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ABSTRACT
This paper describes the challenges and experiences in the
development of IBM Streams runner for Apache Beam. Apa-
che Beam is emerging as a common stream programming in-
terface for multiple computing engines. Each participating
engine implements a runner to translate Beam applications
into engine-specific programs. Hence, applications written
with the Beam SDK can be executed on different under-
lying stream computing engines, with negligible migration
penalty. IBM Streams is a widely-used enterprise streaming
platform. It has a rich set of connectors and toolkits for easy
integration of streaming applications with other enterprise
applications. It also supports a broad range of programming
language interfaces, including Java, C++, Python, Stream
Processing Language (SPL) and Apache Beam. This pa-
per focuses on our solutions to efficiently support the Beam
programming abstractions in IBM Streams runner. Beam
organizes data into discrete event time windows. This de-
sign, on the one hand, supports out-of-order data arrivals,
but on the other hand, forces runners to maintain more
states, which leads to higher space and computation over-
head. IBM Streams runner mitigates this problem by ef-
ficiently indexing inter-dependent states, garbage-collecting
stale keys, and enforcing bundle sizes. We also share per-
formance concerns in Beam that could potentially impact
applications. Evaluations show that IBM Streams runner
outperforms Flink runner and Spark runner in most scenar-
ios when running the Beam NEXMark benchmarks. IBM
Streams runner is available for download from IBM Cloud
Streaming Analytics service console.
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1. INTRODUCTION
Distributed stream computing has been adopted by a rap-

idly increasing number of industrial applications. For exam-
ple, social networks use streaming analytic systems to de-
tect trending topics and react to news events. Peer-to-peer
ridesharing and food delivery companies process streaming
spatial-temporal data to timely pair supply and demand.
Online advertisement platforms continuously optimize con-
tent placement to maximize monetary gains. Digital health-
care providers collect and evaluate wearable device sensory
data to offer lifestyle suggestions and launch critical alarms.
Data centers monitor hardware and software status around
the clock to capture performance anomalies. Numerous ap-
plications seek the ability to quickly react to dynamic stream-
ing data, as it is either a mandatory requirement or a com-
petitive advantage.
These demands catalyze the developments of various types

of stream computing engines, including Apex [2], AthenaX
[10], Google Dataflow [20, 11], Flink [5, 22], Gearpump [6],
Heron [18, 24], Samza [8, 31], Spark Streaming [37, 38], IBM
Streams [12, 35, 28, 34, 33, 32, 26], etc. However, from the
perspective of application developers, the decision is not al-
ways straightforward when exposed to abundant underlying
engine options. Each stream computing engine designs their
own programming API which means they are not compati-
ble with each other.
Recently, the emerging Apache Beam [3] project aims to

provide a common programming interface. The Beam SDK
inherits from Google Cloud Dataflow API [20]. It is a uni-
fied model for both batch and streaming processing. Ap-
plication pipelines written using the Beam API can run on
different underlying engines without modifying their appli-
cations, which significantly reduces the switching overhead.
Beam requires each participating engine to provide a run-
ner that is responsible for converting Beam applications into
their engine native programs and submitting the programs
for execution. The Beam SDK focuses on application logic
and relies on runners and engines to figure out low-level sys-
tem details, such as parallelism, graph fusion, consistency,
durability, and failure recovery.
This paper shares our experiences of building IBM Streams

runner for Apache Beam. IBM Streams is a widely-used
stream computing platform for high-throughput and low-
latency applications. It has a rich set of more than 80 con-
nectors and toolkits, many of them open-sourced [14, 12],
allowing a developer to easily integrate their streaming ap-
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plications with many other enterprise applications and ser-
vices. It supports a broad range of programming language
interfaces, including Java, C++, Python, Stream Processing
Language (SPL) [27] and so on. As Beam gains increasing
attention, supporting the Beam SDK further broadens the
programming interfaces of IBM Streams, allowing stream
applications written in Beam to take advantages of the en-
terprise strength of IBM Streams and its rich set of connec-
tors and toolkits.
Streams runner traverses a Beam pipeline and creates a

directed acyclic graph (DAG) that conveys the same appli-
cation logic using the Java API of the open-source Streams
Topology toolkit [14]. Then, the DAG can be automatically
submitted to the IBM Streams Runtime or an IBM Cloud
Streaming Analytics service [12]. The Streams runtime has
already been optimized in the past decade in many aspects
including elasticity [34], windowing efficiency [35], consis-
tency [28], and load balancing [33]. Hence, IBM Streams
runner mainly focuses on improving the efficiency of indi-
vidual Beam operators.
The challenges of designing the runner lie in how to handle

Beam windows and states. One challenge occurs in multi-
input multi-output Beam operators whose states from in-
put streams are interdependent. Elements from one input
stream can refer to past or even future states of other input
streams. When the requested states are not yet available,
the operator needs to hold the element and instantly retrieve
it once the state becomes ready. Efficiently indexing pend-
ing states and elements are not trivial when applications use
large fan-in operators with excessively long lookahead dis-
tances. To address this problem, Streams runner maintains
a specialized DAG structure, which is called Pending States
Graph, to index interdependent windows. Another chal-
lenge emerges when serving an evolving set of keys. The
runner has to promptly detect and delete obsolete keys to
prevent hitting an out-of-memory error. To track evolving
contents with minimum overhead, Streams runner dissects
keyed states into smaller components, and organizes them
into multiple interleaving ordered lists, which helps to delete
obsolete states with low computational complexity. These
two techniques collectively boost the throughput of our run-
ner by more than 100 fold when running query 4 and 5 from
Beam’s NEXMark benchmark [15].
Evaluations are conducted using NEXMark, and we de-

veloped a microbenchmark to attain a more in-depth and
comprehensive view of different runners. Results show that
Beam applications can achieve higher throughput and lower
latency when running on Streams compared to Flink and
Spark.
We announced the first Streams runner GA release in Oc-

tober 2017 [13], which is available for download from the
IBM Cloud Streaming Analytics service console [12].
This paper also summarizes lessons learned from develop-

ing the Streams runner and working with Beam applications.
First, applications cannot construct a continuous count- or
time-based sliding window using the existing Beam SDK.
Second, mimicking continuous sliding window with dense
discrete Beam sliding windows leads to miserable perfor-
mance degradations. Third, the Beam programming guide
guarantee that each user-defined function instance will only
be executed by a single thread at a time. This means that
the runner has to synchronize the entire function invocation,
which could lead to significant performance bottlenecks.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly illustrates the background for Apache Beam
and IBM Streams. Section 3 elaborates upon optimizations
in Streams runner. Implementation details are described in
Section 4. Section 5 shares evaluation results, and further
discussions and suggestions are presented in Section 6. Sec-
tion 7 summarizes related work. Finally, Section 8 concludes
the paper.

2. BACKGROUND
This section briefly introduces the Apache Beam model

and IBM Streams runner design.

2.1 Apache Beam
Apache Beam is a unified model for both streaming and

batch data processing, which has attracted increasing at-
tention from both academia and industry. Applications use
the Beam SDK to build a pipeline (DAG) that consists of
PCollections and PTransforms. A PCollection can be ei-
ther a bounded dataset or an unbounded data stream. A
PTransform takes one or multiple PCollections as inputs, ap-
plies user-defined functions, and produces new PCollections.
The Beam SDK provides a rich set of composite PTransforms
based on six types of primitive PTransforms as described be-
low.

• Source creates a new PCollection from a data struc-
ture or an IO connector.

• Window uses user-defined WindowFn to assign windows
to elements.

• ParDo takes one main input PCollection and multiple
side input PCollections. It applies a user-defined DoFn
to every element from the main input PCollection,
and produces zero or more output PCollections. The
DoFn can access windowed states (View) from side input
PCollections.

• View converts every window of a PCollection into a
data structure (e.g., List, Map, Set, Singleton, etc.)
using an application-specified function. These data
structures are later consumed as side inputs by ParDo
PTransforms.

• GroupByKey groups values with the same key in the
same window into a list. Applications can configure
both windowing and triggering schemes.

• Flatten merges multiple input PCollections of the
same type into a single output PCollection without
guarantees to preserve the arrival order of its elements.

The Beam model distinguishes event time from process-
ing time, where event time is when the event occurs and
processing time is when the element or window is processed.
Every element has a timestamp meta field recording its event
time. To identify late arrivals, Beam uses watermarks to es-
timate the progress of PCollections. Every watermark is a
timestamp defined in the even time domain. An element is
considered late upon arrival if its timestamp falls behind the
current watermark (progress) of the PCollection. Window
boundaries are defined in the event time domain as well.
Every window in Beam is subject to fixed boundaries and
never changes after creation, but PTransforms can maintain
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an evolving set of windows to support dynamic behaviors,
such as sliding and tumbling paradigms. Every element be-
longs to one or multiple windows, determined by the element
event timestamp and window boundaries. The window as-
signment is a meta field in the element, which travels to-
gether with the element in the pipeline. With this design,
PTransform operators can correctly retrieve window contexts
for out-of-order arrivals and update outputs accordingly.
The same Beam pipeline code can execute on various

distributed computing engines, including Apache Apex [2],
Google Cloud Dataflow [20], Apache Flink [5], Apache Gear-
pump [6], Apache Hadoop [7], Apache JStorm [1], Apache
Spark [9], and IBM Streams [12, 17]. The Beam SDK spec-
ifies the computation model, and each participating engine
provides a runner that converts Beam applications to engine
specific programs. Beam also provides a set of integration
tests to verify the correctness of runners.

2.2 IBM Streams Runner
IBM Streams [12] is a reliable distributed stream comput-

ing engine for high-throughput and low-latency applications.
The Streams runner supports Apache Beam applications by
translating Beam pipelines into SPL programs [27] and then
executing the programs using the Streams runtime. Let us
use a snippet of a sample Beam application code to illustrate
the translation and execution process.

1 Pipeline p = Pipeline.create(options);
2 // 1. Create a source of numbers
3 p.apply("Source", GenerateSequence.from (0).withRate(
4 1, Duration.standardSeconds (1)))
5 // 2. Organize numbers into 20s FixedWindows
6 .apply("Windowing",Window.into(
7 FixedWindows.of(Duration.standardSeconds (20))))
8 // 3. Use number parity as the key
9 .apply("AssignKey", WithKeys.of((Long x) -> x % 2))

10 // 4. Group numbers based on window and key
11 .apply("GroupByKey", GroupByKey.create ());
12 // Run the pipeline and get a result handle
13 PipelineResult pr = p.run();

This is a tiny Beam application that generates numbers and
then groups them into lists based on their timestamp and
parity. The first line creates an empty Beam pipeline. The
following four apply invocations append four transforms into
the pipeline. The GenerateSequence transform emits a series
of consecutive numbers from 0, with a rate of one number
per second. By default, each element uses the current system
time as their timestamp when emitted from a source, and all
elements are assigned to the same global window. On line 6,
the Window transform organizes elements into tumbling win-
dows with 20 second durations. After this transform, every
element carries the boundary information of the window it
belongs into. Then, the WithKeys transform, which is a thin
wrapper of the ParDo transform, turns every input number
x into a key-value pair using the user-defined function to
calculate the key. Finally, the GroupByKey transform groups
numbers with the same key (number parity in this example)
in the same window into a list.
The corresponding Beam pipeline is depicted at the top

in Figure 1. The Streams runner topologically traverses the
Beam pipeline and creates a Java operator for every primi-
tive Beam PTransform since all Beam-specific logic must be
implemented in the Beam runner. Then, the runner relies on
the Topology [14] toolkit to convert the Java program into
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Figure 1: Architecture

an SPL program. When the program is launched, the IBM
Streams runtime automatically fuses operators into process-
ing elements (PE), which is the smallest scheduling unit in
Streams. Suppose in this example, the four Java operators
are fused into two PEs as shown at the bottom in Figure 1.
Different PEs can run on the same or different servers, de-
termined by the scheduling algorithm. Operators inside the
same PE communicate using method invocations. Element
serialization/deserialization and network transmissions only
occur at PE boundaries. After submission, the application
gets a PipelineResult object, which serves as a handle to
query Beam metrics and cancel pipelines. Streams runner
support Beam metrics by querying a REST API provided
by the Streams runtime. Metrics are available during and
after the execution of Beam pipelines.
Please refer to prior work for more details of Streams run-

time designs, such as parallelism [33, 32], interface abstrac-
tion [27], windowing [35], scalability [26], elasticity [34], fail-
ure recovery [28], etc.

3. RUNNER OPTIMIZATION
This section presents three optimizations implemented in

the Streams runner to improve system efficiency. Section 3.1
describes the Pending States Graph to index interdependent
window states on multiple ParDo input streams. Section 3.2
describes the techniques to promptly detect and delete stale
states. Section 3.3 presents how the runner applies bundles
to PCollections.

3.1 Pending States Graph
In the Beam model, the ParDo transform takes one main

input stream and multiple side input streams. The user-
defined DoFn is applied to every main input element. The
DoFn may access states from side input streams using the
main input element’s window information. Applications spec-
ify the mapping from a main input window to a side input
window by providing a WindowMappingFn which can return
past or even future windows of a side input. A side input
window can flip from unready to ready randomly based on a
data element arrival, or from ready to expired sequentially
based on a watermark advance. The main challenge is to
maintain an efficient index data structure from side input
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Figure 2: Pending States Graph

windows to main input element that allows both random
retrieval and sequential deletion.
More specifically, Beam expects the runner to exploit all

associated windows assigned to the main input element and
use the WindowMappingFn to calculate the requested side in-
put window for every main input window. When a specific
main input element arrives, it is possible that requested side
input states are not yet ready for some or all of the main in-
put windows. In this case, the main input element together
with the pending main input windows have to be temporar-
ily pushed back and stored in the ParDo operator and wait
for future side input data arrivals. In some applications, the
amount of pushed back main input elements can be quite
large since side input elements can arrive much later than
the main input and nothing prevents WindowMappingFn from
requesting a future side window. Therefore, the ParDo oper-
ator needs to efficiently handle side input states and pushed
back main input elements.
The ParDo operator organizes pending states into a three-

tier Pending States Graph (PSG). Figure 2 depicts an exam-
ple. The first tier stores requested but unready side input
windows. The second tier keeps unready main input win-
dows. The edges pointing from the first tier to the second
tier record the prerequisites to unlock main input windows.
The third tier stores all pushed back elements. The edges
between the second and the third tier record window assign-
ment of pushed back elements. The ParDo operator inserts
nodes and edges into the PSG when it encounters an un-
ready main input window.
Later, states of a pending side input window become avail-

able when either side data arrives in that window, or side
watermark passes the max timestamp of the window. To ef-
ficiently handle the latter, the first tier also internally main-
tains an order based on max window timestamps. When
a side window becomes ready, it is deleted from the PSG
together with the edges originated from it. The second and
third tiers are processed in the topological order. The run-
ner invokes DoFn on a main element in a window when all
incoming edges of the window are removed from the PSG.
Then, the window is removed from the second tier. A main
element can be safely garbage collected after processing all
its assigned windows. To demonstrate the algorithm, sup-
pose the watermark advances beyond side window b and the
operator receives data from side window c. Then, the PSG
would drop edges from a, b, and c, which contain all incom-
ing edges on main window x. Hence, PSG would, in turn,
remove edges from x, which automatically activates element
1.
Algorithm 1 shows the pseudo-code for processing a main

input element. When the main input element arrives, line

Algorithm 1: Process Main Inputs
Input: elem main input window

1 finished ← true
2 for w ∈ elem.windows do
3 isReady ← true
4 for s ∈ side inputs do
5 sideWindow ← s.getSideInputWindow(w)
6 if sideWindow not ready then
7 add sideWindow to tier 1 if not yet
8 isReady ← false

9 if isReady then
10 process elem in window w

11 else
12 add w to tier 2
13 finished ← false

14 if not finished then
15 push back elem to tier 3

2 explores its windows. For each main input window, line
4 loops over all side input windows dictated by the user-
defined WindowMappingFn. Unready side input windows, main
input windows, and main input elements are inserted into
PSG accordingly on line 7, 13, 15 respectively. The two
loops on line 2 and line 4 govern the computational com-
plexity, which is O(|W|·|S|) where |W| and |S| denote the
number of assigned windows and the number of side inputs
respectively.

Algorithm 2: Process Side Inputs
Input: id side input id, w side input window

1 wid ← (id, w)
2 if wid ∈ tier 1 then
3 for mainWindow ∈ wid’s neighbors in tier 2 do
4 delete the edge from wid to mainWindow
5 if mainWindow has no ingress edges then
6 for elem ∈ mainWindow.neighbors do
7 process elem in mainWindow
8 if elem has no ingress edges then
9 delete elem from tier 3

10 delete mainWindow from tier 2

11 remove wid from tier 1

Algorithm 2 shows the pseudo-code that handles side in-
put data. Line 1 creates a unique identifier (wid) for window
w of side input id. On line 2, if the window exists in tier
1, then some main input is waiting for this side input win-
dow. Subsequent lines check all descendant of node wid, and
recursively activate and remove them from PSG.

3.2 Keyed State Management
The Beam model supports stateful processing [16]. Every

state (e.g., user-defined states in ParDo, and batched ele-
ments in GroupByKey) exclusively binds to a specific key. In
some real-world streaming applications, a key may emerge
and gradually die out [30] with the passage of time. There-
fore, states associated with obsolete keys have to be removed
in time, otherwise the memory usage will keep increasing
until the application hits an out-of-memory error. However,
although keyed states are independent, their expiration may
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depend on the same side input availability. Besides, as ap-
plications can create an arbitrary number of keys, the run-
ner cannot afford to employ a dedicated heavy index data
structure for every key. Hence, the challenge lies in how to
timely and efficiently track key expirations. To solve this
problem, we extract as many components as possible from
keyed states, and manage them together, which makes the
residual parts in every keyed state lightweight. To dissect
keyed states, this design requires a comprehensive under-
standing of key expiration timings.
Three conditions collectively determine the timing for dis-

posing obsolete states. First, a key cannot be removed if any
of its windows are still active. The Beam model defines a
third time concept called watermark. The watermark is an
estimate of the progress in event time on a PCollection.
When a watermark W arrives from an input stream, the op-
erator expects all future elements from that stream have
timestamps larger than W. Elements violating the watermark
are considered late arrivals. Applications can tune lateness
tolerance by setting the allowedLateness field in the window
configuration. Late elements will not be discarded immedi-
ately. Instead, the operator only drops all elements in a
window if the window falls too far behind the current wa-
termark, which guarantees that all windows being processed
have complete contexts.
Beam requires applications to provide watermarks for sou-

rce PCollections. Given that, in many cases, applications
cannot predict future arrivals, source watermarks can be
both too conservative (watermarks fall behind on-time ele-
ments) and too aggressive (introduces late arrivals). When
propagating watermarks to downstream operators, runners
only need to guarantee that on-time elements and their out-
puts never become late.
Second, as discussed in the Section 3.1, ParDo operators

push back main input elements to wait for corresponding
side inputs. Keys have to stay alive until all its pushed back
elements and windows are fully processed.
Third, Beam allows user-defined DoFns to use both event

time timers and processing time timers. Event time timers
fire when the main input stream watermark advances be-
yond the set time. Processing time timers, however, are
triggered based on the elapsed physical time since the ar-
rival of the first main input element in a window or set by
the user. Hence, ParDo can only discard a key after all timers
are cleared.
One straightforward design is to create a PSG for every

key such that the runner can easily retrieve all pushed back
elements of a key. However, this design has to loop over
all keys to find pushed back elements when a side input
arrives, which could become costly when the application
handles many keys. To avoid this overhead, Streams run-
ner only maintains a single PSG in each ParDo operator in-
stance. The operator instance can efficiently use the PSG
to locate pushed back elements and then use the keys in
the elements to retrieve the keyed states. Figure 3 shows
an example of the data structure. Keyed states remem-
ber the number of pushed back elements under that key.
Timers are also stored in each keyed state, but are glob-
ally linked into an ordered list to avoid introducing multiple
timer threads. States of a key are deleted when all asso-
ciated windows violate allowedLateness, the corresponding
counter of pushed back elements reaches zero, and all timers
are cleared. Hence, the keyed states are ordered based on the

Figure 3: Keyed States

smallest maximum timestamp of all windows, which allows
the runner to efficient delete obsolete states on watermark
arrivals.

3.3 Bundling Elements
In Beam, PCollections are processed in bundles. Some

runners (e.g., Flink, Spark, and Streams) expose the inter-
faces for users to control the bundle size. Having smaller
bundle sizes helps to reduce the batching delay but could
suffer from higher amortized system overhead. However,
configuring bundle sizes is different from controlling bundle
boundaries, because applications can split/merge streams
and discard/insert elements based on the value of input data
which may not be known before execution. That is to say,
applications cannot clairvoyantly predict what elements will
be packed into the same bundle. Therefore, runners have the
freedom to decide how to divide a PCollection into bun-
dles. One solution is to enforce the bundle size at every in-
dividual operator. Each operator maintains a counter that
remembers the number of processed input elements since
the beginning of the bundle, and invokes the user-defined
startBundle and finishBundle methods accordingly. Alter-
natively, the runner could enforce the bundle size only at
the source. Downstream operators simply create an output
bundle for all results generated after processing an input
bundle.
Streams runner implements the second solution by creat-

ing a super tuple wrapping over a list of elements followed
by a watermark. The first solution requires extra code to
maintain bundling states in every operator, which introduces
additional overhead with no added benefit. Admittedly, af-
ter a bundle leaves the source operator, downstream opera-
tors may partially process the bundle or emit fewer outputs
than inputs, leading to smaller output bundle sizes. For
example, user-defined DoFn may decide to discard main in-
put elements, and GroupByKey batches input elements before
the watermark reaches the max window timestamp. How-
ever, we claim that the diminished downstream bundle size
does not increase the amortized system overhead. The over-
head comes from two major sources: executing application
startBundle or finishBundle methods, and walking through
the three layers of invocations (Beam transform, Topology
toolkit, and Streams Runtime).
The Streams runtime is implemented in C++. The Topol-

ogy Java toolkit communicates with the Streams runtime
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using JNI calls. When an element enters a PE, the Streams
runtime passes the element to the Streams Topology Java
toolkit by initiating a JNI up call. The JNI down calls
are triggered when elements exit a PE. JNI calls, especially
JNI up calls, are considerably more expensive compared to
method invocations in the same language. This overhead
only occurs at bundle boundaries as all elements in a bun-
dle is transmitted as a super tuple. Therefore, for the same
number of bundles, individual bundle sizes do not affect the
amortized system overhead but number of bundles do. In
the second solution, all operators only see a new bundle
when the source operator emits one. Therefore, the amor-
tized system overhead is well controlled by the source bundle
size.

4. IMPLEMENTATION
In this section, we describe IBM Streams runner imple-

mentation details and share rationales for some implemen-
tation decisions.

4.1 Translation
IBM Streams offers the Topology toolkit [14] which al-

lows application developers to write Streams applications
using Java or Python APIs. Initially, we intended to trans-
late Beam transforms into existing Topology operators since
this would be the lightest solution. However, we soon re-
alized that the Beam model does not align well with the
Topology toolkit’s APIs. Therefore, instead of using existing
Topology operators, Streams runner implements new Topol-
ogy operators for Beam’s Read, Window, Flatten, ParDo, and
GroupByKey transforms respectively. In this way, the runner
has full control of the execution from when an element ar-
rives at an operator until the element is emitted. Executions
outside an operator (e.g., thread scheduling, data transmis-
sion, etc.) are controlled by the Topology Java interfaces
and Streams runtime.

4.2 ParDo Transform
ParDo is the most versatile and frequently used PTransform

in Beam SDK. Therefore, its efficiency is crucial. A ParDo’s
behavior is affected by three configurations:

• Stateful vs stateless: In stateful ParDos, the oper-
ator needs to extract the key from every element and
maintain dedicated states for that key. Besides, as de-
scribed in Section 3.2, the operator also maintains an
extra data structure to assist obsolete key deletions.

• Side inputs vs no side inputs: When side inputs
are present, the operator loops over all side inputs on
every element to retrieves View values.

• Side outputs vs no side outputs: When side out-
puts are present, the operator needs to map outputs
elements to the correct output ports and broadcast
watermarks to all output ports.

The above three configurations expand to eight combi-
nations. The most efficient solution will have a dedicated
implementation for every combination to avoid checking the
configuration on every incoming element. However, this de-
sign will result in tedious and scattered code. To understand
whether performance gains are worth the implementation
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complications, we compared the two designs. The first de-
sign implements six different combinations, 2 statefulness ×
(SISO + SIMO + MIMO) where SIMO stands for single in-
put multiple outputs. The second design implements four
combinations, consolidating SISO with SIMO. We evaluated
them using Beam’s official NEXMark [15] (explained in Sec-
tion 5.2) benchmark under the same configuration and hard-
ware. Figure 4 shows the results. The more concise design
with four combinations takes as much as 15% longer time
when processing query 1. Therefore, we decided to adopt
the more complicated implementation to achieve higher ef-
ficiency.

4.3 View Transform
The View PTransform converts all elements in a window

into a data structure by applying a user-defined data struc-
ture. Then, a ParDo can consume this View as a side input,
which allows its DoFn to access View data structure when
processing main input elements. There are several differ-
ent options to implement this logic. The runner may route
all side input elements into the ParDo operator and merges
the View logic into ParDo, or it can create a dedicated View
operator. Neither solution is ideal. The former introduces
unnecessary overhead if the View is consumed by multiple
ParDo transforms, as each ParDo needs to apply the grouping
and user-defined View function to the same set of elements.
The latter is more efficient, but the grouping and View func-
tion resemble GroupByKey and ParDo transforms. Hence, im-
plementing a dedicated View operator will create code du-
plications. IBM Streams runner implements View using a
third alternative. It treats the View primitive transform as
a Combine composite transform which contains a GroupByKey
and a ParDo. As a result, each View transform will be repre-
sented by two operators in the translated Streams topology.

4.4 Monitoring
IBM Streams supports monitoring with metrics that are

similar but not identical to Beam metrics. Rather than cre-
ate a separate metrics implementation, the IBM Streams
runner implements Beam metrics on top of IBM Streams
custom metrics. This allows existing IBM Streams tooling
to monitor Beam application metrics, but does cause some
limitations and complications for the implementation due to
the slightly different semantics.
IBM Streams custom metrics can be created and manip-

ulated by IBM Streams applications. Custom metrics types
include counters, times, and gauges, but gauges do not have
timestamps as they do in Beam. While the IBM Streams
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runtime uses a metric type called histogram that could rep-
resent Beam distributions this metric type is not available
to applications as custom metrics.
To support Beam gauges and distributions metrics, multi-

ple IBM Streams metrics are used to represent a single Beam
metric. Beam gauges are represented with two IBM Streams
custom metrics, a gauge and a time. The implementation of
Beam distributions uses four IBM Streams custom metrics:
two counters for the count and sum, and two gauges for the
min and max.
IBM Streams does not provide for atomic updates of mul-

tiple metrics, which means that there can be instances where
the Beam metric briefly appears inconsistent. While the up-
date is done in order to try to minimize this effect, metrics
consumers should be aware of the possibility.
Much like Beam metrics are per-step, IBM Streams cus-

tom metrics are per-operator. As described above, Beam
pipelines are transformed into custom Topology operators
for IBM Streams, but these operators do not always corre-
spond one-to-one with Beam steps. In some instances, such
as transform fusion, a single operator can implement multi-
ple Beam steps, so the runner needs to be able to separate
the metrics by step. In the case of pipeline parallelism, a sin-
gle transform may be running in multiple parallel operator
instances with separate metrics.
To handle these cases and to keep Beam metrics visually

distinct from other IBM Streams metrics, the IBM Streams
runner encodes Beam metrics in a human-readable form that
includes the Beam step, namespace, and metric name, as
well as the type of metric and what element of multipart
metrics it represents. This allows the runner to both aggre-
gate metrics from parallel instances, and separate metrics
by their Beam step. It also allows newer IBM Streams tool-
ing such as its web console to be Beam-aware and render
Beam metrics appropriately while still allowing users to un-
derstand the metrics and their relation to Beam even in their
raw form.
The IBM Streams runner currently only implements at-

tempted metrics, it does not implement committed metrics.
A final difference between Beam metrics and IBM Streams

metrics is when they are available. Beam metrics are an
optional feature so may not be available at all but even when
they are they may not be available during runtime; this is a
runner-dependent choice. They are usually available when
the pipeline finishes. IBM Streams pipelines normally run
continuously until cancelled or the application fails, so its
metrics are only available during runtime and they are not
preserved at pipeline termination.
The IBM Streams runner makes Beam metrics available

during runtime by using the IBM Streams REST API to
retrieve metrics. It will also poll all metrics when the ap-
plication cancels itself, but if the application is cancelled
externally or fails, metrics will not be available.
Overall, this approach to implementing Beammetrics with

IBM Streams metrics has been successful. While there are
minor limitations, the ability to reuse existing tooling has
proven useful.

4.5 Watermark
Beam employs watermark as the estimate of progress in

event time domain. The watermark triggers timers in ParDos
and windows in GroupByKeys. Unbounded Sources in Beam
provide an getWatermark API. Applications can customize

Table 1: Evaluation Hardware Specifications
OS Red Hat Enterprise Linux Server 6.9
Kernel 2.6.32-696.3.1.el6.x86_64
CPU Architecture: x86_64

CPU(s): 16
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 2
NUMA node(s): 2
CPU family: 6
Model: 44
Model name: Intel(R) Xeon(R) CPU X5687
CPU MHz: 3599.735
NUMA node0 CPU(s): 0-3,8-11
NUMA node1 CPU(s): 4-7,12-15

Memory available: 2 nodes (0-1)
node 0 size: 32756 MB
node 1 size: 32768 MB
node distances:
node 0 1
0: 10 21
1: 21 10

Network Broadcom BCM5709S Gigabit Ethernet

Sources and implement getWatermark accordingly. The sou-
rce operator in Streams runner polls the getWatermark API
after reading any element from the application Source and
emits the watermark if it is larger than the last value. Beam
does not specify how runners should propagate watermarks
in non-Source operators. Streams Beam runner follows the
design presented in Dataflow [20] where the output water-
mark of an operator is the minimum watermark of all input
streams.

5. EVALUATION
In order to compare various stream computing systems,

prior works have to implement the same application using
completely disparate APIs [38]. However, evaluation results
may not be convincing as the implementation efficiency of-
ten relates to the proficiency on the target system. One can
rarely, if ever, argue that different implementations of the
same application are identically optimized. The emergence
of Apache Beam eliminates this concern because the same
application code is able to be run on different engines. The
diverging system performance completely attributes to the
runner and the underlying engine which are both considered
components of the holistic stream computing solution.
This section compares Streams against Flink and Spark.

Flink and Spark runners were selected because they have
been available since Beam’s incubation releases, bundle size
and bundle time interval can be configured, and they can
be deployed within our uniform performance environment.
Another mature runner is Google Dataflow; however, this
runner is designed to submit Beam pipelines to the Google
Cloud Platform which we cannot setup in our environment.

5.1 Environment
Evaluations were conducted across four identical systems

using Beam 2.2 packages, an IBM Streams 4.2.4.0 instance,
local Flink 1.3.0, and local Spark 1.6.3 runtimes. Besides
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bundle size and interval parameters, default runner options
were used. Table 5 describes the server specifications used.

5.2 NEXMark
Since the 2.2.0 release, Beam SDK natively provides an

implementation for the NEXMark benchmark [15]. NEX-
Mark mimics an online auction application, and defines thir-
teen types of queries over three data streams, namely Per-
son stream, Auction stream, and Bid stream. The queries
are originally defined using the Continuous Query Language
(CQL) [21]. Please refer to [15] for their CQL code and de-
tailed explanations. In general, the first three queries use
simple stateless transforms or filters, while the remaining
ten queries involve more complex operators, such as join
and aggregation.
Beam SDK implements these 13 NEXMark queries inside

of a framework which surfaces several configuration param-
eters. Since we are evaluating streaming engines, all run-
ners were configured for streaming mode, and the framework
was configured to collect performance metrics while the job
was running. Pipelines were given 30 seconds before per-
formance metrics were collected to minimize initialization
bias.
Beam’s NEXMark framework, by default, summarizes 10

samples or two minutes data to compute steady-state per-
formance metric measurements. To closely achieve steady-
state event rates in a timely manner, individual NEXMark
queries were launched to consume a large number of events.
The detailed numbers of events are shown in Table 2.

Table 2: NEXMark Query Source Configuration
Query Number of Events
0-2 25,000,000
3-11 2,000,000
12 500,000

Figure 5 shows the results. All experiments configure bun-
dle batching time to 100 ms. The three figures show the
throughputs when setting the bundle size to 1, 10, and 100
elements respectively. The throughput clearly increases for
all runners when using larger bundle sizes. Compared to
Flink, Streams attains much higher throughput in all queries
except query 10 and 12. Outperforming in query 0 means
that the Streams achieves much lower system overhead com-
pared to Flink. The mixed result in the other queries indi-
cates that Streams runner is not perfectly optimized yet, and
it limps at certain types of queries. This result aligns with
our expectation. In query 12 where Streams runner suffers,
the pipelines employ Combine transforms or repeatedly use
GroupByKey followed by ParDo patterns. Flink runner has
already implemented a Combine optimizer which conducts
the grouping and combining functions in the same operator.
In contrast, without a dedicated Combine optimizer, Streams
runner still treats Combine as a normal composite transform,
and translates it into a GroupByKey transform and a ParDo
transform. Spark Streaming staggers miserably under the
configured batch sizes. As its results are almost invisible
from the figures, we use black arrows to point out the per-
formance numbers for query 2 and 9. Spark streaming gen-
erates an RDD for every timestep bundle, and submits it as
a batch job to the Spark core. For tiny bundle sizes, this
design endures huge system overhead, and hence leads to ex-
tremely low throughputs. Besides, Spark runner cannot exe-

cute query 3 and 7 yet, as it does not support states, timers,
or the View PTransform in streaming mode. For more details
regarding these missing features, please refer to Beam-1035,
Beam-1115, and Beam-2112 on Beam’s Jira site.
One limitation of Beam’s NEXMark framework is the lack

of detailed per-tuple response time metrics. Additionally,
the Flink runner does not support Beam metrics while the
pipeline is running. Instead, the runner only displays statis-
tics after the pipeline finishes. Therefore, we developed a
couple micro benchmarks to collect more comprehensive per-
formance measurements.

5.3 Micro Benchmark
Two micro benchmarks were created to measure latencies

and throughputs under various bundle sizes and bundle time
intervals. These benchmarks focus on the performance of the
ParDo and GroupByKey transforms, as they are the most ver-
satile and expensive components in Beam pipelines. Per tu-
ple latencies and average throughputs were collected against
the IBM Streams and Apache Flink runners. Each bench-
mark, runner, configuration test was conducted 20 times.
This set of evaluations skip Spark because the previous re-
sults in Section 5.2 have already shown that Spark Stream-
ing cannot deliver comparable results under small bundle
configurations.

5.3.1 Benchmark Pipeline
Each benchmark pipeline starts from an UnboundedSource

transform generating an endless amount of elements (24
bytes in size) as quickly as possible.
To measure the tuple latency and overall throughput, each

element is given a timestamp before it is provided to the
source’s reader. A final reporting PTransform is appended
at the end of the micro benchmark pipeline to process the
element’s timestamp and record the latency. To remove any
initialization bias, the reporter starts recording latencies af-
ter 30 seconds into the experiment.

5.3.2 ParDo Benchmark
The ParDo micro benchmark pipeline consists of 20 se-

quential ParDo transforms that pass elements directly from
input to output conducting no other work. Results from this
micro benchmark indicate element transportation time/cost
and show how efficiently runners transport elements between
transforms.
Figure 6 (a) shows the evaluation results when the bun-

dle time interval is configured to an excessively large value
(1000 seconds) such that the bundle size limit is always trig-
gered first. The per-tuple latency increases with the increase
of bundle size, which meets with our expectation as larger
bundle sizes mean longer batching delay in Streams runner.
However, the same benchmark shows a completely reversed
trend on Flink where the per-tuple latency decreases with
the increase of bundle size. To understand this counter-
intuitive phenomenon, we dug into Flink runner’s source
code, and found that it does not treat a bundle as a batch.
Flink emits a tuple immediately instead of waiting for an
entire bundle to finish, unless a snapshot is under construc-
tion. The bundle size limits are only used for triggering user-
defined startBundle and finishBundle methods. Therefore,
increased bundle size does not contribute to per-tuple la-
tency, but the overheads of startBundle and finishBundle
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bundle size = 1 bundle size = 10 bundle size = 100

Figure 5: Nexmark Benchmark Evaluation
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Figure 6: Micro Benchmark: Fixed large bundle time millis, varying bundle sizes

are amortized across more tuples, leading to a lower per-
tuple latency. Although bundles do not have to align with
batches, this design in Flink runner lacks the option for ap-
plications to trade batch sizes for system throughputs when
micro-second latency is overkill. Figure 6 (a) also shows that
Streams achieves 4 times higher throughput than Flink.
Then, in Figure 7 (a), the bundle size is set to a exces-

sively large value (107) while various bundle time intervals
are compared. Configured bundle time intervals are high-
lighted by the horizontal dashed lines in the figure. Again,
as Flink does not treat the bundle time interval as the batch
time interval, it achieves much lower per-tuple latency. The
latency in Streams is about 20 times the configured bun-
dle time interval, which is expected as the Beam pipeline
contains 20 sequential ParDo transforms. The throughput
measurements also show Streams outperforms Flink.

5.3.3 GroupByKey Benchmark
The GroupByKey micro benchmark consists of several se-

quential transforms including applying windows to gener-
ated elements, assigning keys to the elements, grouping el-
ements by key, and splitting grouped elements back to in-
dividual items. For this instance, sliding windows of two
second duration and one second period were applied to the
elements and keys were assigned by round-robin across 10
unique keys.
The first set of evaluations fix the bundle time interval

to 1000 second and test across various bundle sizes. Re-
sults are presented in Figure 6 (b). The per-tuple latency
in streams is close to the application windowing delay of
1000 ms. On average, Flink spends about 200 ms longer to

emit a keyed window output compared to Streams. Streams
achieves about 2 times throughput compared to Flink. The
second set of evaluations fix the bundle size to a large value
(107) and vary the bundle time interval. As Flink does not
batch tuples based on bundle size, its per-tuple latency stays
roughly the same value. The latency in Streams slightly
increases when using 10 ms bundle time interval, but sig-
nificantly jumps 4 times when using 100 ms due to larger
bundle time intervals causing more elements per bundle. As
the runner only appends a watermark at the end of every
bundle, states within a bundle cannot be timely emitted
and deleted, leading to a much higher state management
overhead. If read together with the GroupByKey throughput
result in Figure 6 (b), we can calculate that each bundle
contains roughly 8,000 elements when bundle time interval
is set to 100 ms. Although Streams still manages to outper-
form Flink by 2 times in throughput, the gap shrinks as the
time interval increases. We believe this can be remedied by
inserting more watermarks into large bundles.

6. LESSONS LEARNED
During the design and development of Streams runner,

we gradually comprehended the strengths and weaknesses
of the Beam model. In this section, we share several ap-
plication scenarios that Beam fails to accomplish efficiently.
When encountering these requirements, the runner and the
application developers have to consider competent solutions.

6.1 Continuous Window Model
Windowing is a fundamental technique in stream process-

ing engines. Existing window models can be categorized
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Figure 7: Micro Benchmark: Fixed large bundle size, varying bundle time intervals

into two types: continuous and discrete. Continuous win-
dow models maintain a single window that slides along the
time axis, while discrete window models keep track of an
evolving set of static windows where every window covers a
fixed time interval. The entire set of windows travels along
the time axis by creating new windows and discarding obso-
lete windows. A continuous window model maintains fewer
states than a discrete window model, which leads to higher
efficiency but on the other hand lacks the support for late ar-
rivals. Even if it keeps past window contexts, a late element
could intersect with a formidable number of past windows,
leading to an unacceptable overhead. In contrast, discrete
windows usually align outputs at sporadic window bound-
aries, resulting in a more affordable set of window contexts
for late arrivals. Apache Beam adopts the discrete window
model.
However, discrete window models also find themselves

clumsy when serving applications that detect certain pat-
terns from a continuing series of signals. For example, con-
sider a wearable device using an EKG [25] sensor to monitor
cardiac readings, or a trading algorithm that keeps track of
market data within the past one minute. Beam applications
will have to split the signal sequence into discrete windows,
which might tear the target pattern apart and result in false
negatives. Moreover, as window outputs are only generated
at sporadic time instances, the Beam model falls short for
applications seeking extremely low response times. Regard-
less of how dense an application configures Beam’s sliding
window, it never becomes fully continuous. Using dense win-
dows leads to another concern as described in the following
section.

6.2 Dense Sliding Windows
Although the Beam API covers a broad spectrum of sce-

narios, application developers need to take care if they gen-
erate frequent (e.g., 1 second) outputs from relatively large
(e.g., 5 minute) windows due to inefficiencies in Beam’s win-
dow state management algorithm. In Beam’s design, every
window is associated with a dedicated data structure that
holds all elements in the window. As windows with large
sizes and small periods excessively overlap with each other,
a single input element may need to be added into a large
number of windows resulting in redundant states and com-
putations. Figure 8 (a) shows an example where window
size equals five and window period two. One element ar-
rives in every time unit, which will be inserted into two or
three windows.

W1

W2

W3

a

W4

a b c d e f g Event Time

(a) Window State in Accumulating Mode

elementa windowelement reference

W1

W2

W3

a

W4

a b c d e f g Event Time

(b) Discarding Mode Triggered on the 4th Element

Figure 8: Beam Window State

Moreover, some of Beam features prevent runners from
fully optimizing these use cases. For instance, the Beam
API allows applications to configure refinement policies in
windows, which can be either accumulating or discarding
in Beam. The refinement policy controls how the engine
should handle past states after firing a window. In the ac-
cumulating mode, elements arrived after firing window will
be processed together with all existing elements in the win-
dow. In contrast, the discarding mode forces the engine to
clear states in a window once they are processed, and subse-
quent arrivals in the window start from an empty state. As
different windows fire at different times, overlapping win-
dows have to maintain their overlapping parts separately.
Figure 8 (b) shows a discarding mode example of windows
triggered on every 4th element. In this example, W1, W2, and
W3 overlap with each other, but the overlapping event time
regions are in different states.

6.3 Parallel Processing
Stateless transforms (e.g., Window, Flatten, and stateless

ParDo) can easily parallelize to multiple worker instances.
Beam also supports stateful processing [16]. It requires the
stateful ParDo and GroupByKey to consume a key-value main
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input stream. Rather than maintaining a global state for all
elements, every key has its dedicated states in Beam. With
this design, a runner can safely partition a stream based
on the key and execute the ParDo in a distributed fashion.
However, Beam does not guarantee thread-safety for mul-
tiple threads to concurrently access the same transform in-
stance regardless of whether they maintain states. Instead,
Beam promises applications that there will only be a single
thread executing their user-defined functions [4] at a time.
Therefore, if the underline engine spawns multiple threads,
the runner has to synchronize the entire DoFn or GroupByKey
invocation.
Before discussing the impact of synchronizations in Beam

transforms, let us first explain the threading model in IBM
Streams. When executing a Streams application, the source
operator asks the runtime to create the number of threads
it needs. Instead of binding to a single operator, threads
travel across multiple operators following the links on the
pipeline, and returns to the source operator to process the
next element after finishing the prior one. Hence, there are
two parallelism concepts in a PE, pipeline parallelism, and
operator parallelism. The former refers to having multiple
threads executing on the same pipeline, while the latter runs
multiple threads on the same operator instance.
As Beam forbids multiple threads from entering the same

PTransform instance, engines lose the opportunity to use op-
erator parallelism. It is not terribly inefficient as long as
computational overhead is well balanced among all opera-
tors. However, in IBM Streams use cases, there are indeed
very heavy custom operators, which correspond to expen-
sive DoFns in Beam. These operators run on powerful servers
with hundreds of cores. If translated to Beam, those costly
DoFns cannot scale up to harvest the power of parallelism
for (computationally) heavy and (quantitatively) hot keys.
Expensive DoFns also impede pipeline parallelism, as threads
have to compete to get through them.
Admittedly, in some scenarios, synchronizing the entire

DoFn is absolutely necessary. But in many other cases, cus-
tom operators or user-defined DoFns consist of thread-safe
pre-processing and post-processing steps wrapping around
the real critical section. Hence, splitting the DoFn into smaller
pieces could further help runners and engines to harvest the
power of parallelism.

7. RELATED WORK
Apache Beam was hatched from the programming mod-

el/SDK portion of Google Cloud Dataflow [11]. It was de-
signed to handle unbounded, unordered, and global-scale
datasets. Akidau et al. discussed model details and the
implementation of then underlying MillWheel stream pro-
cessing system in literature [20, 19].
Several stream computing engines have joined the Beam

runner community so far. Apache Flink [5] is one of the
earliest participants. Carbone [22] explains the consistent
distributed snapshot algorithm employed in Fink state man-
agement module, which is similar to the classical Chandy-
Lamport’s protocol [23]. Flink’s distributed snapshot im-
plementation address circles in the computation graph by
assigning special IterationHead and IterationTail into ev-
ery circle. LinkedIn developed Samza [8] and uses it for
many production applications. Noghabi et al. [31] intro-
duces Samza’s high-level design. Compared to Flink, in-
stead of using distributed snapshots, Samza recovers from

failure by replaying change logs. It speeds up recoveries
by employing a concept called Host Affinity, which sched-
ules the restarted operator to where the change logs are
locally stored in a best effort manner. However, without a
distributed snapshot, Samza’s failure recovery solution can-
not guarantee global consistency. Twitter started processing
stream data with Storm [36], and then switched from Storm
to Heron [18]. Storm [36] allows applications to construct
a computation topology with spouts (sources) and bolts (in-
ternal nodes). It can then automatically partition the ap-
plication and run it in a distributed manner. Later, Storm
was upgraded to Heron [18] with enhanced scalability and
performance. Compared to Storm, supporting back pres-
sure is one of the major improvements in Heron [29]. With
back pressure, downstream bolts can influence the rate at
which upstream bolts/spouts emit data and therefore avoid
dropping data due to the large backlog. Floratou et al. [24]
created a variant from Heron, which focuses on self-tuning,
self-stabilizing, and self-healing.
All systems described above are able to promptly deliver

updates on every incoming tuple. Spark Streaming behaves
differently as it carries out computations based on micro-
batches. Spark Streaming sits on top of Spark core. The
latter is an in-memory distributed batch computing system.
Datasets in Spark [37] are organized into immutable re-
silient distributed datasets (RDD). Applications create lin-
eage graphs where every node in the graph is an RDD and
every edge a transformation. The Spark engine divides the
lineage graph into smaller components by using shuffling
transformations as boundaries. Every component will be
organized into a stage which is further divided into paral-
lel tasks. Intermediate results within a stage are kept in
memory, but data generated at stage boundaries need to be
committed onto disks. Spark Streaming [38] divides data
stream into time steps, and creates an RDD for every time
step. Then it submits a Spark batch job for every time step
RDD. This layer of abstraction equips Spark with the ability
to handle data streams. However, by using the underlying
batch computing engine, Spark Streaming can hardly deliver
per-tuple updates. Forcing per-tuple time step will result in
miserable throughput.
IBM Streams recently releases its runner to support Beam.

During the past decade, IBM Streams has been optimized in
many aspects. Tangwongsan et al. [35] designed the Reactive
Aggregation, which is a framework to help Streams handle
incremental sliding-window aggregations highly efficiently.
Schneider and Wu [34] introduced a scalable and elastic op-
erator scheduler to automatically figure out the number of
threads to use for arbitrary sized applications. Schneider
et al. [32] designed an algorithm that can judiciously iden-
tify data parallel opportunities in a general stream process-
ing graph. Gedik et al. [26] answered the question of how
many parallel channels provide the best throughput. IBM
Streams [33] balances load for data-parallel regions by using
TCP blocking rate per connection as the feedback signal.
More specifically, it creates a function for each connection
based on this blocking rate, and minimizes the maximum
value of that function across all parallel channels. Guaran-
teed tuple processing [28] is achieved by periodically running
a variation of the Chandy-Lamport snapshot algorithm [23]
to capture a consistent view of global states. Thanks to
prior efforts committed to IBM Streams, the development
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of Streams runner only needs to focus on efficiency within
individual Java operators.

8. CONCLUSION AND FUTURE WORK
This paper discussed the design, implementation, and eval-

uation of IBM Streams runner for Apache Beam. Streams
runner converts Beam applications into Streams SPL pro-
grams by calling the open-source Topology Java toolkit, cre-
ating one Java operator for every Beam PTransform. We
spend most of the development efforts on optimizing the ef-
ficiency in every operator. Evaluations show that the same
Beam NEXMark benchmark finishes with lower latency and
higher throughput on Streams compared to Flink and Spark.
As an open and rapidly iterating project, Apache Beam uni-
fies many distributed computing systems. IBM Streams
offers its runner for developers to utilize the Beam SDK
alongside the Streams Topology Java and Python APIs and
wishes to see the flourishing programming abstractions en-
able and cultivate the shift to event driven architectures and
real-time analytics. In the near future, we plan to focus on
optimizing parallelism and failure recovery in the runner, as
well as adopting new features from Apache Beam.
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