergeable or not. In SAP HANA, clients al-
ways communicate directly with a dedicated SqlExecutor (SE)
thread that – in the conventional version without sharing – is
responsible for executing a statement of a transaction and re-
turn the result set or error state. Within our OLTPShare ex-
ecution strategy, we extended the SE-thread such that it first
checks whether the incoming statement is mergeable or not.

• In case it is not mergeable, the SE-thread directly exe-
cutes the statement and returns the result to the client.
• In case the statement is considered mergeable, it is ad-

mitted to a dedicated merge queue for the given state-
ment type.

Every merge queue is polled by a scheduler thread on a regu-
lar basis. If it finds elements in the queue, which are not yet
processed, it instructs one MergeSqlExecutor (MSE) thread of
a pool of MSE-threads to unload the unprocessed statements.
The algorithm for scheduling MSE-threads is a simple Round-
Robin implementation. An instructed MSE-thread merges the
unprocessed statements of the merge queue into a rewritten
statement, executes this statement, and finally splits the result
(i.e., one for each dedicated incoming statement). The individ-
ual result sets are then sent back to the individual clients.

In the following, we discuss the individual steps required
for both extensions to get a better overview on the relevant
questions – the merge decision in an SE-thread and the merged
execution in an MSE-thread. Afterwards, the Sections 4 and 5
discuss some more details with regard to two aspects:

1. Section 4 presents a model to find an optimal configu-
ration of OLTPShare (e.g., to define the poll interval)
given a particular workload for maximizing the overall
throughput.
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Figure 4: Measured Statistics (throughput, latency, batch sizes) for different number of threads N and various interval lengths I .

2. Section 5 provides more in-depth implementation de-
tails of how the merge decision and the merged exe-
cution can be efficiently implemented in SAP HANA
without introducing a too high overhead.

3.1 Merge Decision
As mentioned before, the SE-thread first checks whether

an incoming statement is mergeable or not. This is done in
two steps. In a first step, since OLTPShare currently only
supports the shared execution of single-statement transactions,
the SE-thread checks whether the statement is part of such a
single-statement transaction or if it is part of a multi-statement
transaction. In case it is part of a single-statement transaction,
the SE-thread then checks whether or not the statement can
be merged with other statements that use the same statement
string (but with potentially different parameter values). The
SE-thread therefore consults a list of merge rules whereas each
merge rule specifies a source statement pattern (without pa-
rameters) that describes individual statement patterns. For ex-
ample, the rule to merge single-key lookup queries would con-
sist of the statement pattern SELECT atts FROM table
WHERE key = ?. The details of how the merge decision
using merge rules can be efficiently executed is described in
Section 5.

The list of merge rules in OLTPShare can be extended. In
order to define an optimal set of rules, we first identify the
most frequent statement strings. Based on such analysis, the
merge rules can be implemented for those statement strings
and added to OLTPShare. For our experiments, we imple-
mented merge rules for a variety of different OLTP bench-
marks. Since the number of distinct statement strings is typ-
ically low, the manual effort is negligible. In future, we plan
to extend OLTPShare to automatically generate those merge
rules and thus even be able to dynamically adjust them at run-
time.

3.2 Merged Execution
In the current prototype, OLTPShare provides a merge queue

for each merge rule; i.e., within a queue we only find queries of
the same type, and therefore the same distinct statement string
– however, with potentially different parameters values. If a

workload has too many distinct statements, we also support
that multiple merge rules are mapped to one queue in order
to not have too many merge queues in total. In that case, the
merge queue may contain a mix of statement strings. An MSE-
thread then applies the individual merge rules sequentially and
merges only to the subset which matches the currently consid-
ered rule.

For the merged execution, one or several MSE-threads are
assigned to a queue depending on the statement distribution
in the workload. The MSE-threads poll all the batched state-
ments from their dedicated merge queue. For every queue,
OLTPShare defines a fixed interval (e.g., every 100µs) at which
one of the MSE-threads gets access to the queue. Section 4
outlines how to set the optimal number of MSE-threads and
the poll interval for a queue to maximize the overall through-
put.

After polling, all statements in the queue are merged into
a merged statement string instantiating a target statement pat-
tern for the particular merge rule. For the example above, the
target statement pattern used to merge all single-key lookup
queries Q1, Q2, . . . , QN into a single statement would look
like SELECT atts from table WHERE key in (?1,
?2, . . ., ?N) which is using an IN-list expression. Refer-
ring to the running example, the result of merging the two
statements is also illustrated in Figure 3.

Finally, the merged statement is executed by the MSE and
the result is split up to obtain a separate result for each in-
put statement. Thereafter, the individual results are returned
to the corresponding client. The details of executing those
statements and splitting the results efficiently is discussed in
Section 5.

4. QUEUING MODEL
In this section, we provide a queuing model to capture the

impact of the parameters that control the throughput in the
OLTPShare execution strategy, i.e.,

• the number of MSE-threads N that dequeue a merge
queue and
• the polling interval I in which a merge queue is in-

spected.
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In the following, we first discuss the basic queuing model
with only a single queue where all available N MSE-threads
are assigned to this particular queue. To that end, the main
problem in the basic model is to find the poll interval to max-
imize the throughput. Afterwards, we extend the basic model
to multiple queues. As an additional dimension, we do not
only derive the poll interval per queue but also compute an as-
signment of MSE-threads to queues – i.e., how the overall N
MSE-threads are divided into different queues.

In the context of OLTPShare, we currently use the model
offline to determine the assignment of the MSE-threads to the
merge queues and the polling interval per merge queue. This
is a realistic assumption if the workload does not change over
time, which is the case in many OLTP applications we see
at SAP. In the future, we plan to extend our implementation
to also apply the model dynamically at runtime to adjust the
configuration to potential workload changes.

4.1 Basic Model
Figure 4 shows the basic measured statistics where these

two parameters N and I are apparent. Here, we observe first
the impact of the number of MSE-threads N on the system
throughput. Interestingly, the impact of the inspection inter-
val I is not monotonic. This can be intuitively explained as
follows: too small intervals lead to smaller batch sizes that
do not leverage the sharing potential, while too large intervals
introduce unnecessary waiting times for the arriving jobs.

Figure 4 (b) and (c) therefore show the batch sizes for dif-
ferent polling intervals I . Note the persistent variability of the
batch size B with an increasing interval length. Hence, wait-
ing for larger intervals I does not necessarily entail a higher
sharing potential in the cases where the batch size is small.
This effect surely depends on the type of workload at hand,
i.e., the statistical characteristics of the incoming statement
stream.

I

batches

jobs

...

N threads

time

time

Figure 5: Basic M/G/N/N queuing model. The queue de-
picted is only needed for an M/M/N approximation of the
batch waiting time.

To roughly estimate the appropriate interval length I that
maximizes the throughput for a given workload, we consider
the queuing-model as depicted in Figure 5 as an insensitive
M/G/N/N queuing-system. In this model, batches arrive ac-
cording to some Poisson process with rate λI . Figure 6 shows
how the empirically measured batch arrival rate depends on
the interval I as well as on a simple smoothing function that is
used for the model. In a real workload the arrival rate depends
on the number of clients that submit statements to the database
system. We assume that the service times of batches at sin-
gle threads are independently and identically distributed with
some distribution F and that these have a mean service time
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Figure 6: Smoothing of the empirically measured batch ar-
rival rate for a varying number of threads N .

sI , which represents the execution time of a merged query in
the queue.

For the basic model, we assume that the system hasN avail-
able threads and we are particularly interested in finding the
polling interval I that maximizes the throughput. In order
to maximize the throughput, we first compute the probability
pB(I) of an incoming batch seeing that all threads are busy,
given the interval length I . Therefore, we need to know the
average batch service time and average batch sizes for given
interval lengths I .

In the current prototype of OLTPShare, we therefore rely
on a calibration run that executes a given workload under dif-
ferent intervals I using N MSE-threads. It is important to
note that a queue only contains statements of a single type;
making it possible to empirically obtain reliable average batch
service times sI and average batch sizes E[B] for given inter-
val lengths I in advance. For notational purposes, we omit the
reference to I in E[B].

Thus, given the empirically obtained average batch service
times sI and average batch sizes E[B] for given interval lengths
I , we are particularly interested in minimizing the fraction of
batches pB(I)E[B] that are not immediately processed by a
thread upon arrival, hence, reducing the system throughput.
We derive the probability pB(I) similar to Erlang’s loss for-
mula [2] as

pB(I) =
ρNI /N !∑N
i=0 ρ

i
I/i!

(1)

with ρI = λI · sI depending on the interval length I . Note
that pB(I) can be calculated efficiently in an iterative manner.
The idea of maximizing the throughput is to find an I that
minimizes pB(I)E[B].

4.2 Extended Model
In the extended model, compared to the basic model we sup-

port multiple queues. The problem statement is that we want to
distribute theN MSE-threads toM queues and approximately
find an interval Im for each queue m ∈ M to maximize the
overall throughput. We denote the number of assigned threads
of queue m using Nm where N =

∑
m∈M Nm.

In this paper, we assume that the number of queues M and
available MSE-threads N is fixed. Typically, N is given by
the current DBMS configuration and M is derived from the
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workload and represents the number of top-M statement types
that are merged using a merging queue for each statement type.

To find the optimal configuration (i.e., Nm and Im for each
queue m ∈ M ), we again execute calibration runs but this
time for all M queues (and their statement types) and 1...N
threads for each queue. It is important to note that each of
the m ∈ M queues again only contains statements of a single
statement type, making it possible to empirically obtain reli-
able batch service times sI and average batch sizes E[B] for
given interval lengths Im and a number of MSE-threads Nm

in advance.
Using these empirically obtained statistics, we enumerate

all possible distributions of N threads to M queues. For each
of those distributions, we derive the optimal poll interval Im
for each of the queues m ∈ M and compute the estimated
throughput for that queue as discussed in the previous section.
In order to pick the best overall configuration (i.e.,Nm and Im
for each queue m ∈M ), we use the one which globally max-
imizes the sum of the estimated throughput over all queues.

5. IMPLEMENTATION
In order to demonstrate the feasibility of our sharing ap-

proach, we implemented our OLTPShare execution strategy
within the core engine of the commercial SAP HANA data-
base system [5]. In the following, we discuss the implementa-
tion details of the different phases of OLTPShare as discussed
in Section 3.

5.1 Queuing and Merging
Clients of SAP HANA send a statement string via a socket

connection to a dedicated SqlExecutor thread (SE) assigned
to that connection. The SE-thread first receives the statement,
compiles it and then computes a statement fingerprint from
the statement’s predicates and accessed tables to match it to
a merge rule that could be applied to this statement. If the
statement’s fingerprint could be matched to a merge rule, the
statement is added to the merge queue dedicated to the match-
ing merge rule.

An incoming query is added to a merge queue using a work
element that contains not only the query parameters but also
the connection identifier (i.e., the client) which submitted the
result as well as an expression required to post-process the re-
sult that stems from executing a merged query. The details of
post-processing are explained below.

Each merge queue is polled by a pool of Nm MergeSqlEx-
ecutor threads (MSE) using the poll interval Im as defined in
Section 4; i.e., after a timespan of Im one of the Nm MSE-
threads polls from the queue m. The admission of an MSE-
thread to a queue is controlled by the scheduler. Once an MSE-
thread gets access to the queue, it polls all work elements from
the queue that are present at the time of admission. During
the merging, new work elements can be added by SE-threads
(those will then be polled by the next MSE-thread).

All work elements polled by an MSE-thread are combined
using the merge rule into a merged plan and executed by the
MSE-thread. The details of the execution are discussed next.

Figure 7: A Merged Query Plan.

5.2 Merged Execution
The basic idea for executing the merged plan is shown in

Figure 7. Upon execution, the result of the merged plan is
written into a temporary table holding the intermediate re-
sult. Once the intermediate result is created, we apply a post-
filtering step for each client in order to filter out the relevant
subset of the overall result.

The problem is that in general the result of typical merged
queries is a superset of the union of all individual results, i.e.,
if ϑi was the result for Clienti, then

n⋃
i=1

ϑi ⊆ ϑ1
⋃
···

⋃
n.

E.g., if we merged two queries with filters f=1 and g=2
and f=3 and g=4 into f in (1, 3) and g in (2,
4), then the intermediate temporary table could also contain
a row with <f=1, g=4> which was not requested by any
of the two queries. Receiving more rows in our intermediate
result could arguably hurt the performance, since the unnec-
essary result rows have to be materialized within a temporary
table.

The above example could have also been re-written as (f=1
and g=2) or (f=3 and g=4) resulting in the exact un-
ion of the results of all merged queries. However, the evalua-
tion of the expression during execution is more expensive than
an IN-list which can be efficiently evaluated using a batch in-
dex lookup. Hence, tolerating some redundancy is often ben-
eficial and providing a cost-based decision with respect to the
alternatives is planned for future extensions of the framework.
Furthermore, as we have seen within the workload analysis,
many OLTP queries use a filter predicate on unique columns
(very often primary keys) thus avoiding this effect. From our
current experience, the problem of irrelevant result rows within
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the intermediate result is either not existent or negligible in
terms of performance issues.

In the post-filtering step, we have to split the result of the
merged plan for the different clients. In order to split the in-
termediate result generated by the merged plan and identify
the correct result rows, we iterate over all the rows of the tem-
porary table holding the intermediate result set and evaluate
the client’s filter condition and projection list. Only positively
evaluated rows and required columns are assigned to the result
set of the individual client.

One could argue that iterating multiple times over the in-
termediate results for different clients is too much overhead.
However, since in OLTP environments the intermediate results
are rather small, the overhead due to the repeated iterations is
rather negligible. Still, evaluating an expression during ex-
ecution and additionally during post-processing is redundant
work. We address this issue and identify a possible solution in
the subsequent section.

5.3 Potential Optimizations
Evaluating the same filter expressions in the post-processing

step again obviously introduces some redundancy. Filter ex-
pressions can become arbitrarily complex and their repeated
evaluation adds additional overhead that could be avoided. In
future, we thus plan to simplify this process such that the fil-
ter expression evaluation does not have to be additionally per-
formed in the post processing step: the main idea is – similar
to the approach taken in [7] – to augment the temporary table
holding the intermediate result by an additional column hold-
ing a bitmap to identify the clients to which the particular row
corresponds. This allows to scan the result set once and di-
rectly write each row to the respective output buffers.

6. EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental

evaluation of the OLTPShare execution strategy in SAP HANA
compared to the conventional execution without merging.

6.1 Workloads and Setup
As workloads, we use different OLTP benchmarks: first, we

use the YCSB Benchmark [3] because it provides simple, yet
representative queries simulating data access for typical web-
based applications. Second, we use the TATP benchmark [17],
a widely accepted OLTP benchmark.

We execute those benchmarks on a server running SUSE
Linux Enterprise Server 12 SP1 (kernel: 4.1.36-44-default) us-
ing 512GB of main memory and four sockets with 10 cores,
each. Our machine is equipped with Intel(R) Xeon(R) CPU
E7-4870, which runs at a speed of 2.4GHz and have a cache
size of 30 720 kB. Since we aim for increasing the through-
put in cases of over-utilization, we limit SAP HANA’s core
usage to 10 cores, i.e. one socket. In addition, we disable hy-
perthreading. For the experiment, we implemented the OLTP-
Share strategy in SAP HANA as discussed before. Using com-
pile flags, we are able to turn on/off the sharing feature al-
lowing us to compare OLTPShare against the commercially
available version of SAP HANA without query sharing. All
workloads run on tables, stored in the row store format; we

(a) Workload A

(b) Workload B

(c) Workload C

(d) Workload D

(e) Workload F

Figure 8: Throughput increase of YCSB.
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Table 1: Workloads of the YCSB Benchmark.
Workload READ WRITE INSERT SCAN RMW

A 50% 50%
B 95% 5%
C 100%
D 95% 5%
E 5% 95%
F 50% 50%

show that our approach is also suitable for column store tables
in Section 6.3.

6.2 Experiment 1: Throughput increase
In the following, we discuss the throughput increase of run-

ning the different workloads with an increasing number of
clients. Our baseline is the throughput of running the work-
load with a single client without enabling our merging imple-
mentation (similar to the benchmark used in Section 1).

6.2.1 The YCSB Benchmark
The YCSB benchmark defines different workload mixes A-

F as shown in Table 1. Examining these workloads in more de-
tail, we noticed that running Workload E does not make sense
in our case, because it consists of 5% insert queries and 95%
scan queries, which require a top-k operator for which merg-
ing is not yet efficiently supported.

We thus executed YCSB workloads A, B, C, D, and F as
defined in [3]. Each workload uses two distinct statement
types, a read and an insert/update statement. For each of these
workloads, we used only a single merge queue that collects
the read statements of the respective workload as well as 5
MSE-threads and 10 SE-treads. The poll interval of the MSE-
threads was set to 110 µs.

We plot our results of running the YCSB benchmark in Fig-
ure 8. The x-axis shows the increasing number of clients while
the y-axis depicts the throughput increase in factors, where we
divide the throughput in queries per second by the throughput
with only one thread without using our sharing approach.

As we show in Figure 8a, workloads with a higher update
rate benefit the most from our approach: since read queries are
merged, the read-load on the table drops and more resources
are left for executing updating statements.

As can be seen in Figure 8b, our approach scales well un-
til the point where 1000 clients are connected to SAP HANA,
which means, the system is 100× over-utilized. In contrast,
the conventional SAP HANA scales until 100 clients and then
slightly drops with respect to the overall throughput. Having
the applications scenario in mind, this result is extremely rele-
vant, because Workload B actually behaves like a real-world
OLTP workload with a high ratio of read statements (Sec-
tion 2).

With respect to sharing, we depict the results for the opti-
mal workloads in Figure 8c. Notably, our approach has the
sweet-spot with 200 clients, instead of the convenient SAP
HANA implementation with a sweet-spot with 100 clients in
all workloads. Workload C also has the best throughput in ab-
solute numbers, because it consists only of read-queries thus
avoiding any lock contention on the table.

Figure 9: Results of TATP workload.

The results in Figure 8d show that inserting values in a
workload does not have a negative impact on our merging abil-
ities. It should be noted that the read-distribution for this work-
load is different, though: while Workloads A, B, C and F ac-
cess keys with a zipfian distribution, Workload D is supposed
to access the latest inserted keys. Due to beneficial cache ef-
fects, we see a higher throughput increase here, compared to
Figure 8b, which also consists of 95% read queries.

The implication of Figure 8e, which plots the results for
Workload F, is that it scales the least compared to the other
workloads. However, since the ratio of this workload is 50%
read and 50% read-modify-write, we actually have to deal with
a workload of 75% read queries. In this regard, Workload F
can be seen between Workload A and Workload B. The ab-
solute throughput numbers underline this argument, providing
throughput numbers between those of Figure 8a and Figure 8b.
Hence, our approach does not scale worse for Workload F, but
the conventional SAP HANA is keeping up due to the small
number of writes.

6.2.2 The TATP Benchmark
For our last experiment, we run the TATP benchmark [17].

TATP is composed of seven distinct transactions with up to
three queries, each. Those transactions access four different
tables, stored in row-store format. We run the benchmark with
10.000 subscribers. The workload itself consists of 80% read
statements and 20% update statements. Overall, there are nine
distinct query strings within the workload, four of these are
mergeable read-only statements. The other five statements are
composed of three update, one insert and one delete statement.
Due to the workload configuration, 70% of the workload is
produced by two single-key lookup queries.

We configure OLTPShare with a Scheduler responsible for
a pool of seven MSE-threads, checking the Merge Queue in an
interval of 110 µs. In this experiment we use only one shared
Merge Queue for all single-key lookup queries.

We show our results in Figure 9. As we see, our approach
does not cause a throughput drop for an underload-scenario of
less than 40 clients. From 40 clients onward, we observe an
increase of the throughput of about 20% compared to conven-
tional SAP HANA. The results are comparable to those of the
YCSB Workload B in Figure 8b, in terms of having a large
read-proportion. In contrast, this workload consists of multi-
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Figure 10: Throughput increase of row store and column store

ple distinct read-statements. Due to the fact that we are using
only one queue in our current prototype implementation, the
throughput increase is not as high as expected, since we only
merge statements with the same string, i.e., statements with
different strings are executed sequentially. Still, it should be
noted that even with one queue for four different statement
strings our approach produces a remarkable increase of the
system’s throughput, as Figure 9 shows.

6.3 Exp. 2: Row-Store vs. Column-Store
Previously discussed results use queries based on tables in

the row store layout. In this section, we investigate, whether
OLTPShare is applicable to other table types as well or not. To
evaluate this, we run a single-query-workload. That workload
selects two values from a 10M table with two integer columns
and an index on the primary key. We run this workload twice,
once using a column store table and once using a row store ta-
ble. Our configuration uses one Merge Queue2 and one Sched-
uler thread for a pool of 5 MSE-threads that polls the Merge
Queue in an interval of 110 µs. Each workload is executed
twice, once with our approach and once without. We show the
throughput increase of all four runs in Figure 10; the baseline
is always the respective workload type (i.e. column store/row
store) without sharing, executed with only one client.

As Figure 10 shows, the workloads for both table layouts do
not only achieve a higher throughput when running with more
than 80 clients, but the characteristics of their curves are also
similar. On the other hand, we note that queries on column
store tables benefit more from our approach than row store ta-
bles. We explain this by the advantage of SIMD-usage when
using IN-lists on the column store, which is not available in the
row store [21]. With this small synthetic experiment, we con-
clude that resource sharing in OLTP statements is not bound
to a special table layout in SAP HANA, but a concept that can
be generalized to also different storage layouts.

6.4 Exp. 3: Accuracy of Queuing Model
In Section 4, we discussed the queuing model of our ap-

proach. In this section, we analyze its accuracy. As we will
show next, our theoretical model closely matches findings of
our experimental evaluation. In order to show the accuracy
of the queuing model, we consider a workload of read-only
2since we only have one distinct statement.
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Figure 11: Tuning the interval I using the queuing model.

single-key lookup statements which is the same workload as
depicted in Figure 1 arriving at one merge queue. The merge
queue is serviced by N ∈ {5, 7} MSE-threads. Furthermore,
we vary the poll interval I in the range of 100 µs to 1ms.

In order to see if our model predicts an interval which re-
sults in an approximately maximized throughput, we compare
the measured throughput, i.e., given n queries per second, for
varying I to the delayed batch fraction computed by our model.
We want to see that the throughput is maximized at those poll
intervals I which also minimize the delayed batch fraction as
predicted by our queuing model in Section 4.

Figure 11 shows the result for a range of intervals I and two
setups with N ∈ {5, 7}. We can see that where the delayed
batch fraction pB(I)E[B] is minimized the throughput is ac-
tually maximized. Given empirically measured average batch
sizes E[B] and batch service times per thread sI , Equation 1
can thus be used to determine the combination of the number
of threads N and the interval length I which maximizes the
system throughput. Note, that we observed an outlier in the
calibration for I = 800µs. However, these outliers can be
filtered out by smoothing, as described earlier.

7. RELATED WORK
Sharing resources in query execution has a long research

tradition. In this chapter, we mention related work, catego-
rized by work dealing with sharing resources in OLAP work-
loads, mixed workloads (i.e., OLAP and OLTP), pure OLTP
workloads only and streaming workloads.

7.1 OLAP Workloads
To our knowledge, Multi Query Optimization (MQO) [16]

has been the first work to deal with using shared resources
in queries. The idea of MQO is to execute a subquery of an
OLAP query only once, even if that subquery occurs more
than once in its parent. Thereby, the result of that subquery
is reused. The use case for this approach, however, is lim-
ited to sharing resources in a single query and only for queries
which have multiple similar nested queries - a precondition
we usually do not find in OLTP queries. Another well-known
resource sharing work are Materialized Views [15]. Those
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store frequently used intermediate results for reuse in different
queries. Materialized Views make sense when storing read-
only intermediate results. In OLTP scenarios, we also deal
with write-queries; this requires to keep the Materialized Views
up-to-date, which is very expensive. fAST [10] combines these
approaches by merging similar update requests of Materialized
Views, using the MQO strategy to keep the cost of up-to-date
Materialzed Views low.

Other related work, which includes QPipe [8], CJOIN [1]
and MQJoin [11] use pipelines for sharing resources. A com-
parison of QPipe and CJoin is given in [14]. QPipe is evaluat-
ing an operator-centric paradigm, where each operator is eval-
uating several queries. This paradigm is diametrically opposed
to the query-centric paradigm, used in SAP HANA and was
therefore not applicable in our approach. CJoin and MQJoin
use pipelining first and foremost for sharing work in joins – a
problem we are not targeting in our approach, since our evalu-
ation of the queries showed that we do not have many joins in
OLTP queries.

In summary, many of the proposed approaches offer good
solutions for OLAP workloads but are not directly applicable
for OLTP workloads.

7.2 Mixed Workloads
While the work presented above investigates the sharing of

resources within OLAP queries, we will present related work
that additionally considers OLTP queries, in this subsection.
BatchDB [12] is such a system providing heavy throughput on
mixed workloads. OLTP queries have to be executed in stored
procedures and resource sharing is applied to OLAP queries,
only. In addition, OLTP and OLAP queries are not executed
concurrently but rotatorily.

The work of SharedDB [7] is to our knowledge the clos-
est to ours. In SharedDB, incoming queries are compiled into
one big plan. During execution of that plan, further incoming
queries are queued, i.e., there is always just one query executed
in that system. Like in BatchDB, this causes that the response
time is bound to the execution of the slowest query. The pre-
sented work takes OLTP queries into consideration, but it still
focusses on throughput of OLAP queries.

7.3 OLTP Workloads
Besides the many contributions of resource sharing within

OLAP workloads with or without considering the concurrent
execution of OLTP queries, some works investigate sharing
resources in OLTP queries. Quro [22] is a C/C++ compiler
extension that reorders queries on the client side to avoid lock
contention.

In contrast, BOHM [4] and Calvin [18] propose to execute
OLTP queries in batches and reorder the queries of a transac-
tion on the server side. This requires the whole transaction to
be known to the server - a precondition which is uncommon in
most real-world systems. All these approaches are orthogonal
and could additionally be applied in OLTPShare as well.

DORA [13] follows a data-centric paradigm; a thread is
assigned to data, instead of a task. During task execution,
a task enters several threads, thus avoiding lock contention.
That approach offers the opportunity to share work between
tasks, when they use data, handled by the same thread even

with a mix of read and write tasks. However, this paradigm
is diametrically opposed to the query-centric paradigm used in
OLTPShare for SAP HANA and is therefore not applicable in
our approach.

Zhou et al [24] investigate finding common subexpressions
in queries (e.g. union statements) or sequences of queries (e.g.
stored procedures). In addition to their work, we try to find
common subexpressions of different queries of different trans-
actions.

7.4 Streaming Workloads
Resource sharing is also evaluated in streaming queries such

as State Slice [20]. In that work, the authors present an ap-
proach to efficiently split results when using joins on streams
and thereby reuse parts of intermediate results. The motiva-
tion, here, is to reduce the memory and CPU consumption.
In contrast, our main goal is to increase throughput for non-
streaming queries. CPU utilization and memory consumption
are currently not in our focus.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an execution strategy called

OLTPShare that implements a novel batching scheme for OLTP
workloads. In order to analyze the sharing benefits, we inte-
grated OLTPShare into the commercial database system SAP
HANA and experimentally showed that it is capable of pro-
viding a significant throughput increase of up to 3× under
high-load scenarios compared to the conventional execution
strategy without sharing.

In future, we will extend OLTPShare in different directions:
First, we want to look into merging of update statements as
well as merging of multi-statement transactions. For update
statements, merging for transactions over hot items (e.g., a
central counter) would be extremely beneficial since we then
only require one write-lock for a batch of write-transaction
which lowers contention significantly. Another future avenue
is that we also want to add more physical execution operators
that can efficiently support the execution of batched transac-
tions instead of relying on the existing physical operators.
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